
September 2016 DocID15965 Rev 14 1/908

1

RM0038
Reference manual

STM32L100xx, STM32L151xx, STM32L152xx and STM32L162xx
 advanced ARM®-based 32-bit MCUs

Introduction

This reference manual targets application developers. It provides complete information on
how to use the STM32L151xx, STM32L152xx and STM32L162xx and STM32L100xx
microcontroller memory and peripherals. The STM32L151xx, STM32L152xx and
STM32L162xx and STM32L100xx value line will be referred to as STM32L1xxxx throughout
the document, unless otherwise specified.

The STM32L1xxxx is a family of microcontrollers with different memory sizes, packages and
peripherals.

For ordering information, mechanical and electrical device characteristics please refer to the
corresponding datasheets.

For information on programming, erasing and protection of the internal non volatile memory
please refer to Section 3: Flash program memory and data EEPROM (FLASH).

For information on the ARM® Cortex®-M3 core, please refer to the Cortex®-M3 Technical
Reference Manual.

Related documents

Available from www.arm.com:

• Cortex®-M3 Technical Reference Manual, available from http://infocenter.arm.com

Available from www.st.com:

• STM32L151xx STM32L152xx datasheets

• STM32L162xx datasheet

• STM32L100xx datasheet

• STM32F10xxx/20xxx/21xxx/L1xxxx Cortex®-M3 programming manual

• Migrating from STM32L15xx6/8/B to STM32L15xx6/8/B-A and from STM32L100x6/8/B to
STM32L100x6/8/B-A (TN1176)

• Migrating from STM32L15/6xRC-A to STM32L15/6xRC and from STM32L15/6xVC-A to
STM32L15/6xVC (TN1177)

• Migrating from STM32L15/6xxD to STM32L15/6xxE (TN1178)

• Migrating from STM32L15/6xxD to STM32L15/6xVD-X (TN1201)

www.st.com

http://www.st.com

Contents RM0038

2/908 DocID15965 Rev 14

Contents

1 Documentation conventions . 38

1.1 List of abbreviations for registers . 38

1.2 Peripheral availability . 38

1.3 Glossary . 39

1.4 Product category definition . 40

2 System architecture and memory overview . 42

2.1 System architecture . 42

2.2 Memory organization . 46

2.3 Memory map . 46

2.4 Embedded SRAM . 49

2.5 NVM overview . 49

2.6 Bit banding . 49

2.7 Boot configuration . 50

3 Flash program memory and data EEPROM (FLASH) 52

3.1 NVM introduction . 52

3.2 NVM organization . 52

3.3 Read interface . 59

3.3.1 Relation between CPU clock frequency and Flash memory read time . 59

3.3.2 Instruction prefetch when Flash access is 64 bits 60

3.3.3 Data management . 62

3.4 Memory operations . 62

3.4.1 Unlocking/locking memory . 62

3.4.2 Erasing memory . 64

3.4.3 Programming memory . 65

3.4.4 Read while write (RWW) . 70

3.5 Option byte description . 73

3.5.1 Option byte block programming . 77

3.6 Quick reference to programming/erase functions 77

3.7 Memory protection . 80

3.7.1 Readout protection (RDP) of the program and data EEPROMs 80

DocID15965 Rev 14 3/908

RM0038 Contents

26

3.7.2 Write protection (WRP) of the program memory 82

3.7.3 Write protection error flag . 82

3.7.4 PCROP . 82

3.8 Interrupts . 83

3.9 Register description . 83

3.9.1 Access control register (FLASH_ACR) . 83

3.9.2 Program/erase control register (FLASH_PECR) 84

3.9.3 Power down key register (FLASH_PDKEYR) . 87

3.9.4 Program/erase key register (FLASH_PEKEYR) 87

3.9.5 Program memory key register (FLASH_PRGKEYR) 87

3.9.6 Option byte key register (FLASH_OPTKEYR) . 88

3.9.7 Status register (FLASH_SR) . 88

3.9.8 Option byte register (FLASH_OBR) . 90

3.9.9 Write protection register (FLASH_WRPRx) . 91

3.9.10 Register map . 91

4 CRC calculation unit . 94

4.1 CRC introduction . 94

4.2 CRC main features . 94

4.3 CRC functional description . 95

4.4 CRC registers . 95

4.4.1 Data register (CRC_DR) . 95

4.4.2 Independent data register (CRC_IDR) . 95

4.4.3 Control register (CRC_CR) . 96

4.4.4 CRC register map . 96

5 Power control (PWR) . 97

5.1 Power supplies . 97

5.1.1 Independent A/D and DAC converter supply and reference voltage . . . 98

5.1.2 Independent LCD supply . 99

5.1.3 RTC and RTC backup registers . 99

5.1.4 Voltage regulator . 100

5.1.5 Dynamic voltage scaling management . 100

5.1.6 Dynamic voltage scaling configuration . 102

5.1.7 Voltage regulator and clock management when VDD drops
below 2.0 V . 103

Contents RM0038

4/908 DocID15965 Rev 14

5.1.8 Voltage regulator and clock management when modifying the
VCORE range . 103

5.2 Power supply supervisor . 103

5.2.1 Power on reset (POR)/power down reset (PDR) 105

5.2.2 Brown out reset . 106

5.2.3 Programmable voltage detector (PVD) . 107

5.2.4 Internal voltage reference (VREFINT) . 108

5.3 Low-power modes . 108

5.3.1 Behavior of clocks in low-power modes . 109

5.3.2 Slowing down system clocks . 110

5.3.3 Peripheral clock gating . 110

5.3.4 Low-power run mode (LP run) . 111

5.3.5 Sleep mode . 111

5.3.6 Low-power sleep mode (LP sleep) . 113

5.3.7 Stop mode . 114

5.3.8 Standby mode . 116

5.3.9 Waking up the device from Stop and Standby modes using the RTC
and comparators . 117

5.4 Power control registers . 120

5.4.1 PWR power control register (PWR_CR) . 120

5.4.2 PWR power control/status register (PWR_CSR) 123

5.4.3 PWR register map . 124

6 Reset and clock control (RCC) . 126

6.1 Reset . 126

6.1.1 System reset . 126

6.1.2 Power reset . 127

6.1.3 RTC and backup registers reset . 127

6.2 Clocks . 128

6.2.1 HSE clock . 130

6.2.2 HSI clock . 131

6.2.3 MSI clock . 132

6.2.4 PLL . 132

6.2.5 LSE clock . 133

6.2.6 LSI clock . 133

6.2.7 System clock (SYSCLK) selection . 134

6.2.8 System clock source frequency versus voltage range 134

DocID15965 Rev 14 5/908

RM0038 Contents

26

6.2.9 Clock security system (CSS) . 134

6.2.10 Clock Security System on LSE . 135

6.2.11 RTC and LCD clock . 135

6.2.12 Watchdog clock . 136

6.2.13 Clock-out capability . 136

6.2.14 Internal/external clock measurement with TIM9/TIM10/TIM11 136

6.2.15 Clock-independent system clock sources for TIM9/TIM10/TIM11 138

6.3 RCC registers . 139

6.3.1 Clock control register (RCC_CR) . 139

6.3.2 Internal clock sources calibration register (RCC_ICSCR) 141

6.3.3 Clock configuration register (RCC_CFGR) . 141

6.3.4 Clock interrupt register (RCC_CIR) . 144

6.3.5 AHB peripheral reset register (RCC_AHBRSTR) 147

6.3.6 APB2 peripheral reset register (RCC_APB2RSTR) 149

6.3.7 APB1 peripheral reset register (RCC_APB1RSTR) 150

6.3.8 AHB peripheral clock enable register (RCC_AHBENR) 153

6.3.9 APB2 peripheral clock enable register (RCC_APB2ENR) 155

6.3.10 APB1 peripheral clock enable register (RCC_APB1ENR) 157

6.3.11 AHB peripheral clock enable in low-power mode register
(RCC_AHBLPENR) . 159

6.3.12 APB2 peripheral clock enable in low-power mode register
(RCC_APB2LPENR) . 161

6.3.13 APB1 peripheral clock enable in low-power mode register
(RCC_APB1LPENR) . 163

6.3.14 Control/status register (RCC_CSR) . 165

6.3.15 RCC register map . 168

7 General-purpose I/Os (GPIO) . 171

7.1 GPIO introduction . 171

7.2 GPIO main features . 171

7.3 GPIO functional description . 171

7.3.1 General-purpose I/O (GPIO) . 174

7.3.2 I/O pin multiplexer and mapping . 174

7.3.3 I/O port control registers . 176

7.3.4 I/O port data registers . 177

7.3.5 I/O data bitwise handling . 177

7.3.6 GPIO locking mechanism . 177

7.3.7 I/O alternate function input/output . 178

Contents RM0038

6/908 DocID15965 Rev 14

7.3.8 External interrupt/wakeup lines . 178

7.3.9 Input configuration . 178

7.3.10 Output configuration . 179

7.3.11 Alternate function configuration . 179

7.3.12 Analog configuration . 180

7.3.13 Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15
port pins . 181

7.3.14 Using the OSC_IN/OSC_OUT pins as GPIO PH0/PH1 port pins 181

7.3.15 Selection of RTC_AF1 alternate functions . 181

7.4 GPIO registers . 183

7.4.1 GPIO port mode register (GPIOx_MODER) (x = A..H) 183

7.4.2 GPIO port output type register (GPIOx_OTYPER)
(x = A..H) . 183

7.4.3 GPIO port output speed register (GPIOx_OSPEEDR)
(x = A..H) . 184

7.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR)
(x = A..H) . 184

7.4.5 GPIO port input data register (GPIOx_IDR) (x = A..H) 185

7.4.6 GPIO port output data register (GPIOx_ODR) (x = A..H) 185

7.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A..H) 185

7.4.8 GPIO port configuration lock register (GPIOx_LCKR)
(x = A..H) . 186

7.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A..H) 187

7.4.10 GPIO alternate function high register (GPIOx_AFRH)
(x = A..H) . 188

7.4.11 GPIO bit reset register (GPIOx_BRR) (x = A..H) 188

7.4.12 GPIO register map . 188

8 System configuration controller (SYSCFG) and
routing interface (RI) . 191

8.1 SYSCFG and RI introduction . 191

8.2 RI main features . 191

8.3 RI functional description . 195

8.3.1 Special I/O configuration . 195

8.3.2 Input capture routing . 199

8.3.3 Reference voltage routing . 200

8.4 RI registers . 201

8.4.1 RI input capture register (RI_ICR) . 201

DocID15965 Rev 14 7/908

RM0038 Contents

26

8.4.2 RI analog switches control register (RI_ASCR1) 203

8.4.3 RI analog switch control register 2 (RI_ASCR2) 205

8.4.4 RI hysteresis control register (RI_HYSCR1) . 206

8.4.5 RI Hysteresis control register (RI_HYSCR2) . 206

8.4.6 RI Hysteresis control register (RI_HYSCR3) . 207

8.4.7 RI Hysteresis control register (RI_HYSCR4) . 208

8.4.8 Analog switch mode register (RI_ASMR1) . 208

8.4.9 Channel mask register (RI_CMR1) . 209

8.4.10 Channel identification for capture register (RI_CICR1) 209

8.4.11 Analog switch mode register (RI_ASMR2) . 210

8.4.12 Channel mask register (RI_CMR2) . 210

8.4.13 Channel identification for capture register (RI_CICR2) 211

8.4.14 Analog switch mode register (RI_ASMR3) . 211

8.4.15 Channel mask register (RI_CMR3) . 212

8.4.16 Channel identification for capture register (RI_CICR3) 212

8.4.17 Analog switch mode register (RI_ASMR4) . 213

8.4.18 Channel mask register (RI_CMR4) . 213

8.4.19 Channel identification for capture register (RI_CICR4) 214

8.4.20 Analog switch mode register (RI_ASMR5) . 214

8.4.21 Channel mask register (RI_CMR5) . 215

8.4.22 Channel identification for capture register (RI_CICR5) 215

8.4.23 RI register map . 216

8.5 SYSCFG registers . 218

8.5.1 SYSCFG memory remap register (SYSCFG_MEMRMP) 218

8.5.2 SYSCFG peripheral mode configuration register (SYSCFG_PMC) . . 219

8.5.3 SYSCFG external interrupt configuration register 1
(SYSCFG_EXTICR1) . 219

8.5.4 SYSCFG external interrupt configuration register 2
(SYSCFG_EXTICR2) . 221

8.5.5 SYSCFG external interrupt configuration register 3
(SYSCFG_EXTICR3) . 221

8.5.6 SYSCFG external interrupt configuration register 4
(SYSCFG_EXTICR4) . 222

8.5.7 SYSCFG register map . 222

9 Touch sensing I/Os . 224

9.1 Introduction . 224

9.2 Main features . 224

Contents RM0038

8/908 DocID15965 Rev 14

9.3 Functional description . 225

9.3.1 Surface charge transfer acquisition overview 225

9.3.2 Charge transfer acquisition management . 227

9.4 Touch sensing library . 229

10 Interrupts and events . 230

10.1 Nested vectored interrupt controller (NVIC) . 230

10.1.1 SysTick calibration value register . 230

10.1.2 Interrupt and exception vectors . 230

10.2 External interrupt/event controller (EXTI) . 237

10.2.1 Main features . 237

10.2.2 Block diagram . 237

10.2.3 Wakeup event management . 238

10.2.4 Functional description . 238

10.2.5 External interrupt/event line mapping . 239

10.3 EXTI registers . 241

10.3.1 EXTI interrupt mask register (EXTI_IMR) . 241

10.3.2 EXTI event mask register (EXTI_EMR) . 241

10.3.3 EXTI rising edge trigger selection register (EXTI_RTSR) 242

10.3.4 Falling edge trigger selection register (EXTI_FTSR) 242

10.3.5 EXTI software interrupt event register (EXTI_SWIER) 243

10.3.6 EXTI pending register (EXTI_PR) . 244

10.3.7 EXTI register map . 244

11 Direct memory access controller (DMA) . 246

11.1 DMA introduction . 246

11.2 DMA main features . 246

11.3 DMA functional description . 249

11.3.1 DMA transactions . 249

11.3.2 Arbiter . 250

11.3.3 DMA channels . 250

11.3.4 Programmable data width, data alignment and endians 252

11.3.5 Error management . 253

11.3.6 Interrupts . 253

11.3.7 DMA request mapping . 253

11.4 DMA registers . 257

DocID15965 Rev 14 9/908

RM0038 Contents

26

11.4.1 DMA interrupt status register (DMA_ISR) . 257

11.4.2 DMA interrupt flag clear register (DMA_IFCR) 258

11.4.3 DMA channel x configuration register (DMA_CCRx) (x = 1..7,
where x = channel number) . 259

11.4.4 DMA channel x number of data register (DMA_CNDTRx) (x = 1..7,
where x = channel number) . 260

11.4.5 DMA channel x peripheral address register (DMA_CPARx) (x = 1..7,
where x = channel number) . 261

11.4.6 DMA channel x memory address register (DMA_CMARx) (x = 1..7,
where x = channel number) . 261

11.4.7 DMA register map . 262

12 Analog-to-digital converter (ADC) . 265

12.1 ADC introduction . 265

12.2 ADC main features . 265

12.3 ADC functional description . 266

12.3.1 ADC power on-off control . 269

12.3.2 ADC clock . 269

12.3.3 Channel selection . 270

12.3.4 Single conversion mode . 271

12.3.5 Continuous conversion mode . 271

12.3.6 Timing diagram . 271

12.3.7 Analog watchdog . 272

12.3.8 Scan mode . 273

12.3.9 Injected channel management . 273

12.3.10 Discontinuous mode . 274

12.4 Data alignment . 275

12.5 Channel-wise programmable sampling time . 276

12.6 Conversion on external trigger . 277

12.7 Aborting a conversion . 278

12.7.1 Injected channels . 278

12.7.2 Regular channels . 279

12.8 Conversion resolution . 279

12.9 Hardware freeze and delay insertion modes for slow conversions 279

12.9.1 Inserting a delay after each regular conversion 280

12.9.2 Inserting a delay after each sequence of auto-injected conversions . . 281

12.10 Power saving . 282

Contents RM0038

10/908 DocID15965 Rev 14

12.11 Data management and overrun detection . 284

12.11.1 Using the DMA . 284

12.11.2 Managing a sequence of conversions without using the DMA 284

12.11.3 Conversions without reading all the data . 285

12.11.4 Overrun detection . 285

12.12 Temperature sensor and internal reference voltage 285

12.13 Internal reference voltage (VREFINT) conversion 288

12.14 ADC interrupts . 288

12.15 ADC registers . 289

12.15.1 ADC status register (ADC_SR) . 289

12.15.2 ADC control register 1 (ADC_CR1) . 291

12.15.3 ADC control register 2 (ADC_CR2) . 293

12.15.4 ADC sample time register 1 (ADC_SMPR1) . 297

12.15.5 ADC sample time register 2 (ADC_SMPR2) . 297

12.15.6 ADC sample time register 3 (ADC_SMPR3) . 298

12.15.7 ADC injected channel data offset register x (ADC_JOFRx)(x=1..4) . . 299

12.15.8 ADC watchdog higher threshold register (ADC_HTR) 299

12.15.9 ADC watchdog lower threshold register (ADC_LTR) 299

12.15.10 ADC regular sequence register 1 (ADC_SQR1) 301

12.15.11 ADC regular sequence register 2 (ADC_SQR2) 301

12.15.12 ADC regular sequence register 3 (ADC_SQR3) 302

12.15.13 ADC regular sequence register 4 (ADC_SQR4) 303

12.15.14 ADC regular sequence register 5 (ADC_SQR5) 303

12.15.15 ADC injected sequence register (ADC_JSQR) 304

12.15.16 ADC injected data register x (ADC_JDRx) (x= 1..4) 304

12.15.17 ADC regular data register (ADC_DR) . 305

12.15.18 ADC sample time register 0 (ADC_SMPR0) . 305

12.15.19 ADC common status register (ADC_CSR) . 306

12.15.20 ADC common control register (ADC_CCR) . 306

12.15.21 ADC register map . 308

13 Digital-to-analog converter (DAC) . 311

13.1 DAC introduction .311

13.2 DAC main features .311

13.3 DAC functional description . 313

13.3.1 DAC channel enable . 313

DocID15965 Rev 14 11/908

RM0038 Contents

26

13.3.2 DAC output buffer enable . 313

13.3.3 DAC data format . 313

13.3.4 DAC conversion . 314

13.3.5 DAC output voltage . 315

13.3.6 DAC trigger selection . 315

13.3.7 DMA request . 316

13.3.8 Noise generation . 316

13.3.9 Triangle-wave generation . 317

13.4 Dual DAC channel conversion . 318

13.4.1 Independent trigger without wave generation 319

13.4.2 Independent trigger with single LFSR generation 319

13.4.3 Independent trigger with different LFSR generation 319

13.4.4 Independent trigger with single triangle generation 320

13.4.5 Independent trigger with different triangle generation 320

13.4.6 Simultaneous software start . 320

13.4.7 Simultaneous trigger without wave generation 321

13.4.8 Simultaneous trigger with single LFSR generation 321

13.4.9 Simultaneous trigger with different LFSR generation 321

13.4.10 Simultaneous trigger with single triangle generation 322

13.4.11 Simultaneous trigger with different triangle generation 322

13.5 DAC registers . 323

13.5.1 DAC control register (DAC_CR) . 323

13.5.2 DAC software trigger register (DAC_SWTRIGR) 326

13.5.3 DAC channel1 12-bit right-aligned data holding register
(DAC_DHR12R1) . 326

13.5.4 DAC channel1 12-bit left aligned data holding register
(DAC_DHR12L1) . 327

13.5.5 DAC channel1 8-bit right aligned data holding register
(DAC_DHR8R1) . 327

13.5.6 DAC channel2 12-bit right aligned data holding register
(DAC_DHR12R2) . 328

13.5.7 DAC channel2 12-bit left aligned data holding register
(DAC_DHR12L2) . 328

13.5.8 DAC channel2 8-bit right-aligned data holding register
(DAC_DHR8R2) . 328

13.5.9 Dual DAC 12-bit right-aligned data holding register
(DAC_DHR12RD) . 329

13.5.10 DUAL DAC 12-bit left aligned data holding register
(DAC_DHR12LD) . 329

Contents RM0038

12/908 DocID15965 Rev 14

13.5.11 DUAL DAC 8-bit right aligned data holding register
(DAC_DHR8RD) . 330

13.5.12 DAC channel1 data output register (DAC_DOR1) 330

13.5.13 DAC channel2 data output register (DAC_DOR2) 330

13.5.14 DAC status register (DAC_SR) . 331

13.5.15 DAC register map . 331

14 Comparators (COMP) . 333

14.1 Introduction . 333

14.2 Main features . 333

14.3 COMP clock . 333

14.4 Comparator 1 (COMP1) . 334

14.5 Comparator 2 (COMP2) . 337

14.6 Comparators in Window mode . 339

14.7 Low-power modes . 339

14.8 Interrupts . 340

14.9 COMP registers . 340

14.9.1 COMP comparator control and status register (COMP_CSR) 340

14.9.2 COMP register map . 343

15 Operational amplifiers (OPAMP) . 344

15.1 OPAMP introduction . 344

15.2 OPAMP main features . 344

15.3 OPAMP functional description . 344

15.3.1 Signal routing . 345

15.3.2 Using the OPAMP outputs as ADC inputs . 346

15.3.3 Calibration . 346

15.4 OPAMP registers . 348

15.4.1 OPAMP control/status register (OPAMP_CSR) 348

15.4.2 OPAMP offset trimming register for normal mode (OPAMP_OTR) . . . 351

15.4.3 OPAMP offset trimming register for low-power mode
(OPAMP_LPOTR) . 352

15.4.4 OPAMP register map . 353

16 Liquid crystal display controller (LCD) . 354

16.1 Introduction . 354

DocID15965 Rev 14 13/908

RM0038 Contents

26

16.2 LCD main features . 355

16.3 Glossary . 356

16.4 LCD functional description . 357

16.4.1 General description . 357

16.4.2 Frequency generator . 358

16.4.3 Common driver . 359

16.4.4 Segment driver . 362

16.4.5 Voltage generator . 366

16.4.6 Deadtime . 368

16.4.7 Double buffer memory . 369

16.4.8 COM and SEG multiplexing . 369

16.4.9 Flowchart . 373

16.5 LCD registers . 374

16.5.1 LCD control register (LCD_CR) . 374

16.5.2 LCD frame control register (LCD_FCR) . 375

16.5.3 LCD status register (LCD_SR) . 377

16.5.4 LCD clear register (LCD_CLR) . 378

16.5.5 LCD display memory (LCD_RAM) . 379

16.5.6 LCD register map . 379

17 General-purpose timers (TIM2 to TIM5) . 382

17.1 TIM2 to TIM5 introduction . 382

17.2 TIM2 to TIM5 main features . 382

17.3 TIM2 to TIM5 functional description . 383

17.3.1 Time-base unit . 383

17.3.2 Counter modes . 385

17.3.3 Clock selection . 393

17.3.4 Capture/compare channels . 397

17.3.5 Input capture mode . 399

17.3.6 PWM input mode . 400

17.3.7 Forced output mode . 400

17.3.8 Output compare mode . 401

17.3.9 PWM mode . 402

17.3.10 One-pulse mode . 405

17.3.11 Clearing the OCxREF signal on an external event 406

17.3.12 Encoder interface mode . 407

Contents RM0038

14/908 DocID15965 Rev 14

17.3.13 Timer input XOR function . 409

17.3.14 Timers and external trigger synchronization . 410

17.3.15 Timer synchronization . 413

17.3.16 Debug mode . 417

17.4 TIMx registers . 418

17.4.1 TIMx control register 1 (TIMx_CR1) . 418

17.4.2 TIMx control register 2 (TIMx_CR2) . 420

17.4.3 TIMx slave mode control register (TIMx_SMCR) 421

17.4.4 TIMx DMA/Interrupt enable register (TIMx_DIER) 423

17.4.5 TIMx status register (TIMx_SR) . 424

17.4.6 TIMx event generation register (TIMx_EGR) . 426

17.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1) 427

17.4.8 TIMx capture/compare mode register 2 (TIMx_CCMR2) 430

17.4.9 TIMx capture/compare enable register (TIMx_CCER) 431

17.4.10 TIMx counter (TIMx_CNT) . 433

17.4.11 TIMx prescaler (TIMx_PSC) . 433

17.4.12 TIMx auto-reload register (TIMx_ARR) . 433

17.4.13 TIMx capture/compare register 1 (TIMx_CCR1) 433

17.4.14 TIMx capture/compare register 2 (TIMx_CCR2) 434

17.4.15 TIMx capture/compare register 3 (TIMx_CCR3) 434

17.4.16 TIMx capture/compare register 4 (TIMx_CCR4) 435

17.4.17 TIMx DMA control register (TIMx_DCR) . 435

17.4.18 TIMx DMA address for full transfer (TIMx_DMAR) 436

17.4.19 TIM2 option register (TIM2_OR) . 437

17.4.20 TIM3 option register (TIM3_OR) . 437

17.4.21 TIMx register map . 438

18 General-purpose timers (TIM9/10/11) . 440

18.1 TIM9/10/11 introduction . 440

18.2 TIM9/10/11 main features . 440

18.2.1 TIM9 main features . 440

18.2.2 TIM10/TIM11 main features . 441

18.3 TIM9/10/11 functional description . 444

18.3.1 Time-base unit . 444

18.3.2 Counter modes . 446

18.3.3 Clock selection . 449

18.3.4 Capture/compare channels . 451

DocID15965 Rev 14 15/908

RM0038 Contents

26

18.3.5 Input capture mode . 452

18.3.6 PWM input mode (only for TIM9) . 454

18.3.7 Forced output mode . 455

18.3.8 Output compare mode . 455

18.3.9 PWM mode . 456

18.3.10 One-pulse mode . 457

18.3.11 TIM9 external trigger synchronization . 459

18.3.12 Timer synchronization (TIM9) . 462

18.3.13 Debug mode . 462

18.3.14 Encoder interface mode (only for TIM9) . 462

18.4 TIM9 registers . 463

18.4.1 TIM9 control register 1 (TIMx_CR1) . 463

18.4.2 TIM9 control register 2 (TIMx_CR2) . 465

18.4.3 TIM9 slave mode control register (TIMx_SMCR) 466

18.4.4 TIM9 Interrupt enable register (TIMx_DIER) . 468

18.4.5 TIM9 status register (TIMx_SR) . 470

18.4.6 TIM event generation register (TIMx_EGR) . 471

18.4.7 TIM capture/compare mode register 1 (TIMx_CCMR1) 473

18.4.8 TIM9 capture/compare enable register (TIMx_CCER) 476

18.4.9 TIM9 counter (TIMx_CNT) . 477

18.4.10 TIM9 prescaler (TIMx_PSC) . 477

18.4.11 TIM9 auto-reload register (TIMx_ARR) . 477

18.4.12 TIM9 capture/compare register 1 (TIMx_CCR1) 478

18.4.13 TIM9 capture/compare register 2 (TIMx_CCR2) 478

18.4.14 TIM9 option register 1 (TIM9_OR) . 479

18.4.15 TIM9 register map . 479

18.5 TIM10/11 registers . 481

18.5.1 TIM10/11 control register 1 (TIMx_CR1) . 481

18.5.2 TIM10/11 slave mode control register 1 (TIMx_SMCR) 482

18.5.3 TIM10/11 Interrupt enable register (TIMx_DIER) 484

18.5.4 TIM10/11 status register (TIMx_SR) . 484

18.5.5 TIM10/11 event generation register (TIMx_EGR) 485

18.5.6 TIM10/11 capture/compare mode register 1 (TIMx_CCMR1) 486

18.5.7 TIM10/11 capture/compare enable register (TIMx_CCER) 489

18.5.8 TIM10/11 counter (TIMx_CNT) . 490

18.5.9 TIM10/11 prescaler (TIMx_PSC) . 490

18.5.10 TIM10/11 auto-reload register (TIMx_ARR) . 490

Contents RM0038

16/908 DocID15965 Rev 14

18.5.11 TIM10/11 capture/compare register 1 (TIMx_CCR1) 491

18.5.12 TIM10 option register 1 (TIM10_OR) . 491

18.5.13 TIM11 option register 1 (TIM11_OR) . 492

18.5.14 TIM10/11 register map . 493

19 Basic timers (TIM6 and TIM7) . 495

19.1 TIM6&TIM7 introduction . 495

19.2 TIM6&TIM7 main features . 495

19.3 TIM6&TIM7 functional description . 496

19.3.1 Time-base unit . 496

19.3.2 Counting mode . 498

19.3.3 Clock source . 500

19.3.4 Debug mode . 501

19.4 TIM6&TIM7 registers . 501

19.4.1 TIM6&TIM7 control register 1 (TIMx_CR1) . 501

19.4.2 TIM6&TIM7 control register 2 (TIMx_CR2) . 503

19.4.3 TIM6&TIM7 DMA/Interrupt enable register (TIMx_DIER) 503

19.4.4 TIM6&TIM7 status register (TIMx_SR) . 504

19.4.5 TIM6&TIM7 event generation register (TIMx_EGR) 504

19.4.6 TIM6&TIM7 counter (TIMx_CNT) . 504

19.4.7 TIM6&TIM7 prescaler (TIMx_PSC) . 505

19.4.8 TIM6&TIM7 auto-reload register (TIMx_ARR) 505

19.4.9 TIM6&TIM7 register map . 506

20 Real-time clock (RTC) . 507

20.1 Introduction . 507

20.2 RTC main features . 508

20.3 RTC functional description . 510

20.3.1 Clock and prescalers . 510

20.3.2 Real-time clock and calendar . 511

20.3.3 Programmable alarms . 511

20.3.4 Periodic auto-wakeup . 512

20.3.5 RTC initialization and configuration . 513

20.3.6 Reading the calendar . 514

20.3.7 Resetting the RTC . 515

20.3.8 RTC synchronization (Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6
devices only) . 516

DocID15965 Rev 14 17/908

RM0038 Contents

26

20.3.9 RTC reference clock detection . 516

20.3.10 RTC coarse digital calibration . 517

20.3.11 RTC smooth digital calibration (Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6
devices only) . 518

20.3.12 Timestamp function . 520

20.3.13 Tamper detection . 521

20.3.14 Calibration clock output . 523

20.3.15 Alarm output . 523

20.4 RTC and low-power modes . 524

20.5 RTC interrupts . 524

20.6 RTC registers . 526

20.6.1 RTC time register (RTC_TR) . 526

20.6.2 RTC date register (RTC_DR) . 527

20.6.3 RTC control register (RTC_CR) . 528

20.6.4 RTC initialization and status register (RTC_ISR) 530

20.6.5 RTC prescaler register (RTC_PRER) . 533

20.6.6 RTC wakeup timer register (RTC_WUTR) . 533

20.6.7 RTC calibration register (RTC_CALIBR) . 534

20.6.8 RTC alarm A register (RTC_ALRMAR) . 535

20.6.9 RTC alarm B register (RTC_ALRMBR) . 536

20.6.10 RTC write protection register (RTC_WPR) . 537

20.6.11 RTC sub second register (RTC_SSR) . 537

20.6.12 RTC shift control register (RTC_SHIFTR) . 538

20.6.13 RTC time stamp time register (RTC_TSTR) . 539

20.6.14 RTC time stamp date register (RTC_TSDR) . 539

20.6.15 RTC timestamp sub second register (RTC_TSSSR) 540

20.6.16 RTC calibration register (RTC_CALR) . 540

20.6.17 RTC tamper and alternate function configuration register
(RTC_TAFCR) . 542

20.6.18 RTC alarm A sub second register (RTC_ALRMASSR) 544

20.6.19 RTC alarm B sub second register (RTC_ALRMBSSR) 545

20.6.20 RTC backup registers (RTC_BKPxR) . 546

20.6.21 RTC register map . 546

21 Independent watchdog (IWDG) . 549

21.1 IWDG introduction . 549

21.2 IWDG main features . 549

Contents RM0038

18/908 DocID15965 Rev 14

21.3 IWDG functional description . 549

21.3.1 Hardware watchdog . 549

21.3.2 Register access protection . 549

21.3.3 Debug mode . 550

21.4 IWDG registers . 551

21.4.1 Key register (IWDG_KR) . 551

21.4.2 Prescaler register (IWDG_PR) . 551

21.4.3 Reload register (IWDG_RLR) . 552

21.4.4 Status register (IWDG_SR) . 552

21.4.5 IWDG register map . 553

22 Window watchdog (WWDG) . 554

22.1 WWDG introduction . 554

22.2 WWDG main features . 554

22.3 WWDG functional description . 554

22.4 How to program the watchdog timeout . 556

22.5 Debug mode . 557

22.6 WWDG registers . 558

22.6.1 Control register (WWDG_CR) . 558

22.6.2 Configuration register (WWDG_CFR) . 559

22.6.3 Status register (WWDG_SR) . 559

22.6.4 WWDG register map . 560

23 Advanced encryption standard hardware accelerator (AES) 561

23.1 Introduction . 561

23.2 AES main features . 561

23.3 AES functional description . 562

23.4 Encryption and derivation keys . 563

23.5 AES chaining algorithms . 564

23.5.1 Electronic CodeBook (ECB) . 564

23.5.2 Cipher block chaining (CBC) . 565

23.5.3 Counter Mode (CTR) . 569

23.6 Data type . 570

23.7 Operating modes . 573

23.7.1 Mode 1: encryption . 573

23.7.2 Mode 2: key derivation . 574

DocID15965 Rev 14 19/908

RM0038 Contents

26

23.7.3 Mode 3: decryption . 574

23.7.4 Mode 4: key derivation and decryption . 575

23.8 AES DMA interface . 575

23.9 Error flags . 577

23.10 Processing time . 577

23.11 AES interrupts . 577

23.12 AES registers . 578

23.12.1 AES control register (AES_CR) . 578

23.12.2 AES status register (AES_SR) . 580

23.12.3 AES data input register (AES_DINR) . 581

23.12.4 AES data output register (AES_DOUTR) . 581

23.12.5 AES key register 0(AES_KEYR0) (LSB: key [31:0]) 582

23.12.6 AES key register 1 (AES_KEYR1) (Key[63:32]) 582

23.12.7 AES key register 2 (AES_KEYR2) (Key [95:64]) 583

23.12.8 AES key register 3 (AES_KEYR3) (MSB: key[127:96]) 583

23.12.9 AES initialization vector register 0 (AES_IVR0) (LSB: IVR[31:0]) 583

23.12.10 AES initialization vector register 1 (AES_IVR1) (IVR[63:32]) 584

23.12.11 AES initialization vector register 2 (AES_IVR2) (IVR[95:64]) 585

23.12.12 AES initialization vector register 3 (AES_IVR3) (MSB: IVR[127:96]) . 585

23.12.13 AES register map . 585

24 Universal serial bus full-speed device interface (USB) 587

24.1 USB introduction . 587

24.2 USB main features . 587

24.3 USB functional description . 587

24.3.1 Description of USB blocks . 589

24.4 Programming considerations . 590

24.4.1 Generic USB device programming . 590

24.4.2 System and power-on reset . 591

24.4.3 Double-buffered endpoints . 596

24.4.4 Isochronous transfers . 599

24.4.5 Suspend/Resume events . 600

24.5 USB registers . 602

24.5.1 Common registers . 602

24.5.2 Endpoint-specific registers . 609

24.5.3 Buffer descriptor table . 614

Contents RM0038

20/908 DocID15965 Rev 14

24.5.4 USB register map . 617

25 Flexible static memory controller (FSMC) . 619

25.1 FSMC main features . 619

25.2 Block diagram . 620

25.3 AHB interface . 620

25.3.1 Supported memories and transactions . 621

25.4 External device address mapping . 621

25.4.1 NOR/PSRAM address mapping . 622

25.5 NOR Flash/PSRAM controller . 623

25.5.1 External memory interface signals . 624

25.5.2 Supported memories and transactions . 625

25.5.3 General timing rules . 627

25.5.4 NOR Flash/PSRAM controller asynchronous transactions 627

25.5.5 Synchronous transactions . 645

25.5.6 NOR/PSRAM control registers . 651

25.5.7 FSMC register map . 659

26 Inter-integrated circuit (I2C) interface . 661

26.1 I2C introduction . 661

26.2 I2C main features . 661

26.3 I2C functional description . 662

26.3.1 Mode selection . 662

26.3.2 I2C slave mode . 664

26.3.3 I2C master mode . 667

26.3.4 Error conditions . 673

26.3.5 SDA/SCL line control . 674

26.3.6 SMBus . 674

26.3.7 DMA requests . 677

26.3.8 Packet error checking . 679

26.4 I2C interrupts . 679

26.5 I2C debug mode . 681

26.6 I2C registers . 681

26.6.1 I2C Control register 1 (I2C_CR1) . 681

26.6.2 I2C Control register 2 (I2C_CR2) . 683

26.6.3 I2C Own address register 1 (I2C_OAR1) . 685

DocID15965 Rev 14 21/908

RM0038 Contents

26

26.6.4 I2C Own address register 2 (I2C_OAR2) . 685

26.6.5 I2C Data register (I2C_DR) . 686

26.6.6 I2C Status register 1 (I2C_SR1) . 686

26.6.7 I2C Status register 2 (I2C_SR2) . 690

26.6.8 I2C Clock control register (I2C_CCR) . 691

26.6.9 I2C TRISE register (I2C_TRISE) . 692

26.6.10 I2C register map . 693

27 Universal synchronous asynchronous receiver
transmitter (USART) . 694

27.1 USART introduction . 694

27.2 USART main features . 694

27.3 USART functional description . 695

27.3.1 USART character description . 698

27.3.2 Transmitter . 699

27.3.3 Receiver . 702

27.3.4 Fractional baud rate generation . 707

27.3.5 USART receiver tolerance to clock deviation . 716

27.3.6 Multiprocessor communication . 717

27.3.7 Parity control . 719

27.3.8 LIN (local interconnection network) mode . 720

27.3.9 USART synchronous mode . 722

27.3.10 Single-wire half-duplex communication . 724

27.3.11 Smartcard . 725

27.3.12 IrDA SIR ENDEC block . 727

27.3.13 Continuous communication using DMA . 729

27.3.14 Hardware flow control . 731

27.4 USART interrupts . 734

27.5 USART mode configuration . 735

27.6 USART registers . 735

27.6.1 Status register (USART_SR) . 735

27.6.2 Data register (USART_DR) . 738

27.6.3 Baud rate register (USART_BRR) . 738

27.6.4 Control register 1 (USART_CR1) . 738

27.6.5 Control register 2 (USART_CR2) . 741

27.6.6 Control register 3 (USART_CR3) . 742

27.6.7 Guard time and prescaler register (USART_GTPR) 744

Contents RM0038

22/908 DocID15965 Rev 14

27.6.8 USART register map . 745

28 Serial peripheral interface (SPI) . 746

28.1 SPI introduction . 746

28.2 SPI and I2S main features . 747

28.2.1 SPI features . 747

28.2.2 I2S features . 748

28.3 SPI functional description . 749

28.3.1 General description . 749

28.3.2 Configuring the SPI in slave mode . 752

28.3.3 Configuring the SPI in master mode . 755

28.3.4 Configuring the SPI for half-duplex communication 757

28.3.5 Data transmission and reception procedures 758

28.3.6 CRC calculation . 764

28.3.7 Status flags . 766

28.3.8 Disabling the SPI . 767

28.3.9 SPI communication using DMA (direct memory addressing) 768

28.3.10 Error flags . 770

28.3.11 SPI interrupts . 771

28.4 I2S functional description . 772

28.4.1 I2S general description . 772

28.4.2 Supported audio protocols . 773

28.4.3 Clock generator . 780

28.4.4 I2S master mode . 782

28.4.5 I2S slave mode . 784

28.4.6 Status flags . 786

28.4.7 Error flags . 787

28.4.8 I2S interrupts . 788

28.5 SPI and I2S registers . 789

28.5.1 SPI control register 1 (SPI_CR1)(not used in I2S mode) 789

28.5.2 SPI control register 2 (SPI_CR2) . 791

28.5.3 SPI status register (SPI_SR) . 792

28.5.4 SPI data register (SPI_DR) . 793

28.5.5 SPI CRC polynomial register (SPI_CRCPR)(not used in I2S
mode) . 795

28.5.6 SPI RX CRC register (SPI_RXCRCR)(not used in I2S mode) 795

28.5.7 SPI TX CRC register (SPI_TXCRCR)(not used in I2S mode) 795

DocID15965 Rev 14 23/908

RM0038 Contents

26

28.5.8 SPI_I2S configuration register (SPI_I2SCFGR) 796

28.5.9 SPI_I2S prescaler register (SPI_I2SPR) . 797

28.5.10 SPI register map . 799

29 Secure digital input/output interface (SDIO) . 800

29.1 SDIO main features . 800

29.2 SDIO bus topology . 801

29.3 SDIO functional description . 803

29.3.1 SDIO adapter . 804

29.3.2 SDIO APB2 interface . 814

29.4 Card functional description . 815

29.4.1 Card identification mode . 815

29.4.2 Card reset . 815

29.4.3 Operating voltage range validation . 815

29.4.4 Card identification process . 816

29.4.5 Block write . 817

29.4.6 Block read . 818

29.4.7 Stream access, stream write and stream read
(MultiMediaCard only) . 818

29.4.8 Erase: group erase and sector erase . 820

29.4.9 Wide bus selection or deselection . 820

29.4.10 Protection management . 820

29.4.11 Card status register . 823

29.4.12 SD status register . 826

29.4.13 SD I/O mode . 830

29.4.14 Commands and responses . 831

29.5 Response formats . 835

29.5.1 R1 (normal response command) . 835

29.5.2 R1b . 835

29.5.3 R2 (CID, CSD register) . 835

29.5.4 R3 (OCR register) . 836

29.5.5 R4 (Fast I/O) . 836

29.5.6 R4b . 837

29.5.7 R5 (interrupt request) . 837

29.5.8 R6 . 838

29.6 SDIO I/O card-specific operations . 838

29.6.1 SDIO I/O read wait operation by SDIO_D2 signaling 839

Contents RM0038

24/908 DocID15965 Rev 14

29.6.2 SDIO read wait operation by stopping SDIO_CK 839

29.6.3 SDIO suspend/resume operation . 839

29.6.4 SDIO interrupts . 839

29.7 CE-ATA specific operations . 840

29.7.1 Command completion signal disable . 840

29.7.2 Command completion signal enable . 840

29.7.3 CE-ATA interrupt . 840

29.7.4 Aborting CMD61 . 840

29.8 HW flow control . 841

29.9 SDIO registers . 841

29.9.1 SDIO power control register (SDIO_POWER) 841

29.9.2 SDI clock control register (SDIO_CLKCR) . 842

29.9.3 SDIO argument register (SDIO_ARG) . 843

29.9.4 SDIO command register (SDIO_CMD) . 844

29.9.5 SDIO command response register (SDIO_RESPCMD) 845

29.9.6 SDIO response 1..4 register (SDIO_RESPx) 845

29.9.7 SDIO data timer register (SDIO_DTIMER) . 846

29.9.8 SDIO data length register (SDIO_DLEN) . 846

29.9.9 SDIO data control register (SDIO_DCTRL) . 847

29.9.10 SDIO data counter register (SDIO_DCOUNT) 848

29.9.11 SDIO status register (SDIO_STA) . 849

29.9.12 SDIO interrupt clear register (SDIO_ICR) . 850

29.9.13 SDIO mask register (SDIO_MASK) . 852

29.9.14 SDIO FIFO counter register (SDIO_FIFOCNT) 854

29.9.15 SDIO data FIFO register (SDIO_FIFO) . 855

29.9.16 SDIO register map . 855

30 Debug support (DBG) . 857

30.1 Overview . 857

30.2 Reference ARM® documentation . 858

30.3 SWJ debug port (serial wire and JTAG) . 858

30.3.1 Mechanism to select the JTAG-DP or the SW-DP 859

30.4 Pinout and debug port pins . 859

30.4.1 SWJ debug port pins . 860

30.4.2 Flexible SWJ-DP pin assignment . 860

30.4.3 Internal pull-up and pull-down on JTAG pins . 861

DocID15965 Rev 14 25/908

RM0038 Contents

26

30.4.4 Using serial wire and releasing the unused debug pins as GPIOs . . . 862

30.5 STM32L1xxxx JTAG TAP connection . 862

30.6 ID codes and locking mechanism . 864

30.6.1 MCU device ID code . 864

30.6.2 Boundary scan TAP . 865

30.6.3 Cortex®-M3 TAP . 865

30.6.4 Cortex®-M3 JEDEC-106 ID code . 865

30.7 JTAG debug port . 865

30.8 SW debug port . 867

30.8.1 SW protocol introduction . 867

30.8.2 SW protocol sequence . 867

30.8.3 SW-DP state machine (reset, idle states, ID code) 868

30.8.4 DP and AP read/write accesses . 868

30.8.5 SW-DP registers . 869

30.8.6 SW-AP registers . 870

30.9 AHB-AP (AHB access port) - valid for both JTAG-DP
and SW-DP . 870

30.10 Core debug . 871

30.11 Capability of the debugger host to connect under system reset 872

30.12 FPB (Flash patch breakpoint) . 872

30.13 DWT (data watchpoint trigger) . 873

30.14 ITM (instrumentation trace macrocell) . 873

30.14.1 General description . 873

30.14.2 Time stamp packets, synchronization and overflow packets 873

30.15 ETM (Embedded trace macrocell) . 875

30.15.1 ETM general description . 875

30.15.2 ETM signal protocol and packet types . 875

30.15.3 Main ETM registers . 875

30.15.4 ETM configuration example . 876

30.16 MCU debug component (DBGMCU) . 876

30.16.1 Debug support for low-power modes . 876

30.16.2 Debug support for timers, watchdog and I2C . 877

30.16.3 Debug MCU configuration register . 877

30.16.4 Debug MCU APB1 freeze register (DBGMCU_APB1_FZ) 878

30.16.5 Debug MCU APB2 freeze register (DBGMCU_APB2_FZ) 880

30.17 TPIU (trace port interface unit) . 881

Contents RM0038

26/908 DocID15965 Rev 14

30.17.1 Introduction . 881

30.17.2 TRACE pin assignment . 882

30.17.3 TPUI formatter . 883

30.17.4 TPUI frame synchronization packets . 884

30.17.5 Transmission of the synchronization frame packet 884

30.17.6 Synchronous mode . 884

30.17.7 Asynchronous mode . 885

30.17.8 TRACECLKIN connection inside the STM32L1xxxx 885

30.17.9 TPIU registers . 885

30.17.10 Example of configuration . 886

30.18 DBG register map . 886

31 Device electronic signature . 888

31.1 Memory size register . 888

31.1.1 Flash size register . 888

31.2 Unique device ID registers (96 bits) . 888

32 Revision history . 893

DocID15965 Rev 14 27/908

RM0038 List of tables

31

List of tables

Table 1. Product categories and memory size overview . 40
Table 2. STM32L100xx product categories . 40
Table 3. STM32L15xxx product categories . 40
Table 4. STM32L162xx product categories . 41
Table 5. Register boundary addresses. 47
Table 6. Boot modes. 50
Table 7. Memory mapping vs. boot mode/physical remap . 51
Table 8. NVM module organization (Cat.1 and Cat.2 devices). 53
Table 9. NVM module organization (Cat.3 devices) . 54
Table 10. NVM module organization (Cat.4 devices) . 55
Table 11. NVM module organization (Cat.5 devices) . 56
Table 12. NVM module organization (Cat.6 devices) . 58
Table 13. Number of wait states (WS) according to CPU clock (HCLK) frequency 59
Table 14. Allowed configuration in FLASH_ACR . 61
Table 15. Data EEPROM programming times . 70
Table 16. Read While Write Summary . 71
Table 17. Prohibited operations . 72
Table 18. Option byte organization. 73
Table 19. Description of the option bytes . 75
Table 20. Programming/erase functions (Cat.1, Cat.2 and Cat.3 devices). 77
Table 21. Programming/erase functions (Cat.4, Cat.5 and Cat.6 devices). 79
Table 22. Flash memory module protection according to RDP and its complement 81
Table 23. Interrupts. 83
Table 24. Register map and reset values . 91
Table 25. CRC calculation unit register map and reset values. 96
Table 26. Performance versus VCORE ranges . 101
Table 27. Summary of low-power modes . 109
Table 28. Sleep-now. 112
Table 29. Sleep-on-exit. 112
Table 30. Sleep-now. 114
Table 31. Sleep-on-exit. 114
Table 32. Stop mode . 116
Table 33. Standby mode. 117
Table 34. PWR - register map and reset values. 124
Table 35. System clock source frequency . 134
Table 36. RCC register map and reset values . 168
Table 37. Port bit configuration table . 173
Table 38. Flexible SWJ-DP pin assignment . 175
Table 39. RTC_AF1 pin . 181
Table 40. GPIO register map and reset values . 189
Table 41. I/O groups and selection. 196
Table 42. Input capture mapping . 199
Table 43. Timer selection . 200
Table 44. Input capture selection . 200
Table 45. RI register map and reset values . 216
Table 46. SYSCFG register map and reset values. 222
Table 47. Acquisition switching sequence summary . 226
Table 48. Channel and sampling capacitor I/Os configuration summary . 228

List of tables RM0038

28/908 DocID15965 Rev 14

Table 49. Vector table (Cat.1 and Cat.2 devices) . 230
Table 50. Vector table (Cat.3 devices) . 232
Table 51. Vector table (Cat.4, Cat.5 and Cat.6 devices) . 235
Table 52. External interrupt/event controller register map and reset values. 244
Table 53. Programmable data width & endian behavior (when bits PINC = MINC = 1) 252
Table 54. DMA interrupt requests . 253
Table 55. Summary of DMA1 requests for each channel . 255
Table 56. Summary of DMA2 requests for each channel . 256
Table 57. DMA register map and reset values . 262
Table 58. ADC pins. 267
Table 59. Analog watchdog channel selection . 273
Table 60. Configuring the trigger edge detection . 277
Table 61. External trigger for regular channels. 277
Table 62. External trigger for injected channels . 278
Table 63. ADC interrupts . 289
Table 64. ADC global register map. 308
Table 65. ADC register map and reset values . 308
Table 66. ADC register map and reset values (common registers) . 310
Table 67. DAC pins. 312
Table 68. External triggers . 315
Table 69. DAC register map . 331
Table 70. Comparator behavior in the low-power modes . 339
Table 71. COMP register map and reset values. 343
Table 72. Operating modes and calibration . 347
Table 73. OPAMP register map . 353
Table 74. Example of frame rate calculation . 358
Table 75. Blink frequency . 366
Table 76. VLCDrail connections to GPIO pins . 368
Table 77. Remapping capability . 370
Table 78. LCD register map and reset values . 379
Table 79. Counting direction versus encoder signals . 408
Table 80. TIMx internal trigger connection . 423
Table 81. Output control bit for standard OCx channels. 432
Table 82. TIMx register map and reset values . 438
Table 83. TIMx internal trigger connection . 468
Table 84. Output control bit for standard OCx channels. 477
Table 85. TIM9 register map and reset values . 479
Table 86. Output control bit for standard OCx channels. 489
Table 87. TIM10/11 register map and reset values . 493
Table 88. TIM6&TIM7 register map and reset values. 506
Table 89. Effect of low-power modes on RTC . 524
Table 90. Interrupt control bits . 525
Table 91. RTC register map and reset values . 546
Table 92. Min/max IWDG timeout period at 37 kHz (LSI). 550
Table 93. IWDG register map and reset values . 553
Table 94. Minimum and maximum timeout values @32 MHz (fPCLK1) . 557
Table 95. WWDG register map and reset values . 560
Table 96. Processing time (in clock cycle) . 577
Table 97. AES interrupt requests . 577
Table 98. AES register map . 586
Table 99. Double-buffering buffer flag definition. 597
Table 100. Bulk double-buffering memory buffers usage . 598

DocID15965 Rev 14 29/908

RM0038 List of tables

31

Table 101. Isochronous memory buffers usage . 599
Table 102. Resume event detection . 601
Table 103. Reception status encoding . 612
Table 104. Endpoint type encoding . 612
Table 105. Endpoint kind meaning . 613
Table 106. Transmission status encoding . 613
Table 107. Definition of allocated buffer memory . 617
Table 108. USB register map and reset values . 617
Table 109. NOR/PSRAM bank selection . 622
Table 110. External memory address. 622
Table 111. Programmable NOR/PSRAM access parameters . 623
Table 112. Nonmultiplexed I/O NOR Flash . 624
Table 113. Multiplexed I/O NOR Flash . 624
Table 114. Nonmultiplexed I/Os PSRAM/SRAM . 625
Table 115. Multiplexed I/O PSRAM . 625
Table 116. NOR Flash/PSRAM controller: example of supported memories

and transactions . 626
Table 117. FSMC_BCRx bit fields . 629
Table 118. FSMC_BTRx bit fields . 629
Table 119. FSMC_BCRx bit fields . 631
Table 120. FSMC_BTRx bit fields . 631
Table 121. FSMC_BWTRx bit fields . 632
Table 122. FSMC_BCRx bit fields . 634
Table 123. FSMC_BTRx bit fields . 634
Table 124. FSMC_BWTRx bit fields . 635
Table 125. FSMC_BCRx bit fields . 636
Table 126. FSMC_BTRx bit fields . 637
Table 127. FSMC_BWTRx bit fields . 637
Table 128. FSMC_BCRx bit fields . 639
Table 129. FSMC_BTRx bit fields . 639
Table 130. FSMC_BWTRx bit fields . 640
Table 131. FSMC_BCRx bit fields . 641
Table 132. FSMC_BTRx bit fields . 642
Table 133. FSMC_BCRx bit fields . 647
Table 134. FSMC_BTRx bit fields . 648
Table 135. FSMC_BCRx bit fields . 649
Table 136. FSMC_BTRx bit fields . 650
Table 137. FSMC register map. 659
Table 138. SMBus vs. I2C . 675
Table 139. I2C Interrupt requests . 679
Table 140. I2C register map and reset values . 693
Table 141. Noise detection from sampled data . 706
Table 142. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz,

oversampling by 16. 709
Table 143. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK =12 MHz,

oversampling by 8. 710
Table 144. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz,

oversampling by 16. 710
Table 145. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz,

oversampling by 8. 711
Table 146. Error calculation for programmed baud rates at fPCLK = 1 MHz or fPCLK = 8 MHz),

oversampling by 16. 712

List of tables RM0038

30/908 DocID15965 Rev 14

Table 147. Error calculation for programmed baud rates at fPCLK = 1 MHz or fPCLK = 8 MHz),
oversampling by 8. 712

Table 148. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 32 MHz),
oversampling by 16. 713

Table 149. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 32 MHz),
oversampling by 8. 714

Table 150. Error calculation for programmed baud rates at fPCLK = 1 MHz or fPCLK = 8 MHz),
oversampling by 8. 714

Table 151. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 32 MHz),
oversampling by 16. 715

Table 152. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 32 MHz),
oversampling by 8. 716

Table 153. USART receiver’s tolerance when DIV fraction is 0 . 717
Table 154. USART receiver tolerance when DIV_Fraction is different from 0 717
Table 155. Frame formats . 719
Table 156. USART interrupt requests. 734
Table 157. USART mode configuration . 735
Table 158. USART register map and reset values . 745
Table 159. SPI interrupt requests . 771
Table 160. Audio-frequency precision using standard 8 MHz HSE (Cat.3, Cat.4, Cat.5

and Cat.6 devices only) . 781
Table 161. I2S interrupt requests . 788
Table 162. SPI register map and reset values . 799
Table 163. SDIO I/O definitions . 804
Table 164. Command format . 808
Table 165. Short response format . 809
Table 166. Long response format . 809
Table 167. Command path status flags . 809
Table 168. Data token format . 812
Table 169. Transmit FIFO status flags . 813
Table 170. Receive FIFO status flags . 814
Table 171. Card status . 824
Table 172. SD status . 827
Table 173. Speed class code field . 828
Table 174. Performance move field . 828
Table 175. AU_SIZE field . 829
Table 176. Maximum AU size. 829
Table 177. Erase size field . 829
Table 178. Erase timeout field . 830
Table 179. Erase offset field . 830
Table 180. Block-oriented write commands . 832
Table 181. Block-oriented write protection commands. 833
Table 182. Erase commands . 833
Table 183. I/O mode commands . 834
Table 184. Lock card . 834
Table 185. Application-specific commands . 834
Table 186. R1 response . 835
Table 187. R2 response . 836
Table 188. R3 response . 836
Table 189. R4 response . 836
Table 190. R4b response . 837
Table 191. R5 response . 837

DocID15965 Rev 14 31/908

RM0038 List of tables

31

Table 192. R6 response . 838
Table 193. Response type and SDIO_RESPx registers. 845
Table 194. SDIO register map . 855
Table 195. SWJ debug port pins . 860
Table 196. Flexible SWJ-DP pin assignment . 860
Table 197. JTAG debug port data registers . 865
Table 198. 32-bit debug port registers addressed through the shifted value A[3:2] 866
Table 199. Packet request (8-bits) . 867
Table 200. ACK response (3 bits). 868
Table 201. DATA transfer (33 bits) . 868
Table 202. SW-DP registers . 869
Table 203. Cortex®-M3 AHB-AP registers . 870
Table 204. Core debug registers . 871
Table 205. Main ITM registers . 874
Table 206. Main ETM registers. 876
Table 207. Asynchronous TRACE pin assignment. 882
Table 208. Synchronous TRACE pin assignment . 882
Table 209. Flexible TRACE pin assignment . 883
Table 210. Important TPIU registers. 885
Table 211. DBG register map and reset values . 887
Table 212. Document revision history . 893

List of figures RM0038

32/908 DocID15965 Rev 14

List of figures

Figure 1. System architecture (Cat.1 and Cat.2 devices) . 42
Figure 2. System architecture (Cat.3 devices) . 43
Figure 3. System architecture (Cat.4 devices) . 44
Figure 4. System architecture (Cat.5 and Cat.6 devices) . 45
Figure 5. Sequential 32 bits instructions execution . 61
Figure 6. RDP levels . 81
Figure 7. CRC calculation unit block diagram . 94
Figure 8. Power supply overview . 98
Figure 9. STM32L1xxxx performance versus VDD and VCORE range. 102
Figure 10. Power supply supervisors . 104
Figure 11. Power on reset/power down reset waveform . 105
Figure 12. BOR thresholds . 107
Figure 13. PVD thresholds. 108
Figure 14. Simplified diagram of the reset circuit . 127
Figure 15. Clock tree . 129
Figure 16. HSE/ LSE clock sources. 130
Figure 17. Using the TIM9/TIM10/TIM11 channel 1 input capture to measure

frequencies . 137
Figure 18. Basic structure of a standard I/O port bit . 172
Figure 19. Basic structure of a five-volt tolerant I/O port bit . 173
Figure 20. Selecting an alternate function . 176
Figure 21. Input floating/pull up/pull down configurations . 178
Figure 22. Output configuration . 179
Figure 23. Alternate function configuration . 180
Figure 24. High impedance-analog configuration . 180
Figure 25. Routing interface (RI) block diagram for Cat.1 and Cat.2 devices 192
Figure 26. Routing interface (RI) block diagram for Cat.3 devices . 193
Figure 27. Routing interface (RI) block diagram for Cat.4, Cat.5 and Cat.6 devices 194
Figure 28. Internal reference voltage output . 200
Figure 29. Surface charge transfer analog IO group structure . 225
Figure 30. Sampling capacitor charge overview . 227
Figure 31. Timer mode acquisition logic . 228
Figure 32. External interrupt/event controller block diagram . 238
Figure 33. External interrupt/event GPIO mapping . 240
Figure 34. DMA block diagram in Cat.1 and Cat.2 STM32L1xxxx devices . 247
Figure 35. DMA block diagram in Cat.3 STM32L1xxxx devices . 248
Figure 36. DMA block diagram in Cat.4, Cat.5 and Cat.6 STM32L1xxxx devices 249
Figure 37. DMA1 request mapping . 254
Figure 38. DMA2 request mapping . 256
Figure 39. ADC block diagram (Cat.1 and Cat.2 devices) . 266
Figure 40. ADC block diagram (Cat.3, Cat.4, Cat.5 and Cat.6 devices) . 268
Figure 41. Timing diagram (normal mode, PDI=0). 272
Figure 42. Analog watchdog’s guarded area . 272
Figure 43. Injected conversion latency . 274
Figure 44. Right alignment of 12-bit data . 276
Figure 45. Left alignment of 12-bit data . 276
Figure 46. Left alignment of 6-bit data . 276
Figure 47. ADC freeze mode . 280

DocID15965 Rev 14 33/908

RM0038 List of figures

37

Figure 48. Continuous regular conversions with a delay . 281
Figure 49. Continuous conversions with a delay between each conversion 282
Figure 50. Automatic power-down control: example 1 . 283
Figure 51. Automatic power-down control: example 2 . 283
Figure 52. Automatic power-down control: example 3 . 284
Figure 53. Temperature sensor and VREFINT channel block diagram . 286
Figure 54. ADC flags and interrupts. 288
Figure 55. DAC channel block diagram . 312
Figure 56. Data registers in single DAC channel mode . 314
Figure 57. Data registers in dual DAC channel mode . 314
Figure 58. Timing diagram for conversion with trigger disabled TEN = 0 . 315
Figure 59. DAC LFSR register calculation algorithm . 317
Figure 60. DAC conversion (SW trigger enabled) with LFSR wave generation. 317
Figure 61. DAC triangle wave generation . 318
Figure 62. DAC conversion (SW trigger enabled) with triangle wave generation 318
Figure 63. COMP1 interconnections (Cat.1 and Cat.2 devices) . 334
Figure 64. COMP1 interconnections (Cat.3, Cat.4, Cat.5 and Cat.6 devices) 335
Figure 65. COMP2 interconnections (Cat.1 and Cat.2 devices) . 337
Figure 66. COMP2 interconnections (Cat.3, Cat.4, Cat.5 and Cat.6 devices) 337
Figure 67. Redirecting the COMP2 output . 338
Figure 68. Comparators in Window mode . 339
Figure 69. OPAMP1 signal routing . 345
Figure 70. OPAMP2 signal routing . 345
Figure 71. OPAMP3 signal routing (Cat.4 devices only) . 346
Figure 72. LCD controller block diagram . 357
Figure 73. 1/3 bias, 1/4 duty . 360
Figure 74. Static duty . 361
Figure 75. Static duty . 361
Figure 76. 1/2 duty, 1/2 bias . 362
Figure 77. 1/3 duty, 1/3 bias . 363
Figure 78. 1/4 duty, 1/3 bias . 364
Figure 79. 1/8 duty, 1/4 bias . 365
Figure 80. LCD voltage control . 367
Figure 81. Deadtime . 368
Figure 82. SEG/COM mux feature example . 372
Figure 83. Flowchart example . 373
Figure 84. General-purpose timer block diagram . 383
Figure 85. Counter timing diagram with prescaler division change from 1 to 2 384
Figure 86. Counter timing diagram with prescaler division change from 1 to 4 385
Figure 87. Counter timing diagram, internal clock divided by 1 . 386
Figure 88. Counter timing diagram, internal clock divided by 2 . 386
Figure 89. Counter timing diagram, internal clock divided by 4 . 386
Figure 90. Counter timing diagram, internal clock divided by N. 387
Figure 91. Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not preloaded). 387
Figure 92. Counter timing diagram, Update event when ARPE=1 (TIMx_ARR preloaded). 388
Figure 93. Counter timing diagram, internal clock divided by 1 . 389
Figure 94. Counter timing diagram, internal clock divided by 2 . 389
Figure 95. Counter timing diagram, internal clock divided by 4 . 389
Figure 96. Counter timing diagram, internal clock divided by N. 390
Figure 97. Counter timing diagram, Update event . 390
Figure 98. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6 391
Figure 99. Counter timing diagram, internal clock divided by 2 . 392

List of figures RM0038

34/908 DocID15965 Rev 14

Figure 100. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 392
Figure 101. Counter timing diagram, internal clock divided by N. 392
Figure 102. Counter timing diagram, Update event with ARPE=1 (counter underflow). 393
Figure 103. Counter timing diagram, Update event with ARPE=1 (counter overflow) 393
Figure 104. Control circuit in normal mode, internal clock divided by 1 . 394
Figure 105. TI2 external clock connection example. 395
Figure 106. Control circuit in external clock mode 1 . 396
Figure 107. External trigger input block . 396
Figure 108. Control circuit in external clock mode 2 . 397
Figure 109. Capture/compare channel (example: channel 1 input stage) . 397
Figure 110. Capture/compare channel 1 main circuit . 398
Figure 111. Output stage of capture/compare channel (channel 1). 398
Figure 112. PWM input mode timing . 400
Figure 113. Output compare mode, toggle on OC1. 402
Figure 114. Edge-aligned PWM waveforms (ARR=8) . 403
Figure 115. Center-aligned PWM waveforms (ARR=8) . 404
Figure 116. Example of one-pulse mode . 405
Figure 117. Clearing TIMx OCxREF . 407
Figure 118. Example of counter operation in encoder interface mode . 409
Figure 119. Example of encoder interface mode with TI1FP1 polarity inverted 409
Figure 120. Control circuit in reset mode . 410
Figure 121. Control circuit in gated mode . 411
Figure 122. Control circuit in trigger mode. 412
Figure 123. Control circuit in external clock mode 2 + trigger mode . 413
Figure 124. Master/Slave timer example . 413
Figure 125. Gating TIM2 with OC1REF of TIM3 . 414
Figure 126. Gating TIM2 with Enable of TIM3 . 415
Figure 127. Triggering TIM2 with update of TIM3 . 416
Figure 128. Triggering TIM2 with Enable of TIM3 . 416
Figure 129. Triggering TIM3 and TIM2 with TIM3 TI1 input. 417
Figure 130. General-purpose timer block diagram (TIM9) . 441
Figure 131. General-purpose timer block diagram (TIM10) . 442
Figure 132. General-purpose timer block diagram (TIM11) . 443
Figure 133. Counter timing diagram with prescaler division change from 1 to 2 445
Figure 134. Counter timing diagram with prescaler division change from 1 to 4 445
Figure 135. Counter timing diagram, internal clock divided by 1 . 446
Figure 136. Counter timing diagram, internal clock divided by 2 . 447
Figure 137. Counter timing diagram, internal clock divided by 4 . 447
Figure 138. Counter timing diagram, internal clock divided by N. 447
Figure 139. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded) 448
Figure 140. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded) 448
Figure 141. Control circuit in normal mode, internal clock divided by 1 . 449
Figure 142. TI2 external clock connection example. 450
Figure 143. Control circuit in external clock mode 1 . 450
Figure 144. Capture/compare channel (example: channel 1 input stage) . 451
Figure 145. Capture/compare channel 1 main circuit . 452
Figure 146. Output stage of capture/compare channel (channel 1). 452
Figure 147. PWM input mode timing . 454
Figure 148. Output compare mode, toggle on OC1. 456
Figure 149. Edge-aligned PWM waveforms (ARR=8) . 457
Figure 150. Example of one pulse mode. . 458
Figure 151. Control circuit in reset mode . 460

DocID15965 Rev 14 35/908

RM0038 List of figures

37

Figure 152. Control circuit in gated mode . 461
Figure 153. Control circuit in trigger mode. 461
Figure 154. Basic timer block diagram. 495
Figure 155. Counter timing diagram with prescaler division change from 1 to 2 497
Figure 156. Counter timing diagram with prescaler division change from 1 to 4 497
Figure 157. Counter timing diagram, internal clock divided by 1 . 498
Figure 158. Counter timing diagram, internal clock divided by 2 . 499
Figure 159. Counter timing diagram, internal clock divided by 4 . 499
Figure 160. Counter timing diagram, internal clock divided by N. 499
Figure 161. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not

preloaded). 500
Figure 162. Counter timing diagram, update event when ARPE=1 (TIMx_ARR

preloaded). 500
Figure 163. Control circuit in normal mode, internal clock divided by 1 . 501
Figure 164. RTC block diagram (Cat.1 devices) . 509
Figure 165. RTC block diagram (Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices) 510
Figure 166. Independent watchdog block diagram . 550
Figure 167. Watchdog block diagram . 555
Figure 168. Window watchdog timing diagram . 556
Figure 169. Block diagram . 562
Figure 170. ECB encryption mode. 564
Figure 171. ECB decryption mode. 565
Figure 172. CBC mode encryption. 566
Figure 173. CBC mode decryption. 566
Figure 174. Example of suspend mode management . 568
Figure 175. CTR mode encryption. 569
Figure 176. CTR mode decryption. 569
Figure 177. 32-bit counter + nonce organization . 570
Figure 178. 128-bit block construction according to the data type. 572
Figure 179. 128-bit block construction according to the data type (continued) 573
Figure 180. Mode 1: encryption . 573
Figure 181. Mode 2: key derivation . 574
Figure 182. Mode 3: decryption . 575
Figure 183. Mode 4: key derivation and decryption . 575
Figure 184. DMA requests and data transfers during Input phase (AES_IN) 576
Figure 185. DMA requests during Output phase (AES_OUT) . 576
Figure 186. USB peripheral block diagram . 588
Figure 187. Packet buffer areas with examples of buffer description table locations 593
Figure 188. FSMC block diagram . 620
Figure 189. FSMC memory banks . 622
Figure 190. Mode1 read accesses. 628
Figure 191. Mode1 write accesses . 628
Figure 192. ModeA read accesses . 630
Figure 193. ModeA write accesses . 630
Figure 194. Mode2 and mode B read accesses . 632
Figure 195. Mode2 write accesses . 633
Figure 196. Mode B write accesses. 633
Figure 197. Mode C read accesses . 635
Figure 198. Mode C write accesses . 636
Figure 199. Mode D read accesses . 638
Figure 200. Mode D write accesses. 638
Figure 201. Multiplexed read accesses . 640

List of figures RM0038

36/908 DocID15965 Rev 14

Figure 202. Multiplexed write accesses . 641
Figure 203. Asynchronous wait during a read access . 643
Figure 204. Asynchronous wait during a write access. 644
Figure 205. Wait configurations . 646
Figure 206. Synchronous multiplexed read mode - NOR, PSRAM (CRAM) . 647
Figure 207. Synchronous multiplexed write mode - PSRAM (CRAM) . 649
Figure 208. I2C bus protocol . 663
Figure 209. I2C block diagram . 664
Figure 210. Transfer sequence diagram for slave transmitter . 666
Figure 211. Transfer sequence diagram for slave receiver . 667
Figure 212. Transfer sequence diagram for master transmitter. 670
Figure 213. Transfer sequence diagram for master receiver . 672
Figure 214. I2C interrupt mapping diagram . 680
Figure 215. USART block diagram . 697
Figure 216. Word length programming . 698
Figure 217. Configurable stop bits . 700
Figure 218. TC/TXE behavior when transmitting . 701
Figure 219. Start bit detection when oversampling by 16 or 8 . 702
Figure 220. Data sampling when oversampling by 16 . 705
Figure 221. Data sampling when oversampling by 8 . 706
Figure 222. Mute mode using Idle line detection . 718
Figure 223. Mute mode using address mark detection . 719
Figure 224. Break detection in LIN mode (11-bit break length - LBDL bit is set) 721
Figure 225. Break detection in LIN mode vs. Framing error detection. 722
Figure 226. USART example of synchronous transmission. 723
Figure 227. USART data clock timing diagram (M=0) . 723
Figure 228. USART data clock timing diagram (M=1) . 724
Figure 229. RX data setup/hold time . 724
Figure 230. ISO 7816-3 asynchronous protocol . 725
Figure 231. Parity error detection using the 1.5 stop bits . 726
Figure 232. IrDA SIR ENDEC- block diagram . 728
Figure 233. IrDA data modulation (3/16) -Normal mode . 728
Figure 234. Transmission using DMA . 730
Figure 235. Reception using DMA . 731
Figure 236. Hardware flow control between 2 USARTs . 731
Figure 237. RTS flow control . 732
Figure 238. CTS flow control . 733
Figure 239. USART interrupt mapping diagram . 734
Figure 240. SPI block diagram. 749
Figure 241. Single master/ single slave application. 750
Figure 242. Data clock timing diagram . 752
Figure 243. TI mode - Slave mode, single transfer . 754
Figure 244. TI mode - Slave mode, continuous transfer . 755
Figure 245. TI mode - master mode, single transfer . 756
Figure 246. TI mode - master mode, continuous transfer . 757
Figure 247. TXE/RXNE/BSY behavior in Master / full-duplex mode (BIDIMODE=0 and

RXONLY=0) in case of continuous transfers . 760
Figure 248. TXE/RXNE/BSY behavior in Slave / full-duplex mode (BIDIMODE=0,

RXONLY=0) in case of continuous transfers . 761
Figure 249. TXE/BSY behavior in Master transmit-only mode (BIDIMODE=0 and RXONLY=0)

in case of continuous transfers . 762
Figure 250. TXE/BSY in Slave transmit-only mode (BIDIMODE=0 and RXONLY=0) in case of

DocID15965 Rev 14 37/908

RM0038 List of figures

37

continuous transfers . 762
Figure 251. RXNE behavior in receive-only mode (BIDIRMODE=0 and RXONLY=1)

in case of continuous transfers . 763
Figure 252. TXE/BSY behavior when transmitting (BIDIRMODE=0 and RXONLY=0)

in case of discontinuous transfers . 764
Figure 253. Transmission using DMA . 769
Figure 254. Reception using DMA . 769
Figure 255. TI mode frame format error detection . 771
Figure 256. I2S block diagram . 772
Figure 257. I2S Philips protocol waveforms (16/32-bit full accuracy, CPOL = 0). 774
Figure 258. I2S Philips standard waveforms (24-bit frame with CPOL = 0) . 774
Figure 259. Transmitting 0x8EAA33 . 775
Figure 260. Receiving 0x8EAA33 . 775
Figure 261. I2S Philips standard (16-bit extended to 32-bit packet frame with CPOL = 0) 775
Figure 262. Example . 775
Figure 263. MSB Justified 16-bit or 32-bit full-accuracy length with CPOL = 0 776
Figure 264. MSB Justified 24-bit frame length with CPOL = 0. 776
Figure 265. MSB Justified 16-bit extended to 32-bit packet frame with CPOL = 0 777
Figure 266. LSB justified 16-bit or 32-bit full-accuracy with CPOL = 0 . 777
Figure 267. LSB Justified 24-bit frame length with CPOL = 0 . 777
Figure 268. Operations required to transmit 0x3478AE. 778
Figure 269. Operations required to receive 0x3478AE . 778
Figure 270. LSB justified 16-bit extended to 32-bit packet frame with CPOL = 0 778
Figure 271. Example of LSB justified 16-bit extended to 32-bit packet frame 779
Figure 272. PCM standard waveforms (16-bit) . 779
Figure 273. PCM standard waveforms (16-bit extended to 32-bit packet frame). 780
Figure 274. Audio sampling frequency definition . 780
Figure 275. I2S clock generator architecture . 781
Figure 276. SDIO “no response” and “no data” operations . 801
Figure 277. SDIO (multiple) block read operation . 801
Figure 278. SDIO (multiple) block write operation . 802
Figure 279. SDIO sequential read operation . 802
Figure 280. SDIO sequential write operation . 802
Figure 281. SDIO block diagram . 803
Figure 282. SDIO adapter . 804
Figure 283. Control unit . 805
Figure 284. SDIO adapter command path . 806
Figure 285. Command path state machine (CPSM) . 807
Figure 286. SDIO command transfer . 808
Figure 287. Data path . 810
Figure 288. Data path state machine (DPSM) . 811
Figure 289. Block diagram of STM32 MCU and Cortex®-M3-level debug support 857
Figure 290. SWJ debug port . 859
Figure 291. JTAG TAP connections . 863
Figure 292. TPIU block diagram . 881

Documentation conventions RM0038

38/908 DocID15965 Rev 14

1 Documentation conventions

1.1 List of abbreviations for registers

The following abbreviations are used in register descriptions:

1.2 Peripheral availability

For the peripherals available, and their number, across all STM32L1xxxx sales types,
please refer to the STM32L1xxxx datasheet.

read/write (rw) Software can read and write to these bits.

read-only (r) Software can only read these bits.

write-only (w) Software can only write to this bit. Reading the bit returns the reset
value.

read/clear (rc_w1) Software can read as well as clear this bit by writing 1. Writing ‘0 has no
effect on the bit value.

read/clear (rc_w0) Software can read as well as clear this bit by writing 0. Writing 1 has no
effect on the bit value.

read/clear by read
(rc_r)

Software can read this bit. Reading this bit automatically clears it to ‘0.
Writing ‘0 has no effect on the bit value.

read/set (rs) Software can read as well as set this bit. Writing ‘0 has no effect on the
bit value.

read-only write
trigger (rt_w)

Software can read this bit. Writing ‘0 or ‘1 triggers an event but has no
effect on the bit value.

toggle (t) Software can only toggle this bit by writing ‘1. Writing ‘0 has no effect.

Reserved (Res.) Reserved bit, must be kept at reset value.

DocID15965 Rev 14 39/908

RM0038 Documentation conventions

93

1.3 Glossary

This section gives a brief definition of acronyms and abbreviations used in this document:

• NVM: non-volatile memory; in scope of this document NVM covers Program memory
blocks, data EEPROM blocks and information blocks.

• FLITF: memory interface managing read, program and erase operation on NVM.

• Word: data of 32-bit length.

• Half-word: data of 16-bit length.

• Byte: data of 8-bit length.

• IAP (in-application programming): IAP is the ability to re-program the Flash memory.

• of a microcontroller while the user program is running.

• ICP (in-circuit programming): ICP is the ability to program the Flash memory of a
microcontroller using the JTAG protocol, the SWD protocol or the bootloader while the
device is mounted on the user application board.

• Option bytes: product configuration bits stored in the Flash memory.

• OBL: option byte loader.

• AHB: advanced high-performance bus.

• APB: advanced peripheral bus.

Documentation conventions RM0038

40/908 DocID15965 Rev 14

1.4 Product category definition

The devices are organized in 6 categories: Cat.1, Cat.2, Cat.3, Cat.4, Cat.5, Cat.6. Table 1
provides an overview of memory size versus product categories.

The following 3 tables Table 2, Table 3, and Table 4 provide the list of available part
numbers per category.

Table 1. Product categories and memory size overview(1)

1. See device datasheet for Flash program memory and data EEPROM memory size availability.

Flash program memory size level Cat.1 Cat.2 Cat.3 Cat.4 Cat.5 Cat.6

32 Kbytes x x - - - -

64 Kbytes x x - - - -

128 Kbytes x x - - - -

256 Kbytes - - x - - -

384 Kbytes - - - x - x

512 Kbytes - - - - x -

Table 2. STM32L100xx product categories

RPNs STM32L100xx Cat.1 Cat.2 Cat.3 Cat.4 Cat.5 Example

STM32L100C6 x - - - - -

STM32L100R8 x - - - - -

STM32L100RB x - - - - -

STM32L100C6-A - x - - - STM32L100C6xxA

STM32L100R8-A - x - - - STM32L100R8xxA

STM32L100RB-A - x - - - STM32L100RBxxA

STM32L100RC - - x - - -

Table 3. STM32L15xxx product categories

RPNs STM32L15xxx Cat.1 Cat.2 Cat.3 Cat.4 Cat.5 Cat.6 Example

STM32L15xx6 x - - - - - -

STM32L15xx8 x - - - - - -

STM32L15xxB x - - - - - -

STM32L15xx6-A - x - - - - STM32L151C6T6A

STM32L15xx8-A - x - - - - STM32L151R8T6A

STM32L15xxB-A - x - - - - STM32L151RBT6A

STM32L15xCC - - x - - - -

STM32L15xUC - - x - - - -

STM32L15xRC - - x - - - -

DocID15965 Rev 14 41/908

RM0038 Documentation conventions

93

STM32L15xRCY - - x - - - STM32L151RCY6

STM32L15xRC-A - - x - - - STM32L151RCT6A

STM32L15xVC - - x - - - -

STM32L15xVC-A - - x - - - STM32L151VCT6A

STM32L15xQC - - x - - - -

STM32L15xZC - - x - - - -

STM32L15xRD - - - x - - -

STM32L15xVD - - - x - - -

STM32L15xQD - - - x - - -

STM32L15xZD - - - x - - -

STM32L15xxE - - - - x - -

STM32L15xVD-X - - - - - x STM32L151VDY6XTR

Table 4. STM32L162xx product categories

RPNs STM32L162xx Cat.1 Cat.2 Cat.3 Cat.4 Cat.5 Cat.6 Example

STM32L162RC - - x - - - -

STM32L162RC-A - - x - - - STM32L162RCT6A

STM32L162VC - - x - - - -

STM32L162VC-A - - x - - - STM32L162VCT6A

STM32L162QC - - x - - - -

STM32L162ZC - - x - - - -

STM32L162RD - - - x - - -

STM32L162VD - - - x - - -

STM32L162QD - - - x - - -

STM32L162ZD - - - x - - -

STM32L162xE - - - - x - -

STM32L162VD-X - - - - - x STM32L162VDY6XTR

Table 3. STM32L15xxx product categories (continued)

RPNs STM32L15xxx Cat.1 Cat.2 Cat.3 Cat.4 Cat.5 Cat.6 Example

System architecture and memory overview RM0038

42/908 DocID15965 Rev 14

2 System architecture and memory overview

2.1 System architecture

The main system consists of a 32-bit multilayer AHB bus matrix that interconnects:

• Up to five masters:

– Cortex®-M3 I-bus, D-bus and S-bus

– DMA1 and DMA2

• Up to five slaves:

– Internal Flash memory ICode

– Internal Flash memory DCode

– Internal SRAM

– AHB to APBx (APB1 or APB2), which connect all the APB peripherals

– Flexible Static Memory Controller

These are interconnected using the multilayer AHB bus architecture shown in Figure 1:

Figure 1. System architecture (Cat.1 and Cat.2 devices)

DocID15965 Rev 14 43/908

RM0038 System architecture and memory overview

93

Figure 2. System architecture (Cat.3 devices)

System architecture and memory overview RM0038

44/908 DocID15965 Rev 14

Figure 3. System architecture (Cat.4 devices)

DocID15965 Rev 14 45/908

RM0038 System architecture and memory overview

93

Figure 4. System architecture (Cat.5 and Cat.6 devices)

ICode bus

This bus connects the Instruction bus of the Cortex®-M3 core to the BusMatrix. This bus is
used by the core to fetch instructions. The target of this bus is a memory containing code
(internal Flash memory or SRAM).

DCode bus

This bus connects the databus of the Cortex®-M3 to the BusMatrix. This bus is used by the
core for literal load and debug access. The target of this bus is a memory containing code or
data (internal Flash memory or SRAM).

System bus

This bus connects the system bus of the Cortex®-M3 core to a BusMatrix. This bus is used
to access data located in a peripheral or in SRAM. Instructions may also be fetched on this
bus (less efficient than ICode). The targets of this bus are the internal SRAM and the
AHB/APB bridges.

System architecture and memory overview RM0038

46/908 DocID15965 Rev 14

DMA bus

This bus connects the AHB master interface of the DMA to the bus matrix which manages
the access of the CPU DCode and DMA to the SRAM, Flash memory and peripherals.

Bus matrix

The bus matrix manages the access arbitration between the core system bus and the DMA
master bus. The arbitration uses a round robin algorithm. The bus matrix is composed of
five masters (ICode, DCode, System bus, DMA1 bus, DMA2 bus) and five slaves (Flash
ICode interface, Flash DCode interface, SRAM, FSMC, and AHB2APB bridges).

AHB peripherals are connected on the system bus through the bus matrix to allow DMA
access.

AHB/APB bridges (APB)

The two AHB/APB bridges provide full synchronous connections between the AHB and the
2 APB buses. The two APB buses operates at full speed (up to 32 MHz).

Refer to Table 5 on page 47 for the address mapping of the AHB and APB peripherals.

After each device reset, all peripheral clocks are disabled (except for the SRAM and Flash
interface). Before using a peripheral, its clock should be enabled in the RCC_AHBENR,
RCC_APB1ENR or RCC_APB2ENR register.

Note: When a 16- or 8-bit access is performed on an APB register, the access is transformed into
a 32-bit access: the bridge duplicates the 16- or 8-bit data to feed the 32-bit vector.

2.2 Memory organization

SRAM, NVM, registers and I/O ports are organized within the same linear 4 Gbyte address
space.

The bytes are coded in memory in little endian format. The lowest numbered byte in a word
is considered the word’s least significant byte and the highest numbered byte, the most
significant.

For the detailed mapping of peripheral registers, please refer to the related sections.

The addressable memory space is divided into 8 main blocks, each of 512 Mbytes.

All the memory areas that are not allocated to on-chip memories and peripherals are
considered “Reserved”. Refer to the memory map figure in the STM32L1xxxx datasheet.

2.3 Memory map

See the STM32L1xxxx datasheet for a comprehensive diagram of the memory map. Table 5
gives the boundary addresses of the peripherals available in STM32L1xxxx devices.

DocID15965 Rev 14 47/908

RM0038 System architecture and memory overview

93

Table 5. Register boundary addresses

Boundary address Peripheral Bus Register map

0xA000 0000 - 0xA000 0FFF FSMC

AHB

Section 25.5.7: FSMC
register map on page 659

0x5006 0000 - 0x5006 03FF AES
Section 23.12.13: AES
register map on page 585

0x4002 6400 - 0x4002 67FF DMA2
Section 11.4.7: DMA register
map on page 262

0x4002 6000 - 0x4002 63FF DMA1
Section 11.4.7: DMA register
map on page 262

0x4002 3C00 - 0x4002 3FFF FLASH
Section 3.9.10: Register map
on page 91

0x4002 3800 - 0x4002 3BFF RCC
Section 6.3.15: RCC register
map on page 168

0x4002 3000 - 0x4002 33FF CRC
Section 4.4.4: CRC register
map on page 96

0x4002 1C00 - 0x4002 1FFF GPIOG

Section 7.4.12: GPIO
register map on page 188

0x4002 1800 - 0x4002 1BFF GPIOF

0x4002 1400 - 0x4002 17FF GPIOH

0x4002 1000 - 0x4002 13FF GPIOE

0x4002 0C00 - 0x4002 0FFF GPIOD

0x4002 0800 - 0x4002 0BFF GPIOC

0x4002 0400 - 0x4002 07FF GPIOB

0x4002 0000 - 0x4002 03FF GPIOA

0x4001 3800 - 0x4001 3BFF USART1

APB2

Section 27.6.8: USART
register map on page 745

0x4001 3000 - 0x4001 33FF SPI1
Section 28.5.10: SPI register
map on page 799

0x4001 2C00 - 0x4001 2FFF SDIO
Section 29.9.16: SDIO
register map on page 855

0x4001 2400 - 0x4001 27FF ADC
Section 12.15.21: ADC
register map on page 308

0x4001 1000 - 0x4001 13FF TIM11
Section 14.4.17: TIMx
register map on page 368

0x4001 0C00 - 0x4001 0FFF TIM10
Section 14.4.17: TIMx
register map on page 368

0x4001 0800 - 0x4001 0BFF TIM9
Section 14.4.17: TIMx
register map on page 368

0x4001 0400 - 0x4001 07FF EXTI
Section 10.3.7: EXTI register
map on page 244

0x4001 0000 - 0x4001 03FF SYSCFG
Section 8.5.7: SYSCFG
register map on page 222

System architecture and memory overview RM0038

48/908 DocID15965 Rev 14

0x4000 7C00 - 0x4000 7C03 COMP

APB1

Section 14.9.2: COMP
register map on page 343

0x4000 7C04 - 0x4000 7C5B RI
Section 8.5.7: SYSCFG
register map on page 222

0x4000 7C5C - 0x4000 7FFF OPAMP
Section 15.4.4: OPAMP
register map on page 353

0x4000 7400 - 0x4000 77FF DAC
Section 13.5.15: DAC
register map on page 331

0x4000 7000 - 0x4000 73FF PWR
Section 5.4.3: PWR register
map on page 124

0x4000 6000 - 0x4000 63FF
USB device FS SRAM
512 bytes Section 24.5.4: USB register

map on page 617
0x4000 5C00 - 0x4000 5FFF USB device FS

0x4000 5800 - 0x4000 5BFF I2C2 Section 26.6.10: I2C register
map on page 6930x4000 5400 - 0x4000 57FF I2C1

0x4000 5000 - 0x4000 53FF USART5

Section 27.6.8: USART
register map on page 745

0x4000 4C00 - 0x4000 4FFF USART4

0x4000 4800 - 0x4000 4BFF USART3

0x4000 4400 - 0x4000 47FF USART2

0x4000 3C00 - 0x4000 3FFF SPI3 Section 28.5.10: SPI register
map on page 7990x4000 3800 - 0x4000 3BFF SPI2

0x4000 3000 - 0x4000 33FF IWDG
Section 21.4.5: IWDG
register map on page 553

0x4000 2C00 - 0x4000 2FFF WWDG
Section 22.6.4: WWDG
register map on page 560

0x4000 2800 - 0x4000 2BFF RTC
Section 20.6.21: RTC
register map on page 546

0x4000 2400 - 0x4000 27FF LCD
Section 16.5.6: LCD register
map on page 379

0x4000 1400 - 0x4000 17FF TIM7 Section 19.4.9: TIM6&TIM7
register map on page 5060x4000 1000 - 0x4000 13FF TIM6

0x4000 0C00 - 0x4000 0FFF TIM5 (32-bits)

Section 17.4.21: TIMx
register map on page 438

0x4000 0800 - 0x4000 0BFF TIM4

0x4000 0400 - 0x4000 07FF TIM3

0x4000 0000 - 0x4000 03FF TIM2

Table 5. Register boundary addresses (continued)

Boundary address Peripheral Bus Register map

DocID15965 Rev 14 49/908

RM0038 System architecture and memory overview

93

2.4 Embedded SRAM

The STM32L1xxxx features up to 80 Kbytes of SRAM. It can be accessed as bytes, half-
words (16 bits) or full words (32 bits). The SRAM start address is 0x2000 0000.

Read and write access at CPU speed with 0 wait states.

The CPU can access the SRAM through the system bus or through the I-Code/D-Code bus
when boot in SRAM is selected or when physical remap is selected (see Section 8.5.1:
SYSCFG memory remap register (SYSCFG_MEMRMP) register in the SYSCFG controller).
To get the best SRAM execution performance, physical remap must be selected (boot or
software selection).

2.5 NVM overview

The NVM is composed of three distinct physical areas:

• The Flash program memory block. It contains the application program and optionally
user data.

• The Data EEPROM memory block. It contains user data.

• The information block. It is composed of two parts:

– Option bytes for hardware and memory protection user configuration.

– System memory which contains the proprietary bootloader code. Please, refer to
Section 3: Flash program memory and data EEPROM (FLASH) for more details.

NVM instructions and data access are performed through the AHB bus. The prefetch block
is used for instruction fetches through the ICode bus. Arbitration is performed in the Flash
memory interface, and priority is given to data access on the DCode bus. It also implements
the logic necessary to carry out the Flash memory operations (Program/Erase) controlled
through the Flash registers.

2.6 Bit banding

The Cortex®-M3 memory map includes two bit-band regions. These regions map each word
in an alias region of memory to a bit in a bit-band region of memory. Writing to a word in the
alias region has the same effect as a read-modify-write operation on the targeted bit in the
bit-band region.

In the STM32L1xxxx both the peripheral registers and the SRAM are mapped in a bit-band
region. This allows single bit-band write and read operations to be performed. These
operations are only available for Cortex®-M3 accesses, not from other bus masters (e.g.
DMA).

A mapping formula shows how to reference each word in the alias region to a corresponding
bit in the bit-band region. The mapping formula is:

bit_word_addr = bit_band_base + (byte_offset x 32) + (bit_number × 4)

System architecture and memory overview RM0038

50/908 DocID15965 Rev 14

where:

bit_word_addr is the address of the word in the alias memory region that maps to the
targeted bit

bit_band_base is the start address of the alias region

byte_offset is the number of the byte in the bit-band region, that contains the targeted
bit

bit_number is the bit position (0-7) of the targeted bit

Example:

The following example shows how to map bit 2 of the byte located at SRAM address
0x2000 0300 in the alias region:

0x2200 6008 = 0x2200 0000 + (0x300 × 32) + (2 × 4)

Writing to address 0x2200 6008 has the same effect as a read-modify-write operation on bit
2 of the byte at SRAM address 0x2000 0300.

Reading address 0x22006008 returns the value (0x01 or 0x00) of bit 2 of the byte at SRAM
address 0x20000300 (0x01: bit set; 0x00: bit reset).

For more information on bit-banding, please refer to the Cortex®-M3 Technical Reference
Manual.

2.7 Boot configuration

Due to its fixed memory map, the code area starts from address 0x0000 0000 (accessed
through the ICode/DCode buses) while the data area (SRAM) starts from address
0x2000 0000 (accessed through the system bus). The Cortex®-M3 CPU always fetches the
reset vector from the ICode bus, which implies to have the boot space available only in the
code area (typically, Flash memory). STM32L1xxxx microcontrollers implement a special
mechanism to be able to boot from other memory than the Flash (like internal SRAM).

In the STM32L1xxxx, 3 different boot modes can be selected through the BOOT[1:0] pins as
shown in Table 6.

Table 6. Boot modes

Option bit
nBFB2(1)

Boot mode selection pins
Boot mode Aliasing

BOOT1 BOOT0

1 x 0 Main Flash memory Main Flash memory is selected as the boot space

1 0 1 System memory System memory is selected as the boot space

x 1 1 Embedded SRAM Embedded SRAM is selected as the boot space

0

x 0

System memory

For Cat.4, Cat.5 and Cat.6 devices only.

System memory is selected as the boot space.

Jump to Bank2 or Bank1 possible by embedded
bootloader located in system memory. See
nBFB2 bit description in Table 19: Description of
the option bytes.

0 1

1. nBFB2 option is present in Cat.4, Cat.5 and Cat.6 devices only. For Cat.1, Cat.2, Cat.3 devices behavior is like nBFB2=1.

DocID15965 Rev 14 51/908

RM0038 System architecture and memory overview

93

The values on the BOOT pins are latched on the 4th rising edge of SYSCLK after a reset. It
is up to the user to set the BOOT1 and BOOT0 pins after reset to select the required boot
mode.

BOOT0 is a dedicated pin while BOOT1 is shared with a GPIO pin. Once BOOT1 has been
sampled, the corresponding GPIO pin is free and can be used by the application.

The BOOT pins are also resampled when exiting the Standby mode. Consequently they
must be kept in the required Boot mode configuration in Standby mode. After this startup
delay has elapsed, the CPU fetches the top-of-stack value from address 0x0000 0000, then
starts code execution from the boot memory starting from 0x0000 0004.

Note: When booting from SRAM, in the application initialization code, you have to relocate the
vector table in SRAM using the NVIC exception table and offset register.

Physical remap

When the boot pins are configured as desired, the application software can modify the
memory accessible in the code area (code can thus be executed through the ICode/DCode
in place of the System bus). This modification is performed by programming the SYSCFG
memory remap register (SYSCFG_MEMRMP) in the SYSCFG controller.

The following memory can then be remapped:

• Main Flash memory
• System memory
• Embedded SRAM

Note: Depending on the memory protection programmed by option byte, some boot/remap
configurations may not be available (refer to the readout protection section in Section 3:
Flash program memory and data EEPROM (FLASH) for details).

Note: Even when aliased in the boot memory space, the related memory is still accessible at its
original memory space.

Embedded boot loader

The embedded boot loader is used to reprogram the Flash memory through one of the
following interfaces:

• In Cat.1 and Cat.2 devices: USART1 or USART2.

• In Cat.3, Cat.4, Cat.5 and Cat.6 devices: USART1, USART2 or USB

This program is located in the system memory and is programmed by ST during production.

Table 7. Memory mapping vs. boot mode/physical remap

Addresses
Boot/Remap in main

Flash memory
Boot/Remap in

embedded SRAM
Boot/Remap in

System memory

0x2000 0000 - 0x2000 BFFF SRAM SRAM SRAM

0x1FF0 0000 - 0x1FF0 1FFF System memory System memory System memory

0x0802 0000 - 0x0FFF FFFF Reserved Reserved Reserved

0x0800 0000 - 0x0805 FFFF Flash memory Flash memory Flash memory

0x0002 0000 - 0x07FF FFFF Reserved Reserved Reserved

0x0000 0000 - 0x0005 FFFF
Flash (up to

512 Kbytes) Aliased
SRAM Aliased

System memory
(8 Kbytes) Aliased

Flash program memory and data EEPROM (FLASH) RM0038

52/908 DocID15965 Rev 14

3 Flash program memory and data EEPROM (FLASH)

3.1 NVM introduction

• Up to 512 Kbytes of Flash program memory

• Memory organization (dual bank; for Cat.4, Cat.5 and Cat.6 devices only):

– Up to 512 Kbytes of Flash program memory and up to 16 Kbytes of data EEPROM

– Up to 8 Kbytes of system memory and up to 64 bytes of option bytes

Each bank in dual bank devices is organized as follows:

– 192/256 Kbytes of program memory and 6/8 Kbytes of data (for Cat.4, Cat.5 and
Cat.6 devices only)

– 4 Kbytes of system memory, 32 bytes of option bytes

Flash memory interface (FLITF) features:

• Flash memory read operations: read access is performed by 64 or 32 bits

• Flash memory program/erase operations

• Read while write (RWW) from one bank to the other

• Read/write protection

• Write access is performed by 32 bits

• Option byte loader reset

• Low power mode:

– Flash memory in Power down mode when the STM32L1xxxx is in the Standby
mode or the Stop mode

– Flash memory can be placed in Power down or Idle mode when the STM32L1xxxx
is in the Sleep mode

– Flash memory can be placed in Power down or Idle mode when the STM32L1xxxx
is in the Run mode

Note: The DMA can only access Flash memory module with read operations.

Note: Code execution is not possible from Data EEPROM.

3.2 NVM organization

The memory is organized as Program memory blocks, data EEPROM blocks and
information blocks. Table 8, Table 9, Table 10 and Table 11 show the memory organization
(the maximum configuration for given product category). See device datasheet for Flash
program memory size and data EEPROM memory size availability.

The Flash program memory block is divided into sectors of 4 Kbytes each, and each sector
is further split up into 16 pages of 256 bytes each. The sector is the write protection
granularity. The pages are the erase granularity for the program memory block.

The Flash program memory pages can be written using a half page programming or a fast
word programming operation.

DocID15965 Rev 14 53/908

RM0038 Flash program memory and data EEPROM (FLASH)

93

Data EEPROM can be erased and written by:

• Double word

• Word/ Fast word

• Half word / Fast half word

• Byte / Fast byte

During a write/erase operation to the NVM (except Half Page programming or Double-word
erase/write), any attempt to read the same bank of NVM stalls the bus. The read operation
is executed correctly once the programming operation is completed. This means that code
or data fetches cannot be performed while a write/erase operation is ongoing in the same
bank.

For more details, refer to Section 3.4.2: Erasing memory on page 64 and Section 3.4.3:
Programming memory on page 65.

Table 8. NVM module organization (Cat.1 and Cat.2 devices)

Block Name Memory addresses Size

Program memory

Sector 0

Page 0 0x0800 0000 - 0x0800 00FF 256 bytes

Page 1 0x0800 0100 - 0x0800 01FF 256 bytes

Page 2 0x0800 0200 - 0x0800 02FF 256 bytes

Page 3 0x0800 0300 - 0x0800 03FF 256 bytes

Page 4 to 7 0x0800 0400 - 0x0800 07FF 1 Kbyte

Page 8 to 11 0x0800 0800 - 0x0800 0BFF 1 Kbyte

Page 12 to 15 0x0800 0C00 - 0x0800 0FFF 1 Kbyte

Sector 1 0x0800 1000 - 0x0800 1FFF 4 Kbytes

Sector 2 0x0800 2000 - 0x0800 2FFF 4 Kbytes

Sector 3 0x0800 3000 - 0x0800 3FFF 4 Kbytes

.

.

.

.

.

.

.

.

.

Sector 30 0x0801 E000 - 0x0801 EFFF 4 Kbytes

Sector 31 0x0801 F000 - 0x0801 FFFF 4 Kbytes

Data EEPROM 0x0808 0000 - 0x0808 0FFF 4096 bytes

Flash program memory and data EEPROM (FLASH) RM0038

54/908 DocID15965 Rev 14

Information block

System
memory

Page 0 0x1FF0 0000 - 0X1FF0 00FF 256 bytes

Page 1 0x1FF0 0100 - 0X1FF0 01FF 256 bytes

Page 2 0x1FF0 0200 - 0X1FF0 02FF 256 bytes

Page 3 0x1FF0 0300 - 0X1FF0 03FF 256 bytes

.

.

.

.

.

.

.

.

.

Page 15 0x1FF0 0F00 - 0X1FF0 0FFF 256 bytes

Option bytes 0x1FF8 0000 - 0X1FF8 001F 32 bytes

Factory information 0x1FF8 0020 - 0X1FF8 00FF 224 bytes

Table 8. NVM module organization (Cat.1 and Cat.2 devices) (continued)

Block Name Memory addresses Size

Table 9. NVM module organization (Cat.3 devices)

Block Name Memory addresses Size

Program memory

Sector 0

Page 0 0x0800 0000 - 0x0800 00FF 256 bytes

Page 1 0x0800 0100 - 0x0800 01FF 256 bytes

Page 2 0x0800 0200 - 0x0800 02FF 256 bytes

Page 3 0x0800 0300 - 0x0800 03FF 256 bytes

Page 4 to 7 0x0800 0400 - 0x0800 07FF 1 Kbyte

Page 8 to 11 0x0800 0800 - 0x0800 0BFF 1 Kbyte

Page 12 to 15 0x0800 0C00 - 0x0800 0FFF 1 Kbyte

Sector 1 Page 16 to 31 0x0800 1000 - 0x0800 1FFF 4 Kbytes

Sector 2 Page 32 to 47 0x0800 2000 - 0x0800 2FFF 4 Kbytes

Sector 3 Page 48 to 63 0x0800 3000 - 0x0800 3FFF 4 Kbytes

.

.

.

.

.

.

.

.

.

.

.

.

Sector 30
Page 478 to

495
0x0801 E000 - 0x0801 EFFF 4 Kbytes

Sector 31
Page 496 to

511
0x0801 F000 - 0x0801 FFFF 4 Kbytes

Sector 32 to
Sector 47

Page 512 to
767

0x0802 0000 - 0x0802 FFFF 64 Kbytes

Sector 48 to
Sector 63

Page 768 to
1023

0x0803 0000 - 0x0803 FFFF 64 Kbytes

Data EEPROM 0x0808 0000 - 0x0808 1FFF 8 Kbytes

DocID15965 Rev 14 55/908

RM0038 Flash program memory and data EEPROM (FLASH)

93

Information Block

System
memory

Page 0 0x1FF0 0000 - 0x1FF0 00FF 256 bytes

Page 1 0x1FF0 0100 - 0x1FF0 01FF 256 bytes

Page 2 0x1FF0 0200 - 0x1FF0 02FF 256 bytes

Page 3 0x1FF0 0300 - 0x1FF0 03FF 256 bytes

.

.

.

.

.

.

.

.

.

Page 15 0x1FF0 0F00 - 0x1FF0 0FFF 256 bytes

Page 16 to 31 0x1FF0 1000 - 0x1FF0 1FFF 4 Kbytes

Option bytes 0x1FF8 0000 - 0x1FF8 001F 32 bytes

Factory information 0x1FF8 0020 - 0x1FF8 00FF 224 bytes

Table 9. NVM module organization (Cat.3 devices) (continued)

Block Name Memory addresses Size

Table 10. NVM module organization (Cat.4 devices)

Block Name Memory addresses Size

Program memory
bank 1

Sector 0

Page 0 0x0800 0000 - 0x0800 00FF 256 bytes

Page 1 0x0800 0100 - 0x0800 01FF 256 bytes

Page 2 0x0800 0200 - 0x0800 02FF 256 bytes

Page 3 0x0800 0300 - 0x0800 03FF 256 bytes

Page 4 to 7 0x0800 0400 - 0x0800 07FF 1 Kbyte

Page 8 to 11 0x0800 0800 - 0x0800 0BFF 1 Kbyte

Page 12 to 15 0x0800 0C00 - 0x0800 0FFF 1 Kbyte

Sector 1 Page 16 to 31 0x0800 1000 - 0x0800 1FFF 4 Kbytes

Sector 2 Page 32 to 47 0x0800 2000 - 0x0800 2FFF 4 Kbytes

Sector 3 Page 48 to 63 0x0800 3000 - 0x0800 3FFF 4 Kbytes

.

.

.

.

.

.

.

.

.

.

.

.

Sector 30
Page 478 to

495
0x0801 E000 - 0x0801 EFFF 4 Kbytes

Sector 31 Page 496 to 511 0x0801 F000 - 0x0801 FFFF 4 Kbytes

Sector 32 to
Sector 47

Page 512 to
767

0x0802 0000 - 0x0802 FFFF 64 Kbytes

Program memory
bank 2

Sector 48 to
Sector 79

Page 768 to
1279

0x0803 0000 - 0x0804 FFFF 128 Kbytes

Sector 80 to
Sector 95

Page 1280 to
1535

0x0805 0000 - 0x0805 FFFF 64 Kbytes

Data EEPROM bank 1 0x0808 0000 - 0x0808 17FF 6 Kbytes

Flash program memory and data EEPROM (FLASH) RM0038

56/908 DocID15965 Rev 14

Data EEPROM bank 2 0x0808 1800 - 0x0808 2FFF 6 Kbytes

System memory bank 1

Page 0 0x1FF0 0000 - 0x1FF0 00FF 256 bytes

Page 1 0x1FF0 0100 - 0x1FF0 01FF 256 bytes

Page 2 0x1FF0 0200 - 0x1FF0 02FF 256 bytes

Page 3 0x1FF0 0300 - 0x1FF0 03FF 256 bytes

.

.

.

.

.

.

.

.

.

Page 15 0x1FF0 0F00 - 0x1FF0 0FFF 256 bytes

System memory bank 2 Page 16 to 31 0x1FF0 1000 - 0x1FF0 1FFF 4 Kbytes

Option bytes bank 1 0x1FF8 0000 - 0x1FF8 001F 32 bytes

Factory information bank 1 0x1FF8 0020 - 0x1FF8 007F 96 bytes

Option bytes bank 2 0x1FF8 0080 - 0x1FF8 009F 32 bytes

Factory information bank 2 0x1FF8 00A0 - 0x1FF8 00FF 96 bytes

Table 10. NVM module organization (Cat.4 devices) (continued)

Block Name Memory addresses Size

Table 11. NVM module organization (Cat.5 devices)

Block Name Memory addresses Size

Program memory
bank 1

Sector 0

Page 0 0x0800 0000 - 0x0800 00FF 256 bytes

Page 1 0x0800 0100 - 0x0800 01FF 256 bytes

Page 2 0x0800 0200 - 0x0800 02FF 256 bytes

Page 3 0x0800 0300 - 0x0800 03FF 256 bytes

Page 4 to 7 0x0800 0400 - 0x0800 07FF 1 Kbyte

Page 8 to 11 0x0800 0800 - 0x0800 0BFF 1 Kbyte

Page 12 to 15 0x0800 0C00 - 0x0800 0FFF 1 Kbyte

Sector 1 Page 16 to 31 0x0800 1000 - 0x0800 1FFF 4 Kbytes

Sector 2 Page 32 to 47 0x0800 2000 - 0x0800 2FFF 4 Kbytes

Sector 3 Page 48 to 63 0x0800 3000 - 0x0800 3FFF 4 Kbytes

.

.

.

.

.

.

.

.

.

.

.

.

Sector 30
Page 478 to

495
0x0801 E000 - 0x0801 EFFF 4 Kbytes

Sector 31 Page 496 to 511 0x0801 F000 - 0x0801 FFFF 4 Kbytes

Sector 32 to
Sector 63

Page 512 to
1023

0x0802 0000 - 0x0803 FFFF 128 Kbytes

DocID15965 Rev 14 57/908

RM0038 Flash program memory and data EEPROM (FLASH)

93

Program memory
bank 2

Sector 64 to
Sector 95

Page 1024 to
1535

0x0804 0000 - 0x0805 FFFF 128 Kbytes

Sector 96 to
Sector 127

Page 1536 to
2047

0x0806 0000 - 0x0807 FFFF 128 Kbytes

Data EEPROM bank 1 0x0808 0000 - 0x0808 1FFF 8 Kbytes

Data EEPROM bank 2 0x0808 2000 - 0x0808 3FFF 8 Kbytes

System memory bank 1

Page 0 0x1FF0 0000 - 0x1FF0 00FF 256 bytes

Page 1 0x1FF0 0100 - 0x1FF0 01FF 256 bytes

Page 2 0x1FF0 0200 - 0x1FF0 02FF 256 bytes

Page 3 0x1FF0 0300 - 0x1FF0 03FF 256 bytes

.

.

.

.

.

.

.

.

.

Page 15 0x1FF0 0F00 - 0x1FF0 0FFF 256 bytes

System memory bank 2 Page 16 to 31 0x1FF0 1000 - 0x1FF0 1FFF 4 Kbytes

Option bytes bank 1 0x1FF8 0000 - 0x1FF8 001F 32 bytes

Factory information bank 1 0x1FF8 0020 - 0x1FF8 007F 96 bytes

Option bytes bank 2 0x1FF8 0080 - 0x1FF8 009F 32 bytes

Factory information bank 2 0x1FF8 00A0 - 0x1FF8 00FF 96 bytes

Table 11. NVM module organization (Cat.5 devices) (continued)

Block Name Memory addresses Size

Flash program memory and data EEPROM (FLASH) RM0038

58/908 DocID15965 Rev 14

Table 12. NVM module organization (Cat.6 devices)

Block Name Memory addresses Size

Program memory
bank 1

Sector 0

Page 0 0x0800 0000 - 0x0800 00FF 256 bytes

Page 1 0x0800 0100 - 0x0800 01FF 256 bytes

Page 2 0x0800 0200 - 0x0800 02FF 256 bytes

Page 3 0x0800 0300 - 0x0800 03FF 256 bytes

Page 4 to 7 0x0800 0400 - 0x0800 07FF 1 Kbyte

Page 8 to 11 0x0800 0800 - 0x0800 0BFF 1 Kbyte

Page 12 to 15 0x0800 0C00 - 0x0800 0FFF 1 Kbyte

Sector 1 Page 16 to 31 0x0800 1000 - 0x0800 1FFF 4 Kbytes

Sector 2 Page 32 to 47 0x0800 2000 - 0x0800 2FFF 4 Kbytes

Sector 3 Page 48 to 63 0x0800 3000 - 0x0800 3FFF 4 Kbytes

.

.

.

.

.

.

.

.

.

.

.

.

Sector 30
Page 478 to

495
0x0801 E000 - 0x0801 EFFF 4 Kbytes

Sector 31 Page 496 to 511 0x0801 F000 - 0x0801 FFFF 4 Kbytes

Sector 32 to
Sector 47

Page 512 to
767

0x0802 0000 - 0x0802 FFFF 64 Kbytes

Program memory
bank 2

Sector 48 to
Sector 79

Page 768 to
1279

0x0804 0000 - 0x0805 FFFF 128 Kbytes

Sector 80 to
Sector 95

Page 1280 to
1535

0x0806 0000 - 0x0806 FFFF 64 Kbytes

Data EEPROM bank 1 0x0808 0000 - 0x0808 1FFF 8 Kbytes

Data EEPROM bank 2 0x0808 2000 - 0x0808 3FFF 8 Kbytes

System memory bank 1

Page 0 0x1FF0 0000 - 0x1FF0 00FF 256 bytes

Page 1 0x1FF0 0100 - 0x1FF0 01FF 256 bytes

Page 2 0x1FF0 0200 - 0x1FF0 02FF 256 bytes

Page 3 0x1FF0 0300 - 0x1FF0 03FF 256 bytes

.

.

.

.

.

.

.

.

.

Page 15 0x1FF0 0F00 - 0x1FF0 0FFF 256 bytes

System memory bank 2 Page 16 to 31 0x1FF0 1000 - 0x1FF0 1FFF 4 Kbytes

Option bytes bank 1 0x1FF8 0000 - 0x1FF8 001F 32 bytes

Factory information bank 1 0x1FF8 0020 - 0x1FF8 007F 96 bytes

Option bytes bank 2 0x1FF8 0080 - 0x1FF8 009F 32 bytes

Factory information bank 2 0x1FF8 00A0 - 0x1FF8 00FF 96 bytes

DocID15965 Rev 14 59/908

RM0038 Flash program memory and data EEPROM (FLASH)

93

3.3 Read interface

3.3.1 Relation between CPU clock frequency and Flash memory read time

The Flash memory is read by 64 bits or 32 bits.

64-bit access is configured by setting the ACC64 bit in the Flash access control register
(FLASH_ACR). This access mode accelerates the execution of program operations.
Prefetch is useful when the Flash memory cannot be accessed for a CPU cycle. In this
case, the number of wait states (LATENCY) must be correctly programmed in the Flash
access control register (FLASH_ACR) according to the frequency of the CPU clock (HCLK)
and the supply voltage of the device. Table 13 shows the correspondence between wait
states and CPU clock frequency.

It is also possible to access the Flash memory by 32 bits. This is done by clearing the
ACC64 bit in FLASH_ACR. In this case, prefetch has to be disabled. 32-bit access reduces
the consumption, so it is used when the CPU frequency is low. In this case, the number of
wait states must be 0.

After reset, the used clock is the MSI (2 MHz) with 0 WS configured in the FLASH_ACR
register. 32-bit access is enabled and prefetch is disabled.

ST strongly recommends to use the following software sequences to tune the number of
wait states needed to access the Flash memory with the CPU frequency.

Table 13. Number of wait states (WS) according to CPU clock (HCLK) frequency

HCLK frequency (MHz)

Wait states
(LATENCY)

VDD range
1.65 V to 3.6 V

VDD range
1.71 V to 3.6 V

Range 3 Range 2 Range 1

fHCLK ≤ 2.1 MHz (in Cat.1
devices)

fCPU ≤ 4.2 MHz (in Cat.2,
Cat.3, Cat.4, Cat.5 and

Cat.6 devices)

fHCLK≤ 8 MHz fHCLK ≤ 16 MHz 0 WS (1 HCLK cycle)

fHCLK ≤ 4.2 MHz (in Cat.1
devices)

fHCLK ≤ 8 (in Cat.2, Cat.3,
Cat.4, Cat.5 and Cat.6

devices)

fHCLK≤ 16 MHz fHCLK ≤ 32 MHz 1 WS (2 HCLK cycles)

Flash program memory and data EEPROM (FLASH) RM0038

60/908 DocID15965 Rev 14

Increasing the CPU frequency (in the same voltage range).

• Program the 64-bit access by setting the ACC64 bit in FLASH_ACR

• Check that 64-bit access is taken into account by reading FLASH_ACR

• Program 1 WS to the LATENCY bit in FLASH_ACR

• Check that the new number of WS is taken into account by reading FLASH_ACR

• Modify the CPU clock source by writing to the SW bits in the RCC_CFGR register

• If needed, modify the CPU clock prescaler by writing to the HPRE bits in RCC_CFGR

• Check that the new CPU clock source or/and the new CPU clock prescaler value is/are
taken into account by reading the clock source status (SWS bits) or/and the AHB
prescaler value (HPRE bits), respectively, in the RCC_CFGR register

Decreasing the CPU frequency (in the same voltage range).

• Modify the CPU clock source by writing to the SW bits in the RCC_CFGR register

• If needed, modify the CPU clock prescaler by writing to the HPRE bits in RCC_CFGR

• Check that the new CPU clock source or/and the new CPU clock prescaler value is/are
taken into account by reading the clock source status (SWS bits) or/and the AHB
prescaler value (HPRE bits), respectively, in the RCC_CFGR register

• Program the new number of WS to the LATENCY bit in FLASH_ACR

• Check that the new number of WS is taken into account by reading FLASH_ACR

• Program the 32-bit access by clearing ACC64 in FLASH_ACR

• Check that 32-bit access is taken into account by reading FLASH_ACR

3.3.2 Instruction prefetch when Flash access is 64 bits

Each Flash memory read operation provides 64 bits from either 2 instructions of 32 bits or 4
instructions of 16 bits depending on the program launched. So, in case of sequential code,
at least 2 CPU cycles are needed to execute the previous read instruction line. Prefetch on
the I-Code bus can be used to read the next sequential instruction line from the Flash
memory while the current instruction line is being requested by the CPU. Prefetch is
enabled by setting the PRFTEN bit in the FLASH_ACR register. This feature is useful if at
least one wait state is needed to access the Flash memory.

Figure 5 shows the execution of sequential 32-bit instructions with and without prefetch
when 1 WS is needed to access the Flash memory.

DocID15965 Rev 14 61/908

RM0038 Flash program memory and data EEPROM (FLASH)

93

Figure 5. Sequential 32 bits instructions execution

Note: When the code is not sequential (branch), the instruction may not be present neither in the
current instruction line used nor in the prefetched instruction line. In this case, the penalty in
terms of number of cycles is at least equal to the number of Wait States.

Table 14 shows the supported ACC64, LATENCY and PRFTEN configurations.

Table 14. Allowed configuration in FLASH_ACR

LATENCY
ACC64 = 0 ACC64 = 1

PRFTEN = 0 PRFTEN = 1 PRFTEN = 0 PRFTEN = 1

0 Yes No Yes Yes

1 No No Yes Yes

Flash program memory and data EEPROM (FLASH) RM0038

62/908 DocID15965 Rev 14

3.3.3 Data management

The literal pools are fetched from the Flash memory through the D-Code bus during the
execution stage of the CPU pipeline. The CPU pipeline is consequently stalled until a
requested literal pool is provided. To limit the time lost due to literal pools, accesses through
the D-Code AHB data bus have the priority over accesses through the I-Code AHB
instruction bus.

3.4 Memory operations

3.4.1 Unlocking/locking memory

The following blocks can be separately locked or unlocked:

• Data EEPROM with the PECR register

• Program memory

• Option bytes

The steps required for each operation are described in the sections below:

Unlocking the Data EEPROM block and the FLASH_PECR register

After reset, Data EEPROM block and the Program/erase control register (FLASH_PECR)
are not accessible in write mode and the PELOCK bit in FLASH_PECR is set. The same
unlocking sequence unprotects them both at the same time.

The following sequence is used to unlock the Data EEPROM block and FLASH_PECR
register:

• Write PEKEY1= 0x89ABCDEF to the Program/erase key register (FLASH_PEKEYR)

• Write PEKEY2= 0x02030405 to the Program/erase key register (FLASH_PEKEYR)

Any wrong key sequence will lock up the Data EEPROM block and the FLASH_PECR
register until the next reset, and return a bus error (Cortex®-M3 hardfault or busfault). So a
bus error is returned in any of the three cases below:

• after the first write access if the entered PEKEY1 value is erroneous

• during the second write access if PEKEY1 is correctly entered but the PEKEY2 value
does not match

• if there is any attempt to write a third value to PEKEYR

When properly executed, the unlocking sequence clears the PELOCK bit in the
FLASH_PECR register.

To lock the FLASH_PECR and the data EEPROM again, the software only needs to set the
PELOCK bit in FLASH_PECR.

Unlocking the program memory

An additional protection is implemented to write to the program memory (in pages not write-
protected (WRP)).

After reset, the program memory is not accessible in write mode: the PRGLOCK bit is set in
FLASH_PECR. Write access to the program memory is granted again by clearing the
PRGLOCK bit.

DocID15965 Rev 14 63/908

RM0038 Flash program memory and data EEPROM (FLASH)

93

The following sequence is used to unlock the program memory:

• Unlock the FLASH_PECR register

• Write PRGKEY1= 0x8C9DAEBF to the Program memory key register
(FLASH_PRGKEYR)

• Write PRGKEY2= 0x13141516 to the Program memory key register
(FLASH_PRGKEYR)

Any wrong key sequence will lock up PRGLOCK in FLASH_PECR until the next reset, and
return a bus error (Cortex®-M3 hardfault or busfault). So a bus error is returned in any of the
three cases below:

• after the first write access if the entered PRGKEY1 value is erroneous

• during the second write access if PRGKEY1 is correctly entered but the PRGKEY2
value does not match

• if there is any attempt to write a third value to PRGKEYR

When properly executed, the unlocking sequence clears the PRGLOCK bit and the program
memory is write accessible.

To lock the program memory again, the software only needs to set the PRGLOCK bit in
FLASH_PECR.

Unlocking the option byte block

An additional write protection is implemented on the option byte block.

After reset, the option bytes are not accessible in write mode: the OPTLOCK bit in
FLASH_PECR is set. Write access to the option bytes is granted again by clearing
OPTLOCK.

The following sequence is used to unlock the option byte block:

• Unlock the FLASH_PECR register

• Write OPTKEY1= 0xFBEAD9C8 to the Option key register (FLASH_OPTKEYR)

• Write OPTKEY1= 0x24252627 to the Option key register (FLASH_OPTKEYR)

Any wrong key sequence will lock up OPTLOCK in FLASH_PECR until the next reset, and
return a bus error (Cortex®-M3 hardfault or busfault). So a bus error is returned in any of the
three cases below:

• after the first write access if the entered OPTKEY1 value is erroneous

• during the second write access if OPTKEY1 is correctly entered but the OPTKEY2 value
does not match

• if there is any attempt to write a third value to OPTKEYR

When properly executed, the unlocking sequence clears the OPTLOCK bit and the option
bytes are write accessible.

To lock the option byte block again, the software only needs to set the OPTLOCK bit in
FLASH_PECR.

Flash program memory and data EEPROM (FLASH) RM0038

64/908 DocID15965 Rev 14

3.4.2 Erasing memory

Different erase operations are available for Program memory and Data EEPROM because
they have different granularity. These operations are:

• Word and double word erase: for Data EEPROM

• Page erase (and parallel page erase for Cat.4, Cat.5 and Cat.6 devices): for
Program memory

• Mass erase: this erases the Program memory, Data EEPROM and Option bytes (in
both banks for Cat.4, Cat.5 and Cat.6 devices)

Data EEPROM word erase

This operation is used to erase a word in Data EEPROM. To do so:

• Unlock the Data EEPROM and the FLASH_PECR register

• Write a word to a valid address in data EEPROM with the value 0x0000 0000

• This activates an erase phase

Note: This function can be executed from both banks, RAM or external memory. If it is from the
same bank, the program is stalled for one Tprog.

Data EEPROM double word erase

This operation is used to erase a double word in Data EEPROM.

To do so:

• Unlock the Data EEPROM and the FLASH_PECR register

• Set the ERASE bit in the FLASH_PECR register

• Set the DATA bit in the FLASH_PECR register to erase a data double word

• Write 0x0000 0000 to each of the two data words to be erased

• Wait for the BSY bit to be cleared

Note: This function can be executed from one bank to the other one, or from RAM. In case of a
read access in the same bank during this feature, a Bus error is generated.

Warning: Data EEPROM double word erase is possible only from
SRAM, from external memory or from bank 1 to bank 2 and
vice versa.

Program memory page erase

This operation is used to erase a page in program memory (64 words). To do so:

• Unlock the FLASH_PECR register

• Unlock the Program memory

• Set the ERASE bit in the FLASH_PECR register

• Set the PROG bit in the FLASH_PECR register to choose program page

• Write 0x0000 0000 to the first word of the program page to erase

• Wait for the BSY bit to be cleared

DocID15965 Rev 14 65/908

RM0038 Flash program memory and data EEPROM (FLASH)

93

Note: This function can be executed from both banks, RAM or external memory. If it is from the
same bank, the program is stalled for one Tprog.

Program memory parallel page erase

This operation is available for Cat.4, Cat.5 and Cat.6 devices only. It is used to erase two
parallel pages in program memory (64 words in each bank). To do so:

• Unlock the FLASH_PECR register

• Unlock the Program memory

• Set the PARALLBANK bit in the FLASH_PECR register

• Set the ERASE bit in the FLASH_PECR register

• Set the PROG bit in the FLASH_PECR register to choose program page

• Write 0x0000 0000 to the first word of the program page to erase in the first bank and
0x0000 0000 to the first word of the program page to erase in the second bank.

• Wait for the BSY bit to be cleared

Note: This function can be executed only from RAM or external memory.

3.4.3 Programming memory

Program memory Fast Word Write

This operation is used to write a word to the program memory, assuming that it was
previously erased. To do so:

• Unlock the FLASH_PECR register

• Unlock the Program memory

• Write a word to a valid address in the program memory. This activates a programming
phase

Note: This function can be executed from both Banks, Ram or external memory. If it is from the
same bank the program is stalled for one Tprog.

Program memory Half Page Write

This operation is used to write half a page to the program memory (32 words). To do so:

• Unlock the FLASH_PECR register

• Unlock the program memory

• Set the FPRG bit in the FLASH_PECR register (this configures FLASH_PECR to
perform a data buffer loading sequence)

• Set the PROG bit in the FLASH_PECR register to access the required program
memory page

• Wait for the BSY bit to be cleared

• Directly write half a page with 32 different words to the program memory address
space. The words must be written sequentially starting from word 0 and ending with
word 31

Warning: Half Page Write is possible only from SRAM, from external
memory or from bank 1 to bank 2 and vice versa.

Flash program memory and data EEPROM (FLASH) RM0038

66/908 DocID15965 Rev 14

Note: 1 If there are more than 32 words to write, after 32 words another Half Page programming
operation starts and has to be finished before any other access to NVM occurs.

2 In case of a read access in the same bank during this feature, a bus error is generated.

Program memory Parallel Half Page Write

This operation is used to write two half pages to the program memory (32 words in each
bank).This operation is available for Cat.4, Cat.5 and Cat.6 devices only.

• Unlock the FLASH_PECR register

• Unlock the program memory

• Set the PARALL_BANK bit in the FLASH_PECR register to configure FLASH_PECR to
perform parallel loading of 2 sequences of 32 words, one in each bank

• Set the FPRG bit in the FLASH_PECR register (this configures FLASH_PECR to
perform the data buffer loading sequences)

• Set the PROG bit in the FLASH_PECR register to access the required program
memory page

• Wait for the BSY bit to be cleared

• Write two half pages directly with 64 different words to the program memory address
space, 32 words in each bank. 32 words must be written sequentially starting with word
0 and ending with word 31 in bank 1. Then, in bank 2, 32 words must be written
sequentially starting with word 32 and ending with word 63.

Note: This function can be executed only from RAM or external memory. Read access to EEprom
during this function is forbidden.

Data EEPROM double Word Write

This operation is used to write a double word to the data EEPROM. To do so:

• Unlock the Data EEPROM and the FLASH_PECR register

• Set the FPRG bit in the FLASH_PECR register (this configures FLASH_PECR to
perform a data buffer loading sequence)

• Set the DATA bit in the FLASH_PECR register to access the required data EEPROM
page

• Wait for the BSY bit to be cleared

• Directly write a double word by writing 2 words to the data EEPROM address space.
The words must be written sequentially starting from word 0 and ending with word 1.

Warning: Data EEPROM double word write is possible only from
SRAM, from external memory or from bank 1 to bank 2 and
vice versa.

Note: 1 A data EEPROM double word is written to the data EEPROM only if the first address to load
is the start address of a double word (multiple of double word).

2 In case of a read access in the same bank during this feature, a bus error is generated.

DocID15965 Rev 14 67/908

RM0038 Flash program memory and data EEPROM (FLASH)

93

Data EEPROM Fast Word Write

This operation is used to write a word to the data EEPROM assuming that it was previously
erased. The time taken for this operation is 1 tprog (see Table 20 on page 77 for more
details).

• Unlock the Data EEPROM and the FLASH_PECR register

• Clear the FTDW bit (FLASH_PECR[8]) assuming that the word is already erased
(0x00000000).

• Write a word to a valid address in the data EEPROM

• The following operations are then performed automatically by the Flash memory
interface:

– The Flash memory interface addresses and reads the word to be written to

– A ECC is calculated for the new word to write to the memory

– A write operation is immediately executed (the word read by the interface must be
0x00000000 and the FTDW bit must be cleared)

Note: This function can be executed from any memory. If it is from the same bank the program is
stalled for one Tprog.

Data EEPROM Word Write

This operation is used to write a word to the data EEPROM whatever the previous value of
the word to be written to. The time taken for this is 1 or 2 tprog, depending on the FTDW bit
(see Table 20 on page 77 for more details).

• Unlock the Data EEPROM and the FLASH_PECR register

• Configure (Set/Clear) the FTDW bit (FLASH_PECR[8]) to execute Word Write,
whatever the previous value of the word be written to

• Write a word to a valid address in the data EEPROM

• The following operations are then performed automatically by the Flash memory
interface:

– The Flash memory interface addresses and reads the word to be written to

– A new ECC is calculated for the new word to write to the memory

– Case 1: FTDW bit = 0:

If the word read by the interface was not 0x00000000, an erase operation is done
automatically followed with a write operation. The time taken for this is 2 tprog.

If the word read by the interface was 0x00000000, a write operation is immediately
executed (it takes the same time as Fast Word Write, 1 tprog).

– Case 2: FTDW bit = 1:

If the FTDW bit is set, an erase operation is always done automatically followed by
a write operation. The time taken for this is 2 tprog.

Note: This function can be executed from any memory. If it is from the same bank the program is
stalled for one Tprog.

Flash program memory and data EEPROM (FLASH) RM0038

68/908 DocID15965 Rev 14

Data EEPROM Fast Half Word Write

This operation is used to write a NON NULL(a) half word to the data EEPROM assuming
that the complete word was previously erased. The time taken for this is 1 tprog (see
Table 20 on page 77 for more details).

• Unlock the Data EEPROM and the FLASH_PECR register

• Clear the FTDW bit (FLASH_PECR[8]) assuming that the word is already erased
(0x00000000)

• Write a half word to a valid address in the data EEPROM

• The following operations are then performed automatically by the Flash memory
interface:

– The Flash memory interface addresses and reads the word to be written to

– A ECC is calculated for the new half word to write to the memory

– A write operation is immediately executed (the word read by the interface must be
0x00000000 and the FTDW bit must be cleared)

Note: This function can be executed from any memory. If it is from the same bank the program is
stalled for one Tprog.

Data EEPROM Half Word Write

This operation is used to write a NON NULL(a) half word to the data EEPROM whatever the
previous value of the word to be written to. The time taken for this is 1 or 2 tprog, depending
on the FTDW bit (see Table 20 on page 77 for more details).

• Unlock the Data EEPROM and the FLASH_PECR register

• Configure (Set/Clear) the FTDW bit (FLASH_PECR[8]) to execute half Word Write,
whatever the previous value of the half word to be written to

• Write a half word to a valid address in the data EEPROM

• The following operations are then performed automatically by the Flash memory
interface:

– The Flash memory interface addresses and reads the word to be written to

– A new ECC is calculated for the new half word to write to the memory

– Case 1: FTDW bit = 0:

If the word read by the interface was not 0x00000000, an erase operation is done
automatically followed by a write operation. The time taken for this is 2 tprog.

If the word read by the interface was 0x00000000, a write operation is immediately
executed (it takes the same time as Fast half word Write, 1 tprog).

– Case 2: FTDW bit = 1:

An erase operation is always done automatically followed by a write operation.
The time taken for this is 2 tprog.

Note: This function can be executed from any memory. If it is from the same bank the program is
stalled for one Tprog.

a. This restriction applies only for Cat.1 devices.

DocID15965 Rev 14 69/908

RM0038 Flash program memory and data EEPROM (FLASH)

93

Data EEPROM Fast Byte Write

This operation is used to write a NON NULL(a) Byte to the data EEPROM assuming that the
complete word was previously erased. The time taken for this is 1 tprog (see Table 20 on
page 77 for more details).

• Unlock the Data EEPROM and the FLASH_PECR register

• Clear the FTDW bit (FLASH_PECR[8]) assuming that the word is already erased
(0x00000000).

• Write a byte to a valid address in the data EEPROM

• The following operations are then performed automatically by the Flash memory
interface:

– The Flash memory interface addresses and reads the word to be written to

– A new ECC is calculated for the new byte to write to the memory

– A write operation is immediately executed (the word read by the interface must be
0x00000000 and the FTDW bit must be cleared)

Note: This function can be executed from any memory. If it is from the same bank, the program is
stalled for one Tprog.

Data EEPROM Byte Write

This operation is used to write a NON NULL(1) byte to the data EEPROM whatever the
previous value of the word to be written to. The time taken for this is 1 or 2 tprog, depending
on the FTDW bit (see Table 20 on page 77 for more details).

• Unlock the Data EEPROM and the FLASH_PECR register

• Configure (Set/Clear) the FTDW bit (FLASH_PECR[8]) to execute byte Write, whatever
the previous value of the word to write to

• Write a NON NULL byte to a valid address in the data EEPROM

• The following operations are then performed automatically by the Flash memory
interface:

– The Flash memory interface addresses and reads the word to be written to

– A new ECC is calculated for the new byte to write to the memory

– Case 1: FTDW bit = 0:

If the word read by the interface was not 0x00000000, an erase operation is done
automatically followed by a write operation.The time taken for this is 2 tprog.

If the word read by the interface was 0x00000000, a write operation is immediately
executed (it takes the same time as Fast byte Write, 1 tprog).

– Case 2: FTDW bit = 1:

An erase operation is always done automatically followed by a write operation.
The time taken for this is 2 tprog.

Note: This function can be executed from any memory. If it is from the same bank, the program is
stalled for one Tprog.

a. This restriction applies only for Cat.1 devices.

Flash program memory and data EEPROM (FLASH) RM0038

70/908 DocID15965 Rev 14

Note: 1 When programming a Data Word, Data Half-word or Data byte from Program memory, the
DCode and ICode are locked for a duration of 1 to 3 tprog. After the end of programming,
the code execution resumes. To avoid this behavior, the write operation has to be executed
from SRAM, the other bank, or external memory.

2 When programming Data Word or Data Half-word at non-aligned addresses, the write
operation may take more than 1 tprog time.

3 During the Program memory half page write, Data EEPROM double word erase and Data
EEPROM double word write, all read operations on the written bank are forbidden (this
includes DMA read operations and debugger read operations such as breakpoints, periodic
updates, etc.)

4 If a PGAERR is set during a Program memory half page write or Data EEPROM double
word write, the complete write operation is aborted. Software should then reset the FPRG
and PROG/DATA bits and restart the write operation from the beginning.

3.4.4 Read while write (RWW)

In Cat.4, Cat.5 and Cat.6 devices, the Flash module is composed of 2 banks. These 2 banks
are identical. They each contain:

• Program memory (up to 256 Kbytes)

• Data EEPROM memory (up to 8 Kbytes)

• Information block (System memory (4 Kbytes), and option bytes)

Table 15. Data EEPROM programming times

-
FTDW

bit
Word erase state

Programming
time

Comments

Data EEPROM Fast
Word/Half
Word/Byte Write

0 Word previously erased 1 Tprog
User software has already erased
the selected word using the Data
EEPROM double word/word erase

Data EEPROM
Word/Half
Word/Byte Write

0 Word previously erased 1 Tprog

The word read by the interface is
0x0 ==> no need for erase, this case
is equal to Fast Word/Half
Word/Byte write

0 Word not erased 2 Tprog
The word read by the interface is not
0x0 ==> an erase is done
automatically

1
Word previously erased

or word not erased
2 Tprog

An erase is done automatically
whatever the word read by the
interface (ECC module)

DocID15965 Rev 14 71/908

RM0038 Flash program memory and data EEPROM (FLASH)

93

This architecture makes it possible to:

• Read bank 1 and write bank 2 (program or data matrix)

• Read bank 2 and write bank 1 (program or data matrix)

• Read bank 1 and read bank 2

• Write bank 1 and write bank 2 with some restrictions:

– during Mass Erase

– during Parallel Half Page Write

– during Parallel Page Erase

All other Write while write features can’t occur exactly in same time but they are managed
by memory interface:

• when a write access in one bank occurs when the other bank is being written, the bus
is stalled until the end of the first programming and the second one can be executed.

• when a write access in one bank occurs when the other bank is performing a multiple
write access, a WRPERR is set and the new write request is aborted.

In the same way, read access and a write access can’t occur exactly in same time, but they
are managed by memory interface:

• when a read access in one bank occurs when this bank is being written, the bus is
stalled until the end of the programming and then the read can be executed.

• when a read access in one bank occurs when this bank is being written during a
multiple write access, a BUS ERROR is returned.

Caution: It is prohibited to perform multiple programming in one bank (HalfPage, DoubleWord from
one bank to the same bank).

Table 16. Read While Write Summary

Execution from Operation Destination Comment

PROG 1

(BANK 1)

WordErase

FastByteWrite

FastHalfWordWrite

ByteWrite

HalfWordWrite

DATA2 (RWW)

DATA1(with Tprog penalty)

-

FastWordWrite

WordWrite

DATA2 (RWW)

PROG 2 (RWW)

DATA1 (with Tprog penalty)

PROG 1 (with Tprog penalty)

PageErase
PROG 2 (RWW)

PROG 1 (with Tprog penalty)

DoubleWordErase

DoubleWordWrite

DATA2 (RWW)

DATA 1(prohibited)

a new write access to
DATA1 or PROG 1 =>
WRPERR

a read access to BANK 2
=> HARD FAULT (bus
error)

HalfPageWrite
PROG2 (RWW)

PROG1 (prohibited)

Flash program memory and data EEPROM (FLASH) RM0038

72/908 DocID15965 Rev 14

Alignment error flag

The Flash memory interface checks three kinds of alignment:

• A half page is written to the program memory only if the first address to load is the start
address of a half page (multiple of 128 bytes) and the 31 remaining words to load are in
the same half page.

• A double word is written to the data EEPROM only if the first address to load is the start
address of a double word (multiple of 8 bytes)

• Change of page is not possible during half page programming

If the alignment check is not correct, the PGAERR flag (FLASH_SR[8]) is set and an
interrupt can be generated. The programming operation aborts.

Size error flag

During the write and erase procedures, the Flash memory interface checks the data size to
verify the coherence between the size of the data to write and the allowed operations.

PROG 2

(BANK 2)

WordErase

FastByteWrite

FastHalfWordWrite

ByteWrite

HalfWordWrite

DATA1 (RWW)

DATA2(with Tprog penalty)

-

FastWordWrite

WordWrite

DATA1 (RWW)

PROG 1(RWW)

DATA 2 (with Tprog penalty)

PROG 2 (with Tprog penalty)

PageErase
PROG 1 (RWW)

PROG 2 (with Tprog penalty)

DoubleWordErase

DoubleWordWrite

DATA 1 (RWW)

DATA 2 (prohibited)

a new write access to DATA
2 or PROG 2=> WRPERR

a read access to BANK 1
=> HARD FAULT (bus
error)

HalfPageWrite
PROG 1 (RWW)

PROG 2 (prohibited)

RAM and
external memory

all operations
including:

ParallPageErase

ParallHalfPageWrite

MassErase

PROG 1

DATA 1

PROG 2

DATA 2

-

Table 17. Prohibited operations

Memory block Data size

Program memory
Byte/Half-Word Write prohibited

Byte/Half-Word/Word Erase prohibited

Option byte block Byte/Half Word prohibited

Table 16. Read While Write Summary (continued)

Execution from Operation Destination Comment

DocID15965 Rev 14 73/908

RM0038 Flash program memory and data EEPROM (FLASH)

93

If the check is not correct, a flag SIZERR (FLASH_SR[9]) is set and a interrupt can be
generated.

Bus error (Cortex®-M3 hardfault or Busfault)

A bus error (Cortex®-M3 hardfault or Busfault) is returned in three cases:

• When read access through D bus or I bus is performed when memory is read protected
and while the debug features are connected or boot is executing from SRAM.

• Wrong DATA EEPROM/FLASH_PECR register/Program memory Bytes unlock
sequence. Refer to Section 3.4.1: Unlocking/locking memory for more details.

• For Cat.4, Cat.5 and Cat.6 devices, when a read access on bank 1 or bank 2 is
performed while a DoubleWordErase, DoubleWordWrite or a HalfPageWrite is
operating in the same bank.

3.5 Option byte description

Part of the Flash memory module is reserved for the storage of a set of option bytes. These
option bytes contain information on the configuration of the product and they are configured
according to the end application requirements. As a configuration example, you can select
the watchdog in hardware or software mode.

In the option byte block, a 32-bit word is mapped as shown in the table below.

The organization of the bytes inside the option block is as shown in Table 18.

Option byte loading is performed in two cases:

• When OBL_LAUNCH is set (in this case, a reset is generated)

• After every power-up of the V 18 domain (that is after POR or after Standby)

The option byte loader (OBL) reads the information block and stores the data into the option
byte register (FLASH_OBR).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Complemented option byte1 Complemented option byte0 Option byte 1 Option byte 0

Table 18. Option byte organization

Address [31:24] [23:16] [15:8] [7:0]

0x1FF80000 nSPRMOD[0:0] nRDP nSPRMOD[0:0] RDP

0x1FF80004 0xFF nUSER 0x00 USER

0x1FF80008 nWRP1[15:8] nWRP1[7:0] WRP1[15:8] WRP1[7:0]

0x1FF8000C nWRP1[31:24] nWRP1[23:16] WRP1[31:24] WRP1[23:16]

0x1FF80010 nWRP2[15:8] nWRP2[7:0] WRP2[15:8] WRP2[7:0]

0x1FF80014 nWRP2[31:24] nWRP2[23:16] WRP2[31:24] WRP2[23:16]

0x1FF80018 nWRP3[15:8] nWRP3[7:0] WRP3[15:8] WRP3[7:0]

0x1FF8001C nWRP3[31:24] nWRP3[23:16] WRP3[31:24] WRP3[23:16]

0x1FF80080 nWRP4[15:8] nWRP4[7:0] WRP4[15:8] WRP4[7:0]

0x1FF80084 nWRP4[31:24] nWRP4[23:16] WRP4[31:24] WRP4[23:16]

Flash program memory and data EEPROM (FLASH) RM0038

74/908 DocID15965 Rev 14

During the option byte loading process, it is possible to check that the loading operation was
successful by verifying an option byte and its complement.

If the verification fails, the OPTVERR status bit is set and an interrupt is generated if ERRIE
is set. OPTVERRUSR bit is also set in case of a verification error is in USER/nUSER byte.

The option byte registers are accessible in read mode by the CPU.

DocID15965 Rev 14 75/908

RM0038 Flash program memory and data EEPROM (FLASH)

93

Table 19. Description of the option bytes

Memory address Option bytes

0x1FF8 0000

Bits [31:25]: reserved must be set to 1

Bit 24: nSPRMOD

Bits [23:16]: nRDP

Bits [15:9]: reserved must be reset to 0

Bit 8: SPRMOD: sector protection mode selection

0: WRPx[i]=1 bit defines sector write protection
1: WRPx[i]=0 bit defines sector write and read (PCROP) protection.

See Section 3.7.4: PCROP for details.

Bits [7:0]: RDP: Read protection option byte (stored in FLASH_OBR[22:16])

The read protection is used to protect the software code stored in Flash
memory.

0xAA: Level 0, no protection

0xCC: Level 2, chip protection (debug and boot in SRAM features disabled)

Others: Level 1, read protection of memories (debug features limited)

0x1FF8 0004

Bits [23:16] nUSER

Bits [7:0] USER: User option byte (stored in FLASH_OBR[23:16])

This byte is used to configure the following features:

– Select the brownout reset threshold level

– Select the watchdog event: Hardware or software

– Reset event when the CPU enters the Stop mode

– Reset event when the CPU enters the Standby mode

Bits 3:0: BOR_LEV[3:0]: Brownout reset threshold level

Bit 4: IWDG_SW

0: Hardware independent watchdog
1: Software independent watchdog

Bit 5: nRST_STOP

0: Reset generated when the CPU enters the Stop mode
1: No reset generated

Bit 6: nRST_STDBY

0: Reset generated when the CPU enters the Standby mode
1: No reset generated

Bit 7: nBFB2

This bit is available for Cat.4, Cat.5 and Cat.6 devices only.
This bit is used to select the boot space between Flash Bank2/Bank1 and
another boot sources.
0: If pins (BOOT1 & BOOT0)=0 system bootloader is started after reset
(boot from system memory).
Bootloader in next executes checks in following order:
- If content of first word of Bank2 is valid SRAM address then is jumped to
Bank2 (boot from Bank2).
- If content of first word of Bank1 is valid SRAM address then is jumped to
Bank1 (boot from Bank1).
- Otherwise system bootloader is executed.
1: Boot space is selected by BOOT0 and BOOT1 pins (see Table 6: Boot
modes).

Flash program memory and data EEPROM (FLASH) RM0038

76/908 DocID15965 Rev 14

0x1FF8 0008

WRP1: Memory write protection option bytes

Bits [31:16]: nWRP1[15:0]

Bits [15:0]: WRP1[15:0] are stored in FLASH_WRPR1[15:0])

0: Write protection not active on selected sector
1: Write protection active on selected sector

0x1FF8 000C

WRP1: Memory write protection option bytes

Bits [31:16]: nWRP1[31:16]

Bits [15:0]: WRP1[31:16] are stored in FLASH_WRPR1[31:16])

0: Write protection not active on selected sector
1: Write protection active on selected sector

0x1FF8 0010

WRP2(1): Memory write protection option bytes

Bits [31:16]: nWRP2[15:0]

Bits [15:0]: WRP2[15:0] are stored in FLASH_WRPR2[15:0])

0: Write protection not active on selected sector
1: Write protection active on selected sector

0x1FF8 0014

WRP2(1): Memory write protection option bytes

Bits [31:16]: nWRP2[31:16]

Bits [15:0]: WRP2[31:16] are stored in FLASH_WRPR2[31:16])

0: Write protection not active on selected sector
1: Write protection active on selected sector

0x1FF8 0018

WRP3(2): Memory write protection option bytes

Bits [31:16]: nWRP3[15:0]

Bits [15:0]: WRP3[15:0] are stored in FLASH_WRPR3[15:0])

0: Write protection not active on selected sector
1: Write protection active on selected sector

0x1FF8 001C

WRP3(2): Memory write protection option bytes

Bits [31:16]: nWRP3[31:16]

Bits [15:0]: WRP3[31:16] are stored in FLASH_WRPR3[31:16])

0: Write protection not active on selected sector
1: Write protection active on selected sector

0x1FF8 0080

WRP4(3): Memory write protection option bytes

Bits [31:16]: nWRP4[15:0]

Bits [15:0]: WRP4[15:0] are stored in FLASH_WRPR4[15:0])

0: Write protection not active on selected sector
1: Write protection active on selected sector

0x1FF8 0084

WRP4(3): Memory write protection option bytes

Bits [31:16]: nWRP4[31:16]

Bits [15:0]: WRP4[31:16] are stored in FLASH_WRPR4[31:16])

0: Write protection not active on selected sector
1: Write protection active on selected sector

1. WRP2 is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices.

2. WRP3 is available in Cat.4, Cat.5 and Cat.6 devices only.

3. WRP4 is available in Cat.5 devices only.

Table 19. Description of the option bytes (continued)

Memory address Option bytes

DocID15965 Rev 14 77/908

RM0038 Flash program memory and data EEPROM (FLASH)

93

3.5.1 Option byte block programming

Only Fast Word Write, Word Write and Word Erase are possible in the option byte block.

The option bytes are not programmed in the same way as program/data EEPROM
addresses.

Two unlock sequences are required:

• Unlock the FLASH_PECR register

• Unlock the option byte block

To modify the option bytes, the following steps are mandatory:

• The two option bytes of a given word must be written at the same time.

• The two complementary option bytes of a given word must be calculated and written at
the same time (see Section 3.5: Option byte description on page 73 for details on the
mapping of the option bytes in a 32-bit word).

• The user can write to the option bytes to configure them depending on his
requirements.

• To automatically update them in the option byte registers by option byte loading, the
OBL_LAUNCH in the FLASH_PECR register should be set and a system reset is
generated.

• Option byte error flags should be cleared to be able to program a new option byte.

The following table summarizes the program and erase functions.

Note: The Option bytes are only loaded when they are already programmed correctly with the
corresponding complementary bytes.

3.6 Quick reference to programming/erase functions

Table 20. Programming/erase functions (Cat.1, Cat.2 and Cat.3 devices)

Operation Block Bit/procedure Time

E
ra

se
 o

p
e

ra
ti

o
n

Word erase (1)
Data EEPROM
Option bytes

Write directly the value
0x0000 0000

into the address
1 tprog

Page Erase (2) Program memory
ERASE = 1
PROG = 1

1 tprog

Double Word Erase (3) (4) Data EEPROM
FPRG = 1
DATA = 1

1 tprog

Mass Erase

Program memory +Data
EEPROM + Option bytes

+ backup registers
(in RTC)

RDP: level1 -> level0
2 tprog for erase +
1 tprog for program

Flash program memory and data EEPROM (FLASH) RM0038

78/908 DocID15965 Rev 14

Note: Programming/erasing of NVM memories is possible only if the internal voltage regulator is in
Range1 and Range2).

W
ri

te
 o

p
er

at
io

n

Fast Word Write
Program memory
Data EEPROM
Option bytes

FTDW = 0 1 tprog

Word Write (5) Data EEPROM
Option bytes

FTDW = 1 or 0 1 or 2 tprog

Half Page Write (3) (6) Program memory
FPRG = 1
PROG = 1

1 tprog

Double Word Write (3)(4) Data EEPROM
FPRG = 1
DATA = 1

1 tprog

Fast Byte Write (7)

Fast Half Word Write (7)(5) Data EEPROM FTDW = 0 1tprog

Byte Write (7)

Half Word Write(7)(5) Data EEPROM FTDW = 1 or 0 1 or 2 tprog

1. A data EEPROM word is erased in the data EEPROM only if the address to load is the start address of a word (multiple of
a word).

2. A Page is erased in the Program memory only if the address to load is the start address of a page (multiple of 256 bytes).

3. The Half Page Write, Double Word Erase and Double Word Write are possible only from SRAM, alternate bank or external
memory.

4. A data EEPROM double word is written or erased to the data EEPROM only if the first address to load is the start address
of a double word (multiple of double word).

5. When programming Data Word or Data Half-word at non-aligned addresses, the write operation may take more than
1 tprog time.

6. A half page is written to the program memory only if the first address to load is the start address of a half page (multiple of
128 bytes).

7. The Fast Byte Write, Fast Half Word Write, Byte Write and Half Word Write can be used only to write a NON NULL byte/half
word.

Table 20. Programming/erase functions (Cat.1, Cat.2 and Cat.3 devices) (continued)

Operation Block Bit/procedure Time

DocID15965 Rev 14 79/908

RM0038 Flash program memory and data EEPROM (FLASH)

93

Table 21. Programming/erase functions (Cat.4, Cat.5 and Cat.6 devices)

Operation Block Bit/procedure Time

E
ra

se
 o

p
er

a
ti

o
n

Word erase (1)
Data EEPROM
Option bytes

Write directly the value
0x0000 0000

into the address
1 tprog

Page Erase (2) Program memory
ERASE = 1
PROG = 1

1 tprog

ParallPageErase Program memory
ERASE = 1
PROG = 1

PARALLBANK = 1
1 tprog

Double Word Erase (3) (4) Data EEPROM
FPRG = 1
DATA = 1

1 tprog

Mass Erase

Program memory +Data
EEPROM + Option bytes

+ backup registers
(in RTC)

RDP: level1 -> level0
2 tprog for erase +
1 tprog for program

W
ri

te
 o

p
er

at
io

n

Fast Word Write
Program memory
Data EEPROM
Option bytes

FTDW = 0 1 tprog

Word Write (5) Data EEPROM
Option bytes

FTDW = 1 or 0 1 or 2 tprog

Half Page Write (3) (6) Program memory
FPRG = 1
PROG = 1

1 tprog

ParallHalfPageWrite Program memory

FPRG = 1

PARALLBANK = 1

PROG = 1

1 tprog

Double Word Write (3)(4) Data EEPROM
FPRG = 1
DATA = 1

1 tprog

Fast Byte Write (7)

Fast Half Word Write (7)(5) Data EEPROM FTDW = 0 1 tprog

Byte Write (7)

Half Word Write(7)(5) Data EEPROM FTDW = 1 or 0 1 or 2 tprog

1. A data EEPROM word is erased in the data EEPROM only if the address to load is the start address of a word (multiple of
a word).

2. A Page is erased in the Program memory only if the address to load is the start address of a page (multiple of 256 bytes).

3. The Half Page Write, Double Word Erase and Double Word Write are possible only from SRAM or external memory.

4. A data EEPROM double word is written or erased to the data EEPROM only if the first address to load is the start address
of a double word (multiple of double word).

5. When programming Data Word or Data Half-word at non-aligned addresses, the write operation may take more than
1 tprog time.

6. A half page is written to the program memory only if the first address to load is the start address of a half page (multiple of
128 bytes).

Flash program memory and data EEPROM (FLASH) RM0038

80/908 DocID15965 Rev 14

Note: Programming/erasing of NVM memories is possible only if the internal voltage regulator is in
Range1 and Range2).

3.7 Memory protection

The Flash memory module can be protected against read accesses.

The memory sectors can also be individually protected against unwanted write accesses
caused by loss of program counter contexts.

3.7.1 Readout protection (RDP) of the program and data EEPROMs

The user area of the Flash memory module (data and program) can be protected against
read operations. Three read protection levels are defined:

• Level 0: no read protection

When the read protection level is set to Level 0 by writing 0xAA to the read protection
option byte, RDP, all read/write operations (if no write protection is set) from/to the
Flash memory module or the backup SRAM are possible in all boot configurations
(debug, boot from ram or system memory selected).

Level 1: memory read protection enabled

This is the default read protection level after option byte erase. Read protection Level 1
is activated by writing any value (except for 0xAA and 0xCC used to set Level 0 and
level 2, respectively) to the RDP option byte. When read protection Level 1 is set:

– No Flash memory module access (read, erase, program) is performed while the
debug features are connected or boot from RAM or system memory is selected. A
bus error (Cortex®-M3 hardfault or Busfault) is generated in case of a Flash
memory read request. All operations are possible when Flash user boot is used.

– Programming the protection option byte to lower protection causes the Flash
memory module and the backup registers (in RTC) to be mass-erased. That is, the
user code contents are cleared before the read protection is removed.

Note: When Level 1 is active and Level 0 is requested, the following steps are executed:

– Mass Erase is generated (RDP byte is erased (0x0) and Level 1 is still active and
no more code could be executed)".

– If the OBL Launch is set or Power On Reset (POR) is generated the new RDP
byte is loaded (0xAA) and Level 0 is active.

Note: Mass Erase is performed only when Level 1 is active and Level 0 is requested. When the
protection level is increased (0->1, 1->2, 0->2) there is no Mass Erase.

– The Flash memory module is also write-protected if the CPU debug features
(JTAG or single-wire) are connected or if boot from RAM or system memory is
selected.

7. In contrast to Cat.1 devices, in Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices the Fast Byte Write, Fast Half Word Write, Byte
Write and Half Word Write can used to write a NULL byte/half word.

DocID15965 Rev 14 81/908

RM0038 Flash program memory and data EEPROM (FLASH)

93

Level 2: memory read protection enabled and all debug features
disabled

Note: Memory read protection Level 2 is an irreversible operation. The level of protection in this
case cannot be decreased to level 0 or level 1.

When read protection Level 2 is activated by writing 0xCC to the RDP option byte, all
protections provided by Level 1 are active, system memory and all debug features
(CPU JTAG and single-wire) are disabled when booting from SRAM or from system
memory and user options can no longer be changed.

Note: The JTAG port is permanently disabled in level 2 (acting as a JTAG fuse). Consequently,
boundary scan cannot be performed. STMicroelectronics is not able to perform analysis on
defective parts on which the level 2 protection has been set.

Figure 6: RDP levels shows how to go from one RDP level to another.

Figure 6. RDP levels

The Flash memory module is protected when the RDP option byte and its complement
contain the following pair of values:

Table 22. Flash memory module protection according to RDP and its complement

RDP byte value RDP’s complementary value Read protection status

0xAA 0x55 Level 0

Any value except 0xAA
or 0xCC

Complement of RDP byte Level 1

Any value Not the complement value of RDP Level 1

0xCC 0x33 Level 2

Level 1

0 leveL2 leveL

0xAA = PDR0xCC = PDR

RDP /= 0xAA
RDP /= 0xCC

default

Option byte write (RDP level increase) includes:

Option byte write (RDP level decrease) includes: Option byte write (RDP level identical) includes :

RDP = 0xAA

RDP = 0xAA & = 0xCC

including
Write options

including

Write options
including

RDP = 0xCC & = 0xAA
Write options including

Write options

other option(s) modified

other options modified

RDP = 0xCC

RDP = 0xCC

RDP = 0xAA

– Option byte erase
– New option byte programming

– Mass Erase
– Option byte erase
– New option byte programming

– Option byte erase

– New option byte programming

ai17165

Flash program memory and data EEPROM (FLASH) RM0038

82/908 DocID15965 Rev 14

3.7.2 Write protection (WRP) of the program memory

The write protection granularity is the sector (16 pages). This means that 32 option bits are
needed to protect 128 Kbyte program memory.

The protection is activated by configuring the WRPx option bytes which are loaded at
power-up or reloaded by setting the OBL_LAUNCH bit in the FLASH_PECR register. A copy
of these option bits are in the FLASH_WRPRx registers.

Note: When the memory read protection level is selected (RDP level = 1), it is not possible to
program or erase the program and data EEPROMs if the CPU debug features are
connected (JTAG or Single Wire) or boot from RAM or system memory is selected, even if
nWRPx = 0.

The data EEPROM is not protected by WRP bits.

3.7.3 Write protection error flag

If an erase/program operation to a write-protected memory page is launched, the write
protection error flag (WRPERR) is set in the FLASH_SR register. This flag is set whenever
the software attempts to write to any protected address.

Consequently, the WRPERR flag is set when the software tries to write to:

• a write protected page

• a System memory page

• the Program memory, Data EEPROM or option byte block if they are not unlocked by
PEKEY, PRGKEY or OPTKEY

• the Data EEPROM and Program memory when the RDP option byte is set and the
device is in debug mode or is booting from SRAM

• one bank while a DoubleWordErase, DoubleWordWrite or a HalfPageWrite is
performed on the other bank (for Cat.4, Cat.5 and Cat.6 devices)

3.7.4 PCROP

This section is only applicable for Cat.2 and Cat.3 devices (except STM32L100xx product
categories - see Table 2). See device datasheet for PCROP availability.

The user area of the Flash memory can be protected against Dbus read access. This
assuming the native code is compiled accordingly with PcROP option.

A protected sector is accessible for code execution (on ICODE bus only), but cannot be
read/written on Dbus (CPU data read or debugger access).

This mode is activated by SPRMOD option bit and WRPx option bytes.

• SPRMOD = 0: WRPx control the write protection of respective user sectors.

• SPRMOD = 1: WRPx control the read protection (PcROP) of respective user sectors.

Any read access performed through the Dbus will trigger RDERR flag error when the target
sector is read protected.

Any read protected sector is also write protected and any write access to one of these
sectors will trigger WRPERR (in same way then WRP protection).

Deactivation of SPRMOD and/or unprotection of user sectors can only occurs when the
RDP is changing from level-1 to level-0. When SPRMOD is active, if the user options

DocID15965 Rev 14 83/908

RM0038 Flash program memory and data EEPROM (FLASH)

93

modification tries to reset SPRMOD or to deactivate WRPx, the programming is launch but
SPRMOD or protected sectors stay unchanged.

Note: Active value of WRPx bits is inverted when PCROP mode is active (SPRMOD =1). if
WRPx = ’0’ then user sector i is Read Protected (PcROP).

3.8 Interrupts

Setting the end of programming interrupt enable bit (EOPIE) in the FLASH_PECR register
enables an interrupt generation when an erase or program operation successfully ends. In
this case, the end of programming (EOP) bit in the FLASH_SR register is set.

Setting the error interrupt enable bit (ERRIE) in the FLASH_PECR register enables an
interrupt generation if an error occurs during a program or erase operation, or during option
byte loading. In this case, one of the error flags is set in the FLASH_SR register:

• RDERR (PCROP read protection error flag)

• WRPERR (write protection error flag)

• PGAERR (programming alignment error flag)

• OPTVERR (option validity error flag)

• OPTVERRUSR (user option validity error flag)

• SIZERR (size error flag)

3.9 Register description

3.9.1 Access control register (FLASH_ACR)

Address offset: 0x00

Reset value: 0x0000 0000

Table 23. Interrupts

Interrupt event Event flag Enable control bit

End of programming EOP EOPIE

Error

RDERR

WRPERR

PGAERR

OPTVERR

OPTVERRUSR

SIZERR

ERRIE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

R
U

N
_

P
D

S
L

E
E

P
_

P
D

A
C

C
6

4

P
R

F
T

E
N

L
A

T
E

N
C

Y

rw rw rw rw rw

Flash program memory and data EEPROM (FLASH) RM0038

84/908 DocID15965 Rev 14

3.9.2 Program/erase control register (FLASH_PECR)

This register is used to perform all erase and program operations. It is write-accessible only
after the good write sequence has been executed in FLASH_PEKEYR.

Address offset: 0x04

Reset value: 0x0000 0007

Bits 31:5 Reserved, must be kept cleared.

Bit 4 RUN_PD: Power saving mode during Run

This bit can be written only when it is unlocked by writing to FLASH_PDKEYR.
This bit determines whether the Flash memory module is in Power down mode or Idle mode
when the STM32L1xxxx is in Run mode.
The Flash memory module can be placed in Power down mode only when the code is
executed from SRAM).
0: Flash module in Idle mode
1: Flash modulein Power down mode

Bit 3 SLEEP_PD: Power saving mode during Sleep

This bit is used to put the Flash memory module in Power down mode or Idle mode when
the STM32L1xxxx is in Sleep mode.
0: Flash module in Idle mode
1: Flash module in Power down mode

Bit 2 ACC64: 64-bit access

This bit is used to read data from the memory 64 bits or 32 bits at a time. 32-bit access is
used to decreases the memory consumption. On the contrary, 64-bit access is used to
improve the performance. In this case it is useful to enable prefetch.
0: 32-bit access
1: 64-bit access

Note: 32-bit access is a low-power mode. It is used only at low frequencies, that is with 0 wait
state of latency and prefetch off.

Note: This bit cannot be written at the same time as the LATENCY and PRFTEN bits.

Bit 1 PRFTEN: Prefetch enable

0: prefetch disabled
1: prefetch enabled

Note: Prefetch can be enabled only when ACC64 is set.
This bit can be set or cleared only if ACC64 is set.

Bit 0 LATENCY: Latency

This bit represents the ratio of the CPU clock period to the memory access time.
0: zero wait state
1: one wait state

Note: Latency can be set only when ACC64 is set.
This bit can be set or cleared only if ACC64 is set.

DocID15965 Rev 14 85/908

RM0038 Flash program memory and data EEPROM (FLASH)

93

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

O
B

L_
L

A
U

N
C

H

E
R

R
IE

E
O

P
IE

P
A

R
A

LL
E

L
B

A
N

K

Reserved F
P

R
G

E
R

A
S

E

F
T

D
W

D
A

TA

P
R

O
G

O
P

T
L

O
C

K

P
R

G
L

O
C

K

P
E

LO
C

K

rw
1

rw rw rw rw rw rw rw rw rs rs rs

Bits 31:19 Reserved, must be kept cleared.

Bit 18 OBL_LAUNCH: Launch the option byte loading

This bit is set by software to launch the option byte loading. This bit is cleared only when the
option byte loading has completed. It cannot be written if OPTLOCK is set.
When this bit is set, a reset is generated.
0: Option byte loading complete
1: Option byte has to be loaded

Bit 17 ERRIE: Error interrupt enable

0: interrupt disabled
1: interrupt enabled

Bit 16 EOPIE: End of programming interrupt enable

0: interrupt disabled
1: interrupt enabled

Bit 15 PARALLBANK: Parallel bank mode.

This bit can be set and cleared by software when no program or erase process is on-going.
When this bit is set, 2 half pages can be programmed or 2 pages can be erased in parallel
(the first one in the first bank and the second one in the second bank).
0: Parallel bank mode disabled
1: Parallel bank mode enabled

Note: This bit is available in Cat.4, Cat.5 and Cat.6 devices only.

Bits 14:11 Reserved, must be kept cleared.

Bit 10 FPRG: Half Page/Double Word programming mode

This bit can be written by software when no program or erase process is ongoing.
It is used to enable/disable Half Page Programming to the program memory or Double Word
Programming to the data EEPROM.
32 loadings are required to program half a page to the program memory.
2 loadings are required to program a double word to the data EEPROM.
This bit is cleared when PELOCK is set.
0: Half Page/Double Word programming disabled
1: Half Page/Double Word programming enabled

Bit 9 ERASE: Page or Double Word erase mode

This bit can be written by software when no program or erase process is on going.
It is used to enable/disable Page Erase on the program memory or Double Word Erase on
the data EEPROM and the option byte block.
This bit is cleared when PELOCK is set.
0: Page or Double Word Erase disabled
1: Page or Double Word Erase enabled

Flash program memory and data EEPROM (FLASH) RM0038

86/908 DocID15965 Rev 14

Bit 8 FTDW: Fixed time data write for Byte, Half Word and Word programming

This bit is writable by software when no program or erase process is ongoing.
This bit is used for the data EEPROM only.
It is cleared when PELOCK is set.
0: Programming of a Byte, Half Word or word is performed without any previous erase
operation. This is possible if the word being written to is 0x0000 0000.
1: Before the programming of a Byte, Half Word and word an erase phase is automatically
performed. So the time of programming is fixed and lasts two tprog

Bits 7:5 Reserved, must be kept cleared

Bit 4 DATA: Data EEPROM selection

This bit is writable by software when no program or erase process is ongoing.
This bit has to be set prior to data EEPROM double word erase/programming.
This bit is cleared when PELOCK is set.
0: Data EEPROM not selected
1: Data EEPROM selected

Bit 3 PROG: Program memory selection

This bit is writable by software when no program or erase process is ongoing.
This bit has to be set to gain write access to the program memory, except in the case of
word programming.
This bit is cleared when PELOCK is set.
0: Program memory not selected
1: Program memory selected

Bit 2 OPTLOCK: Option bytes block lock

This bit can only be written to 1. When it is set, it indicates that the option byte block is
locked.
It is cleared by hardware after detecting the unlock sequence. In the event of an
unsuccessful unlock operation or a third access to OPTKEYR, a bus error (Cortex®-M3
hardfault or Busfault) is generated and this bit remains set until the next reset.
This bit is set when PELOCK is set.
0: option unlocked
1: option locked

Bit 1 PRGLOCK: Program memory lock

This bit can only be written to 1. When it is set, it indicates that the program memory cannot
be written. It is cleared by hardware after detecting the unlock sequence. In the event of an
unsuccessful unlock operation or a third access to PRGKEYR, a bus error (Cortex®-M3
hardfault or Busfault) is generated and this bit remains set until the next reset.
This bit is set when PELOCK is set.
0: program memory unlocked
1: program memory locked

Bit 0 PELOCK: FLASH_PECR and data EEPROM lock

This bit can only be written to 1. When it is set, it indicates that the FLASH_PECR register
and data EEPROM are locked. It is cleared by hardware after detecting the unlock
sequence. In the event of unsuccessful unlock operation or a third access to PEKEYR, a
bus error (Cortex®-M3 hardfault or Busfault) is generated and this bit remains set until the
next reset.
When this bit is cleared, write access to the data EEPROM is allowed.
0: FLASH_PECR is unlocked
1: FLASH_PECR is locked

DocID15965 Rev 14 87/908

RM0038 Flash program memory and data EEPROM (FLASH)

93

3.9.3 Power down key register (FLASH_PDKEYR)

The Power down key register is used to unlock the RUN_PD bit in FLASH_ACR.

Address offset: 0x08

Reset value: 0x0000 0000

3.9.4 Program/erase key register (FLASH_PEKEYR)

The Program/erase key register is used to allow access to FLASH_PECR and so, to allow
program and erase operations in the data EEPROM.

Address offset: 0x0C

Reset value: 0x0000 0000

3.9.5 Program memory key register (FLASH_PRGKEYR)

The Program memory key register is used to allow program and erase operations in the
Program memory. It is write accessible only after a correct write sequence has been
executed in FLASH_PEKEYR.

Address offset: 0x10

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PDKEYR[31:0]

w w

Bits 31:0 PDKEYR[31:0]: RUN_PD in FLASH_ACR key

These bits represent the keys used to set the RUN_PD bit in the FLASH_ACR register.
PDKEY1: 0x04152637
PDKEY2: 0xFAFBFCFD

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PEKEYR[31:0]

w w

Bits 31:0 PEKEYR[31:0]: FLASH_PEC and data EEPROM key

These bits represent the keys to unlock the write access to the FLASH_PECR register and
data EEPROM.
PEKEY1: 0x89ABCDEF
PEKEY2: 0x02030405

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PRGKEYR[31:0]

w w

Flash program memory and data EEPROM (FLASH) RM0038

88/908 DocID15965 Rev 14

3.9.6 Option byte key register (FLASH_OPTKEYR)

The Option key register is used to allow program and erase operations in the option byte
block. It is write accessible only after the good write sequence has been executed in
FLASH_PEKEYR.

Address offset: 0x14

Reset value: 0x0000 0000

3.9.7 Status register (FLASH_SR)

Address offset: 0x18

system reset value: 0b0000 0000 0000 0000 000x x000 0000 0100

Bits 31:0 PRGKEYR[31:0]: Program memory key

These bits represent the keys to unlock the program memory.
PRGKEY1: 0x8C9DAEBF
PRGKEY2: 0x13141516

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPTKEYR[31:0]

w w

Bits 31:0 OPTKEYR: Option byte key

These bits represent the keys to unlock the write access to the option byte block.
OPTKEY1:0xFBEAD9C8
OPTKEY2:0x24252627

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved R
D

E
R

R

O
P

T
V

E
R

R
U

S
R

O
P

T
V

E
R

R

S
IZ

E
R

R

P
G

A
E

R
R

W
R

P
E

R
R

Reserved R
E

A
D

Y

E
N

D
H

V

E
O

P

B
S

Y
rc_
w1

rc_
w1

rc_
w1

rc_
w1

rc_
w1

rc_
w1

r r r r

DocID15965 Rev 14 89/908

RM0038 Flash program memory and data EEPROM (FLASH)

93

Bits 31:14 Reserved, must be kept cleared.

Bit 13 RDERR: Read protected error

Set by hardware when an address to be read through the Dbus belongs to a read-protected
(PCROP) part of the memory.
Cleared by writing 1.

Bit 12 OPTVERRUSR: Option UserValidity Error.

Set by hardware when the option byte USER has an incorrect complement nUSER when
loading option bytes into FLASH_OBR register (see Section 3.5: Option byte description).
Cleared by writing 1.
If user option byte USER/nUSER has not been properly loaded
OPTVERRUSR is set again. Consequently, an interrupt is generated as soon as ERRIE is
set.

Note: This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bit 11 OPTVERR: Option validity error

Set by hardware when some option byte has an incorrect complement when loading option
bytes into FLASH_OBR register (see Section 3.5: Option byte description).
Cleared by writing 1.
If some option byte has not been properly loaded
OPTVERR is set again. Consequently, an interrupt is generated as soon as ERRIE is set.

Bit 10 SIZERR: Size error

Set by hardware when the size of the data to program is prohibited.
Cleared by writing it to 1.

Bit 9 PGAERR: Programming alignment error

Set by hardware when the data to program cannot be contained in a given half page or
double word.
Cleared by writing it to 1.

Bit 8 WRPERR: Write protected error

Set by hardware when an address to be erased/programmed belongs to a write-protected
part of the memory.
Cleared by writing it to 1.

Bits 7:4 Reserved, must be kept cleared.

Bit 3 READY: Flash memory module ready after low-power mode

This bit is set and cleared by hardware.
0: Flash memory module is not ready
1: Flash memory module is ready

Bit 2 ENDHV: End of high voltage

This bit is set and cleared by hardware.
0: High voltage still applied during write/erase operations
1: End of high voltage

Bit 1 EOP: End of operation

This bit is set by hardware if the high voltage stops being applied and programming has not
been aborted. It is cleared by software (by writing it to 1).
0: No EOP event occurred
1: An EOP event occured. An interrupt is generated if EOPIE is set

Bit 0 BSY: Write/erase operations in progress

0: Write/erase operation not in progress
1: Write/erase operation in progress

Flash program memory and data EEPROM (FLASH) RM0038

90/908 DocID15965 Rev 14

3.9.8 Option byte register (FLASH_OBR)

Address offset: 0x1C

Reset value: depends on RDP and USER option byte, on virgin part initial value is 0x00F8
00AA.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved n
B

F
B

2

n
R

S
T

_
S

T
D

B
Y

n
R

T
S

_
S

T
O

P

IW
D

G
_

S
W

BOR_LEV[3:
0] Reserved

S
P

R
M

O
D

RDPRT

r r r r r r r r r r r r r r r r r

Bits 31:24 Reserved, must be kept cleared.

Bit 23 nBFB2: Boot from Bank2. This bit contains the user option byte loaded by the OBL.
This bit is used to select the boot space between Flash Bank2/Bank1 and another boot
sources.
0: System bootloader is started after reset (boot from system memory). Bootloader in next
executes checks in following order:
- If content of first word of Bank2 is valid SRAM address then is jumped to Bank2 (boot from
Bank2).
- If content of first word of Bank1 is valid SRAM address then is jumped to Bank1 (boot from
Bank1).
- Otherwise system bootloader is executed.
1: Boot space is selected by BOOT0 and BOOT1 pins (see Table 6: Boot modes).
This bit is read only.

Note: This bit is available in Cat.4, Cat.5 and Cat.6 devices only.

Bits 22:16 User option byte

These bits contain the user option byte loaded by the OBL.

Bit 22: nRST_STDBY

Bit 21: nRST_STOP

Bit 20: IWDG_SW

Bits 19:16:BOR_LEV[3:0]: Brownout reset threshold level

0xxx: BOR OFF: Reset threshold level for the 1.45 V-1.55 V voltage range (power down
only)
In this particular case, VDD33 must have been above BOR LEVEL 1 to start the device OBL
sequence in order to disable the BOR. The power-down is then monitored by the PDR.

Note: If the BOR is disabled, a “grey zone” exists between 1.65 V and the VPDR threshold
(this means that VDD33 may be below the minimum operating voltage (1.65 V) without
causing a reset until it crosses the VPDR threshold)

1000: BOR LEVEL 1: Reset threshold level for 1.69 V-1.8 V voltage range (power on)
1001: BOR LEVEL 2: Reset threshold level for 1.94 V-2.1 V voltage range (power on)
1010: BOR LEVEL 3: Reset threshold level for 2.3 V-2.49 V voltage range (power on)
1011: BOR LEVEL 4: Reset threshold level for 2.54 V-2.74 V voltage range (power on)
1100: BOR LEVEL 5: Reset threshold level for 2.77 V-3.0 V voltage range (power on)
These bits are read only.

DocID15965 Rev 14 91/908

RM0038 Flash program memory and data EEPROM (FLASH)

93

3.9.9 Write protection register (FLASH_WRPRx)

Address offset: 0x20, 0x80, 0x84, 0x88

Reset value: Depends on content of Option bytes WRPx, on virgin part initial value is
0x0000 0000

3.9.10 Register map

Table 24 summarizes the register map and reset values. The reserved memory areas are
highlighted in gray in the table.

Bits 15:9 Reserved, must be kept cleared.

Bit 8 SPRMOD: Sector protection mode selection

0: WRP[i]=1 bit in FLASH_WRPRx registers defines sector write protection
1: WRP[i]=0 bit in FLASH_WRPRx registers defines sector write and read (PCROP)

protection.
See Section 3.7.4: PCROP for details.

Bits 7:0 RDPRT[7:0]: Read protection

These bits contain the read protection option level loaded by the OBL.
0xAA: Level 0, read protection not active
0xCC: Level 2, read protection active
Others: Level 1, read protection of memories active. Default configuration after option byte
erase.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WRPx[31:0]

x x

Bits 31:0 WRPx[n]: Write protection, where n is the number of the concerned memory sector

These bits contain the write protection option loaded by the OBL.
0: sector n not write protected
1: sector n write protected

Note: FLASH_WRPR2 is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices

FLASH_WRPR3 is available in Cat.4, Cat.5 and Cat.6 devices only.

FLASH_WRPR4 is available in Cat.5 devices only.

Table 24. Register map and reset values

Offs
et

Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00

FLASH_ACR

Reserved R
U

N
_

P
D

S
LE

E
P

_
P

D

A
cc

64

P
R

F
T

E
N

L
A

T
E

N
C

Y
0

Reset value:
0x0000 0000

0 0 0 0 0

Flash program memory and data EEPROM (FLASH) RM0038

92/908 DocID15965 Rev 14

0x04

FLASH_PECR

Reserved

O
B

L
_

la
u

n
ch

E
R

R
IE

E
O

P
IE

P
A

R
A

L
LE

L
B

A
N

K

R
e

se
rv

e
d

F
P

R
G

E
R

A
S

E

F
T

D
W

R
e

se
rv

e
d

D
A

TA

P
R

G

O
P

T
L

O
C

K

P
R

G
L

O
C

K

P
E

L
O

C
K

Reset value:
0x0000 0007

0 0 0 0 0 0 0 0 0 1 1 1

0x08

FLASH_PDKEYR PDKEYR[31:0]

Reset value:
0x0000 0000

0 0

0x0C

FLASH_PEKEYR PEKEYR[31:0]

Reset value:
0x0000 0000

0 0

0x10

FLASH_PRGKEY
R

PRGKEYR[31:0]

Reset value:
0x0000 0000

0 0

0x14

FLASH_OPTKEY
R

OPTKEYR[31:0]

Reset value:
0x0000 0000

0 0

0x18

FLASH_SR

Reserved R
D

E
R

R
O

P
T

V
E

R
R

U
S

R

O
P

T
V

E
R

R

S
IZ

V
E

R
R

P
G

A
E

R
R

W
R

P
E

R
R

R
es

er
ve

d

R
E

A
D

Y

E
N

D
H

V

E
O

P

B
S

Y

Reset value:
0x0000 0004

0 0 0 0 0 0 0 1 0 0

0x1C

FLASH_OBR

Reserved n
B

F
B

2

n
R

S
T

_S
T

D
B

Y

nR
S

T
_

S
T

O
P

IW
D

G
_S

W

BOR_LEV
[3:0]

Reserved

RDPRT[7:0]

Reset value:
0x xxxx xxxx x x x x x x x x x x x x x x x x

0x20

FLASH_WRPR1 WRP1[31:0]

Reset value:
0x xxxx xxxx

x x

0x80

FLASH_WRPR2 WRP2[31:0]

Reset value:
0x xxxx xxxx

x x

0x84
FLASH_WRPR3 WRP3[31:0]

Reset value:
0x xxxx xxxx

x x

Table 24. Register map and reset values (continued)

Offs
et

Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

DocID15965 Rev 14 93/908

RM0038 Flash program memory and data EEPROM (FLASH)

93

0x88
FLASH_WRPR4 WRP4[31:0]

Reset value:
0x xxxx xxxx

x x

Table 24. Register map and reset values (continued)

Offs
et

Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

CRC calculation unit RM0038

94/908 DocID15965 Rev 14

4 CRC calculation unit

This section applies to the whole STM32L1xxxx family, unless otherwise specified.

4.1 CRC introduction

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link-
time and stored at a given memory location.

4.2 CRC main features

• Uses CRC-32 (Ethernet) polynomial: 0x4C11DB7

– X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 +X8 + X7 + X5 + X4 + X2+ X + 1

• Single input/output 32-bit data register

• CRC computation done in 4 AHB clock cycles (HCLK)

• General-purpose 8-bit register (can be used for temporary storage)

The block diagram is shown in Figure 7.

Figure 7. CRC calculation unit block diagram

DocID15965 Rev 14 95/908

RM0038 CRC calculation unit

96

4.3 CRC functional description

The CRC calculation unit mainly consists of a single 32-bit data register, which:

• is used as an input register to enter new data in the CRC calculator (when writing into
the register)

• holds the result of the previous CRC calculation (when reading the register)

Each write operation into the data register creates a combination of the previous CRC value
and the new one (CRC computation is done on the whole 32-bit data word, and not byte per
byte).

The write operation is stalled until the end of the CRC computation, thus allowing back-to-
back write accesses or consecutive write and read accesses.

The CRC calculator can be reset to 0xFFFF FFFF with the RESET control bit in the
CRC_CR register. This operation does not affect the contents of the CRC_IDR register.

4.4 CRC registers

The CRC calculation unit contains two data registers and a control register.The peripheral
The CRC registers have to be accessed by words (32 bits).

4.4.1 Data register (CRC_DR)

Address offset: 0x00

Reset value: 0xFFFF FFFF

4.4.2 Independent data register (CRC_IDR)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DR [31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DR [15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 Data register bits

Used as an input register when writing new data into the CRC calculator.
Holds the previous CRC calculation result when it is read.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
IDR[7:0]

rw rw rw rw rw rw rw rw

CRC calculation unit RM0038

96/908 DocID15965 Rev 14

4.4.3 Control register (CRC_CR)

Address offset: 0x08

Reset value: 0x0000 0000

4.4.4 CRC register map

The following table provides the CRC register map and reset values. The reserved memory
areas are highlighted in gray in the table.

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 General-purpose 8-bit data register bits

Can be used as a temporary storage location for one byte.
This register is not affected by CRC resets generated by the RESET bit in the CRC_CR
register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RESET

w

Bits 31:1 Reserved, must be kept at reset value.

Bit 0 RESET bit

Resets the CRC calculation unit and sets the data register to 0xFFFF FFFF.
This bit can only be set, it is automatically cleared by hardware.

Table 25. CRC calculation unit register map and reset values

Offset Register 31-24 23-16 15-8 7 6 5 4 3 2 1 0

0x00

CRC_DR Data register

Reset
value

0xFFFF FFFF

0x04

CRC_IDR

Reserved

Independent data register

Reset
value

0x00

0x08

CRC_CR

Reserved

RESET

Reset
value

0

DocID15965 Rev 14 97/908

RM0038 Power control (PWR)

125

5 Power control (PWR)

5.1 Power supplies

The device requires a 1.8-to-3.6 V VDD operating voltage supply (down to 1.65 V at power
down) when the BOR is available. The device requires a 1.65-to-3.6 V VDD operating
voltage supply when the BOR is not available.

An embedded linear voltage regulator is used to supply the internal digital power, ranging
from 1.2 to 1.8 V.

• VDD = 1.8 V (at power on) or 1.65 V (at power down) to 3.6 V when the BOR is
available. VDD = 1.65 V to 3.6 V, when BOR is not available

VDD is the external power supply for I/Os and internal regulator. It is provided externally
through VDD pins

• VCORE = 1.2 to 1.8 V

VCORE is the power supply for digital peripherals, SRAM and Flash memory. It is
generated by a internal voltage regulator. Three VCORE ranges can be selected by
software depending on VDD (refer Figure 9).

• VSSA, VDDA = 1.8 V (at power on) or 1.65 V (at power down) to 3.6 V, when BOR is
available and VSSA, VDDA = 1.65 to 3.6 V, when BOR is not available.

VDDA is the external analog power supply for ADC, DAC, reset blocks, RC oscillators
and PLL. The minimum voltage to be applied to VDDA is 1.8 V when the ADC is used.

• VREF-, VREF+

VREF+ is the input reference voltage.

VREF- and VREF+ are only available as external pins on LQFP144, UFBGA132,
LQFP100, UFBGA100, and TFBGA64 packages, otherwise they are bonded to VSSA
and VDDA, respectively.

• VLCD = 2.5 to 3.6 V

The LCD controller can be powered either externally through VLCD pin, or internally
from an internal voltage generated by the embedded step-up converter.

Power control (PWR) RM0038

98/908 DocID15965 Rev 14

Figure 8. Power supply overview

1. VDDA and VSSA must be connected to VDD and VSS, respectively.

2. When available (depending on packages), VREF- must be tied to VSSA.

3. Depending on the operating power supply range used, some peripherals may be used with limited
functionalities or performance. For more details, please refer to section "General operating conditions" in
STM32L1xxxx datasheets.

5.1.1 Independent A/D and DAC converter supply and reference voltage

To improve conversion accuracy, the ADC and the DAC have an independent power supply
that can be filtered separately, and shielded from noise on the PCB.

• The ADC voltage supply input is available on a separate VDDA pin

• An isolated supply ground connection is provided on the VSSA pin

DocID15965 Rev 14 99/908

RM0038 Power control (PWR)

125

 On BGA 64-pin and all packages with 100 pins or more

To ensure a better accuracy on low-voltage inputs and outputs, the user can connect to
VREF+ a separate external reference voltage lower than VDD. VREF+ is the highest voltage,
represented by the full scale value, for an analog input (ADC) or output (DAC) signal.

• For ADC

– 2.4 V ≤ VREF+ = VDDA for full speed (ADCCLK = 16 MHz, 1 Msps)

– 1.8 V ≤ VREF+ = VDDA for medium speed (ADCCLK = 8 MHz, 500 Ksps)

– 2.4 V ≤ VREF+ ≠ VDDA for medium speed (ADCCLK = 8 MHz, 500 Ksps)

– 1.8 V ≤ VREF+ < VDDA for low speed (ADCCLK = 4 MHz, 250 Ksps)

– When Product voltage range 3 is selected (VCore = 1.2 V) the ADC is low speed
(ADCCLK = 4 MHz, 250 Ksps)

• For DAC

– 1.8 V ≤ VREF+ < VDDA

• When VDDA is higher than 2.4 V, the voltage on VREF+ may range from 2.4 V to VDDA.

• When VDDA is below 2.4 V, VREF+ must be equal to VDDA.

On packages with 64 pins or less (except BGA package)

VREF+ and VREF- pins are not available. They are internally connected to the ADC voltage
supply (VDDA) and ground (VSSA).

5.1.2 Independent LCD supply

The VLCD pin is provided to control the contrast of the glass LCD. This pin can be used in
two ways:

• It can receive from an external circuitry the desired maximum voltage that is provided
on segment and common lines to the glass LCD by the microcontroller.

• It can also be used to connect an external capacitor that is used by the microcontroller
for its voltage step-up converter. This step-up converter is controlled by software to
provide the desired voltage to segment and common lines of the glass LCD.

The voltage provided to segment and common lines defines the contrast of the glass LCD
pixels. This contrast can be reduced when you configure the dead time between frames.

• When an external power supply is provided to the VLCD pin, it should range from 2.5 V
to 3.6 V. It does not depend on VDD.

• When the LCD is based on the internal step-up converter, the VLCD pin should be
connected to a capacitor (see the product datasheets for further information).

5.1.3 RTC and RTC backup registers

The real-time clock (RTC) is an independent BCD timer/counter. The RTC provides a time-
of-day clock/calendar, two programmable alarm interrupts, and a periodic programmable
wakeup flag with interrupt capability. The RTC contains 20 backup data registers (80 bytes)
in Cat.1 and Cat.2 devices, 32 backup data registers (128 bytes) in Cat.3, Cat.4, Cat.5 and
Cat.6 devices and 5 backup data registers (20 bytes) for value line devices. These backup
registers are reset when a tamper detection event occurs. For more details refer to Real-
time clock (RTC) section.

Power control (PWR) RM0038

100/908 DocID15965 Rev 14

RTC registers access

After reset, the RTC Registers (RTC registers and RTC backup registers) are protected
against possible stray write accesses. To enable access to the RTC Registers, proceed as
follows:

1. Enable the power interface clock by setting the PWREN bits in the RCC_APB1ENR
register.

2. Set the DBP bit in the PWR_CR register (see Section 5.4.1).

3. Select the RTC clock source through RTCSEL[1:0] bits in RCC_CSR register.

4. Enable the RTC clock by programming the RTCEN bit in the RCC_CSR register.

5.1.4 Voltage regulator

An embedded linear voltage regulator supplies all the digital circuitries except for the
Standby circuitry. The regulator output voltage (VCORE) can be programmed by software to
three different ranges within 1.2 - 1.8 V (typical) (see Section 5.1.5).

The voltage regulator is always enabled after Reset. It works in three different modes: main
(MR), low-power (LPR) and power down, depending on the application modes.

• In Run mode, the regulator is main (MR) mode and supplies full power to the VCORE
domain (core, memories and digital peripherals).

• In Low-power run mode, the regulator is in low-power (LPR) mode and supplies low-
power to the VCORE domain, preserving the contents of the registers and internal
SRAM.

• In Sleep mode, the regulator is main (MR) mode and supplies full power to the VCORE
domain, preserving the contents of the registers and internal SRAM.

• In low-power sleep mode, the regulator is in low-power (LPR) mode and supplies low-
power to the VCORE domain, preserving the contents of the registers and internal
SRAM.

• In Stop mode the regulator supplies low-power to the VCORE domain, preserving the
content of registers and internal SRAM.

• In Standby mode, the regulator is powered off. The content of the registers and SRAM
are lost except for the Standby circuitry.

5.1.5 Dynamic voltage scaling management

The dynamic voltage scaling is a power management technique which consists in
increasing or decreasing the voltage used for the digital peripherals (VCORE), according to
the circumstances.

Dynamic voltage scaling to increase VCORE is known as overvolting. It allows to improve the
device performance. Refer to Figure 9 for a description of the STM32L1xxxx operating
conditions versus performance.

Dynamic voltage scaling to decrease VCORE is known as undervolting. It is performed to
save power, particularly in laptops and other mobile devices where the energy comes from a
battery and is thus limited.

Range 1

Range 1 is the “high performance” range.

DocID15965 Rev 14 101/908

RM0038 Power control (PWR)

125

The voltage regulator outputs a 1.8 V voltage (typical) as long as the VDD input voltage is in
the range 1.71 V 3.6 V(a). Flash program and erase operations can be performed in this
range.

Range 2 and 3

The regulator can also be programmed to output a regulated 1.5 V (typical, range 2) or a
1.2 V (typical, range 3) without any limitations on VDD (1.65 to 3.6 V).

• At 1.5 V, the Flash memory is still functional but with medium read access time. This is
the “medium performance” range. Program and erase operations on the Flash memory
are still possible.

• At 1.2 V, the Flash memory is still functional but with slow read access time. This is the
“low performance” range. Program and erase operations on the Flash memory are not
possible under these conditions.

Refer to Table 26 for details on the performance for each range.

a. Depending on the device, VDD range 1 is either 1.71 to 3.6V or 2.0V to 3.6V. Please refer to the specific
product datasheet.

Table 26. Performance versus VCORE ranges

CPU
performance

Power
performance

VCORE
range

Typical
Value (V)

Max frequency
(MHz)

VDD range

1 WS 0 WS

High Low 1 1.8 32 16 1.71 - 3.6(1)

1. Depending on the device, VDD range 1 is either 1.71 to 3.6V or 2.0V to 3.6V. Please refer to the specific
product datasheet.

Medium Medium 2 1.5 16 8
1.65 - 3.6

Low High 3 1.2 4.2 2.1

Power control (PWR) RM0038

102/908 DocID15965 Rev 14

Figure 9. STM32L1xxxx performance versus VDD and VCORE range

1. Depending on the device, VDD range 1 is either 1.71 to 3.6V or 2.0V to 3.6V. Please refer to the specific product datasheet.

5.1.6 Dynamic voltage scaling configuration

The following sequence is required to program the voltage regulator ranges:

1. Check VDD to identify which ranges are allowed (see Figure 9: STM32L1xxxx
performance versus VDD and VCORE range).

2. Poll VOSF bit of in PWR_CSR. Wait until it is reset to 0.

3. Configure the voltage scaling range by setting the VOS[12:11] bits in the PWR_CR
register.

4. Poll VOSF bit of in PWR_CSR register. Wait until it is reset to 0.

Note: During voltage scaling configuration, the system clock is stopped until the regulator is
stabilized (VOSF=0). This must be taken into account during application development, in
case a critical reaction time to interrupt is needed, and depending on peripheral used (timer,
communication,...).

1

DocID15965 Rev 14 103/908

RM0038 Power control (PWR)

125

5.1.7 Voltage regulator and clock management when VDD drops
below 2.0 V

When VCORE range 1 is selected and VDD drops below 2.0 V, the application must
reconfigure the system.

A three-step sequence is required to reconfigure the system:

1. Detect that VDD drops below 2.0 V:

Use the PVD to monitor the VDD voltage and to generate an interrupt when the voltage
goes under the selected level. To detect the 2.0 V voltage limit, the application can
select by software PVD threshold 2 (2.26 V typical). For more details on the PVD, refer
to Section 5.2.3.

2. Adapt the clock frequency to the voltage range that will be selected at next step:

Below 2.0 V, the system clock frequency is limited to 16 MHz for range 2 and 4.2 MHz
for range 3.

3. Select the required voltage range:

Note that when VDD is below 1.71 V, only range 2 or range 3 can be selected.

Note: When VCORE range 2 or range 3 is selected and VDD drops below 2.0 V, no system
reconfiguration is required.

5.1.8 Voltage regulator and clock management when modifying the
VCORE range

When VDD is above 2.0 V, any of the 3 voltage ranges can be selected:

• When the voltage range is above the targeted voltage range (e.g. from range 1 to 2):

a) Adapt the clock frequency to the lower voltage range that will be selected at next
step.

b) Select the required voltage range.

• When the voltage range is below the targeted voltage range (e.g. from range 3 to 1):

a) Select the required voltage range.

b) Tune the clock frequency if needed.

When VDD is below 2.0 V, only range 2 and 3 can be selected:

• From range 2 to range 3

a) Adapt the clock frequency to voltage range 3.

b) Select voltage range 3.

• From range 3 to range 2

a) Select the voltage range 2.

b) Tune the clock frequency if needed.

5.2 Power supply supervisor

The device has an integrated zeropower power on reset (POR)/power down reset (PDR),
coupled with a brown out reset (BOR) circuitry. For devices operating between 1.8 and 3.6
V, the BOR is always active at power-on and ensures proper operation starting from 1.8 V.
After the 1.8 V BOR threshold is reached, the option byte loading process starts, either to
confirm or modify default thresholds, or to disable BOR permanently (in which case, the VDD
min value at power down is 1.65 V). For devices operating between 1.65 V and 3.6 V, the

Power control (PWR) RM0038

104/908 DocID15965 Rev 14

BOR is permanently disabled. Consequently, the start-up time at power-on can be
decreased down to 1 ms typically.

Five BOR thresholds can be configured by option bytes, starting from 1.65 to 3 V. To reduce
the power consumption in Stop mode, the internal voltage reference, VREFINT, can be
automatically switch off. The device remains in reset mode when VDD is below a specified
threshold, VPOR, VPDR or VBOR, without the need for any external reset circuit.

The device features an embedded programmable voltage detector (PVD) that monitors the
VDD/VDDA power supply and compares it to the VPVD threshold. 7 different PVD levels can
be selected by software between 1.85 and 3.05 V, with a 200 mV step. An interrupt can be
generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is
higher than the VPVD threshold. The interrupt service routine then generates a warning
message and/or put the MCU into a safe state. The PVD is enabled by software.

The different power supply supervisor (POR, PDR, BOR, PVD) are illustrated in Figure 10.

Figure 10. Power supply supervisors

1. The PVD is available on all STM32L devices and it is enabled or disabled by software.

2. The BOR is available only on devices operating from 1.8 to 3.6 V, and unless disabled by option byte it will

DocID15965 Rev 14 105/908

RM0038 Power control (PWR)

125

mask the POR/PDR threshold.

3. When the BOR is disabled by option byte, the reset is asserted when VDD goes below PDR level

4. For devices operating from 1.65 to 3.6 V, there is no BOR and the reset is released when VDD goes above
POR level and asserted when VDD goes below PDR level

5.2.1 Power on reset (POR)/power down reset (PDR)

The device has an integrated POR/PDR circuitry that allows operation down to 1.5 V.

During power on, the device remains in Reset mode when VDD/VDDA is below a specified
threshold, VPOR, without the need for an external reset circuit. The POR feature is always
enabled and the POR threshold is 1.5 V.

During power down, the PDR keeps the device under reset when the supply voltage (VDD)
drops below the VPDR threshold. The PDR feature is always enabled and the PDR threshold
is 1.5 V.

The POR and PDR are used only when the BOR is disabled (see Section 5.2.2: Brown out
reset)). To insure the minimum operating voltage (1.65 V), the BOR should be configured to
BOR Level 0. When the BOR is disabled, a “grey zone” exist between the minimum
operating voltage (1.65 V) and the VPOR/VPDR threshold. This means that VDD can be lower
than 1.65 V without device reset until the VPDR threshold is reached.

For more details concerning the power on/power down reset threshold, refer to the electrical
characteristics of the datasheet.

Figure 11. Power on reset/power down reset waveform

Power control (PWR) RM0038

106/908 DocID15965 Rev 14

5.2.2 Brown out reset

The device exists in two versions:

• The version with BOR activated at power-on operates between 1.8 V and 3.6 V.

• The other version without BOR operates between 1.65 V and 3.6 V.

After the VDD threshold is reached (1.65 V or 1.8 V depending on the BOR which is
active or not at power-on), the option byte loading process starts, either to confirm or to
modify default thresholds, or to disable the BOR permanently: in this case, the VDD min
value becomes 1.65 V (whatever the version, BOR active or not, at power-on).

When BOR is active at power-on, it ensures a proper operation starting from 1.8 V whatever
the power ramp-up phase before it reaches 1.8 V.

When BOR is not active at power-up, the power ramp-up should guarantee that 1.65 V is
reached on VDD at least 1 ms after it exits the POR area. As the POR/PDR thresholds are at
1.5 V, a "grey zone" exists between the VPOR/VPDR thresholds and the minimum product
operating voltage 1.65 V.

Five BOR thresholds are available through option bytes, starting from 1.8 V to 3 V. To
reduce the power consumption in Stop mode, it is possible to automatically switch off the
internal reference voltage (VREFINT) in Stop mode. The device remains in reset mode when
VDD is below a specified threshold, VPOR/VPDR or VBOR, without the need for any external
reset circuit.

The five programmable VBOR thresholds are:

• BOR Level 0 (VBOR0): reset threshold level for 1.69 to 1.80 V voltage range

• BOR Level 1 (VBOR1): reset threshold level for 1.94 to 2.1 V voltage range

• BOR Level 2 (VBOR2): reset threshold level for 2.3 to 2.49 V voltage range

• BOR Level 3 (VBOR3): reset threshold level for 2.54 to 2.74 V voltage range

• BOR Level 4 (VBOR4): reset threshold level for 2.77 to 3.0 V voltage range

When the supply voltage (VDD) drops below the selected VBOR threshold, a device reset is
generated. When the VDD is above the VBOR upper limit the device reset is released and the
system can start.

BOR can be disabled by programming the device option bytes. To disable the BOR function,
VDD must have been higher than VBOR0 to start the device option byte programming
sequence. The power on and power down is then monitored by the POR and PDR (see
Section 5.2.1: Power on reset (POR)/power down reset (PDR))

The BOR threshold hysteresis is ~100 mV (between the rising and the falling edge of the
supply voltage).

DocID15965 Rev 14 107/908

RM0038 Power control (PWR)

125

Figure 12. BOR thresholds

5.2.3 Programmable voltage detector (PVD)

You can use the PVD to monitor the VDD power supply by comparing it to a threshold
selected by the PLS[2:0] bits in the PWR_CR (see Section 5.4.1).

The PVD can use an external input analog voltage (PVD_IN) which is compared internally to
VREFINT. The PVD_IN (PB7) has to be configured in Analog mode when PLS[2:0] = 111.
The PVD is enabled by setting the PVDE bit.

A PVDO flag is available, in the PWR_CSR (see Section 5.4.2), to indicate if VDD is higher
or lower than the PVD threshold. This event is internally connected to the EXTI line16 and
can generate an interrupt if enabled through the EXTI registers. The PVD output interrupt
can be generated when VDD drops below the PVD threshold and/or when VDD rises above
the PVD threshold depending on EXTI line16 rising/falling edge configuration. As an
example the service routine could perform emergency shutdown tasks.

Power control (PWR) RM0038

108/908 DocID15965 Rev 14

Figure 13. PVD thresholds

5.2.4 Internal voltage reference (VREFINT)

The internal reference (VREFINT) provides stable voltage for analog peripherals. The
functions managed through the internal voltage reference (VREFINT) are BOR, PVD, ADC,
LCD and comparators. Internal voltage reference (VREFINT) is activated if one of the
functions: BOR, PVD ADC, LCD or comparators, is using it.

The internal voltage reference consumption is not negligible, in particular in Stop and
Standby mode. To reduce power consumption, the ULP bit (Ultra-low-power) in the
PWR_CR register can be set to disable the internal voltage reference. However, in this
case, when exiting from the Stop/Standby mode, the functions managed through the internal
voltage reference are not reliable during the internal voltage reference startup time (up to
3 ms).

To reduce the wakeup time, the device can exit from Stop/Standby mode without waiting for
the internal voltage reference startup time. This is performed by setting the FWU bit (Fast
wakeup) in the PWR_CR register before entering Stop/Standby mode.

If the ULP bit is set, the functions that were enabled before entering the Stop/Standby mode
will be disabled during these modes, and enabled again only after the end of the internal
voltage reference startup time whatever FWU value. The VREFINTRDYF flag in the
PWR_CSR register indicates that the internal voltage reference is ready.

5.3 Low-power modes

By default, the microcontroller is in Run mode after a system or a power on reset. In Run
mode the CPU is clocked by HCLK and the program code is executed. Several low-power
modes are available to save power when the CPU does not need to be kept running, for
example when waiting for an external event. It is up to the user to select the mode that gives
the best compromise between low-power consumption, performance, short startup time and
available wakeup sources.

DocID15965 Rev 14 109/908

RM0038 Power control (PWR)

125

The devices feature five low-power modes:

• Low-power run mode: regulator in low-power mode, limited clock frequency, limited
number of peripherals running

• Sleep mode: Cortex®-M3 core stopped, peripherals kept running

• Low-power sleep mode: Cortex®-M3 core stopped, limited clock frequency, limited
number of peripherals running, regulator in low-power mode, RAM in power down,
Flash stopped.

• Stop mode (all clocks are stopped, regulator running, regulator in low-power mode

• Standby mode: VCORE domain powered off

In addition, the power consumption in Run mode can be reduced by one of the following
means:

• Slowing down the system clocks

• Gating the clocks to the APBx and AHBx peripherals when they are unused.

5.3.1 Behavior of clocks in low-power modes

APB peripheral and DMA clocks can be disabled by software.

Table 27. Summary of low-power modes

Mode name Entry Wakeup
Effect on VCORE
domain clocks

Effect on
VDD

domain
clocks

Voltage regulator

Low-power
run

LPSDSR and
LPRUN bits +
Clock setting

The regulator is forced in
Main regulator (1.8 V)

None None
In low-power

mode

Sleep
(Sleep now or
Sleep-on-exit)

WFI Any interrupt CPU CLK OFF
no effect on other
clocks or analog

clock sources

None ON
WFE Wakeup event

Low-power
sleep (Sleep
now or Sleep-
on-exit)

 LPSDSR bits +
WFI

Any interrupt
CPU CLK OFF

no effect on other
clocks or analog
clock sources,

Flash CLK OFF

None
In low-power

modeLPSDSR bits +
WFE

Wakeup event

Stop

PDDS, LPSDSR
bits +

SLEEPDEEP bit +
WFI or WFE

Any EXTI line (configured
in the EXTI registers,

internal and external lines)

All VCORE
domain clocks

OFF

HSI and
HSE and

MSI
oscillators

OFF

In low-power
mode

Standby
PDDS bit +

SLEEPDEEP bit +
WFI or WFE

WKUP pin rising edge,
RTC alarm (Alarm A or
Alarm B), RTC Wakeup

event, RTC tamper event,
RTC timestamp event,
external reset in NRST

pin, IWDG reset

OFF

Power control (PWR) RM0038

110/908 DocID15965 Rev 14

Sleep and Low-power sleep modes

The CPU clock is stopped in Sleep and Low-power sleep mode. The memory interface
clocks (FLITF and RAM interfaces) and all peripherals clocks can be stopped by software
during Sleep. The memory interface (FLITF) clock is stopped and the RAM is in power-down
when in Low-power sleep mode. The AHB to APB bridge clocks are disabled by hardware
during Sleep/Low-power sleep mode when all the clocks of the peripherals connected to
them are disabled.

Stop and Standby modes

The system clock and all high speed clocks are stopped in Stop and Standby modes:

• PLL is disabled

• Internal RC 16 MHz (HSI) oscillator is disabled

• External 1-24 MHz (HSE) oscillator is disabled

• Internal 65 kHz - 4.2 MHz (MSI) oscillator is disabled

When exiting this mode by interrupt (Stop mode) or by reset (Standby mode), the internal
MSI oscillator is selected as system clock. When the device exits Stop mode, the previous
MSI configuration (range and trimming value) is kept. When exiting Standby mode, the
range and trimming value are reset to the default 2 MHz values.

If a Flash program operation or an access to APB domain is ongoing, the Stop/Standby
mode entry is delayed until the Flash memory or the APB access has completed.

The internal regulator can be also kept in the main mode during the Stop mode but the
consumption in the Stop mode is much higher and therefore in the Stop mode, it is always
implicitly assumed that the regulator is in low-power mode. The only advantage by keeping
the regulator in main mode during the Stop mode is a bit shorter wakeup time from the Stop
mode.

5.3.2 Slowing down system clocks

In Run mode the speed of the system clocks (SYSCLK, HCLK, PCLK1, PCLK2) can be
reduced by programming the prescaler registers. These prescalers can also be used to slow
down peripherals before entering Sleep mode.

For more details refer to Section 6.3.3: Clock configuration register (RCC_CFGR).

5.3.3 Peripheral clock gating

In Run mode, the HCLK and PCLKx for individual peripherals and memories can be stopped
at any time to reduce power consumption.

To further reduce power consumption in Sleep mode the peripheral clocks can be disabled
prior to executing the WFI or WFE instructions.

Peripheral clock gating is controlled by the AHB peripheral clock enable register
(RCC_AHBENR), APB2 peripheral clock enable register (RCC_APB2ENR), APB1
peripheral clock enable register (RCC_APB1ENR) (see Section 6.3.8: AHB peripheral clock
enable register (RCC_AHBENR), Section 6.3.10: APB1 peripheral clock enable register
(RCC_APB1ENR) and Section 6.3.9: APB2 peripheral clock enable register
(RCC_APB2ENR)).

Disabling the peripherals clocks in Sleep mode can be performed automatically by resetting
the corresponding bit in RCC_AHBLPENR and RCC_APBxLPENR registers (x can 1 or 2).

DocID15965 Rev 14 111/908

RM0038 Power control (PWR)

125

5.3.4 Low-power run mode (LP run)

To further reduce the consumption when the system is in Run mode, the regulator can be
configured in low-power mode. In this mode, the system frequency should not exceed
f_MSI range1.

Please refer to the product datasheet for more details on voltage regulator and peripherals
operating conditions.

Note: To be able to read the RTC calendar register when the APB1 clock frequency is less than
seven times the RTC clock frequency (7*RTCLCK), the software must read the calendar
time and date registers twice.

If the second read of the RTC_TR gives the same result as the first read, this ensures that
the data is correct. Otherwise a third read access must be done.

The Low-power run mode can only be entered when VCORE is in range 2. In addition, the
dynamic voltage scaling must not be used when Low-power run mode is selected. Only Stop
and Sleep modes with regulator configured in Low-power mode is allowed when Low-power
run mode is selected.

Note: In Low-power run mode, all I/O pins keep the same state as in Run mode.

Entering Low-power run mode

To enter Low-power run mode proceed as follows:

• Each digital IP clock must be enabled or disabled by using the RCC_APBxENR and
RCC_AHBENR registers.

• The frequency of the system clock must be decreased to not exceed the frequency of
f_MSI range1.

• The regulator is forced in low-power mode by software (LPRUN and LPSDSR bits set)

Exiting Low-power run mode

To exit Low-power run mode proceed as follows:

• The regulator is forced in Main regulator mode by software.

• The Flash memory is switched on, if needed.

• The frequency of the clock system can be increased.

5.3.5 Sleep mode

Entering Sleep mode

The Sleep mode is entered by executing the WFI (Wait For Interrupt) or WFE (Wait for
Event) instructions. Two options are available to select the Sleep mode entry mechanism,
depending on the SLEEPONEXIT bit in the Cortex®-M3 System Control register:

• Sleep-now: if the SLEEPONEXIT bit is cleared, the MCU enters Sleep mode as soon
as WFI or WFE instruction is executed.

• Sleep-on-exit: if the SLEEPONEXIT bit is set, the MCU enters Sleep mode as soon as
it exits the lowest priority ISR.

Note: In Sleep mode, all I/O pins keep the same state as in Run mode.

Refer to Table 28: Sleep-now and Table 29: Sleep-on-exit for details on how to enter Sleep
mode.

Power control (PWR) RM0038

112/908 DocID15965 Rev 14

Exiting Sleep mode

If the WFI instruction is used to enter Sleep mode, any peripheral interrupt acknowledged by
the nested vectored interrupt controller (NVIC) can wake up the device from Sleep mode.

If the WFE instruction is used to enter Sleep mode, the MCU exits Sleep mode as soon as
an event occurs. The wakeup event can be generated either by:

• Enabling an interrupt in the peripheral control register but not in the NVIC, and enabling
the SEVONPEND bit in the Cortex®-M3 System Control register. When the MCU
resumes from WFE, the peripheral interrupt pending bit and the peripheral NVIC IRQ
channel pending bit (in the NVIC interrupt clear pending register) have to be cleared.

• Or configuring an external or internal EXTI line in event mode. When the CPU resumes
from WFE, it is not necessary to clear the peripheral interrupt pending bit or the NVIC
IRQ channel pending bit as the pending bit corresponding to the event line is not set.

This mode offers the lowest wakeup time as no time is wasted in interrupt entry/exit.

Refer to Table 28: Sleep-now and Table 29: Sleep-on-exit for more details on how to exit
Sleep mode.

Table 28. Sleep-now

Sleep-now mode Description

Mode entry

– Clear all interrupt pending bits

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– SLEEPDEEP = 0 and

– SLEEPONEXIT = 0

Refer to the Cortex®-M3 System Control register.

Mode exit

If WFI was used for entry:

Interrupt: Refer to Table 49: Vector table (Cat.1 and Cat.2 devices)

If WFE was used for entry

Wakeup event: Refer to Section 10.2.3: Wakeup event management

Wakeup latency None

Table 29. Sleep-on-exit

Sleep-on-exit Description

Mode entry

– Clear all interrupt pending bits

WFI (wait for interrupt) while:

– SLEEPDEEP = 0 and

– SLEEPONEXIT = 1

Refer to the Cortex®-M3 System Control register.

Mode exit
Interrupt: refer to Table 49: Vector table (Cat.1 and Cat.2 devices),
Table 50: Vector table (Cat.3 devices) and Table 51: Vector table (Cat.4,
Cat.5 and Cat.6 devices).

Wakeup latency None

DocID15965 Rev 14 113/908

RM0038 Power control (PWR)

125

5.3.6 Low-power sleep mode (LP sleep)

Entering Low-power sleep mode

The Low-power sleep mode is entered by configuring the voltage regulator in low-power
mode, and by executing the WFI (wait for interrupt) or WFE (wait for event) instructions. In
this mode, the Flash memory is not available but the RAM memory remains available.

In this mode, the system frequency should not exceed f_MSI range1.

Please refer to product datasheet for more details on voltage regulator and peripherals
operating conditions.

Low-power sleep mode can only be entered when VCORE is in range 2.

Note: To be able to read the RTC calendar register when the APB1 clock frequency is less than
seven times the RTC clock frequency (7*RTCLCK), the software must read the calendar
time and date registers twice.

If the second read of the RTC_TR gives the same result as the first read, this ensures that
the data is correct. Otherwise a third read access must be done.

Two options are available to select the Sleep low-power mode entry mechanism, depending
on the SLEEPONEXIT bit in the Cortex®-M3 System Control register:

• Sleep-now: if the SLEEPONEXIT bit is cleared, the MCU enters Sleep mode as soon
as WFI or WFE instruction is executed.

• Sleep-on-exit: if the SLEEPONEXIT bit is set, the MCU enters Sleep mode as soon as
it exits the lowest priority ISR.

To enter Low-power sleep mode, proceed as follows:

• The Flash memory can be switched off by using the control bits (SLEEP_PD in the
FLASH_ACR register. For more details refer to Section 3: Flash program memory and
data EEPROM (FLASH)). This reduces power consumption but increases the wake-up
time.

• Each digital IP clock must be enabled or disabled by using the RCC_APBxENR and
RCC_AHBENR registers. To keep it running in the Low-power sleep mode the digital IP
clock have to be enabled in RCC_APBxLPENR and RCC_AHBLPENR.

• The frequency of the system clock must be decreased.

• The regulator is forced in low-power mode by software (LPSDSR bits set).

• A WFI/WFE instruction must be executed to enter in Sleep mode.

Note: In Low-power sleep mode, all I/O pins keep the same state as in Run mode.

Refer to Table 30: Sleep-now and Table 31: Sleep-on-exit for details on how to enter Low-
power sleep mode.

Exiting Low-power sleep mode

If the WFI instruction was used to enter Low-power sleep mode, any peripheral interrupt
acknowledged by the nested vectored interrupt controller (NVIC) can wake up the device
from Low-power sleep mode.

If the WFE instruction was used to enter Low-power sleep mode, the MCU exits Sleep mode
as soon as an event occurs. The wakeup event can be generated:

• By enabling an interrupt in the peripheral control register but not in the NVIC, and by
enabling the SEVONPEND bit in the Cortex®-M3 System Control register. When the

Power control (PWR) RM0038

114/908 DocID15965 Rev 14

MCU resumes from WFE, the peripheral interrupt pending bit and the peripheral NVIC
IRQ channel pending bit in the NVIC interrupt clear pending register must be cleared.

• Or by configuring an external or internal EXTI line in event mode. When the CPU
resumes from WFE, it is not necessary to clear the peripheral interrupt pending bit or
the NVIC IRQ channel pending bit as the pending bit corresponding to the event line is
not set.

When exiting Low-power sleep mode by issuing an interrupt or a wakeup event, the
regulator is configured in Main regulator mode, the Flash memory is switched on (if
necessary), and the system clock can be increased.

When the voltage regulator operates in low-power mode, an additional startup delay is
incurred when waking up from Low-power sleep mode.

Refer to Table 30: Sleep-now and Table 31: Sleep-on-exit for more details on how to exit
Sleep low-power mode.

5.3.7 Stop mode

The Stop mode is based on the Cortex®-M3 deepsleep mode combined with peripheral
clock gating. The voltage regulator can be configured either in normal or low-power mode.

Table 30. Sleep-now

Sleep-now mode Description

Mode entry

Voltage regulator in low-power mode and the Flash memory switched off

WFI (Wait for Interrupt) or WFE (wait for event) while:

– SLEEPDEEP = 0 and

– SLEEPONEXIT = 0

Refer to the Cortex®-M3 System Control register.

Mode exit

Voltage regulator in Main regulator mode and the Flash memory switched on

If WFI was used for entry:

Interrupt: Refer to Table 49: Vector table (Cat.1 and Cat.2 devices)

If WFE was used for entry

Wakeup event: Refer to Section 10.2.3: Wakeup event management

Wakeup latency Regulator wakeup time from low-power mode

Table 31. Sleep-on-exit

Sleep-on-exit Description

Mode entry

Voltage regulator in low-power mode and the Flash memory switched off

WFI (wait for interrupt) while:

– SLEEPDEEP = 0 and

– SLEEPONEXIT = 1

Refer to the Cortex®-M3 System Control register.

Mode exit
Interrupt: refer to Table 49: Vector table (Cat.1 and Cat.2 devices),
Table 50: Vector table (Cat.3 devices) and Table 51: Vector table (Cat.4,
Cat.5 and Cat.6 devices).

Wakeup latency regulator wakeup time from low-power mode

DocID15965 Rev 14 115/908

RM0038 Power control (PWR)

125

In Stop mode, all clocks in the VCORE domain are stopped, the PLL, the MSI, the HSI and
the HSE RC oscillators are disabled. Internal SRAM and register contents are preserved.

To get the lowest consumption in Stop mode, the internal Flash memory also enters low-
power mode. When the Flash memory is in power down mode, an additional startup delay is
incurred when waking up from Stop mode.

To minimize the consumption In Stop mode, VREFINT, the BOR, PVD, and temperature
sensor can be switched off before entering the Stop mode. They can be switched on again
by software after exiting the Stop mode using the ULP bit in the PWR_CR register.

Note: In Stop mode, all I/O pins keep the same state as in Run mode.

Entering the Stop mode

Refer to Table 32 for details on how to enter the Stop mode.

Note: If the application needs to disable the external clock before entering the stop mode, the
HSEON bit must be first disabled and the system clock switched to HSI.

Otherwise, if the HSEON bit is kept enabled while external clock (external oscillator) can be
removed before entering stop mode, the clock security system (CSS) feature must be
enabled to detect any external oscillator failure and avoid a malfunction behavior when
entering stop mode.

To further reduce power consumption in Stop mode, the internal voltage regulator can be put
in low-power mode. This is configured by the LPSDSR bit in the PWR_CR register (see
Section 5.4.1).

If Flash memory programming or an access to the APB domain is ongoing, the Stop mode
entry is delayed until the memory or APB access has completed.

In Stop mode, the following features can be selected by programming individual control bits:

• Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by
hardware option. Once started it cannot be stopped except by a Reset. Refer to
Section 21.3 in Section 21: Independent watchdog (IWDG).

• Real-time clock (RTC): this is configured by the RTCEN bit in the RCC_CSR register
(see Section 6.3.14).

• Internal RC oscillator (LSI RC): this is configured by the LSION bit in the RCC_CSR
register.

• External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the
RCC_CSR register.

The ADC, DAC or LCD can also consume power in Stop mode, unless they are disabled
before entering it. To disable them, the ADON bit in the ADC_CR2 register and the ENx bit
in the DAC_CR register must both be written to 0.

Exiting the Stop mode

Refer to Table 32 for more details on how to exit Stop mode.

When exiting Stop mode by issuing an interrupt or a wakeup event, the MSI RC oscillator is
selected as system clock.

When the voltage regulator operates in low-power mode, an additional startup delay is
incurred when waking up from Stop mode. By keeping the internal regulator ON during Stop
mode, the consumption is higher although the startup time is reduced.

Power control (PWR) RM0038

116/908 DocID15965 Rev 14

5.3.8 Standby mode

The Standby mode allows to achieve the lowest power consumption. It is based on the
Cortex®-M3 deepsleep mode, with the voltage regulator disabled. The VCORE domain is
consequently powered off. The PLL, the MSI, the HSI oscillator and the HSE oscillator are
also switched off. SRAM and register contents are lost except for the RTC registers, RTC
backup registers and Standby circuitry (see Figure 8).

Entering the Standby mode

Refer to Table 33 for more details on how to enter Standby mode.

In Standby mode, the following features can be selected by programming individual control
bits:

• Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by
hardware option. Once started it cannot be stopped except by a reset. Refer to
Section 21.3: IWDG functional description on page 549.

• Real-time clock (RTC): this is configured by the RTCEN bit in the RCC_CSR register
(see Section 6.3.14).

• Internal RC oscillator (LSI RC): this is configured by the LSION bit in the RCC_CSR
register.

• External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the
RCC_CSR register.

Table 32. Stop mode

Stop mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– Set SLEEPDEEP bit in Cortex®-M3 System Control register

– Clear PDDS bit in Power Control register (PWR_CR)

– Clear WUF bit in Power Control/Status register (PWR_CSR)

– Select the voltage regulator mode by configuring LPSDSR bit in
PWR_CR

Note: To enter the Stop mode, all EXTI Line pending bits (in EXTI pending
register (EXTI_PR)), all peripherals interrupt pending bits, the RTC Alarm
(Alarm A and Alarm B), RTC wakeup, RTC tamper, and RTC time-stamp
flags, must be reset. Otherwise, the Stop mode entry procedure is ignored
and program execution continues.

Mode exit

If WFI was used for entry:

Any EXTI Line configured in Interrupt mode (the corresponding EXTI
Interrupt vector must be enabled in the NVIC). Refer to Table 49: Vector
table (Cat.1 and Cat.2 devices), Table 50: Vector table (Cat.3 devices)
and Table 51: Vector table (Cat.4, Cat.5 and Cat.6 devices).

If WFE was used for entry:

Any EXTI Line configured in event mode. Refer to Section 10.2.3:
Wakeup event management on page 238

Wakeup latency
MSI RC wakeup time + regulator wakeup time from Low-power mode +
FLASH wakeup time

DocID15965 Rev 14 117/908

RM0038 Power control (PWR)

125

Exiting the Standby mode

The microcontroller exits Standby mode when an external Reset (NRST pin), an IWDG
Reset, a rising edge on WKUP pins (WUKP1, WKUP2 or WKUP3), an RTC alarm, a tamper
event, or a time-stamp event is detected. All registers are reset after wakeup from Standby
except for PWR power control/status register (PWR_CSR).

After waking up from Standby mode, program execution restarts in the same way as after a
Reset (boot pins sampling, vector reset is fetched, etc.). The SBF status flag in the
PWR_CSR register (see Section 5.4.2) indicates that the MCU was in Standby mode.

Refer to Table 33 for more details on how to exit Standby mode.

I/O states in Standby mode

In Standby mode, all I/O pins are high impedance except for:

• Reset pad (still available)

• RTC_AF1 pin (PC13) if configured for Wakeup pin 2 (WKUP2), tamper, time-stamp,
RTC Alarm out, or RTC clock calibration out.

• WKUP pin 1 (PA0) and WKUP pin 3 (PE6), if enabled.

Debug mode

By default, the debug connection is lost if the application puts the MCU in Stop or Standby
mode while the debug features are used. This is due to the fact that the Cortex®-M3 core is
no longer clocked.

However, by setting some configuration bits in the DBGMCU_CR register, the software can
be debugged even when using the low-power modes extensively. For more details, refer to
Section 30.16.1: Debug support for low-power modes.

5.3.9 Waking up the device from Stop and Standby modes using the RTC
and comparators

The MCU can be woken up from low-power mode by an RTC Alarm event, an RTC Wakeup
event, a tamper event, a time-stamp event, or a comparator event, without depending on an
external interrupt (Auto-wakeup mode).

Table 33. Standby mode

Standby mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– Set SLEEPDEEP in Cortex®-M3 System Control register

– Set PDDS bit in Power Control register (PWR_CR)

– Clear WUF bit in Power Control/Status register (PWR_CSR)

– Clear the RTC flag corresponding to the chosen wakeup source (RTC
Alarm A, RTC Alarm B, RTC wakeup, Tamper or Time-stamp flags)

Mode exit
WKUP pin rising edge, RTC alarm (Alarm A and Alarm B), RTC wakeup,
tamper event, time-stamp event, external reset in NRST pin, IWDG reset.

Wakeup latency Reset phase

Power control (PWR) RM0038

118/908 DocID15965 Rev 14

These RTC alternate functions can wake up the system from Stop and Standby low-power
modes while the comparator events can only wake up the system from Stop mode.

The system can also wake up from low-power modes without depending on an external
interrupt (Auto-wakeup mode) by using the RTC alarm or the RTC wakeup events.

The RTC provides a programmable time base for waking up from Stop or Standby mode at
regular intervals. For this purpose, two of the three alternative RTC clock sources can be
selected by programming the RTCSEL[1:0] bits in the RCC_CSR register (see
Section 6.3.14):

• Low-power 32.768 kHz external crystal oscillator (LSE OSC).
This clock source provides a precise time base with very low-power consumption (less
than 1 µA added consumption in typical conditions)

• Low-power internal RC oscillator (LSI RC)

This clock source has the advantage of saving the cost of the 32.768 kHz crystal. This
internal RC Oscillator is designed to use minimum power consumption.

RTC auto-wakeup (AWU) from the Stop mode

• To wake up from the Stop mode with an RTC alarm event, it is necessary to:

a) Configure the EXTI Line 17 to be sensitive to rising edges (Interrupt or Event
modes)

b) Enable the RTC Alarm interrupt in the RTC_CR register

c) Configure the RTC to generate the RTC alarm

• To wake up from the Stop mode with an RTC Tamper or time stamp event, it is
necessary to:

a) Configure the EXTI Line 19 to be sensitive to rising edges (Interrupt or Event
modes)

b) Enable the RTC TimeStamp Interrupt in the RTC_CR register or the RTC Tamper
Interrupt in the RTC_TCR register

c) Configure the RTC to detect the tamper or time stamp event

• To wake up from the Stop mode with an RTC Wakeup event, it is necessary to:

a) Configure the EXTI Line 20 to be sensitive to rising edges (Interrupt or Event
modes)

b) Enable the RTC Wakeup Interrupt in the RTC_CR register

c) Configure the RTC to generate the RTC Wakeup event

DocID15965 Rev 14 119/908

RM0038 Power control (PWR)

125

RTC auto-wakeup (AWU) from the Standby mode

• To wake up from the Standby mode with an RTC alarm event, it is necessary to:

a) Enable the RTC Alarm interrupt in the RTC_CR register

b) Configure the RTC to generate the RTC alarm

• To wake up from the Standby mode with an RTC Tamper or time stamp event, it is
necessary to:

a) Enable the RTC TimeStamp Interrupt in the RTC_CR register or the RTC Tamper
Interrupt in the RTC_TCR register

b) Configure the RTC to detect the tamper or time stamp event

• To wake up from the Standby mode with an RTC Wakeup event, it is necessary to:

a) Enable the RTC Wakeup Interrupt in the RTC_CR register

b) Configure the RTC to generate the RTC Wakeup event

Comparator auto-wakeup (AWU) from the Stop mode

• To wake up from the Stop mode with a comparator 1 or comparator 2 wakeup event, it
is necessary to:

a) Configure the EXTI Line 21 for comparator 1 or EXTI Line 22 for comparator 2
(Interrupt or Event mode) to be sensitive to the selected edges (falling, rising or
falling and rising)

b) Configure the comparator to generate the event

Power control (PWR) RM0038

120/908 DocID15965 Rev 14

5.4 Power control registers

The peripheral registers have to be accessed by half-words (16-bit) or words (32-bit).

5.4.1 PWR power control register (PWR_CR)

Address offset: 0x00

Reset value: 0x0000 1000 (reset by wakeup from Standby mode)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
LPRUN

Res.
VOS[1:0] FWU ULP DBP PLS[2:0] PVDE CSBF CWUF PDDS LPSDSR

rw rw rw rw rw rw rw rw rw rw rc_w1 rc_w1 rw rw

Bits 31:15 Reserved, always read as 0.

Bit 14 LPRUN: Low-power run mode

When LPRUN bit is set together with the LPSDSR bit, the regulator is switched from main
mode to low-power mode. Otherwise, it remains in main mode. The regulator goes back to
operate in main mode when LPRUN is reset.

It is forbidden to reset LPSDSR when the MCU is in Low-power run mode. LPSDSR is used as
a prepositioning for the entry into low-power mode, indicating to the system which
configuration of the regulator will be selected when entering Low-power mode. The LPSDSR
bit must be set before the LPRUN bit is set. LPSDSR can be reset only when LPRUN bit=0.

0: Voltage regulator in main mode in Low-power run mode
1: Voltage regulator in low-power mode in Low-power run mode

Bits 13 Reserved, must be kept at reset value.

Bits 12:11 VOS[1:0]: Voltage scaling range selection

These bits are used to select the internal regulator voltage range.
Before resetting the power interface by resetting the PWRRST bit in the RCC_APB1RSTR
register, these bits have to be set to "10" and the frequency of the system has to be configured
accordingly.

00: forbidden (bits are unchanged and keep the previous value, no voltage scaling range
changed)

01: 1.8 V (range 1)
10: 1.5 V (range 2)
11: 1.2 V (range 3)

Bit 10 FWU: Fast wakeup

This bit works in conjunction with ULP bit.

If ULP = 0, FWU is ignored

If ULP = 1 and FWU = 1: VREFINT startup time is ignored when exiting from low-power mode.
The VREFINTRDYF flag in the PWR_CSR register indicates when the VREFINT is ready again.

If ULP=1 and FWU = 0: Exiting from low-power mode occurs only when the VREFINT is ready
(after its startup time). This bit is not reset by resetting the PWRRST bit in the
RCC_APB1RSTR register.

0: Low-power modes exit occurs only when VREFTINT is ready
1: VREFTINT start up time is ignored when exiting low-power modes

DocID15965 Rev 14 121/908

RM0038 Power control (PWR)

125

Bit 9 ULP: Ultra-low-power mode

When set, the VREFINT is switched off in low-power mode. This bit is not reset by resetting the
PWRRST bit in the RCC_APB1RSTR register.

0: VREFTINT is on in low-power mode
1: VREFTINT is off in low-power mode

Bit 8 DBP: Disable backup write protection

In reset state, the RTC, RTC backup registers and RCC CSR register are protected against
parasitic write access. This bit must be set to enable write access to these registers.

0: Access to RTC, RTC Backup and RCC CSR registers disabled
1: Access to RTC, RTC Backup and RCC CSR registers enabled

Note: If the HSE divided by 2, 4, 8 or 16 is used as the RTC clock, this bit must remain set to
1.

Bits 7:5 PLS[2:0]: PVD level selection

These bits are written by software to select the voltage threshold detected by the power
voltage detector:

000: 1.9 V
001: 2.1 V
010: 2.3 V
011: 2.5 V
100: 2.7 V
101: 2.9 V
110: 3.1 V
111: External input analog voltage (Compare internally to VREFINT)

PVD_IN input (PB7) has to be configured as analog input when PLS[2:0] = 111.

Note: Refer to the electrical characteristics of the datasheet for more details.

Bit 4 PVDE: Power voltage detector enable

This bit is set and cleared by software.

0: PVD disabled
1: PVD enabled

Bit 3 CSBF: Clear standby flag

This bit is always read as 0.

0: No effect
1: Clear the SBF Standby flag (write).

Power control (PWR) RM0038

122/908 DocID15965 Rev 14

Bit 2 CWUF: Clear wakeup flag

This bit is always read as 0.

0: No effect
1: Clear the WUF Wakeup flag after 2 system clock cycles

Bit 1 PDDS: Power down deepsleep

This bit is set and cleared by software.

0: Enter Stop mode when the CPU enters deepsleep.
1: Enter Standby mode when the CPU enters deepsleep.

Bit 0 LPSDSR: Low-power deepsleep/sleep/low-power run

– DeepSleep/Sleep modes

When this bit is set, the regulator switches in low-power mode when the CPU enters sleep or
deepsleep mode. The regulator goes back to main mode when the CPU exits from these
modes.

– Low-power run mode

When this bit is set, the regulator switches in low-power mode when the bit LPRUN is set.
The regulator goes back to main mode when the bit LPRUN is reset.

This bit is set and cleared by software.

0: Voltage regulator on during deepsleep/Sleep/Low-power run mode
1: Voltage regulator in low-power mode during deepsleep/Sleep/Low-power run mode

DocID15965 Rev 14 123/908

RM0038 Power control (PWR)

125

5.4.2 PWR power control/status register (PWR_CSR)

Address offset: 0x04

Reset value: 0x0000 0008 (not reset by wakeup from Standby mode)

Additional APB cycles are needed to read this register versus a standard APB read.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

EWUP
3

EWUP
2

EWUP
1 Reserved

REG
LPF

VOSF
VREFIN
TRDYF

PVDO SBF WUF

rw rw rw r r r r r r

Bits 31:11 Reserved, must be kept at reset value.

Bit 10 EWUP3: Enable WKUP pin 3

This bit is set and cleared by software.

0: WKUP pin 3 is used for general purpose I/Os. An event on the WKUP pin 3 does not
wakeup the device from Standby mode.
1: WKUP pin 3 is used for wakeup from Standby mode and forced in input pull down
configuration (rising edge on WKUP pin 3 wakes-up the system from Standby mode).

Note: This bit is reset by a system reset.

Bit 9 EWUP2: Enable WKUP pin 2

This bit is set and cleared by software.

0: WKUP pin 2 is used for general purpose I/Os. An event on the WKUP pin 2 does not
wakeup the device from Standby mode.
1: WKUP pin 2 is used for wakeup from Standby mode and forced in input pull down
configuration (rising edge on WKUP pin 2 wakes-up the system from Standby mode).

Note: This bit is reset by a system reset.

Bit 8 EWUP1: Enable WKUP pin 1

This bit is set and cleared by software.

0: WKUP pin 1 is used for general purpose I/Os. An event on the WKUP pin 1 does not
wakeup the device from Standby mode.
1: WKUP pin 1 is used for wakeup from Standby mode and forced in input pull down
configuration (rising edge on WKUP pin 1 wakes-up the system from Standby mode).

Note: This bit is reset by a system reset.

Bits 7:6 Reserved, must be kept at reset value.

Bit 5 REGLPF: Regulator LP flag

This bit is set by hardware when the MCU is in Low-power run mode.

When the MCU exits from Low-power run mode, this bit stays at 1 until the regulator is ready in
main mode. A polling on this bit is recommended to wait for the regulator main mode. This bit is
reset by hardware when the regulator is ready.

0: Regulator is ready in main mode
1: Regulator voltage is in low-power mode

Power control (PWR) RM0038

124/908 DocID15965 Rev 14

5.4.3 PWR register map

The following table summarizes the PWR registers. The reserved memory areas are
highlighted in gray in the table.

Bit 4 VOSF: Voltage Scaling select flag

A delay is required for the internal regulator to be ready after the voltage range is changed.
The VOSF bit indicates that the regulator has reached the voltage level defined with bits VOS
of PWR_CR register.

This bit is reset when VOS[1:0] in PWR_CR register change.
It is set once the regulator is ready.

0: Regulator is ready in the selected voltage range
1: Regulator voltage output is changing to the required VOS level.

Bit 3 VREFINTRDYF: Internal voltage reference (VREFINT) ready flag

This bit indicates the state of the internal voltage reference, VREFINT.

0: VREFINT is OFF
1: VREFINT is ready

Bit 2 PVDO: PVD output

This bit is set and cleared by hardware. It is valid only if PVD is enabled by the PVDE bit.

0: VDD is higher than the PVD threshold selected with the PLS[2:0] bits.
1: VDD is lower than the PVD threshold selected with the PLS[2:0] bits.

Note: The PVD is stopped by Standby mode. For this reason, this bit is equal to 0 after
Standby or reset until the PVDE bit is set.

Bit 1 SBF: Standby flag

This bit is set by hardware and cleared only by a POR/PDR (power on reset/power down reset)
or by setting the CSBF bit in the PWR power control register (PWR_CR)

0: Device has not been in Standby mode
1: Device has been in Standby mode

Bit 0 WUF: Wakeup flag

This bit is set by hardware and cleared by a system reset or by setting the CWUF bit in the
PWR power control register (PWR_CR)

0: No wakeup event occurred
1: A wakeup event was received from the WKUP pin or from the RTC alarm (Alarm A or
Alarm B), RTC Tamper event, RTC TimeStamp event or RTC Wakeup).

Note: An additional wakeup event is detected if the WKUP pins are enabled (by setting the
EWUPx (x=1, 2, 3) bits) when the WKUP pin levels are already high.

Table 34. PWR - register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x000
PWR_CR

Reserved L
P

R
U

N

R
e

se
rv

e
d VOS

[1:0] F
W

U

U
L

P

D
B

P

PLS[2:0]

P
V

D
E

C
S

B
F

C
W

U
F

P
D

D
S

L
P

S
D

S
R

Reset value 0 1 0 0 0 0 0 0 0 0 0 0 0 0

DocID15965 Rev 14 125/908

RM0038 Power control (PWR)

125

Refer to Table 5 on page 47 for the register boundary addresses.

0x004
PWR_CSR

Reserved E
W

U
P

3

E
W

U
P

2

E
W

U
P

1

R
e

se
rv

ed

R
E

G
L

P
F

V
O

S
F

V
R

E
F

IN
T

R
D

Y
F

P
V

D
O

S
B

F

W
U

F

Reset value 0 0 0 0 0 1 0 0 0

Table 34. PWR - register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Reset and clock control (RCC) RM0038

126/908 DocID15965 Rev 14

6 Reset and clock control (RCC)

6.1 Reset

There are three types of reset, defined as system reset, power reset and RTC domain reset.

6.1.1 System reset

A system reset sets all registers to their reset values except for the RTC, RTC backup
registers and control/status register, RCC_CSR.

A system reset is generated when one of the following events occurs:

1. A low level on the NRST pin (external reset)

2. Window watchdog end-of-count condition (WWDG reset)

3. Independent watchdog end-of-count condition (IWDG reset)

4. A software reset (SW reset) (see Software reset)

5. Low-power management reset (see Low-power management reset)

6. Option byte loader reset (see Option byte loader reset)

7. Exit from Standby mode

The reset source can be identified by checking the reset flags in the control/status register,
RCC_CSR (see Section 6.3.14).

Software reset

The SYSRESETREQ bit in Cortex®-M3 Application Interrupt and Reset Control Register
must be set to force a software reset on the device. Refer to the Cortex®-M3 technical
reference manual for more details.

Low-power management reset

There are two ways to generate a low-power management reset:

1. Reset generated when entering Standby mode:

This type of reset is enabled by resetting nRST_STDBY bit in user option bytes. In this
case, whenever a Standby mode entry sequence is successfully executed, the device
is reset instead of entering Standby mode.

2. Reset when entering Stop mode:

This type of reset is enabled by resetting nRST_STOP bit in user option bytes. In this
case, whenever a Stop mode entry sequence is successfully executed, the device is
reset instead of entering Stop mode.

Option byte loader reset

The Option byte loader reset is generated when the OBL_LAUNCH bit (bit 18) is set in the
FLASH_PECR register. This bit is used to launch by software the option byte loading.

For further information on the user option bytes, refer to Section 3: Flash program memory
and data EEPROM (FLASH).

DocID15965 Rev 14 127/908

RM0038 Reset and clock control (RCC)

170

6.1.2 Power reset

A power reset is generated when one of the following events occurs:

1. Power-on/power-down reset (POR/PDR reset)

2. BOR reset

A power reset sets all registers to their reset values including for the RTC domain (see
Figure 14)

These sources act on the NRST pin and it is always kept low during the delay phase. The
RESET service routine vector is fixed at address 0x0000_0004 in the memory map. For
more details, refer to Table 49: Vector table (Cat.1 and Cat.2 devices), Table 50: Vector
table (Cat.3 devices) and Table 51: Vector table (Cat.4, Cat.5 and Cat.6 devices).

The system reset signal provided to the device is output on the NRST pin. The pulse
generator guarantees a minimum reset pulse duration of 20 µs for each internal reset
source. In case of an external reset, the reset pulse is generated while the NRST pin is
asserted low.

Figure 14. Simplified diagram of the reset circuit

6.1.3 RTC and backup registers reset

The RTC peripheral, RTC clock source selection (in RCC_CSR) and the backup registers
are reset only when one of the following events occurs:

1. A software reset, triggered by setting the RTCRST bit in the RCC_CSR register (see
Section 6.3.14)

2. Power reset (BOR/POR/PDR)

Reset and clock control (RCC) RM0038

128/908 DocID15965 Rev 14

6.2 Clocks

Four different clock sources can be used to drive the system clock (SYSCLK):

• HSI ((high-speed internal) oscillator clock

• HSE (high-speed external) oscillator clock

• PLL clock

• MSI (multispeed internal) oscillator clock

The MSI is used as system clock source after startup from Reset, wake-up from Stop or
Standby low-power modes.

The devices have the following two secondary clock sources:

• 37 kHz low speed internal RC (LSI RC) which drives the independent watchdog and
optionally the RTC used for Auto-wakeup from Stop/Standby mode.

• 32.768 kHz low speed external crystal (LSE crystal) which optionally drives the real-
time clock (RTCCLK)

Each clock source can be switched on or off independently when it is not used, to optimize
power consumption.

Several prescalers allow the configuration of the AHB frequency, the high speed APB
(APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB,
APB1 and the APB2 domains is 32 MHz. It may depend on the device voltage range, for
more details please refer to the Dynamic voltage scaling management section in the PWR
chapter.

All the peripheral clocks are derived from the system clock (SYSCLK) except:

• The 48 MHz clock USB and SDIO clocks which are derived from the PLL VCO clock.

• The ADC clock which is always the HSI clock. A divider by 1, 2 or 4 allows to adapt the
clock frequency to the device operating conditions. For more details please refer to the
Operating Power Supply Range section in the PWR chapter.

• The RTC/LCD clock which is derived from the LSE, LSI or 1 MHz HSE_RTC (HSE
divided by a programmable prescaler).

• IWDG clock which is always the LSI clock.

The system clock (SYSCLK) frequency must be higher or equal to the RTC/LCD clock
frequency.

The RCC feeds the Cortex® System Timer (SysTick) external clock with the AHB clock
(HCLK) divided by 8. The SysTick can work either with this clock or with the Cortex® clock
(HCLK), configurable in the SysTick Control and Status Register.

DocID15965 Rev 14 129/908

RM0038 Reset and clock control (RCC)

170

Figure 15. Clock tree

1. For full details about the internal and external clock source characteristics, please refer to the “Electrical
characteristics” section in your device datasheet.

Reset and clock control (RCC) RM0038

130/908 DocID15965 Rev 14

The timer clock frequencies are automatically fixed by hardware. There are two cases:

1. If the APB prescaler is 1, the timer clock frequencies are set to the same frequency as
that of the APB domain to which the timers are connected.

2. Otherwise, they are set to twice (×2) the frequency of the APB domain to which the
timers are connected.

FCLK acts as Cortex®-M3 free running clock. For more details refer to the ARM® Cortex®-
M3 Technical Reference Manual.

6.2.1 HSE clock

The high speed external clock signal (HSE) can be generated from two possible clock
sources:

• HSE external crystal/ceramic resonator

• HSE user external clock

The resonator and the load capacitors have to be placed as close as possible to the
oscillator pins in order to minimize output distortion and startup stabilization time. The
loading capacitance values must be adjusted according to the selected oscillator.

Figure 16. HSE/ LSE clock sources

Clock source Hardware configuration

External clock

Crystal/Ceramic
resonators

DocID15965 Rev 14 131/908

RM0038 Reset and clock control (RCC)

170

External source (HSE bypass)

In this mode, an external clock source must be provided. It can have a frequency of up to
32 MHz. This mode is selected by setting the HSEBYP and HSEON bits in the Clock control
register, RCC_CR (see Section 6.3.1). The external clock signal (square, sinus or triangle)
with ~50% duty cycle has to drive the OSC_IN pin while the OSC_OUT pin should be left hi-
Z (see Figure 16).

External crystal/ceramic resonator (HSE crystal)

The 1 to 24 MHz external oscillator has the advantage of producing a very accurate rate on
the main clock.

The associated hardware configuration is shown in Figure 16. Refer to the electrical
characteristics section of the datasheet for more details.

The HSERDY flag of the RCC_CR register (see Section 6.3.1) indicates whether the HSE
oscillator is stable or not. At startup, the HSE clock is not released until this bit is set by
hardware. An interrupt can be generated if enabled in the RCC_CR register.

The HSE Crystal can be switched on and off using the HSEON bit in the RCC_CR register.

6.2.2 HSI clock

The HSI clock signal is generated from an internal 16 MHz RC oscillator. It can be used
directly as a system clock or as PLL input.

The HSI RC oscillator has the advantage of providing a clock source at low cost (no external
components). It also has a faster startup time than the HSE crystal oscillator however, even
with calibration the frequency is less accurate than an external crystal oscillator or ceramic
resonator.

Calibration

RC oscillator frequencies can vary from one chip to another due to manufacturing process
variations, this is why each device is factory calibrated by ST for 1% accuracy at an ambient
temperature, TA, of 30 °C.

After reset, the factory calibration value is loaded in the HSICAL[7:0] bits in the Internal
Clock Sources Calibration Register (RCC_ICSCR) (see Section 6.3.2).

If the application is subject to voltage or temperature variations, this may affect the RC
oscillator speed. You can trim the HSI frequency in the application by using the
HSITRIM[4:0] bits in the RCC_ICSCR register. The default HSITRIM value is 16, which
trims the HSI oscillator to nominal frequency of 8 MHz. An increase of the HSITRIM value is
causing increase of HSI oscillator frequency. The trimming step (FHSITRIM) is around 40 kHz
between two consecutive HSICAL steps. The frequency response on the trimming code
change shows non-monotonicity if the trimming code is a multiple of 16, see device
datasheet for details. For more details on how to measure the HSI frequency variation
please refer to Section 6.2.14: Internal/external clock measurement with
TIM9/TIM10/TIM11.

The HSIRDY flag in the RCC_CR indicates whether the HSI oscillator is stable or not. At
startup, the HSI RC output clock is not released until this bit is set by hardware.

The HSI RC oscillator can be switched on and off using the HSION bit in the RCC_CR
register.

Reset and clock control (RCC) RM0038

132/908 DocID15965 Rev 14

6.2.3 MSI clock

The MSI clock signal is generated from an internal RC oscillator. Its frequency range can be
adjusted by software by using the MSIRANGE[2:0] bits in the RCC_ICSCR register (see
Section 6.3.2: Internal clock sources calibration register (RCC_ICSCR)). Seven frequency
ranges are available: 65.536 kHz, 131.072 kHz, 262.144 kHz, 524.288 kHz, 1.048 MHz,
2.097 MHz (default value) and 4.194 MHz.

The MSI clock is used as system clock after restart from Reset, wake-up from Stop, and
Standby low-power mode. After restart from Reset or wake-up from Standby, the MSI
frequency is set to its default value. The RCC_ICSCR register value is retained in STOP
mode, thus the MSI frequency and calibration after Wake-Up is the same as before entering
STOP mode.

The MSI RC oscillator has the advantage of providing a low-cost (no external components)
low-power clock source. It is used as wake-up clock in low-power modes to reduce power
consumption and wake-up time.

The MSIRDY flag in the RCC_CR register indicates whether the MSI RC is stable or not. At
startup, the MSI RC output clock is not released until this bit is set by hardware.

The MSI RC can be switched on and off by using the MSION bit in the RCC_CR register
(see Section 6.3.1).

It can also be used as a backup clock source (auxiliary clock) if the HSE crystal oscillator
fails. Refer to Section 6.2.9: Clock security system (CSS) on page 134.

Calibration

The MSI RC oscillator frequency can vary from one chip to another due to manufacturing
process variations, this is why each device is factory calibrated by ST for 1% accuracy at an
ambient temperature, TA, of 30 °C.

After reset, the factory calibration value is loaded in the MSICAL[7:0] bits in the
RCC_ICSCR register. If the application is subject to voltage or temperature variations, this
may affect the RC oscillator speed. You can trim the MSI frequency in the application by
using the MSITRIM[7:0] bits in the RCC_ICSCR register. For more details on how to
measure the MSI frequency variation please refer to Section 6.2.14: Internal/external clock
measurement with TIM9/TIM10/TIM11.

6.2.4 PLL

The internal PLL can be clocked by the HSI RC or HSE crystal. It is used to drive the system
clock and to generate the 48 MHz clock for the USB peripheral (refer to Figure 15 and
Section 6.3.1: Clock control register (RCC_CR).

The PLL input clock frequency must be between 2 and 24 MHz.

The desired frequency is obtained by using the multiplication factor and output division
embedded in the PLL:

• If the USB or SDIO interface is used in the application, the PLL VCO clock (defined by
the PLL multiplication factor) must be programmed to output a 96 MHz frequency. This
is required to provide a 48 MHz clock to the USB or SDIO (SDIOCLK or USBCLK =
PLLVCO/2).

• The system clock is derived from the PLL VCO divided by the output division factor.

DocID15965 Rev 14 133/908

RM0038 Reset and clock control (RCC)

170

Note: The application software must set correctly the PLL multiplication factor to avoid exceeding
96 MHz as PLLVCO when the product is in range 1,
48 MHz as PLLVCO when the product is in range 2,
24 MHz when the product is in range 3.
It must also set correctly the output division to avoid exceeding 32 MHz as SYSCLK.

The minimum input clock frequency for PLL is 2 MHz (when using HSE as PLL source).

The PLL configuration (selection of the source clock, multiplication factor and output division
factor) must be performed before enabling the PLL. Once the PLL is enabled, these
parameters cannot be changed.

To modify the PLL configuration, proceed as follows:

1. Disable the PLL by setting PLLON to 0.

2. Wait until PLLRDY is cleared. PLLRDY. The PLL is now fully stopped.

3. Change the desired parameter.

4. Enable the PLL again by setting PLLON to 1.

An interrupt can be generated when the PLL is ready if enabled in the RCC_CIR register
(see Section 6.3.4).

6.2.5 LSE clock

The LSE crystal is a 32.768 kHz low speed external crystal or ceramic resonator. It has the
advantage of providing a low-power but highly accurate clock source to the real-time clock
peripheral (RTC) for clock/calendar or other timing functions.

The LSE crystal is switched on and off using the LSEON bit in the RCC_CSR register (see
Section 6.3.14).

The LSERDY flag in the RCC_CSR register indicates whether the LSE crystal is stable or
not. At startup, the LSE crystal output clock signal is not released until this bit is set by
hardware. An interrupt can be generated if enabled in the RCC_CIR register (see
Section 6.3.4).

External source (LSE bypass)

In this mode, an external clock source must be provided. It can have a frequency of up to
1 MHz. This mode is selected by setting the LSEBYP and LSEON bits in the RCC_CR (see
Section 6.3.1). The external clock signal (square, sinus or triangle) with ~50% duty cycle
has to drive the OSC32_IN pin while the OSC32_OUT pin might be used as a GPIO pin
(see Figure 16).

6.2.6 LSI clock

The LSI RC acts as an low-power clock source that can be kept running in Stop and
Standby mode for the independent watchdog (IWDG). The clock frequency is around
37 kHz.

The LSI RC oscillator can be switched on and off using the LSION bit in the RCC_CSR
register (see Section 6.3.14), but the LSI oscillator keeps running since it is activated by
IWDG.

The LSIRDY flag in RCC_CSR indicates whether the low-speed internal oscillator is stable
or not. At startup, the clock is not released until this bit is set by hardware. An interrupt can
be generated if enabled in the RCC_CIR (see Section 6.3.4).

Reset and clock control (RCC) RM0038

134/908 DocID15965 Rev 14

LSI measurement

The frequency dispersion of the LSI oscillator can be measured to have accurate RTC time
base and/or IWDG timeout (when LSI is used as clock source for these peripherals) with an
acceptable accuracy. For more details, refer to the electrical characteristics section of the
datasheets. For more details on how to measure the LSI frequency, please refer to
Section 6.2.14: Internal/external clock measurement with TIM9/TIM10/TIM11.

6.2.7 System clock (SYSCLK) selection

Four different clock sources can be used to drive the system clock (SYSCLK):

• The HSI oscillator

• The HSE oscillator

• The PLL

• The MSI oscillator clock (default after reset)

When a clock source is used directly or through the PLL as system clock, it is not possible to
stop it.

A switch from one clock source to another occurs only if the target clock source is ready
(clock stable after startup delay or PLL locked). If a clock source which is not yet ready is
selected, the switch will occur when the clock source will be ready. Status bits in the
RCC_CR register indicate which clock(s) is (are) ready and which clock is currently used as
system clock.

6.2.8 System clock source frequency versus voltage range

The following table gives the different clock source frequencies depending on the product
voltage range.

6.2.9 Clock security system (CSS)

The Clock security system can be activated by software. In this case, the clock detector is
enabled after the HSE oscillator startup delay, and disabled when this oscillator is stopped.

If a failure is detected on the HSE clock, this oscillator is automatically disabled and an
interrupt is generated to inform the software about the failure (Clock Security System
Interrupt, CSSI), allowing the MCU to perform rescue operations. The CSSI is linked to the
Cortex®-M3 NMI (Non-Maskable Interrupt) exception vector.

Table 35. System clock source frequency

Product voltage
range

Clock frequency

MSI HSI HSE PLL

Range 1 (1.8 V) 4.2 MHz 16 MHz
HSE 32 MHz (external clock)

or 24 MHz (crystal)
32 MHz

(PLLVCO max = 96 MHz)

Range 2 (1.5 V) 4.2 MHz 16 MHz 16 MHz
16 MHz

(PLLVCO max = 48 MHz)

Range 3 (1.2 V) 4.2 MHz NA 8 MHz
4 MHz

(PLLVCO max = 24 MHz)

DocID15965 Rev 14 135/908

RM0038 Reset and clock control (RCC)

170

Note: Once the CSS is enabled and if the HSE clock fails, the CSS interrupt occurs and an NMI is
automatically generated. The NMI will be executed indefinitely unless the CSS interrupt
pending bit is cleared. As a consequence, in the NMI ISR must clear the CSS interrupt by
setting the CSSC bit in the RCC_CIR register.

If the HSE oscillator is used directly or indirectly as the system clock (indirectly means: it is
used as PLL input clock, and the PLL clock is used as system clock), a detected failure
causes a switch of the system clock to the MSI oscillator and the disabling of the HSE
oscillator. If the HSE oscillator clock is the clock entry of the PLL used as system clock when
the failure occurs, the PLL is disabled too.

6.2.10 Clock Security System on LSE

In Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices, a Clock Security System on LSE can be
activated by software writing the LSECSSON bit in the RCC_CSR register. This bit can be
disabled only by a hardware reset or RTC software reset, or after a failure detection on LSE.
LSECSSON must be written after LSE and LSI are enabled (LSEON and LSION enabled)
and ready (LSERDY and LSIRDY set by hardware), and after the RTC clock has been
selected by RTCSEL.

If the CSS failure is detected on the external LSE oscillator the LSECSSD flag is set. The
failure event is linked to EXTI line 19. It can wakeup MCU from Standby mode or rise an
interrupt which allows to service the failure event in the TAMPER_STAMP interrupt routine
in run, Sleep and Stop low-power modes.

To enable interrupt generation, the LSECSIE bit in RCC_CIR interrupt register has to be set
(see Section 6.3.4: Clock interrupt register (RCC_CIR) on page 144).

In case of the CSS failure, the LSE clock is no longer supplied to the RTC and fail-safe
mode needs to be managed by the firmware (stop the LSE oscillator and switch RTC clock
source to LSI or HSE clock).

The frequency of LSE oscillator have to be higher than 30 kHz to avoid false positive CSS
detection.

6.2.11 RTC and LCD clock

The RTC and LCD have the same clock source which can be either the LSE, the LSI, or the
HSE 1 MHz clock (HSE divided by a programmable prescaler). It is selected by
programming the RTCSEL[1:0] bits in the RCC_CSR register (see Section 6.3.14) and the
RTCPRE[1:0] bits in the RCC_CR register (see Section 6.3.1).

Once the RTC and LCD clock source have been selected, the only possible way of
modifying the selection is to set the RTCRST bit in the RCC_CSR register, or by a POR.

If the LSE or LSI is used as RTC clock source, the RTC continues to work in Stop and
Standby low-power modes, and can be used as wakeup source. However, when the HSE is
the RTC clock source, the RTC cannot be used in the Stop and Standby low-power modes.
The LCD can however be used in the Stop low-power mode if the LSE or LSI is used as the
RTC clock source.

When the RTC clock is LSE, the RTC remains clocked and functional under system reset.

Reset and clock control (RCC) RM0038

136/908 DocID15965 Rev 14

Note: To be able to read the RTC calendar register when the APB1 clock frequency is less than
seven times the RTC clock frequency (7*RTCLCK), the software must read the calendar
time and date registers twice.

If the second read of the RTC_TR gives the same result as the first read, this ensures that
the data is correct. Otherwise a third read access must be done.

6.2.12 Watchdog clock

If the Independent watchdog (IDG) is started by either hardware option or software access,
the LSI oscillator is forced ON and cannot be disabled. After the LSI oscillator temporization,
the clock is provided to the IWDG.

6.2.13 Clock-out capability

The microcontroller clock output (MCO) capability allows the clock to be output onto the
external MCO pin (PA8) using a configurable prescaler (1, 2, 4, 8, or 16). The configuration
registers of the corresponding GPIO port must be programmed in alternate function mode.
One of 7 clock signals can be selected as the MCO clock:

• SYSCLK

• HSI

• MSI

• HSE

• PLL

• LSI

• LSE

The selection is controlled by the MCOSEL[2:0] bits of the RCC_CFGR register (see
Section 6.3.3).

6.2.14 Internal/external clock measurement with TIM9/TIM10/TIM11

It is possible to indirectly measure the frequency of all on-board clock source generators by
means of the TIM9/TIM10/TIM11 channel 1 input capture, as represented on Figure 17.

DocID15965 Rev 14 137/908

RM0038 Reset and clock control (RCC)

170

Figure 17. Using the TIM9/TIM10/TIM11 channel 1 input capture to measure
frequencies

Each timer has an input multiplexer that selects which of the I/O or the internal clock is to
trigger the input capture. This selection is performed through the TI1_RMP [1:0] bits in the
TIMx_OR register.

For TIM9 and TIM10, the primary purpose of connecting the LSE to the channel 1 input
capture is to be able to precisely measure the HSI and MSI system clocks (for this, either
the HSI or MSI should be used as the system clock source). The number of HSI (MSI,
respectively) clock counts between consecutive edges of the LSE signal provides a
measure of the internal clock period. Taking advantage of the high precision of LSE crystals
(typically a few tens of ppm’s), it is possible to determine the internal clock frequency with
the same resolution, and trim the source to compensate for manufacturing-process- and/or
temperature- and voltage-related frequency deviations.

The MSI and HSI oscillators both have dedicated user-accessible calibration bits for this
purpose.

The basic concept consists in providing a relative measurement (e.g. the HSI/LSE ratio): the
precision is therefore closely related to the ratio between the two clock sources. The higher
the ratio, the better the measurement.

Reset and clock control (RCC) RM0038

138/908 DocID15965 Rev 14

It is however not possible to have a good enough resolution when the MSI clock is low
(typically below 1 MHz). In this case, it is advised to:

• accumulate the results of several captures in a row

• use the timer’s input capture prescaler (up to 1 capture every 8 periods)

• use the RTC wakeup interrupt signal (when the RTC is clocked by the LSE) as the
input for the channel1 input capture. This improves the measurement precision. For
this purpose the RTC wakeup interrupt must be enabled.

TIM10 can also be used to measure the LSI: this is useful for applications with no crystal.
The ultra-low-power LSI oscillator has a wide manufacturing process deviation: by
measuring it as a function of the HSI clock source, it is possible to determine its frequency
with the precision of the HSI.

Finally, TIM11 has two other sources. TIM11 can use the MSI just like TIM10 uses the LSI
for crystal-less applications. The HSE_RTC frequency (HSE divided by a programmable
prescaler) being relatively high (1MHz), the relative frequency measurement is not very
precise, so its main purpose is to have a rough indication of the external crystal frequency.
This is useful for instance to meet the requirements of the IEC 60730/IEC 61335 standards,
which requires to be able to determine harmonic or subharmonic frequencies (–50/+100%
deviations).

6.2.15 Clock-independent system clock sources for TIM9/TIM10/TIM11

In a number of applications using the 32.768 kHz clock as a time base for the RTC, it is
interesting to have time bases that work completely independently of the system clock. This
allows the scheduling of tasks without having to take into account the processor state (the
processor may be stopped or executing at low, medium or full speed).

For this purpose, the LSE clock is internally redirected to the 3 timers’ ETR inputs, which are
used as additional clock sources, as shown in Figure 17 on page 137. This gives up to three
independent time bases (using the auto-reload feature) with 1 or 2 compare additional
channels for fractional events. For instance, the TIM9’s auto-reload interrupt can be
programmed for a 1 second tick interrupt with an additional interrupt occurring 250 ms after
the main tick.

Note: In this configuration, make sure that you have at least a ratio of 2 between the external clock
(LSE) and the APB clock. If the application uses an APB clock frequency lower than twice
the LSE clock frequency (typically LSE = 32.768 kHz, so twice LSE = 65.536 kHz), it is
mandatory to use the external trigger prescaler feature of the timer: it can divide the ETR
clock by up to 8.

DocID15965 Rev 14 139/908

RM0038 Reset and clock control (RCC)

170

6.3 RCC registers

Refer to Section 1.1 for a list of abbreviations used in register descriptions.

6.3.1 Clock control register (RCC_CR)

Address offset: 0x00

Reset value: 0b0XX0 0000 0000 0X00 0000 0011 0000 0000 where X is undefined

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res.
RTCPRE[1:0]

CSS
ON Reserved

PLL
RDY

PLLON
Reserved

HSE
BYP

HSE
RDY

HSE
ON

rw rw rw r rw rw r rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

MSI
RDY

MSION
Reserved

HSI
RDY

HSION

r rw r rw

Bit 31 Reserved, must be kept at reset value.

Bits 30:29 RTCPRE[1:0] RTC/LCD prescaler

These bits are set and reset by software to obtain a 1 MHz clock from HSE. This prescaler
cannot be modified if HSE is enabled (HSEON = 1).
These bits are reset by power on reset, they keep their value after system reset.
00: HSE is divided by 2 for RTC/LCD clock
01: HSE is divided by 4 for RTC/LCD clock
10: HSE is divided by 8 for RTC/LCD clock
11: HSE is divided by 16 for RTC/LCD clock

Bit 28 CSSON: Clock security system enable

This bit is set and cleared by software to enable the clock security system (CSS). When
CSSON is set, the clock detector is enabled by hardware when the HSE oscillator is ready,
and disabled by hardware if an oscillator failure is detected.
0: Clock security system OFF (clock detector OFF)
1: Clock security system ON (clock detector ON if HSE oscillator is stable, OFF otherwise)

Bits 27:26 Reserved, must be kept at reset value.

Bit 25 PLLRDY: PLL clock ready flag

This bit is set by hardware to indicate that the PLL is locked.
0: PLL unlocked
1: PLL locked

Bit 24 PLLON: PLL enable

This bit is set and cleared by software to enable PLL.
Cleared by hardware when entering Stop or Standby mode. This bit can not be reset if the
PLL clock is used as system clock or is selected to become the system clock.
0: PLL OFF
1: PLL ON

Bits 23:19 Reserved, must be kept at reset value.

Reset and clock control (RCC) RM0038

140/908 DocID15965 Rev 14

Bit 18 HSEBYP: HSE clock bypass

This bit is set and cleared by software to bypass the oscillator with an external clock. The
external clock must be enabled with the HSEON bit, to be used by the device.
The HSEBYP bit can be written only if the HSE oscillator is disabled.
This bit is reset by power on reset, it keeps its value after system reset.
0: HSE oscillator not bypassed
1: HSE oscillator bypassed with an external clock

Bit 17 HSERDY: HSE clock ready flag

This bit is set by hardware to indicate that the HSE oscillator is stable. After the HSEON bit is
cleared, HSERDY goes low after 6 HSE oscillator clock cycles.
0: HSE oscillator not ready
1: HSE oscillator ready

Bit 16 HSEON: HSE clock enable

This bit is set and cleared by software.
Cleared by hardware to stop the HSE oscillator when entering Stop or Standby mode. This
bit cannot be reset if the HSE oscillator is used directly or indirectly as the system clock.
0: HSE oscillator OFF
1: HSE oscillator ON

Bits 15:10 Reserved, must be kept at reset value.

Bit 9 MSIRDY: MSI clock ready flag

This bit is set by hardware to indicate that the MSI oscillator is stable.
0: MSI oscillator not ready
1: MSI oscillator ready

Note: Once the MSION bit is cleared, MSIRDY goes low after 6 MSI clock cycles.

Bit 8 MSION: MSI clock enable

This bit is set and cleared by software.
Set by hardware to force the MSI oscillator ON when exiting from Stop or Standby mode, or
in case of a failure of the HSE oscillator used directly or indirectly as system clock. This bit
cannot be cleared if the MSI is used as system clock.
0: MSI oscillator OFF
1: MSI oscillator ON

Bits 7:2 Reserved, must be kept at reset value.

Bit 1 HSIRDY: Internal high-speed clock ready flag

This bit is set by hardware to indicate that the HSI oscillator is stable. After the HSION bit is
cleared, HSIRDY goes low after 6 HSI clock cycles.
0: HSI oscillator not ready
1: HSI oscillator ready

Bit 0 HSION: Internal high-speed clock enable

This bit is set and cleared by software.
This bit cannot be cleared if the HSI is used directly or indirectly as the system clock.
0: HSI oscillator OFF
1: HSI oscillator ON

DocID15965 Rev 14 141/908

RM0038 Reset and clock control (RCC)

170

6.3.2 Internal clock sources calibration register (RCC_ICSCR)

Address offset: 0x04

Reset value: 0x00XX B0XX where X is undefined.

Access: no wait state, word, half-word and byte access

6.3.3 Clock configuration register (RCC_CFGR)

Address offset: 0x08

Reset value: 0x0000 0000

Access: 0 ≤ wait state ≤ 2, word, half-word and byte access

1 or 2 wait states inserted only if the access occurs during clock source switch.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MSITRIM[7:0] MSICAL[7:0]

rw rw rw rw rw rw rw rw r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSIRANGE[2:0] HSITRIM[4:0] HSICAL[7:0]

rw rw rw rw rw rw rw rw r r r r r r r r

Bits 31:24 MSITRIM[7:0]: MSI clock trimming

These bits are set by software to adjust MSI calibration.
These bits provide an additional user-programmable trimming value that is added to the
MSICAL[7:0] bits. They can be programmed to compensate for the variations in voltage and
temperature that influence the frequency of the internal MSI RC.

Bits 23:16 MSICAL[7:0]: MSI clock calibration

These bits are initialized at startup with the factory-programmed MSI calibration trim value.
When MSITRIM is written, MSICAL is updated with the sum of MSITRIM and the factory trim
value.

Bits 15:13 MSIRANGE[2:0]: MSI clock ranges

These bits are set by software to choose the frequency range of MSI.7 frequency ranges are
available:
000: range 0 around 65.536 kHz
001: range 1 around 131.072 kHz
010: range 2 around 262.144 kHz
011: range 3 around 524.288 kHz
100: range 4 around 1.048 MHz
101: range 5 around 2.097 MHz (reset value)
110: range 6 around 4.194 MHz
111: not allowed

Bits 12:8 HSITRIM[4:0]: High speed internal clock trimming

These bits provide an additional user-programmable trimming value that is added to the
HSICAL[7:0] bits. They can be programmed to compensated for the variations in voltage and
temperature that influence the frequency of the internal HSI RC.

Bits 7:0 HSICAL[7:0] Internal high speed clock calibration

These bits are initialized at startup with the factory-programmed HSI calibration trim value.
When HSITRIM is written, HSICAL is updated with the sum of HSITRIM and the factory trim
value.

Reset and clock control (RCC) RM0038

142/908 DocID15965 Rev 14

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res.
MCOPRE[2:0]

Res.
MCOSEL[2:0] PLLDIV[1:0] PLLMUL[3:0]

Res.

PLL
SRC

rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
PPRE2[2:0] PPRE1[2:0] HPRE[3:0] SWS[1:0] SW[1:0]

rw rw rw rw rw rw rw rw rw rw r r rw rw

Bits 31 Reserved, must be kept at reset value.

Bits 30:28 MCOPRE[2:0]: Microcontroller clock output prescaler

These bits are set and cleared by software.
It is highly recommended to change this prescaler before MCO output is enabled.
000: MCO is divided by 1
001: MCO is divided by 2
010: MCO is divided by 4
011: MCO is divided by 8
100: MCO is divided by 16
Others: not allowed

Bits 27 Reserved, must be kept at reset value.

Bits 26:24 MCOSEL[2:0]: Microcontroller clock output selection

These bits are set and cleared by software.
000: MCO output disabled, no clock on MCO
001: SYSCLK clock selected
010: HSI oscillator clock selected
011: MSI oscillator clock selected
100: HSE oscillator clock selected
101: PLL clock selected
110: LSI oscillator clock selected
111:LSE oscillator clock selected

Note: This clock output may have some truncated cycles at startup or during MCO clock
source switching.

Bits 23:22 PLLDIV[1:0]: PLL output division

These bits are set and cleared by software to control PLL output clock division from PLL
VCO clock. These bits can be written only when the PLL is disabled.
00: not allowed
01: PLL clock output = PLLVCO / 2
10: PLL clock output = PLLVCO / 3
11: PLL clock output = PLLVCO / 4

DocID15965 Rev 14 143/908

RM0038 Reset and clock control (RCC)

170

Bits 21:18 PLLMUL[3:0]: PLL multiplication factor

These bits are written by software to define the PLL multiplication factor to generate the PLL
VCO clock. These bits can be written only when the PLL is disabled.
0000: PLLVCO = PLL clock entry x 3
0001: PLLVCO = PLL clock entry x 4
0010: PLLVCO = PLL clock entry x 6
0011: PLLVCO = PLL clock entry x 8
0100: PLLVCO = PLL clock entry x 12
0101: PLLVCO = PLL clock entry x 16
0110: PLLVCO = PLL clock entry x 24
0111: PLLVCO = PLL clock entry x 32
1000: PLLVCO = PLL clock entry x 48
others: not allowed

Caution: The PLL VCO clock frequency must not exceed 96 MHz when the product is in
Range 1, 48 MHz when the product is in Range 2 and 24 MHz when the product is
in Range 3.

Bit 17 Reserved, must be kept at reset value.

Bit 16 PLLSRC: PLL entry clock source

This bit is set and cleared by software to select PLL clock source. This bit can be written
only when PLL is disabled.
0: HSI oscillator clock selected as PLL input clock
1: HSE oscillator clock selected as PLL input clock

Note: The PLL minimum input clock frequency is 2 MHz.

Bits 15:14 Reserved, must be kept at reset value.

Bits 13:11 PPRE2[2:0]: APB high-speed prescaler (APB2)

These bits are set and cleared by software to control the division factor of the APB high-
speed clock (PCLK2).
0xx: HCLK not divided
100: HCLK divided by 2
101: HCLK divided by 4
110: HCLK divided by 8
111: HCLK divided by 16

Bits 10:8 PPRE1[2:0]: APB low-speed prescaler (APB1)

These bits are set and cleared by software to control the division factor of the APB low-
speed clock (PCLK1).
0xx: HCLK not divided
100: HCLK divided by 2
101: HCLK divided by 4
110: HCLK divided by 8
111: HCLK divided by 16

Reset and clock control (RCC) RM0038

144/908 DocID15965 Rev 14

6.3.4 Clock interrupt register (RCC_CIR)

Address offset: 0x0C

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

Bits 7:4 HPRE[3:0]: AHB prescaler

These bits are set and cleared by software to control the division factor of the AHB clock.

Caution: Depending on the device voltage range, the software has to set correctly these bits
to ensure that the system frequency does not exceed the maximum allowed
frequency (for more details please refer to the Dynamic voltage scaling
management section in the PWR chapter.) After a write operation to these bits and
before decreasing the voltage range, this register must be read to be sure that the
new value has been taken into account.

0xxx: SYSCLK not divided
1000: SYSCLK divided by 2
1001: SYSCLK divided by 4
1010: SYSCLK divided by 8
1011: SYSCLK divided by 16
1100: SYSCLK divided by 64
1101: SYSCLK divided by 128
1110: SYSCLK divided by 256
1111: SYSCLK divided by 512

Bits 3:2 SWS[1:0]: System clock switch status

These bits are set and cleared by hardware to indicate which clock source is used as
system clock.
00: MSI oscillator used as system clock
01: HSI oscillator used as system clock
10: HSE oscillator used as system clock
11: PLL used as system clock

Bits 1:0 SW[1:0]: System clock switch

These bits are set and cleared by software to select SYSCLK source.
Set by hardware to force MSI selection when leaving Stop and Standby mode or in case of
failure of the HSE oscillator used directly or indirectly as system clock (if the Clock Security
System is enabled).
00: MSI oscillator used as system clock
01: HSI oscillator used as system clock
10: HSE oscillator used as system clock
11: PLL used as system clock

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
CSSC

LSECS
SC

MSI
RDYC

PLL
RDYC

HSE
RDYC

HSI
RDYC

LSE
RDYC

LSI
RDYC

w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.

LSECS
SIE

MSI
RDYIE

PLL
RDYIE

HSE
RDYIE

HSI
RDYIE

LSE
RDYIE

LSI
RDYIE

CSSF
LSE

CSSF
MSI

RDYF
PLL

RDYF
HSE

RDYF
HSI

RDYF
LSE

RDYF
LSI

RDYF

rw rw rw rw rw rw rw r r r r r r r r

DocID15965 Rev 14 145/908

RM0038 Reset and clock control (RCC)

170

Bits 31:24 Reserved, must be kept at reset value.

Bit 23 CSSC: Clock security system interrupt clear

This bit is set by software to clear the CSSF flag.
0: No effect
1: Clear CSSF flag

Bit 22 LSECSSC: LSE CSS interrupt clear

Set by software to clear LSECSSF. Reset by hardware when clear done.
0: LSECSSF not cleared
1: LSECSSF cleared

Note: This bit is available in Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bit 21 MSIRDYC: MSI ready interrupt clear

This bit is set by software to clear the MSIRDYF flag.
0: No effect
1: MSIRDYF cleared

Bit 20 PLLRDYC: PLL ready interrupt clear

This bit is set by software to clear the PLLRDYF flag.
0: No effect
1: PLLRDYF cleared

Bit 19 HSERDYC: HSE ready interrupt clear

This bit is set by software to clear the HSERDYF flag.
0: No effect
1: HSERDYF cleared

Bit 18 HSIRDYC: HSI ready interrupt clear

This bit is set software to clear the HSIRDYF flag.
0: No effect
1: HSIRDYF cleared

Bit 17 LSERDYC: LSE ready interrupt clear

This bit is set by software to clear the LSERDYF flag.
0: No effect
1: LSERDYF cleared

Bit 16 LSIRDYC: LSI ready interrupt clear

This bit is set by software to clear the LSIRDYF flag.
0: No effect
1: LSIRDYF cleared

Bit 15 Reserved, must be kept at reset value.

Bit 14 LSECSSIE: LSE CSS interrupt enable

Set and reset by software to enable/disable interrupts from the Clock Security System on
external 32 kHz oscillator (LSE).
0: LSE CSS interrupt disabled
1: LSE CSS interrupt enabled

Note: This bit is available in Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bit 13 MSIRDYIE: MSI ready interrupt enable

This bit is set and cleared by software to enable/disable interrupt caused by the MSI
oscillator stabilization.
0: MSI ready interrupt disabled
1: MSI ready interrupt enabled

Reset and clock control (RCC) RM0038

146/908 DocID15965 Rev 14

Bit 12 PLLRDYIE: PLL ready interrupt enable

This bit is set and cleared by software to enable/disable interrupt caused by PLL lock.
0: PLL lock interrupt disabled
1: PLL lock interrupt enabled

Bit 11 HSERDYIE: HSE ready interrupt enable

This bit is set and cleared by software to enable/disable interrupt caused by the HSE
oscillator stabilization.
0: HSE ready interrupt disabled
1: HSE ready interrupt enabled

Bit 10 HSIRDYIE: HSI ready interrupt enable

This bit is set and cleared by software to enable/disable interrupt caused by the HSI
oscillator stabilization.
0: HSI ready interrupt disabled
1: HSI ready interrupt enabled

Bit 9 LSERDYIE: LSE ready interrupt enable

This bit is set and cleared by software to enable/disable interrupt caused by the LSE
oscillator stabilization.
0: LSE ready interrupt disabled
1: LSE ready interrupt enabled

Bit 8 LSIRDYIE: LSI ready interrupt enable

This bit is set and cleared by software to enable/disable interrupt caused by LSI oscillator
stabilization.
0: LSI ready interrupt disabled
1: LSI ready interrupt enabled

Bit 7 CSSF: Clock security system interrupt flag

This bit is set by hardware when a failure is detected in the HSE oscillator.
It is cleared by software by setting the CSSC bit.
0: No clock security interrupt caused by HSE clock failure
1: Clock security interrupt caused by HSE clock failure

Bit 6 LSECSSF LSE CSS Interrupt flag

Reset by software by writing to the LSECSSC bit. Set by hardware when a failure is detected
on the external 32 KHz oscillator and the LSECSSIE bit is set.
0: No failure detected on the external 32 KHz oscillator (LSE)
1: A failure is detected on the external 32 kHz oscillator (LSE)

Note: This bit is available in Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bit 5 MSIRDYF: MSI ready interrupt flag

This bit is set by hardware when the MSI becomes stable and MSIRDYDIE is set.
It is cleared by software setting the MSIRDYC bit.
0: No clock ready interrupt caused by the MSI
1: Clock ready interrupt caused by the MSI

Bit 4 PLLRDYF: PLL ready interrupt flag

This bit is set by hardware when the PLL locks and PLLRDYDIE is set.
It is cleared by software setting the PLLRDYC bit.
0: No clock ready interrupt caused by PLL lock
1: Clock ready interrupt caused by PLL lock

DocID15965 Rev 14 147/908

RM0038 Reset and clock control (RCC)

170

6.3.5 AHB peripheral reset register (RCC_AHBRSTR)

Address offset: 0x10

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

Bit3 HSERDYF: HSE ready interrupt flag

This bit is set by hardware when HSE becomes stable and HSERDYDIE is set.
It is cleared by software setting the HSERDYC bit.
0: No clock ready interrupt caused by the HSE
1: Clock ready interrupt caused by the HSE

Bit 2 HSIRDYF: HSI ready interrupt flag

This bit is set by hardware when the HSI becomes stable and HSIRDYDIE is set.
It is cleared by software setting the HSIRDYC bit.
0: No clock ready interrupt caused by the HSI
1: Clock ready interrupt caused by the HSI

Bit 1 LSERDYF: LSE ready interrupt flag

This bit is set by hardware when the LSE becomes stable and LSERDYDIE is set.
It is cleared by software setting the LSERDYC bit.
0: No clock ready interrupt caused by the LSE
1: Clock ready interrupt caused by the LSE

Bit 0 LSIRDYF: LSI ready interrupt flag

This bit is set by hardware when the LSI becomes stable and LSIRDYDIE is set.
It is cleared by software setting the LSIRDYC bit.
0: No clock ready interrupt caused by the LSI
1: Clock ready interrupt caused by the LSI

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res.

FSMC
RST Reserved

AES
RST Res.

DMA2RS
T

DMA1
RST Reserved

rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLITF
RST Reserved

CRC
RST Reserved

GPIOG
RST

GPIOF
RST

GPIOH
RST

GPIOE
RST

GPIOD
RST

GPIOC
RST

GPIOB
RST

GPIOA
RST

rw rw rw rw rw rw rw rw rw rw

Bit 31 Reserved, must be kept at reset value.

Bit 30 FSMCRST: FSMC reset

This bit is set and cleared by software.

0: No effect
1: Reset FSMC

Note: This bit is available in Cat.4 devices only.

Bits 29:28 Reserved, must be kept at reset value.

Reset and clock control (RCC) RM0038

148/908 DocID15965 Rev 14

Bit 27 AESRST: AES reset

This bit is set and cleared by software.
0: No effect
1: Reset AES

Note: This bit is available in STM32L16x devices only.

Bit 26 Reserved, must be kept at reset value.

Bit 25 DMA2RST: DMA2 reset

This bit is set and cleared by software.

0: No effect
1: Reset DMA2

Note: This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bit 24 DMA1RST: DMA1 reset

This bit is set and cleared by software.

0: No effect
1: Reset DMA1

Bits 23:16 Reserved, must be kept at reset value.

Bit 15 FLITFRST: FLITF reset

This bit is set and cleared by software. The FLITF reset can be enabled only when the Flash
memory is in power down mode.

0: No effect
1: Reset FLITF

Bits 14:13 Reserved, must be kept at reset value.

Bit 12 CRCRST: CRC reset

This bit is set and cleared by software.
0: No effect
1: Reset CRC

Bits 11:8 Reserved, must be kept at reset value.

Bit 7 GPIOGRST: IO port G reset

This bit is set and cleared by software.
0: No effect
1: Reset IO port G

Note: This bit is available in Cat.4, Cat.5 and Cat.6 devices only.

Bit 6 GPIOFRST: IO port F reset

This bit is set and cleared by software.
0: No effect
1: Reset IO port F

Note: This bit is available in Cat.4, Cat.5 and Cat.6 devices only.

Bit 5 GPIOHRST: IO port H reset

This bit is set and cleared by software.
0: No effect
1: Reset

Bit 4 GPIOERST: IO port E reset

This bit is set and cleared by software.
0: No effect
1: Reset IO port E

DocID15965 Rev 14 149/908

RM0038 Reset and clock control (RCC)

170

6.3.6 APB2 peripheral reset register (RCC_APB2RSTR)

Address offset: 0x14

Reset value: 0x00000 0000

Access: no wait state, word, half-word and byte access

Bit 3 GPIODRST: IO port D reset

This bit is set and cleared by software.
0: No effect
1: Reset IO port D

Bit 2 GPIOCRST: IO port C reset

This bit is set and cleared by software.
0: No effect
1: Reset IO port C

Bit 1 GPIOBRST: IO port B reset

This bit is set and cleared by software.
0: No effect
1: Reset IO port B

Bit 0 GPIOARST: IO port A reset

This bit is set and cleared by software.
0: No effect
1: Reset IO port A

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.

USART1
RST Res.

SPI1
RST

SDIO
RST

Res.
ADC1
RST Reserved

TIM11
RST

TIM10
RST

TIM9
RST Res.

SYSCF
GRST

rw rw rw rw rw rw rw rw

Bits 31:15 Reserved, must be kept at reset value.

Bit 14 USART1RST: USART1 reset

This bit is set and cleared by software.
0: No effect
1: Reset USART1

Bit 13 Reserved, must be kept at reset value.

Bit 12 SPI1RST: SPI 1 reset

This bit is set and cleared by software.
0: No effect
1: Reset SPI 1

Bit 11 SDIORST: SDIO reset

This bit is set and cleared by software.
0: No effect
1: Reset SDIO

Note: This bit is available in Cat.4 devices only.

Bit10 Reserved, must be kept at reset value.

Reset and clock control (RCC) RM0038

150/908 DocID15965 Rev 14

6.3.7 APB1 peripheral reset register (RCC_APB1RSTR)

Address offset: 0x18

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

Bit 9 ADC1RST: ADC1 interface reset

This bit is set and cleared by software.
0: No effect
1: Reset ADC1 interface

Bits 8:5 Reserved, must be kept at reset value.

Bit 4 TIM11RST: TIM11 timer reset

Set and cleared by software.
0: No effect
1: Reset TIM11 timer

Bit 3 TIM10RST: TIM10 timer reset

This bit is set and cleared by software.
0: No effect
1: Reset TIM10 timer

Bit 2 TIM9RST: TIM9 timer reset

This bit is set and cleared by software.
0: No effect
1: Reset TIM9 timer

Bit 1 Reserved, must be kept at reset value.

Bit 0 SYSCFGRST: System configuration controller reset

This bit is set and cleared by software.
0: No effect
1: Reset System configuration controller

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

COMP
RST Res.

DAC
RST

PWR
RST Reserved

USB
RST

I2C2
RST

I2C1
RST

UART5
RST

UART4
RST

USART
3

RST

USART
2

RST Res.

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPI3
RST

SPI2
RST Reserved

WWDG
RST Res.

LCD
RST Reserved

TIM7
RST

TIM6
RST

TIM5
RST

TIM4
RST

TIM3
RST

TIM2
RST

rw rw rw rw rw rw rw rw rw rw

DocID15965 Rev 14 151/908

RM0038 Reset and clock control (RCC)

170

Bit 31 COMPRST: COMP interface reset

This bit is set and cleared by software.
0: No effect
1: Reset COMP interface

Bit 30 Reserved, must be kept at reset value.

Bit 29 DACRST: DAC interface reset

This bit is set and cleared by software.
0: No effect
1: Reset DAC interface

Bit 28 PWRRST: Power interface reset

This bit is set and cleared by software.
0: No effect
1: Reset power interface

Bits 27:24 Reserved, must be kept at reset value.

Bit 23 USBRST: USB reset

This bit is set and cleared by software.
0: No effect
1: Reset USB

Bit 22 I2C2RST: I2C 2 reset

This bit is set and cleared by software.
0: No effect
1: Reset I2C 2

Bit 21 I2C1RST: I2C 1 reset

This bit is set and cleared by software.
0: No effect
1: Reset I2C 1

Bit 20 UART5RST: UART 5 reset

This bit is set and cleared by software.
0: No effect
1: Reset UART 5

Note: This bit is available in Cat.4, Cat.5 and Cat.6 devices only.

Bit 19 UART4RST: UART 4 reset

This bit is set and cleared by software.
0: No effect
1: Reset UART 4

Note: This bit is available in Cat.4, Cat.5 and Cat.6 devices only.

Bit 18 USART3RST: USART 3 reset

This bit is set and cleared by software.
0: No effect
1: Reset USART 3

Bit 17 USART2RST: USART 2 reset

This bit is set and cleared by software.
0: No effect
1: Reset USART 2

Bit16 Reserved, must be kept at reset value.

Reset and clock control (RCC) RM0038

152/908 DocID15965 Rev 14

Bit 15 SPI3RST: SPI 3 reset

This bit is set and cleared by software.
0: No effect
1: Reset SPI 3

Note: This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bit 14 SPI2RST: SPI 2 reset

This bit is set and cleared by software.
0: No effect
1: Reset SPI 2

Bits 13:12 Reserved, must be kept at reset value.

Bit 11 WWDGRST: Window watchdog reset

This bit is set and cleared by software.
0: No effect
1: Reset window watchdog

Bits 10 Reserved, must be kept at reset value.

Bit 9 LCDRST: LCD reset

This bit is set and cleared by software.
0: No effect
1: Reset LCD

Bits 8:6 Reserved, must be kept at reset value.

Bit 5 TIM7RST: Timer 7 reset

This bit is set and cleared by software.
0: No effect
1: Reset timer 7

Bit 4 TIM6RST: Timer 6reset

Set and cleared by software.
0: No effect
1: Reset timer 6

Bit 3 TIM5RST: Timer 5 reset

Set and cleared by software.
0: No effect
1: Reset timer 5

Note: This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bit 2 TIM4RST: Timer 4 reset

Set and cleared by software.
0: No effect
1: Reset timer 4

Bit 1 TIM3RST: Timer 3 reset

Set and cleared by software.
0: No effect
1: Reset timer 3

Bit 0 TIM2RST: Timer 2 reset

Set and cleared by software.
0: No effect
1: Reset timer 2

DocID15965 Rev 14 153/908

RM0038 Reset and clock control (RCC)

170

6.3.8 AHB peripheral clock enable register (RCC_AHBENR)

Address offset: 0x1C

Reset value: 0x0000 8000

Access: no wait state, word, half-word and byte access

Note: When the peripheral clock is not active, the peripheral register values may not be readable
by software and the returned value is always 0x0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res.

FSMC
EN Reserved

AES
EN Res.

DMA2E
N

DMA1EN
Reserved

rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLITF
EN Reserved

CRCEN
Reserved

GPIOG
EN

GPIOF
EN

GPIOH
EN

GPIOE
EN

GPIOD
EN

GPIOC
EN

GPIOB
EN

GPIOA
EN

rw rw rw rw rw rw rw rw rw rw

Bit 31 Reserved, must be kept at reset value.

Bit 30 FSMCEN: FSMC clock enable

This bit is set and cleared by software.
0: FSMC clock disabled
1: FSMC clock enabled

Note: This bit is available in Cat.4 devices only.

Bits 29:28 Reserved, must be kept at reset value.

Bit 27 AESEN: AES clock enable

This bit is set and cleared by software.
0: AES clock disabled
1: AES clock enabled

Note: This bit is available in STM32L16x devices only.

Bit 26 Reserved, must be kept at reset value.

Bit 25 DMA2EN: DMA2 clock enable

This bit is set and cleared by software.
0: DMA2 clock disabled
1: DMA2 clock enabled

Note: This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bit 24 DMA1EN: DMA1 clock enable

This bit is set and cleared by software.
0: DMA1 clock disabled
1: DMA1 clock enabled

Bits 23:16 Reserved, must be kept at reset value.

Bit 15 FLITFEN: FLITF clock enable

This bit can be written only when the Flash memory is in power down mode.
0: FLITF clock disabled
1: FLITF clock enabled

Bits 14:13 Reserved, must be kept at reset value.

Reset and clock control (RCC) RM0038

154/908 DocID15965 Rev 14

Bit 12 CRCEN: CRC clock enable

This bit is set and cleared by software.
0: CRC clock disabled
1: CRC clock enabled

Bits 11:6 Reserved, must be kept at reset value.

Bit 7 GPIOGEN: IO port G clock enable

This bit is set and cleared by software.
0: IO port G clock disabled
1: IO port G clock enabled

Note: This bit is available in Cat.4, Cat.5 and Cat.6 devices only.

Bit 6 GPIOFEN: IO port F clock enable

This bit is set and cleared by software.
0: IO port F clock disabled
1: IO port F clock enabled

Note: This bit is available in Cat.4, Cat.5 and Cat.6 devices only.

Bit 5 GPIOHEN: IO port H clock enable

This bit is set and cleared by software.
0: IO port H clock disabled
1: IO port H clock enabled

Bit 4 GPIOEEN: IO port E clock enable

This bit is set and cleared by software.
0: IO port E clock disabled
1: IO port E clock enabled

Bit 3 GPIODEN: IO port D clock enable

Set and cleared by software.

0: IO port D clock disabled
1: IO port D clock enabled

Bit 2 GPIOCEN: IO port C clock enable

This bit is set and cleared by software.
0: IO port C clock disabled
1: IO port C clock enabled

Bit 1 GPIOBEN: IO port B clock enable

This bit is set and cleared by software.
0: IO port B clock disabled
1: IO port B clock enabled

Bit 0 GPIOAEN: IO port A clock enable

This bit is set and cleared by software.
0: IO port A clock disabled
1: IO port A clock enabled

DocID15965 Rev 14 155/908

RM0038 Reset and clock control (RCC)

170

6.3.9 APB2 peripheral clock enable register (RCC_APB2ENR)

Address: 0x20

Reset value: 0x0000 0000

Access: word, half-word and byte access

No wait states, except if the access occurs while an access to a peripheral in the APB2
domain is on going. In this case, wait states are inserted until the access to APB2 peripheral
is finished.

Note: When the peripheral clock is not active, the peripheral register values may not be readable
by software and the returned value is always 0x0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.

USART1
EN Res.

SPI1
EN

SDIO
EN Res.

ADC1
EN Reserved

TIM11
EN

TIM10
EN

TIM9
EN Res.

SYSCF
GEN

rw rw rw rw rw rw rw rw

Bits 31:15 Reserved, must be kept at reset value.

Bit 14 USART1EN: USART1 clock enable

This bit is set and cleared by software.
0: USART1 clock disabled
1: USART1 clock enabled

Bit 13 Reserved, must be kept at reset value.

Bit 12 SPI1EN: SPI 1 clock enable

This bit is set and cleared by software.
0: SPI 1 clock disabled
1: SPI 1 clock enabled

Bit 11 SDIOEN: SDIO clock enable

This bit is set and cleared by software.
0: SDIO clock disabled
1: SDIO clock enabled

Note: This bit is available in Cat.4 devices only.

Bit 10 Reserved, must be kept at reset value.

Bit 9 ADC1EN: ADC1 interface clock enable

This bit is set and cleared by software.
0: ADC1 interface disabled
1: ADC1 interface clock enabled

Bits 8:5 Reserved, must be kept at reset value.

Bit 4 TIM11EN: TIM11 timer clock enable

This bit is set and cleared by software.
0: TIM11 timer clock disabled
1: TIM11 timer clock enabled

Reset and clock control (RCC) RM0038

156/908 DocID15965 Rev 14

Bit 3 TIM10EN: TIM10 timer clock enable

This bit is set and cleared by software.
0: TIM10 timer clock disabled

1: TIM10 timer clock enabled

Bit 2 TIM9EN: TIM9 timer clock enable

This bit is set and cleared by software.
0: TIM9 timer clock disabled
1: TIM9 timer clock enabled

Bit 1 Reserved, must be kept at reset value.

Bit 0 SYSCFGEN: System configuration controller clock enable

This bit is set and cleared by software.
0: System configuration controller clock disabled
1: System configuration controller clock enabled

DocID15965 Rev 14 157/908

RM0038 Reset and clock control (RCC)

170

6.3.10 APB1 peripheral clock enable register (RCC_APB1ENR)

Address: 0x24

Reset value: 0x0000 0000

Access: word, half-word and byte access

No wait state, except if the access occurs while an access to a peripheral on APB1 domain
is on going. In this case, wait states are inserted until this access to APB1 peripheral is
finished.

Note: When the peripheral clock is not active, the peripheral register values may not be readable
by software and the returned value is always 0x0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

COMP
EN Res.

DAC
EN

PWR
EN Reserved

USB
EN

I2C2
EN

I2C1
EN

UART5
EN

UART4
EN

USART3
EN

USART2
EN Res.

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPI3
EN

SPI2
EN Reserved

WWD
GEN Res.

LCD
EN Reserved

TIM7
EN

TIM6
EN

TIM5
EN

TIM4
EN

TIM3
EN

TIM2
EN

rw rw rw rw rw rw rw rw rw rw

Bit 31 COMPEN: COMP interface clock enable

This bit is set and cleared by software.
0: COMP interface clock disabled
1: COMP interface clock enable

Bits 30 Reserved, must be kept at reset value.

Bit 29 DACEN: DAC interface clock enable

This bit is set and cleared by software.
0: DAC interface clock disabled
1: DAC interface clock enable

Bit 28 PWREN: Power interface clock enable

This bit is set and cleared by software.
0: Power interface clock disabled
1: Power interface clock enable

Bits 27:24 Reserved, must be kept at reset value.

Bit 23 USBEN: USB clock enable

This bit is set and cleared by software.
0: USB clock disabled
1: USB clock enabled

Bit 22 I2C2EN: I2C 2 clock enable

This bit is set and cleared by software.
0: I2C 2 clock disabled
1: I2C 2 clock enabled

Bit 21 I2C1EN: I2C 1 clock enable

This bit is set and cleared by software.
0: I2C 1 clock disabled
1: I2C 1 clock enabled

Reset and clock control (RCC) RM0038

158/908 DocID15965 Rev 14

Bit 20 UART5EN: UART 5 clock enable

This bit is set and cleared by software.
0: UART 5 clock disabled
1: UART 5 clock enabled

Note: This bit is available in Cat.4, Cat.5 and Cat.6 devices only.

Bit 19 UART4EN: UART 4 clock enable

This bit is set and cleared by software.

Note: 0: UART 4 clock disabled
1: UART 4 clock enabled
This bit is available in Cat.4, Cat.5 and Cat.6 devices only.

Bit 18 USART3EN: USART 3 clock enable

This bit is set and cleared by software.
0: USART 3 clock disabled
1: USART 3 clock enabled

Bit 17 USART2EN: USART 2 clock enable

This bit is set and cleared by software.
0: USART 2 clock disabled
1: USART 2 clock enabled

Bit 16 Reserved, must be kept at reset value.

Bit 15 SPI3EN: SPI 3 clock enable

This bit is set and cleared by software.
0: SPI 3 clock disabled
1: SPI 3 clock enabled

Note: This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bit 14 SPI2EN: SPI 2 clock enable

This bit is set and cleared by software.
0: SPI 2 clock disabled
1: SPI 2 clock enabled

Bits 13:12 Reserved, must be kept at reset value.

Bit 11 WWDGEN: Window watchdog clock enable

This bit is set and cleared by software.
0: Window watchdog clock disabled
1: Window watchdog clock enabled

Bit 10 Reserved, must be kept at reset value.

Bit 9 LCDEN: LCD clock enable

This bit is set and cleared by software.
0: LCD clock disabled
1: LCD clock enabled

Bits 8:6 Reserved, must be kept at reset value.

Bit 5 TIM7EN: Timer 7 clock enable

This bit is set and cleared by software.
0: Timer 7 clock disabled
1: Timer 7 clock enabled

DocID15965 Rev 14 159/908

RM0038 Reset and clock control (RCC)

170

6.3.11 AHB peripheral clock enable in low-power mode register
(RCC_AHBLPENR)

Address offset: 0x28

Reset value: 0x0101 903F

Access: no wait state, word, half-word and byte access

Note: The peripheral clock is enabled in sleep mode only if it previously has been enabled in
AHBENR register.

Bit 4 TIM6EN: Timer 6 clock enable

This bit is set and cleared by software.
0: Timer 6 clock disabled
1: Timer 6 clock enabled

Bit 3 TIM5EN: Timer 5 clock enable

This bit is set and cleared by software.
0: Timer 5 clock disabled
1: Timer 5 clock enabled

Note: This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bit 2 TIM4EN: Timer 4 clock enable

This bit is set and cleared by software.
0: Timer 4 clock disabled
1: Timer 4 clock enabled

Bit 1 TIM3EN: Timer 3 clock enable

This bit is set and cleared by software.
0: Timer 3 clock disabled
1: Timer 3 clock enabled

Bit 0 TIM2EN: Timer 2 clock enable

This bit is set and cleared by software.
0: Timer 2 clock disabled
1: Timer 2 clock enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res.

FSMC
LPEN Reserved

AES
LPEN Res.

DMA2
LPEN

DMA1
LPEN Reserved

SRAM
LPEN

rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLITF
LPEN Reserved

CRC
LPEN Reserved

GPIOG
LPEN

GPIOF
LPEN

GPIOH
LPEN

GPIOE
LPEN

GPIOD
LPEN

GPIOC
LPEN

GPIOB
LPEN

GPIOA
LPEN

rw rw rw rw rw rw rw rw rw rw

Bit 31 Reserved, must be kept at reset value.

Bit 30 FSMCLPEN: FSMC clock enable during Sleep mode

This bit is set and cleared by software.
0: FSMC clock disabled during Sleep mode
1: FSMC clock enabled during Sleep mode

Note: This bit is available in Cat.4 devices only.

Bits 29:28 Reserved, must be kept at reset value.

Reset and clock control (RCC) RM0038

160/908 DocID15965 Rev 14

Bit 27 AESLPEN: AES clock enable during Sleep mode

This bit is set and cleared by software.
0: AES clock disabled during Sleep mode
1: AES clock enabled during Sleep mode

Note: This bit is available in STM32L16x devices only.

Bit 26 Reserved, must be kept at reset value.

Bit 25 DMA2LPEN: DMA2 clock enable during Sleep mode

This bit is set and cleared by software.
0: DMA2 clock disabled during Sleep mode
1: DMA2 clock enabled during Sleep mode

Note: This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bit 24 DMA1LPEN: DMA1 clock enable during Sleep mode

This bit is set and cleared by software.
0: DMA1 clock disabled during Sleep mode
1: DMA1 clock enabled during Sleep mode

Bits 23:17 Reserved, must be kept at reset value.

Bit 16 SRAMLPEN: SRAM clock enable during Sleep mode

This bit is set and cleared by software.
0: SRAM clock disabled during Sleep mode
1: SRAM clock enabled during Sleep mode

Bit 15 FLITFLPEN: FLITF clock enable during Sleep mode

This bit can be written only when the Flash memory is in power down mode.
0: FLITF clock disabled during Sleep mode
1: FLITF clock enabled during Sleep mode

Bits 14:13 Reserved, must be kept at reset value.

Bit 12 CRCLPEN: CRC clock enable during Sleep mode

This bit is set and cleared by software.
0: CRC clock disabled during Sleep mode
1: CRC clock enabled during Sleep mode

Bits 11:8 Reserved, must be kept at reset value.

Bit 7 GPIOGLPEN: IO port G clock enable during Sleep mode

This bit is set and cleared by software.
0: IO port G clock disabled during Sleep mode
1: IO port G clock enabled during Sleep mode

Note: This bit is available in Cat.4, Cat.5 and Cat.6 devices only.

Bit 6 GPIOFLPEN: IO port F clock enable during Sleep mode

This bit is set and cleared by software.
0: IO port F clock disabled during Sleep mode
1: IO port F clock enabled during Sleep mode

Note: This bit is available in Cat.4, Cat.5 and Cat.6 devices only.

Bit 5 GPIOHLPEN: IO port H clock enable during Sleep mode

This bit is set and cleared by software.
0: IO port H clock disabled during Sleep mode
1: IO port H clock enabled during Sleep mode

DocID15965 Rev 14 161/908

RM0038 Reset and clock control (RCC)

170

6.3.12 APB2 peripheral clock enable in low-power mode register
(RCC_APB2LPENR)

Address: 0x2C

Reset value: 0x0000 521D

Access: no wait states, word, half-word and byte access

Note: The peripheral clock is enabled in sleep mode only if it’s previously has been enabled in
APB2ENR register.

Bit 4 GPIOELPEN: IO port E clock enable during Sleep mode

This bit is set and cleared by software.
0: IO port E clock disabled during Sleep mode
1: IO port E clock enabled during Sleep mode

Bit 3 GPIODLPEN: IO port D clock enable during Sleep mode

This bit is set and cleared by software.
0: IO port D clock disabled during Sleep mode
1: IO port D clock enabled during Sleep mode

Bit 2 GPIOCLPEN: IO port C clock enable during Sleep mode

This bit is set and cleared by software.
0: IO port C clock disabled during Sleep mode
1: IO port C clock enabled during Sleep mode

Bit 1 GPIOBLPEN: IO port B clock enable during Sleep mode

This bit is set and cleared by software.
0: IO port B clock disabled during Sleep mode
1: IO port B clock enabled during Sleep mode

Bit 0 GPIOALPEN: IO port A clock enable during Sleep mode

This bit is set and cleared by software.
0: IO port A clock disabled during Sleep mode
1: IO port A clock enabled during Sleep mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.

USART1
LPEN Res.

SPI1
LPEN

SDIO
LPEN Res.

ADC1
LPEN Reserved

TIM11
LPEN

TIM10
LPEN

TIM9
LPEN Res.

SYSCF
GLPEN

rw rw rw rw rw rw rw rw

Bits 31:15 Reserved, must be kept at reset value.

Bit 14 USART1LPEN: USART1 clock enable during Sleep mode

This bit is set and cleared by software.
0: USART1 clock disabled during Sleep mode
1: USART1 clock enabled during Sleep mode

Bit 13 Reserved, must be kept at reset value.

Reset and clock control (RCC) RM0038

162/908 DocID15965 Rev 14

Bit 12 SPI1LPEN: SPI 1 clock enable during Sleep mode

This bit is set and cleared by software.
0: SPI 1 clock disabled during Sleep mode
1: SPI 1 clock enabled during Sleep mode

Bit 11 SDIOLPEN: SDIO clock enable during Sleep mode

This bit is set and cleared by software.
0: SDIO clock disabled during Sleep mode
1: SDIO clock enabled during Sleep mode

Note: This bit is available in Cat.4 devices only.

Bit 10 Reserved, must be kept at reset value.

Bit 9 ADC1LPEN: ADC1 interface clock enable during Sleep mode

This bit is set and cleared by software.
0: ADC1 interface disabled during Sleep mode
1: ADC1 interface clock enabled during Sleep mode

Bits 8:5 Reserved, must be kept at reset value.

Bit 4 TIM11LPEN: TIM11 timer clock enable during Sleep mode

This bit is set and cleared by software.
0: TIM11 timer clock disabled during Sleep mode
1: TIM11 timer clock enabled during Sleep mode

Bit 3 TIM10LPEN: TIM10 timer clock enable during Sleep mode

This bit is set and cleared by software.
0: TIM10 timer clock disabled during Sleep mode
1: TIM10 timer clock enabled during Sleep mode

Bit 2 TIM9LPEN: TIM9 timer clock enable during Sleep mode

This bit is set and cleared by software.
0: TIM9 timer clock disabled during Sleep mode
1: TIM9 timer clock enabled during Sleep mode

Bit 1 Reserved, must be kept at reset value.

Bit 0 SYSCFGLPEN: System configuration controller clock enable during Sleep mode

This bit is set and cleared by software.
0: System configuration controller clock disabled during Sleep mode
1: System configuration controller clock enabled during Sleep mode

DocID15965 Rev 14 163/908

RM0038 Reset and clock control (RCC)

170

6.3.13 APB1 peripheral clock enable in low-power mode register
(RCC_APB1LPENR)

Address: 0x30

Reset value: 0xB0E6 4A37

Access: no wait state, word, half-word and byte access

Note: The peripheral clock is enabled in sleep mode only if it’s previously has been enabled in
APB1ENR register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

COMP
LPEN Res.

DAC
LPEN

PWR
LPEN Reserved

USB
LPEN

I2C2
LPEN

I2C1
LPEN

UART5
LPEN

UART4
LPEN

USART3
LPEN

USART2
LPEN Res.

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPI3
LPEN

SPI2
LPEN Reserved

WWD
GLPE

N Res.

LCD
LPEN Reserved

TIM7
LPEN

TIM6
LPEN

TIM5
LPEN

TIM4
LPEN

TIM3
LPEN

TIM2
LPEN

rw rw rw rw rw rw rw rw rw rw

Bit 31 COMPLPEN: COMP interface clock enable during Sleep mode

This bit is set and cleared by software.
0: COMP interface clock disabled during Sleep mode
1: COMP interface clock enable during Sleep mode

Bit 30 Reserved, must be kept at reset value.

Bit 29 DACLPEN: DAC interface clock enable during Sleep mode

This bit is set and cleared by software.
0: DAC interface clock disabled during Sleep mode
1: DAC interface clock enable during Sleep mode

Bit 28 PWRLPEN: Power interface clock enable during Sleep mode

This bit is set and cleared by software.
0: Power interface clock disabled during Sleep mode
1: Power interface clock enable during Sleep mode

Bits 27:24 Reserved, must be kept at reset value.

Bit 23 USBLPEN: USB clock enable during Sleep mode

This bit is set and cleared by software.
0: USB clock disabled during Sleep mode
1: USB clock enabled during Sleep mode

Bit 22 I2C2LPEN: I2C 2 clock enable during Sleep mode

This bit is set and cleared by software.
0: I2C 2 clock disabled during Sleep mode
1: I2C 2 clock enabled during Sleep mode

Bit 21 I2C1LPEN: I2C 1 clock enable during Sleep mode

This bit is set and cleared by software.
0: I2C 1 clock disabled during Sleep mode
1: I2C 1 clock enabled during Sleep mode

Reset and clock control (RCC) RM0038

164/908 DocID15965 Rev 14

Bit 20 UART5LPEN: USART 5 clock enable during Sleep mode

This bit is set and cleared by software.
0: UART 5 clock disabled during Sleep mode
1: UART 5 clock enabled during Sleep mode

Note: This bit is available in Cat.4, Cat.5 and Cat.6 devices only.

Bit 19 UART4LPEN: USART 4 clock enable during Sleep mode

This bit is set and cleared by software.
0: UART 4 clock disabled during Sleep mode
1: UART 4 clock enabled during Sleep mode

Note: This bit is available in Cat.4, Cat.5 and Cat.6 devices only.

Bit 18 USART3LPEN: USART 3 clock enable during Sleep mode

This bit is set and cleared by software.
0: USART 3 clock disabled during Sleep mode
1: USART 3 clock enabled during Sleep mode

Bit 17 USART2LPEN: USART 2 clock enable during Sleep mode

This bit is set and cleared by software.
0: USART 2 clock disabled during Sleep mode
1: USART 2 clock enabled during Sleep mode

Bit 16 Reserved, must be kept at reset value.

Bit 15 SPI3LPEN: SPI 3 clock enable during Sleep mode

This bit is set and cleared by software.
0: SPI 3 clock disabled during Sleep mode
1: SPI 3 clock enabled during Sleep mode

Note: This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bit 14 SPI2LPEN: SPI 2 clock enable during Sleep mode

This bit is set and cleared by software.
0: SPI 2 clock disabled during Sleep mode
1: SPI 2 clock enabled during Sleep mode

Bits 13:12 Reserved, must be kept at reset value.

Bit 11 WWDGLPEN: Window watchdog clock enable during Sleep mode

This bit is set and cleared by software.
0: Window watchdog clock disabled during Sleep mode
1: Window watchdog clock enabled during Sleep mode

Bit 10 Reserved, must be kept at reset value.

Bit 9 LCDLPEN: LCD clock enable during Sleep mode

This bit is set and cleared by software.
0: LCD clock disabled during Sleep mode
1: LCD clock enabled during Sleep mode

Bits 8:6 Reserved, must be kept at reset value.

Bit 5 TIM7LPEN: Timer 7 clock enable during Sleep mode

This bit is set and cleared by software.
0: Timer 7 clock disabled during Sleep mode
1: Timer 7 clock enabled during Sleep mode

DocID15965 Rev 14 165/908

RM0038 Reset and clock control (RCC)

170

6.3.14 Control/status register (RCC_CSR)

Address: 0x34

Power-on reset value: 0x0C00 0000,

Access: 0 ≤ wait state ≤ 3, word, half-word and byte access

Wait states are inserted in case of successive accesses to this register.

Note: The LSEON, LSEBYP, RTCSEL and RTCEN bits in the RCC control and status register
(RCC_CSR) are in the RTC domain. As these bits are write protected after reset, the DBP
bit in the Power control register (PWR_CR) has to be set to be able to modify them. Refer to
Section RTC and RTC backup registers for further information. These bits are only reset
after a RTC domain reset (see RTC and backup registers reset). Any internal or external
reset does not have any effect on them.

Bit 4 TIM6LPEN: Timer 6 clock enable during Sleep mode

This bit is set and cleared by software.
0: Timer 6 clock disabled during Sleep mode
1: Timer 6 clock enabled during Sleep mode

Bit 3 TIM5LPEN: Timer 5 clock enable during Sleep mode

This bit is set and cleared by software.
0: Timer 5 clock disabled during Sleep mode
1: Timer 5 clock enabled during Sleep mode

Note: This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bit 2 TIM4LPEN: Timer 4 clock enable during Sleep mode

This bit is set and cleared by software.
0: Timer 4 clock disabled during Sleep mode
1: Timer 4 clock enabled during Sleep mode

Bit 1 TIM3LPEN: Timer 3 clock enable during Sleep mode

This bit is set and cleared by software.
0: Timer 3 clock disabled during Sleep mode
1: Timer 3 clock enabled during Sleep mode

Bit 0 TIM2LPEN: Timer 2 clock enable during Sleep mode

This bit is set and cleared by software.
0: Timer 2 clock disabled during Sleep mode
1: Timer 2 clock enabled during Sleep mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LPWR
RSTF

WWDG
RSTF

IWDG
RSTF

SFT
RSTF

POR
RSTF

PIN
RSTF

OBLRS
TF

RMVF
RTC
RST

RTC
EN Reserved

RTCSEL[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

LSECS
SD

LSECS
SON

LSE
BYP

LSERDY LSEON
Reserved

LSI
RDY

LSION

r rw rw r rw r rw

Reset and clock control (RCC) RM0038

166/908 DocID15965 Rev 14

Bit 31 LPWRRSTF: Low-power reset flag

This bit is set by hardware when a Low-power management reset occurs.
It is cleared by writing to the RMVF bit, or by a POR.
0: No Low-power management reset occurred
1: Low-power management reset occurred
For further information on Low-power management reset, refer to Low-power management
reset.

Bit 30 WWDGRSTF: Window watchdog reset flag

This bit is set by hardware when a window watchdog reset occurs.
It is cleared by writing to the RMVF bit, or by a POR.
0: No window watchdog reset occurred
1: Window watchdog reset occurred

Bit 29 IWDGRSTF: Independent watchdog reset flag

This bit is set by hardware when an independent watchdog reset from VDD domain occurs.
It is cleared by writing to the RMVF bit, or by a POR.
0: No watchdog reset occurred
1: Watchdog reset occurred

Bit 28 SFTRSTF: Software reset flag

This bit is set by hardware when a software reset occurs.
It is cleared by writing to the RMVF bit, or by a POR.
0: No software reset occurred
1: Software reset occurred

Bit 27 PORRSTF: POR/PDR reset flag

This bit is set by hardware when a POR/PDR reset occurs.
It is cleared by writing to the RMVF bit.
0: No POR/PDR reset occurred
1: POR/PDR reset occurred

Bit 26 PINRSTF: PIN reset flag

This bit is set by hardware when a reset from the NRST pin occurs.
It is cleared by writing to the RMVF bit, or by a POR.
0: No reset from NRST pin occurred
1: Reset from NRST pin occurred

Bit 25 OBLRSTF Options bytes loading reset flag

This bit is set by hardware when an OBL reset occurs.
It is cleared by writing to the RMVF bit, or by a POR.
0: No OBL reset occurred
1: OBL reset occurred

Bit 24 RMVF: Remove reset flag

This bit is set by software to clear the reset flags.
0: No effect
1: Clear the reset flags

Bit 23 RTCRST: RTC software reset

This bit is set and cleared by software.
0: Reset not activated
1: Resets the RTC peripheral, its clock source selection and the backup registers.

DocID15965 Rev 14 167/908

RM0038 Reset and clock control (RCC)

170

Bit 22 RTCEN: RTC clock enable

This bit is set and cleared by software.
It is reset by setting the RTCRST bit or by a POR.
0: RTC clock disabled
1: RTC clock enabled

Bits 21:18 Reserved, must be kept at reset value.

Bits 17:16 RTCSEL[1:0]: RTC and LCD clock source selection

These bits are set by software to select the clock source for the RTC.
Once the RTC and LCD clock source has been selected it cannot be switched until RTCRST
is set or a Power On Reset occurred. The only exception is if the LSE oscillator clock was
selected, if the LSE clock stops and it is detected by the CSS, in that case the clock can be
switched.
00: No clock
01: LSE oscillator clock used as RTC/LCD clock
10: LSI oscillator clock used as RTC/LCD clock
11: HSE oscillator clock divided by a programmable prescaler (selection through the
RTCPRE[1:0] bits in the RCC clock control register (RCC_CR)) used as the RTC/LCD clock

If the LSE or LSI is used as RTC clock source, the RTC continues to work in Stop and
Standby low-power modes, and can be used as wake-up source. However, when the HSE
clock is used as RTC clock source, the RTC cannot be used in Stop and Standby low-power
modes.

Bits 15:13 Reserved, must be kept at reset value.

Bit 12 LSECSSD: CSS on LSE failure Detection

Set by hardware to indicate when a failure has been detected by the Clock Security System
on the external 32 kHz oscillator (LSE).
Reset by power on reset and RTC software reset (RTCRST bit).
0: No failure detected on LSE (32 kHz oscillator)
1: Failure detected on LSE (32 kHz oscillator)

Note: This bit is available in Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bit 11 LSECSSON CSS on LSE enable

Set by software to enable the Clock Security System on LSE (32 kHz oscillator).
LSECSSON must be enabled after the LSE and LSI oscillators are enabled (LSEON and
LSION bits enabled) and ready (LSERDY and LSIRDY flags set by hardware), and after the
RTCSEL bit is selected.
Once enabled this bit cannot be disabled, except after an LSE failure detection (LSECSSD
=1). In that case the software MUST disable the LSECSSON bit.
Reset by power on reset and RTC software reset (RTCRST bit).
0: CSS on LSE (32 kHz oscillator) OFF
1: CSS on LSE (32 kHz oscillator) ON

Note: This bit is available in Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bit 10 LSEBYP: External low-speed oscillator bypass

This bit is set and cleared by software to bypass oscillator in debug mode. This bit can be
written only when the LSE oscillator is disabled.
It is reset by setting the RTCRST bit or by a POR.
0: LSE oscillator not bypassed
1: LSE oscillator bypassed

Reset and clock control (RCC) RM0038

168/908 DocID15965 Rev 14

6.3.15 RCC register map

The following table gives the RCC register map and the reset values. The reserved memory
areas are highlighted in gray in the table.

Bit 9 LSERDY: External low-speed oscillator ready

This bit is set and cleared by hardware to indicate when the LSE oscillator is stable. After the
LSEON bit is cleared, LSERDY goes low after 6 LSE oscillator clock cycles.
It is reset by setting the RTCRST bit or by a POR.
0: External 32 kHz oscillator not ready
1: External 32 kHz oscillator ready

Bit 8 LSEON: External low-speed oscillator enable

This bit is set and cleared by software.
It is reset by setting the RTCRST bit or by a POR.
0: LSE oscillator OFF
1:LSE oscillator ON

Bits 7:2 Reserved, must be kept at reset value.

Bit 1 LSIRDY: Internal low-speed oscillator ready

This bit is set and cleared by hardware to indicate when the LSI oscillator is stable. After the
LSION bit is cleared, LSIRDY goes low after 3 LSI oscillator clock cycles. This bit is kept set
if IWDG is activated.
This bit is reset by system reset.
0: LSI oscillator not ready
1: LSI oscillator ready

Bit 0 LSION: Internal low-speed oscillator enable

This bit is set and cleared by software.
It is reset by system reset.
0: LSI oscillator OFF
1: LSI oscillator ON

Table 36. RCC register map and reset values

Off-
set

Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
RCC_CR

R
e

se
rv

ed
R

T
C

P
R

E
1

R
T

C
P

R
E

0

C
S

S
O

N

R
es

er
ve

d

P
L

L
 R

D
Y

P
L

L
O

N

Reserved H
S

E
B

Y
P

H
S

E
R

D
Y

H
S

E
O

N

Reserved M
S

IR
D

Y

M
S

IO
N

Reserved H
S

IR
D

Y

H
S

IO
N

Reset value 0 0 0 0 0 x 0 0 1 1 0 0

0x04
RCC_ICSCR MSITRIM[7:0] MSICAL[7:0]

MSIRAN
GE[2:0]

HSITRIM[4:0] HSICAL[7:0]

Reset value 0 0 0 0 0 0 0 0 x x x x x x x x 1 0 1 1 0 0 0 0 x x x x x x x x

0x08
RCC_CFGR

R
es

er
ve

d MCOPR
E

[2:0]

R
e

se
rv

e
d MCOSE

L [2:0]

PLL
DIV
[1:0]

PLLMUL[3:0
]

R
e

se
rv

e
d

P
L

L
S

R
C

R
e

se
rv

e
d PPRE2

[2:0]
PPRE1

[2:0]
HPRE[3:0]

SWS
[1:0]

SW
[1:0]

Reset value 0

DocID15965 Rev 14 169/908

RM0038 Reset and clock control (RCC)

170

0x0C
RCC_CIR

Reserved C
S

S
C

L
S

E
C

S
S

C

M
S

IR
D

Y
C

P
L

L
R

D
Y

C

H
S

E
R

D
Y

C

H
S

IR
D

Y
C

L
S

E
R

D
Y

C

L
S

IR
D

Y
C

R
e

se
rv

e
d

L
S

E
C

S
S

IE

M
S

IR
D

Y
IE

P
LL

R
D

Y
IE

H
S

E
R

D
Y

IE

H
S

IR
D

Y
IE

L
S

E
R

D
Y

IE

L
S

IR
D

Y
IE

C
S

S
F

R
e

se
rv

e
d

M
S

IR
D

Y
F

P
L

LR
D

Y
F

H
S

E
R

D
Y

F

H
S

IR
D

Y
F

LS
E

R
D

Y
F

L
S

IR
D

Y
F

Reset value 0

0x10

RCC_AHBR
STR

R
e

se
rv

ed

F
S

M
C

R
S

T

R
e

se
rv

ed

A
E

S
R

S
T

R
e

se
rv

ed

D
M

A
2

R
S

T

D
M

A
1

R
S

T

Reserved

F
L

IT
F

R
S

T

R
e

se
rv

ed

C
R

C
R

S
T

Reserved

G
P

IO
G

R
S

T

G
P

IO
F

R
S

T

G
P

IO
H

R
S

T

G
P

IO
E

R
S

T

G
P

IO
D

R
S

T

G
P

IO
C

R
S

T

G
P

IO
B

R
S

T

G
P

IO
A

R
S

T

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14

RCC_APB2R
STR Reserved

U
S

A
R

T
1

R
S

T

R
es

er
ve

d

S
P

I1
R

S
T

S
D

IO
R

S
T

R
es

er
ve

d

A
D

C
1R

S
T

Reserved

T
M

11
R

S
T

T
M

1
0

R
S

T

T
IM

9
R

S
T

R
es

er
ve

d

S
Y

S
C

F
G

R
S

T

Reset value 0 0 0 0 0 0 0 0

0x18

RCC_APB1R
STR

C
O

M
P

R
S

T

R
e

se
rv

e
d

D
A

C
R

S
T

P
W

R
R

S
T

Reserved U
S

B
R

S
T

I2
C

2R
S

T

I2
C

1R
S

T

U
A

R
T

5
R

S
T

U
A

R
T

4
R

S
T

U
S

A
R

T
3

R
S

T

U
S

A
R

T
2

R
S

T

R
e

se
rv

e
d

S
P

I3
R

S
T

S
P

I2
R

S
T

R
e

se
rv

e
d

W
W

D
R

S
T

R
e

se
rv

e
d

L
C

D
R

S
T

R
e

se
rv

e
d

T
IM

7
R

S
T

T
IM

6
R

S
T

T
IM

5
R

S
T

T
IM

4
R

S
T

T
IM

3
R

S
T

T
IM

2
R

S
T

Reset value 0

0x1C

RCC_AHBE
NR

R
e

se
rv

e
d

F
S

M
C

E
N

R
e

se
rv

e
d

A
E

S
E

N

R
e

se
rv

e
d

D
M

A
2

E
N

D
M

A
1

E
N

Reserved F
LI

T
F

E
N

R
e

se
rv

e
d

C
R

C
E

N

Reserved

G
P

IO
P

G
E

N

G
P

IO
P

F
E

N

G
P

IO
P

H
E

N

G
P

IO
P

E
E

N

G
P

IO
P

D
E

N

G
P

IO
P

C
E

N

G
P

IO
P

B
E

N

G
P

IO
P

A
E

N

Reset value 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0x20

RCC_APB2E
NR Reserved

U
S

A
R

T
1

E
N

R
e

se
rv

ed

S
P

I1
E

N

S
D

IO
E

N

R
e

se
rv

ed

A
D

C
1

E
N

Reserved T
IM

11
E

N

T
IM

1
0

E
N

T
IM

9E
N

R
e

se
rv

ed

S
Y

S
C

F
G

E
N

Reset value 0 0 0 0 0 0 0 0

0x24

RCC_APB1E
NR

C
O

M
P

E
N

R
e

se
rv

ed

D
A

C
E

N

P
W

R
E

N

Reserved U
S

B
E

N

I2
C

2
E

N

I2
C

1
E

N

U
S

A
R

T
5E

N

U
S

A
R

T
4E

N

U
S

A
R

T
3E

N

U
S

A
R

T
2E

N

R
e

se
rv

ed

S
P

I3
E

N

S
P

I2
E

N

R
e

se
rv

ed

W
W

D
G

E
N

R
e

se
rv

ed

L
C

D
E

N

Res. T
IM

7E
N

T
IM

6E
N

T
IM

5E
N

T
IM

4E
N

T
IM

3E
N

T
IM

2E
N

Reset value 0

0x28

RCC_AHBLP
ENR

R
e

se
rv

ed

F
S

M
C

L
P

E
N

R
e

se
rv

ed

A
E

S
L

P
E

N

R
e

se
rv

ed

D
M

A
2L

P
E

N

D
M

A
1L

P
E

N

Reserved

S
R

A
M

L
P

E
N

F
LI

T
F

LP
E

N

R
e

se
rv

ed

C
R

C
LP

E
N

Reserved

G
P

IO
G

L
P

E
N

G
P

IO
F

LP
E

N

G
P

IO
H

L
P

E
N

G
P

IO
E

L
P

E
N

G
P

IO
D

L
P

E
N

G
P

IO
C

L
P

E
N

G
P

IO
B

L
P

E
N

G
P

IO
A

L
P

E
N

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 36. RCC register map and reset values (continued)

Off-
set

Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Reset and clock control (RCC) RM0038

170/908 DocID15965 Rev 14

Refer to Table 5 on page 47 for the register boundary addresses.

0x2C

RCC_APB2L
P

ENR Reserved

U
S

A
R

T
1

L
P

E
N

R
e

se
rv

ed

S
P

I1
LP

E
N

S
D

IO
L

P
E

N

R
e

se
rv

ed

A
D

C
1

L
P

E
N

Reserved

T
IM

11
L

P
E

N

T
IM

1
0

LP
E

N

T
IM

9
L

P
E

N

R
e

se
rv

ed

S
Y

S
C

F
G

L
P

E
N

Reset value 1 1 1 1 1 1 1 1

0x30

RCC_APB1L
P

ENR

C
O

M
P

L
P

E
N

R
e

se
rv

e
d

D
A

C
L

P
E

N

P
W

R
L

P
E

N

Reserved

U
S

B
L

P
E

N

I2
C

2
L

P
E

N

I2
C

1
L

P
E

N

U
S

A
R

T
5

L
P

E
N

U
S

A
R

T
4

L
P

E
N

U
S

A
R

T
3

L
P

E
N

U
S

A
R

T
2

L
P

E
N

R
e

se
rv

e
d

S
P

I3
L

P
E

N

S
P

I2
L

P
E

N

R
e

se
rv

e
d

W
W

D
G

L
P

E
N

R
e

se
rv

e
d

LC
D

LP
E

N

Res.

T
IM

7
L

P
E

N

T
IM

6
L

P
E

N

T
IM

5
L

P
E

N

T
IM

4
L

P
E

N

T
IM

3
L

P
E

N

T
IM

2
L

P
E

N

Reset value 1

0x03
4

RCC_CSR

L
P

W
R

S
T

F

W
W

D
G

R
S

T
F

IW
D

G
R

S
T

F

S
F

T
R

S
T

F

P
O

R
R

S
T

F

P
IN

R
S

T
F

O
B

L
R

S
T

F

R
M

V
F

R
T

C
R

S
T

R
T

C
E

N

R
es

er
ve

d RTC
SEL
[1:0] Reserve

d LS
E

C
S

S
D

L
S

E
C

S
S

O
N

L
S

E
B

Y
P

L
S

E
R

D
Y

L
S

E
O

N

Reserved L
S

IR
D

Y

LS
IO

N

Reset value 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Table 36. RCC register map and reset values (continued)

Off-
set

Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

DocID15965 Rev 14 171/908

RM0038 General-purpose I/Os (GPIO)

190

7 General-purpose I/Os (GPIO)

This section applies to the whole STM32L1xxxx family, unless otherwise specified.

7.1 GPIO introduction

Each general-purpose I/O port has four 32-bit configuration registers (GPIOx_MODER,
GPIOx_OTYPER, GPIOx_OSPEEDR and GPIOx_PUPDR), two 32-bit data registers
(GPIOx_IDR and GPIOx_ODR), a 32-bit set/reset register (GPIOx_BSRR), a 32-bit locking
register (GPIOx_LCKR) and two 32-bit alternate function selection register (GPIOx_AFRH
and GPIOx_AFRL).

7.2 GPIO main features

• Up to 16 I/Os under control

• Output states: push-pull or open drain + pull-up/down

• Output data from output data register (GPIOx_ODR) or peripheral (alternate function
output)

• Speed selection for each I/O

• Input states: floating, pull-up/down, analog

• Input data to input data register (GPIOx_IDR) or peripheral (alternate function input)

• Bit set and reset register (GPIOx_BSRR) for bitwise write access to GPIOx_ODR

• Locking mechanism (GPIOx_LCKR) provided to freeze the I/O configuration

• Analog function

• Alternate function input/output selection registers (at most 16 AFs per I/O)

• Fast toggle capable of changing every two clock cycles

• Highly flexible pin multiplexing allows the use of I/O pins as GPIOs or as one of several
peripheral functions

7.3 GPIO functional description

Subject to the specific hardware characteristics of each I/O port listed in the datasheet, each
port bit of the general-purpose I/O (GPIO) ports can be individually configured by software in
several modes:

• Input floating

• Input pull-up

• Input-pull-down

• Analog

• Output open-drain with pull-up or pull-down capability

• Output push-pull with pull-up or pull-down capability

• Alternate function push-pull with pull-up or pull-down capability

• Alternate function open-drain with pull-up or pull-down capability

General-purpose I/Os (GPIO) RM0038

172/908 DocID15965 Rev 14

Each I/O port bit is freely programmable, however the I/O port registers have to be
accessed as 32-bit words, half-words or bytes. The purpose of the GPIOx_BSRR register is
to allow atomic read/modify accesses to any of the GPIO registers. In this way, there is no
risk of an IRQ occurring between the read and the modify access.

Figure 18 and Figure 19 show the basic structures of a standard and a 5 V tolerant I/O port
bit, respectively. Table 40 gives the possible port bit configurations.

Figure 18. Basic structure of a standard I/O port bit

DocID15965 Rev 14 173/908

RM0038 General-purpose I/Os (GPIO)

190

Figure 19. Basic structure of a five-volt tolerant I/O port bit

1. VDD_FT is a potential specific to five-volt tolerant I/Os and different from VDD.

Table 37. Port bit configuration table(1)

MODER(i)
[1:0]

OTYPER(i)
OSPEEDR(i)

[B:A]
PUPDR(i)

[1:0]
I/O configuration

01

0

SPEED

[B:A]

0 0 GP output PP

0 0 1 GP output PP + PU

0 1 0 GP output PP + PD

0 1 1 Reserved

1 0 0 GP output OD

1 0 1 GP output OD + PU

1 1 0 GP output OD + PD

1 1 1 Reserved (GP output OD)

10

0

SPEED

[B:A]

0 0 AF PP

0 0 1 AF PP + PU

0 1 0 AF PP + PD

0 1 1 Reserved

1 0 0 AF OD

1 0 1 AF OD + PU

1 1 0 AF OD + PD

1 1 1 Reserved

General-purpose I/Os (GPIO) RM0038

174/908 DocID15965 Rev 14

7.3.1 General-purpose I/O (GPIO)

During and just after reset, the alternate functions are not active and the I/O ports are
configured in input floating mode.

The debug pins are in AF pull-up/pull-down after reset:

• PA15: JTDI in pull-up

• PA14: JTCK/SWCLK in pull-down

• PA13: JTMS/SWDAT in pull-up

• PB4: NJTRST in pull-up

• PB3: JTDO in floating state

When the pin is configured as output, the value written to the output data register
(GPIOx_ODR) is output on the I/O pin. It is possible to use the output driver in push-pull
mode or open-drain mode (only the N-MOS is activated when 0 is output).

The input data register (GPIOx_IDR) captures the data present on the I/O pin at every AHB
clock cycle.

All GPIO pins have weak internal pull-up and pull-down resistors, which can be activated or
not depending on the value in the GPIOx_PUPDR register.

7.3.2 I/O pin multiplexer and mapping

The microcontroller I/O pins are connected to onboard peripherals/modules through a
multiplexer that allows only one peripheral’s alternate function (AF) connected to an I/O pin
at a time. In this way, there can be no conflict between peripherals sharing the same I/O pin.

Each I/O pin has a multiplexer with sixteen alternate function inputs (AF0 to AF15) that can
be configured through the GPIOx_AFRL (for pin 0 to 7) and GPIOx_AFRH (for pin 8 to 15)
registers:

• After reset all I/Os are connected to the system’s alternate function 0 (AF0)

• The peripherals’ alternate functions are mapped from AF1 to AF14

• Cortex®-M3 EVENTOUT is mapped on AF15

00

x x x 0 0 Input Floating

x x x 0 1 Input PU

x x x 1 0 Input PD

x x x 1 1 Reserved (input floating)

11

x x x 0 0 Input/output Analog

x x x 0 1

Reservedx x x 1 0

x x x 1 1

1. GP = general-purpose, PP = push-pull, PU = pull-up, PD = pull-down, OD = open-drain, AF = alternate
function.

Table 37. Port bit configuration table(1) (continued)

MODER(i)
[1:0]

OTYPER(i)
OSPEEDR(i)

[B:A]
PUPDR(i)

[1:0]
I/O configuration

DocID15965 Rev 14 175/908

RM0038 General-purpose I/Os (GPIO)

190

This structure is shown in Figure 20 below.

In addition to this flexible I/O multiplexing architecture, each peripheral has alternate
functions mapped onto different I/O pins to optimize the number of peripherals available in
smaller packages.

To use an I/O in a given configuration, proceed as follows:

• System function

Connect the I/O to AF0 and configure it depending on the function used:

– JTAG/SWD, after each device reset these pins are assigned as dedicated pins
immediately usable by the debugger host (not controlled by the GPIO controller)

– RTC_AF1: refer to Table 39: RTC_AF1 pin for more details about this pin
configuration

– RTC_50Hz: this pin should be configured in Input floating mode

– MCO: this pin has to be configured in alternate function mode.

Note: The user can disable some or all of the JTAG/SWD pins and so release the associated pins
for GPIO usage (released pins highlighted in gray in the table).

For more details please refer to Section 6.2.13: Clock-out capability.

• GPIO

Configure the desired I/O as output, input or analog in the GPIOx_MODER register.

• Peripheral alternate function

For the ADC and DAC, configure the desired I/O as analog in the GPIOx_MODER
register.

For other peripherals:

– Configure the desired I/O as an alternate function in the GPIOx_MODER register

– Select the type, pull-up/pull-down and output speed via the GPIOx_OTYPER,
GPIOx_PUPDR and GPIOx_OSPEEDR registers, respectively

– Connect the I/O to the desired AFx in the GPIOx_AFRL or GPIOx_AFRH register

• EVENTOUT

Configure the I/O pin used to output the Cortex®-M3 EVENTOUT signal by connecting
it to AF15

Note: EVENTOUT is not mapped onto the following I/O pins: PH0, PH1 and PH2.

Table 38. Flexible SWJ-DP pin assignment

Available debug ports

SWJ I/O pin assigned

PA13 /
JTMS/
SWDIO

PA14 /
JTCK/

SWCLK

PA15 /
JTDI

PB3 /
JTDO

PB4/
NJTRST

Full SWJ (JTAG-DP + SW-DP) - Reset state X X X X X

Full SWJ (JTAG-DP + SW-DP) but without
NJTRST

X X X X

JTAG-DP Disabled and SW-DP Enabled X X

JTAG-DP Disabled and SW-DP Disabled Released

General-purpose I/Os (GPIO) RM0038

176/908 DocID15965 Rev 14

Please refer to the “Alternate function mapping” table in the datasheets for the detailed
mapping of the system and peripherals’ alternate function I/O pins.

Figure 20. Selecting an alternate function

7.3.3 I/O port control registers

Each of the GPIOs has four 32-bit memory-mapped control registers (GPIOx_MODER,
GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR) to configure up to 16 I/Os.

The GPIOx_MODER register is used to select the I/O direction (input, output, AF, analog).
The GPIOx_OTYPER and GPIOx_OSPEEDR registers are used to select the output type
(push-pull or open-drain) and speed (the I/O speed pins are directly connected to the
corresponding GPIOx_OSPEEDR register bits whatever the I/O direction). The
GPIOx_PUPDR register is used to select the pull-up/pull-down whatever the I/O direction.

DocID15965 Rev 14 177/908

RM0038 General-purpose I/Os (GPIO)

190

7.3.4 I/O port data registers

Each GPIO has two 16-bit memory-mapped data registers: input and output data registers
(GPIOx_IDR and GPIOx_ODR). GPIOx_ODR stores the data to be output, it is read/write
accessible. The data input through the I/O are stored into the input data register
(GPIOx_IDR), a read-only register.

See Section 7.4.5: GPIO port input data register (GPIOx_IDR) (x = A..H) and Section 7.4.6:
GPIO port output data register (GPIOx_ODR) (x = A..H) for the register descriptions.

7.3.5 I/O data bitwise handling

The bit set reset register (GPIOx_BSRR) is a 32-bit register which allows the application to
set and reset each individual bit in the output data register (GPIOx_ODR). The bit set reset
register has twice the size of GPIOx_ODR.

To each bit in GPIOx_ODR, correspond two control bits in GPIOx_BSRR: BSRR(i) and
BSRR(i+SIZE). When written to 1, bit BSRR(i) sets the corresponding ODR(i) bit. When
written to 1, bit BSRR(i+SIZE) resets the ODR(i) corresponding bit.

Writing any bit to 0 in GPIOx_BSRR does not have any effect on the corresponding bit in
GPIOx_ODR. If there is an attempt to both set and reset a bit in GPIOx_BSRR, the set
action takes priority.

Using the GPIOx_BSRR register to change the values of individual bits in GPIOx_ODR is a
“one-shot” effect that does not lock the GPIOx_ODR bits. The GPIOx_ODR bits can always
be accessed directly. The GPIOx_BSRR register provides a way of performing atomic
bitwise handling.

There is no need for the software to disable interrupts when programming the GPIOx_ODR
at bit level: it is possible to modify one or more bits in a single atomic AHB write access.

7.3.6 GPIO locking mechanism

It is possible to freeze the GPIO control registers by applying a specific write sequence to
the GPIOx_LCKR register. The frozen registers are GPIOx_MODER, GPIOx_OTYPER,
GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.

To write the GPIOx_LCKR register, a specific write / read sequence has to be applied. When
the right LOCK sequence is applied to bit 16 in this register, the value of LCKR[15:0] is used
to lock the configuration of the I/Os (during the write sequence the LCKR[15:0] value must
be the same). When the LOCK sequence has been applied to a port bit, the value of the port
bit can no longer be modified until the next MCU or peripheral reset. Each GPIOx_LCKR bit
freezes the corresponding bit in the control registers (GPIOx_MODER, GPIOx_OTYPER,
GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH).

The LOCK sequence (refer to Section 7.4.8: GPIO port configuration lock register
(GPIOx_LCKR) (x = A..H)) can only be performed using a word (32-bit long) access to the
GPIOx_LCKR register due to the fact that GPIOx_LCKR bit 16 has to be set at the same
time as the [15:0] bits.

For more details please refer to LCKR register description in Section 7.4.8: GPIO port
configuration lock register (GPIOx_LCKR) (x = A..H).

General-purpose I/Os (GPIO) RM0038

178/908 DocID15965 Rev 14

7.3.7 I/O alternate function input/output

Two registers are provided to select one out of the sixteen alternate function inputs/outputs
available for each I/O. With these registers, you can connect an alternate function to some
other pin as required by your application.
This means that a number of possible peripheral functions are multiplexed on each GPIO
using the GPIOx_AFRL and GPIOx_AFRH alternate function registers. The application can
thus select any one of the possible functions for each I/O. The AF selection signal being
common to the alternate function input and alternate function output, a single channel is
selected for the alternate function input/output of one I/O.

To know which functions are multiplexed on each GPIO pin, refer to the datasheets.

Note: The application is allowed to select one of the possible peripheral functions for each I/O at a
time.

7.3.8 External interrupt/wakeup lines

All ports have external interrupt capability. To use external interrupt lines, the port must be
configured in input mode, refer to Section 10.2: External interrupt/event controller (EXTI)
and Section 10.2.3: Wakeup event management.

7.3.9 Input configuration

When the I/O port is programmed as Input:

• the output buffer is disabled

• the Schmitt trigger input is activated

• the pull-up and pull-down resistors are activated depending on the value in the
GPIOx_PUPDR register

• The data present on the I/O pin are sampled into the input data register every AHB
clock cycle

• A read access to the input data register provides the I/O State

Figure 21 shows the input configuration of the I/O port bit.

Figure 21. Input floating/pull up/pull down configurations

DocID15965 Rev 14 179/908

RM0038 General-purpose I/Os (GPIO)

190

7.3.10 Output configuration

When the I/O port is programmed as output:

• The output buffer is enabled:

– Open drain mode: A “0” in the Output register activates the N-MOS whereas a “1”
in the Output register leaves the port in Hi-Z (the P-MOS is never activated)

– Push-pull mode: A “0” in the Output register activates the N-MOS whereas a “1” in
the Output register activates the P-MOS

• The Schmitt trigger input is activated

• The weak pull-up and pull-down resistors are activated or not depending on the value
in the GPIOx_PUPDR register

• The data present on the I/O pin are sampled into the input data register every AHB
clock cycle

• A read access to the input data register gets the I/O state

• A read access to the output data register gets the last written value

Figure 22 shows the output configuration of the I/O port bit.

Figure 22. Output configuration

7.3.11 Alternate function configuration

When the I/O port is programmed as alternate function:

• The output buffer can be configured as open-drain or push-pull

• The output buffer is driven by the signal coming from the peripheral (transmitter enable
and data)

• The Schmitt trigger input is activated

• The weak pull-up and pull-down resistors are activated or not depending on the value
in the GPIOx_PUPDR register

• The data present on the I/O pin are sampled into the input data register every AHB
clock cycle

• A read access to the input data register gets the I/O state

Figure 23 shows the Alternate function configuration of the I/O port bit.

General-purpose I/Os (GPIO) RM0038

180/908 DocID15965 Rev 14

Figure 23. Alternate function configuration

7.3.12 Analog configuration

When the I/O port is programmed as analog configuration:

• The output buffer is disabled

• The Schmitt trigger input is deactivated, providing zero consumption for every analog
value of the I/O pin. The output of the Schmitt trigger is forced to a constant value (0).

• The weak pull-up and pull-down resistors are disabled

• Read access to the input data register gets the value “0”

Note: The alternate function configuration described above is not applied when the selected
alternate function is a LCD function. In case, the I/O, programmed as an alternate function
output, is configured as described in the analog configuration.

Figure 24 shows the high-impedance, analog-input configuration of the I/O port bit.

Figure 24. High impedance-analog configuration

DocID15965 Rev 14 181/908

RM0038 General-purpose I/Os (GPIO)

190

7.3.13 Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15
port pins

The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general-purpose
PC14 and PC15 I/Os, respectively, when the LSE oscillator is off. The PC14 and PC15 I/Os
are only configured as LSE oscillator pins OSC32_IN and OSC32_OUT when the LSE
oscillator is ON. This is done by setting the LSEON bit in the RCC_BDCR register. The LSE
has priority over the GPIO function.

Note: The PC14/PC15 GPIO functionality is lost when the VCORE domain is powered off (by the
device entering the standby mode). In this case the I/Os are set in analog input mode.

7.3.14 Using the OSC_IN/OSC_OUT pins as GPIO PH0/PH1 port pins

The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1
I/Os, respectively, when the HSE oscillator is OFF. (after reset, the HSE oscillator is off). The
PH0/PH1 I/Os are only configured as OSC_IN/OSC_OUT HSE oscillator pins when the
HSE oscillator is ON. This is done by setting the HSEON bit in the RCC_CR register. The
HSE has priority over the GPIO function.

7.3.15 Selection of RTC_AF1 alternate functions

The STM32L1xxxx features:

• Two GPIO pins, which can be used as wakeup pins (WKUP1 and WKUP3).

• One GPIO pin, which can be used as a wakeup pin (WKUP2), for the detection of a
tamper or time-stamp event, or to output RTC AFO_ALARM or AFO_CALIB.

The RTC_AF1 pin (PC13) can be used for the following purposes:

• Wakeup pin 2 (WKUP2): this feature is enabled by setting the EWUP2 in the
PWR_CSR register.

• RTC AFO_ALARM output: this output can be RTC Alarm A, RTC Alarm B or RTC
Wakeup depending on the OSEL[1:0] bits in the RTC_CR register.

• RTC AFO_CALIB output: this feature is enabled by setting the COE[23] bit in the
RTC_CR register.

• RTC AFI_TAMPER1: Tamper event detection

• Time-stamp event detection

The selection of the RTC AFO_ALARM output is performed through the RTC_TAFCR
register as follows: ALARMOUTTYPE is used to select whether the RTC AFO_ALARM
output is configured in push-pull or open-drain mode.

The output mechanism follows the priority order shown in Table 39.

Table 39. RTC_AF1 pin(1)

Pin
configuration
and function

AFO_ALARM
enabled

AFO_CALIB
enabled

Tamper
enabled

Time-stamp
enabled

EWUP2
enabled

ALARMOUTTYPE
AFO_ALARM
configuration

Alarm out
output OD

1 0 Don’t care Don’t care Don’t care 0

Alarm out
output PP

1 0 Don’t care Don’t care Don’t care 1

General-purpose I/Os (GPIO) RM0038

182/908 DocID15965 Rev 14

Calibration out
output PP

0 1 Don’t care Don’t care Don’t care Don’t care

TAMPER input
floating

0 0 1 0 Don’t care Don’t care

TIMESTAMP
and TAMPER
input floating

0 0 1 1 Don’t care Don’t care

TIMESTAMP
input floating

0 0 0 1 Don’t care Don’t care

Wakeup Pin 2 0 0 0 0 1 Don’t care

Standard GPIO 0 0 0 0 0 Don’t care

1. OD: open drain; PP: push-pull.

Table 39. RTC_AF1 pin(1) (continued)

Pin
configuration
and function

AFO_ALARM
enabled

AFO_CALIB
enabled

Tamper
enabled

Time-stamp
enabled

EWUP2
enabled

ALARMOUTTYPE
AFO_ALARM
configuration

DocID15965 Rev 14 183/908

RM0038 General-purpose I/Os (GPIO)

190

7.4 GPIO registers

This section gives a detailed description of the GPIO registers.
For a summary of register bits, register address offsets and reset values, refer to Table 40.

The GPIO registers can be accessed by byte (8 bits), half-words (16 bits) or words (32 bits).

7.4.1 GPIO port mode register (GPIOx_MODER) (x = A..H)

Address offset: 0x00

Reset values:

• 0xA800 0000 for port A

• 0x0000 0280 for port B

• 0x0000 0000 for other ports

7.4.2 GPIO port output type register (GPIOx_OTYPER)
(x = A..H)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MODER15[1:0] MODER14[1:0] MODER13[1:0] MODER12[1:0] MODER11[1:0] MODER10[1:0] MODER9[1:0] MODER8[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MODER7[1:0] MODER6[1:0] MODER5[1:0] MODER4[1:0] MODER3[1:0] MODER2[1:0] MODER1[1:0] MODER0[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 2y:2y+1 MODERy[1:0]: Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O direction mode.
00: Input (reset state)
01: General purpose output mode
10: Alternate function mode
11: Analog mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OT15 OT14 OT13 OT12 OT11 OT10 OT9 OT8 OT7 OT6 OT5 OT4 OT3 OT2 OT1 OT0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 OTy: Port x configuration bits (y = 0..15)

These bits are written by software to configure the output type of the I/O port.
0: Output push-pull (reset state)
1: Output open-drain

General-purpose I/Os (GPIO) RM0038

184/908 DocID15965 Rev 14

7.4.3 GPIO port output speed register (GPIOx_OSPEEDR)
(x = A..H)

Address offset: 0x08

Reset values:

• 0x0000 00C0 for port B

• 0x0000 0000 for other ports

7.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR)
(x = A..H)

Address offset: 0x0C

Reset values:

• 0x6400 0000 for port A

• 0x0000 0100 for port B

• 0x0000 0000 for other ports

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OSPEEDR15
[1:0]

OSPEEDR14
[1:0]

OSPEEDR13
[1:0]

OSPEEDR12
[1:0]

OSPEEDR11
[1:0]

OSPEEDR10
[1:0]

OSPEEDR9
[1:0]

OSPEEDR8
[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OSPEEDR7[1:0] OSPEEDR6[1:0] OSPEEDR5[1:0] OSPEEDR4[1:0] OSPEEDR3[1:0] OSPEEDR2[1:0]
OSPEEDR1

[1:0]
OSPEEDR0

1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 2y:2y+1 OSPEEDRy[1:0]: Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O output speed.
00: Low speed
01: Medium speed
10: High speed
11: Very high speed

Note: Refer to the product datasheets for the values of OSPEEDRy bits versus VDD
range and external load.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PUPDR15[1:0] PUPDR14[1:0] PUPDR13[1:0] PUPDR12[1:0] PUPDR11[1:0] PUPDR10[1:0] PUPDR9[1:0] PUPDR8[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PUPDR7[1:0] PUPDR6[1:0] PUPDR5[1:0] PUPDR4[1:0] PUPDR3[1:0] PUPDR2[1:0] PUPDR1[1:0] PUPDR0[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 2y:2y+1 PUPDRy[1:0]: Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O pull-up or pull-down
00: No pull-up, pull-down
01: Pull-up
10: Pull-down
11: Reserved

DocID15965 Rev 14 185/908

RM0038 General-purpose I/Os (GPIO)

190

7.4.5 GPIO port input data register (GPIOx_IDR) (x = A..H)

Address offset: 0x10

Reset value: 0x0000 XXXX (where X means undefined)

7.4.6 GPIO port output data register (GPIOx_ODR) (x = A..H)

Address offset: 0x14

Reset value: 0x0000 0000

7.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A..H)

Address offset: 0x18

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDR15 IDR14 IDR13 IDR12 IDR11 IDR10 IDR9 IDR8 IDR7 IDR6 IDR5 IDR4 IDR3 IDR2 IDR1 IDR0

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 IDRy: Port input data (y = 0..15)

These bits are read-only and can be accessed in word mode only. They contain the input
value of the corresponding I/O port.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ODR15 ODR14 ODR13 ODR12 ODR11 ODR10 ODR9 ODR8 ODR7 ODR6 ODR5 ODR4 ODR3 ODR2 ODR1 ODR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 ODRy: Port output data (y = 0..15)

These bits can be read and written by software.

Note: For atomic bit set/reset, the ODR bits can be individually set and reset by writing to the
GPIOx_BSRR register (x = A..H).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BR15 BR14 BR13 BR12 BR11 BR10 BR9 BR8 BR7 BR6 BR5 BR4 BR3 BR2 BR1 BR0

w w w w w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BS15 BS14 BS13 BS12 BS11 BS10 BS9 BS8 BS7 BS6 BS5 BS4 BS3 BS2 BS1 BS0

w w w w w w w w w w w w w w w w

General-purpose I/Os (GPIO) RM0038

186/908 DocID15965 Rev 14

7.4.8 GPIO port configuration lock register (GPIOx_LCKR)
(x = A..H)

This register is used to lock the configuration of the port bits when a correct write sequence
is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the
GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the
LOCK sequence has been applied on a port bit, the value of this port bit can no longer be
modified until the next MCU or peripheral reset.

Note: A specific write sequence is used to write to the GPIOx_LCKR register. Only word access
(32-bit long) is allowed during this write sequence.

Each lock bit freezes a specific configuration register (control and alternate function
registers).

Address offset: 0x1C

Reset value: 0x0000 0000

Access: 32-bit word only, read/write register

Bits 31:16 BRy: Port x reset bit y (y = 0..15)

These bits are write-only and can be accessed in word, half-word or byte mode. A read to
these bits returns the value 0x0000.
0: No action on the corresponding ODRx bit
1: Resets the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 BSy: Port x set bit y (y= 0..15)

These bits are write-only and can be accessed in word, half-word or byte mode. A read to
these bits returns the value 0x0000.
0: No action on the corresponding ODRx bit
1: Sets the corresponding ODRx bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
LCKK

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LCK15 LCK14 LCK13 LCK12 LCK11 LCK10 LCK9 LCK8 LCK7 LCK6 LCK5 LCK4 LCK3 LCK2 LCK1 LCK0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

DocID15965 Rev 14 187/908

RM0038 General-purpose I/Os (GPIO)

190

7.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A..H)

Address offset: 0x20

Reset value: 0x0000 0000

Bits 31:17 Reserved, must be kept at reset value.

Bit 16 LCKK[16]: Lock key

This bit can be read any time. It can only be modified using the lock key write sequence.
0: Port configuration lock key not active
1: Port configuration lock key active. The GPIOx_LCKR register is locked until an MCU reset
or a peripheral reset occurs.

LOCK key write sequence:
WR LCKR[16] = ‘1’ + LCKR[15:0]
WR LCKR[16] = ‘0’ + LCKR[15:0]
WR LCKR[16] = ‘1’ + LCKR[15:0]
RD LCKR
RD LCKR[16] = ‘1’ (this read operation is optional but it confirms that the lock is active)

Note: During the LOCK key write sequence, the value of LCK[15:0] must not change.

Any error in the lock sequence aborts the lock.

After the first lock sequence on any bit of the port, any read access on the LCKK bit will
return ‘1’ until the next CPU reset.

Bits 15:0 LCKy: Port x lock bit y (y= 0..15)

These bits are read/write but can only be written when the LCKK bit is ‘0.
0: Port configuration not locked
1: Port configuration locked

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AFRL7[3:0] AFRL6[3:0] AFRL5[3:0] AFRL4[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AFRL3[3:0] AFRL2[3:0] AFRL1[3:0] AFRL0[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 AFRLy: Alternate function selection for port x bit y (y = 0..7)

These bits are written by software to configure alternate function I/Os

AFRLy selection:
0000: AF0
0001: AF1
0010: AF2
0011: AF3
0100: AF4
0101: AF5
0110: AF6
0111: AF7

1000: AF8
1001: AF9
1010: AF10
1011: AF11
1100: AF12
1101: AF13
1110: AF14
1111: AF15

General-purpose I/Os (GPIO) RM0038

188/908 DocID15965 Rev 14

7.4.10 GPIO alternate function high register (GPIOx_AFRH)
(x = A..H)

Address offset: 0x24

Reset value: 0x0000 0000

7.4.11 GPIO bit reset register (GPIOx_BRR) (x = A..H)

These registers are available on Cat.3, Cat.4, Cat.5 and Cat.6 products only.

Address offset: 0x28
Reset value: 0x0000 0000

7.4.12 GPIO register map

The following table gives the GPIO register map and the reset values. The reserved
memory areas are highlighted in gray in the table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AFRH15[3:0] AFRH14[3:0] AFRH13[3:0] AFRH12[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AFRH11[3:0] AFRH10[3:0] AFRH9[3:0] AFRH8[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 AFRHy: Alternate function selection for port x bit y (y = 8..15)

These bits are written by software to configure alternate function I/Os

AFRHy selection:
0000: AF0
0001: AF1
0010: AF2
0011: AF3
0100: AF4
0101: AF5
0110: AF6
0111: AF7

1000: AF8
1001: AF9
1010: AF10
1011: AF11
1100: AF12
1101: AF13
1110: AF14
1111: AF15

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BR15 BR14 BR13 BR12 BR11 BR10 BR9 BR8 BR7 BR6 BR5 BR4 BR3 BR2 BR1 BR0

w w w w w w w w w w w w w w w w

Bits 31:16 Reserved

Bits 15:0 BRy: Port x Reset bit y (y= 0 .. 15)

These bits are write-only. A read to these bits returns the value 0x0000

0: No action on the corresponding ODRx bit
1: Reset the corresponding ODRx bit

DocID15965 Rev 14 189/908

RM0038 General-purpose I/Os (GPIO)

190

Table 40. GPIO register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
GPIOA_
MODER

M
O

D
E

R
1

5[
1

:0
]

M
O

D
E

R
1

4[
1

:0
]

M
O

D
E

R
1

3[
1

:0
]

M
O

D
E

R
1

2[
1

:0
]

M
O

D
E

R
11

[1
:0

]

M
O

D
E

R
1

0[
1

:0
]

M
O

D
E

R
9

[1
:0

]

M
O

D
E

R
8

[1
:0

]

M
O

D
E

R
7

[1
:0

]

M
O

D
E

R
6

[1
:0

]

M
O

D
E

R
5

[1
:0

]

M
O

D
E

R
4

[1
:0

]

M
O

D
E

R
3

[1
:0

]

M
O

D
E

R
2

[1
:0

]

M
O

D
E

R
1

[1
:0

]

M
O

D
E

R
0

[1
:0

]

Reset value 1 0 1 0 1 0

0x00
GPIOB_
MODER

M
O

D
E

R
1

5
[1

:0
]

M
O

D
E

R
1

4
[1

:0
]

M
O

D
E

R
1

3
[1

:0
]

M
O

D
E

R
1

2
[1

:0
]

M
O

D
E

R
11

[1
:0

]

M
O

D
E

R
1

0
[1

:0
]

M
O

D
E

R
9

[1
:0

]

M
O

D
E

R
8

[1
:0

]

M
O

D
E

R
7

[1
:0

]

M
O

D
E

R
6

[1
:0

]

M
O

D
E

R
5

[1
:0

]

M
O

D
E

R
4

[1
:0

]

M
O

D
E

R
3

[1
:0

]

M
O

D
E

R
2

[1
:0

]

M
O

D
E

R
1

[1
:0

]

M
O

D
E

R
0

[1
:0

]

Reset value 0 1 0 1 0 0 0 0 0 0 0

0x00
GPIOx_MODER
(where x = C..H)

M
O

D
E

R
1

5
[1

:0
]

M
O

D
E

R
1

4
[1

:0
]

M
O

D
E

R
1

3
[1

:0
]

M
O

D
E

R
1

2
[1

:0
]

M
O

D
E

R
11

[1
:0

]

M
O

D
E

R
1

0
[1

:0
]

M
O

D
E

R
9

[1
:0

]

M
O

D
E

R
8

[1
:0

]

M
O

D
E

R
7

[1
:0

]

M
O

D
E

R
6

[1
:0

]

M
O

D
E

R
5

[1
:0

]

M
O

D
E

R
4

[1
:0

]

M
O

D
E

R
3

[1
:0

]

M
O

D
E

R
2

[1
:0

]

M
O

D
E

R
1

[1
:0

]

M
O

D
E

R
0

[1
:0

]

Reset value 0

0x04

GPIOx_
OTYPER

(where x = A..H) Reserved O
T

1
5

O
T

1
4

O
T

1
3

O
T

1
2

O
T

11

O
T

1
0

O
T

9

O
T

8

O
T

7

O
T

6

O
T

5

O
T

4

O
T

3

O
T

2

O
T

1

O
T

0

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x08

GPIOx_
OSPEEDR

(where x = A..H)

O
S

P
E

E
D

R
1

5
[1

:0
]

O
S

P
E

E
D

R
1

4
[1

:0
]

O
S

P
E

E
D

R
1

3
[1

:0
]

O
S

P
E

E
D

R
1

2
[1

:0
]

O
S

P
E

E
D

R
11

[1
:0

]

O
S

P
E

E
D

R
1

0
[1

:0
]

O
S

P
E

E
D

R
9[

1
:0

]

O
S

P
E

E
D

R
8[

1
:0

]

O
S

P
E

E
D

R
7[

1
:0

]

O
S

P
E

E
D

R
6[

1
:0

]

O
S

P
E

E
D

R
5[

1
:0

]

O
S

P
E

E
D

R
4[

1
:0

]

O
S

P
E

E
D

R
3[

1
:0

]

O
S

P
E

E
D

R
2[

1
:0

]

O
S

P
E

E
D

R
1[

1
:0

]

O
S

P
E

E
D

R
0[

1
:0

]

Reset value 0

0x08
GPIOB_

OSPEEDR

O
S

P
E

E
D

R
15

[1
:0

]

O
S

P
E

E
D

R
14

[1
:0

]

O
S

P
E

E
D

R
13

[1
:0

]

O
S

P
E

E
D

R
12

[1
:0

]

O
S

P
E

E
D

R
11

[1
:0

]

O
S

P
E

E
D

R
10

[1
:0

]

O
S

P
E

E
D

R
9

[1
:0

]

O
S

P
E

E
D

R
8

[1
:0

]

O
S

P
E

E
D

R
7

[1
:0

]

O
S

P
E

E
D

R
6

[1
:0

]

O
S

P
E

E
D

R
5

[1
:0

]

O
S

P
E

E
D

R
4

[1
:0

]

O
S

P
E

E
D

R
3

[1
:0

]

O
S

P
E

E
D

R
2

[1
:0

]

O
S

P
E

E
D

R
1

[1
:0

]

O
S

P
E

E
D

R
0

[1
:0

]
Reset value 0 1 1 0 0 0 0 0 0

0x0C
GPIOA_PUPDR

P
U

P
D

R
1

5
[1

:0
]

P
U

P
D

R
1

4
[1

:0
]

P
U

P
D

R
1

3
[1

:0
]

P
U

P
D

R
1

2
[1

:0
]

P
U

P
D

R
11

[1
:0

]

P
U

P
D

R
1

0
[1

:0
]

P
U

P
D

R
9[

1:
0

]

P
U

P
D

R
8[

1:
0

]

P
U

P
D

R
7[

1:
0

]

P
U

P
D

R
6[

1:
0

]

P
U

P
D

R
5[

1:
0

]

P
U

P
D

R
4[

1:
0

]

P
U

P
D

R
3[

1:
0

]

P
U

P
D

R
2[

1:
0

]

P
U

P
D

R
1[

1:
0

]

P
U

P
D

R
0[

1:
0

]

Reset value 0 1 1 0 0 1 0

0x0C
GPIOB_PUPDR

P
U

P
D

R
1

5
[1

:0
]

P
U

P
D

R
1

4
[1

:0
]

P
U

P
D

R
1

3
[1

:0
]

P
U

P
D

R
1

2
[1

:0
]

P
U

P
D

R
11

[1
:0

]

P
U

P
D

R
1

0
[1

:0
]

P
U

P
D

R
9[

1:
0

]

P
U

P
D

R
8[

1:
0

]

P
U

P
D

R
7[

1:
0

]

P
U

P
D

R
6[

1:
0

]

P
U

P
D

R
5[

1:
0

]

P
U

P
D

R
4[

1:
0

]

P
U

P
D

R
3[

1:
0

]

P
U

P
D

R
2[

1:
0

]

P
U

P
D

R
1[

1:
0

]

P
U

P
D

R
0[

1:
0

]

Reset value 0 1 0 0 0 0 0 0 0 0

0x0C
GPIOx_PUPDR
(where x = C..H)

P
U

P
D

R
1

5
[1

:0
]

P
U

P
D

R
1

4
[1

:0
]

P
U

P
D

R
1

3
[1

:0
]

P
U

P
D

R
1

2
[1

:0
]

P
U

P
D

R
11

[1
:0

]

P
U

P
D

R
1

0
[1

:0
]

P
U

P
D

R
9[

1:
0

]

P
U

P
D

R
8[

1:
0

]

P
U

P
D

R
7[

1:
0

]

P
U

P
D

R
6[

1:
0

]

P
U

P
D

R
5[

1:
0

]

P
U

P
D

R
4[

1:
0

]

P
U

P
D

R
3[

1:
0

]

P
U

P
D

R
2[

1:
0

]

P
U

P
D

R
1[

1:
0

]

P
U

P
D

R
0[

1:
0

]

Reset value 0

General-purpose I/Os (GPIO) RM0038

190/908 DocID15965 Rev 14

Refer to Section: Memory map for the register boundary addresses.

0x10
GPIOx_IDR

(where x = A..H) Reserved ID
R

15

ID
R

14

ID
R

13

ID
R

12

ID
R

11

ID
R

10

ID
R

9

ID
R

8

ID
R

7

ID
R

6

ID
R

5

ID
R

4

ID
R

3

ID
R

2

ID
R

1

ID
R

0

Reset value x x x x x x x x x x x x x x x x

0x14
GPIOx_ODR

(where x = A..H) Reserved

O
D

R
15

O
D

R
14

O
D

R
13

O
D

R
12

O
D

R
11

O
D

R
10

O
D

R
9

O
D

R
8

O
D

R
7

O
D

R
6

O
D

R
5

O
D

R
4

O
D

R
3

O
D

R
2

O
D

R
1

O
D

R
0

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
GPIOx_BSRR

(where x = A..H) B
R

15

B
R

14

B
R

13

B
R

12

B
R

11

B
R

10

B
R

9

B
R

8

B
R

7

B
R

6

B
R

5

B
R

4

B
R

3

B
R

2

B
R

1

B
R

0

B
S

1
5

B
S

1
4

B
S

1
3

B
S

1
2

B
S

11

B
S

1
0

B
S

9

B
S

8

B
S

7

B
S

6

B
S

5

B
S

4

B
S

3

B
S

2

B
S

1

B
S

0

Reset value 0

0x1C
GPIOx_LCKR

(where x = A..H) Reserved LC
K

K

LC
K

1
5

LC
K

1
4

LC
K

1
3

LC
K

1
2

L
C

K
11

LC
K

1
0

L
C

K
9

L
C

K
8

L
C

K
7

L
C

K
6

L
C

K
5

L
C

K
4

L
C

K
3

L
C

K
2

L
C

K
1

L
C

K
0

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
GPIOx_AFRL

(where x = A..H)
AFRL7[3:0] AFRL6[3:0] AFRL5[3:0] AFRL4[3:0] AFRL3[3:0] AFRL2[3:0] AFRL1[3:0] AFRL0[3:0]

Reset value 0

0x24
GPIOx_AFRH

(where x = A..H)
AFRH15[3:0] AFRH14[3:0] AFRH13[3:0] AFRH12[3:0] AFRH11[3:0] AFRH10[3:0] AFRH9[3:0] AFRH8[3:0]

Reset value 0

0x28

GPIOx_BRR

(where x =

A..H)
Reserved B

R
1

5

B
R

1
4

B
R

1
3

B
R

1
2

B
R

11

B
R

1
0

B
R

9

B
R

8

B
R

7

B
R

6

B
R

5

B
R

4

B
R

3

B
R

2

B
R

1

B
R

0

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 40. GPIO register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

DocID15965 Rev 14 191/908

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

223

8 System configuration controller (SYSCFG) and
routing interface (RI)

This section applies to the whole STM32L1xxxx family, unless otherwise specified.

8.1 SYSCFG and RI introduction

The system configuration controller is mainly used to remap the memory accessible in the
code area, and manage the external interrupt line connection to the GPIOs.

The routing interface provides high flexibility by allowing the software routing of I/Os toward
the input captures of the STM32L1xxxx three general-purpose timers (TIM2, TIM3 and
TIM4).
The STM32L1xxxx ADC has an analog input matrix that is usually managed by a specific
ADC interface. With the routing interface, it is possible to connect several I/O analog pins to
a given channel of the ADC matrix by managing the analog switches of each I/O.

8.2 RI main features

• TIM2/TIM3/TIM4’s input captures 1,2,3 and four routing selections from selectable I/Os

• Routing of internal reference voltage VREFINT to selectable I/Os for all packages

• Up to 40 external I/Os + 3 internal nodes (internal reference voltage + temperature
sensor + VDD and VDD/2 measurement by VCOMP) can be used for data acquisition
purposes in conjunction with the ADC interface

• Input and output routing of COMP1 and COMP2

Note: The RI registers can be accessed only when the comparator interface clock is enabled by
setting the COMPEN bit in the RCC_APB1ENR register. Refer to Section 6.3.10 on page
157.

System configuration controller (SYSCFG) and routing interface (RI) RM0038

192/908 DocID15965 Rev 14

Figure 25. Routing interface (RI) block diagram for Cat.1 and Cat.2 devices

1. For the list of all available I/Os on the device please refer to the device datasheet.

DocID15965 Rev 14 193/908

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

223

Figure 26. Routing interface (RI) block diagram for Cat.3 devices

1. These I/O pins cannot be used as COMP1 inputs.

2. For the list of all available I/Os on the device please refer to the device datasheet.

System configuration controller (SYSCFG) and routing interface (RI) RM0038

194/908 DocID15965 Rev 14

Figure 27. Routing interface (RI) block diagram for Cat.4, Cat.5 and Cat.6 devices

1. These I/O pins cannot be used as COMP1 inputs.

2. For the list of all available I/Os on the device please refer to the device datasheet.

DocID15965 Rev 14 195/908

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

223

8.3 RI functional description

8.3.1 Special I/O configuration

Two matrices of switches control the routing of I/Os toward analog blocks (that is the ADC or
the comparator): I/O switches and ADC switches (refer to Figure 25: Routing interface (RI)
block diagram for Cat.1 and Cat.2 devices).

• When I/Os are used for analog purposes other than data acquisition, the I/O and ADC
switch matrices have to be controlled by the RI_ASCR1 and RI_ASCR2 registers.
These registers are then used to close or open switches by software: the switch is
opened if the corresponding bit is reset and closed if set.

• When I/Os are used as ADC inputs for data acquisition purposes, the I/O and ADC
switch matrices are directly controlled by the ADC interface. The corresponding bits in
the RI_ASCR1 and RI_ASCR2 registers must be kept cleared (switches open).

Cat.3, Cat.4, Cat.5 and Cat.6 devices:

Up to 6 I/Os are connected directly and independently to the ADC, these 6 I/Os offer the
capability of fast data acquisition (Max ADC acquisition time). All others ADC channels have
reduced sampling rate, see product datasheet. The output of the operational amplifiers 1
and 2 are directly connected to the ADC switches matrix and can be used also at the full
speed sampling rate.This is not the case for operational amplifier 3 because its output goes
through an additional COMP1_SW1 switch before to be connected to ADC switches matrix,
available in Cat.4 devices only.

As shown in Table 41: I/O groups and selection on page 196, 50 I/Os are grouped within 11
groups to allow the I/Os to be used for the touch sensing interface. When they are
programmed in input mode by standard GPIO registers, the Schmidt trigger and the
hysteresis are enable by default. In this mode, registers RI_ASCRx and RI_HYSCR allow
simultaneously to close the corresponding analog switch pad and disable the Schmidt
trigger hysteresis. So, It is possible to read the corresponding port with a trigger level of
VDDIO/2.

Among these 11 groups 7 groups (34 I/Os) are multiplexed to the ADC thanks to analog
switches. With the 6 fast independent channels, 40 I/Os are available for data acquisition
but only 29 I/Os are available for COMP1 positive input (see Figure 63: COMP1
interconnections (Cat.1 and Cat.2 devices) on page 334 and Figure 64: COMP1
interconnections (Cat.3, Cat.4, Cat.5 and Cat.6 devices) on page 335).

Specific channels dedicated for each OPAMP use 3 I/Os among the 40 I/Os discussed
above when these amplifiers are selected. (see Section 15: Operational amplifiers (OPAMP)
on page 344)

Cat.1 and Cat.2 devices:

Note: For all I/Os used as comparator inputs, the I/O port configuration must be kept in analog
mode.

Table 41 shows the grouping of I/Os, the control register bits used to configure them as
analog inputs or outputs (irrespective of standard I/O port programming), and the associated
ADC channel number.

System configuration controller (SYSCFG) and routing interface (RI) RM0038

196/908 DocID15965 Rev 14

Table 41. I/O groups and selection

Group
numbering

GPIO port
Analog ADC

channel
I/O + ADC analog switch I/O functions

Group
1

GR1-1 PA0 ADC_IN0 RI_ASCR1->CH0

COMP1_INP
GR1-2 PA1 ADC_IN1 RI_ASCR1->CH1

GR1-3 PA2 ADC_IN2 RI_ASCR1->CH2

GR1-4 PA3 ADC_IN3 RI_ASCR1->CH3

Group
2

GR2-1 PA6 ADC_IN6 RI_ASCR1->CH6

COMP1_INP

GR2-2 PA7 ADC_IN7 RI_ASCR1->CH7

GR2-3 PF15 ADC_IN7b RI_ASCR2->CH7b

GR2-4(1) PG0(2) ADC_IN8b RI_ASCR2->CH8b

GR2-5(1) PG1(2) ADC_IN9b RI_ASCR2->CH9b

Group
3

GR3-1 PB0 ADC_IN8 RI_ASCR1->CH8
COMP1_INP /VREF_OUT

GR3-2 PB1 ADC_IN9 RI_ASCR1->CH9

GR3-3(1) PB2 ADC_IN0b RI_ASCR2->CH0b

COMP1_INPGR3-4(1) PF11 ADC_IN1b RI_ASCR2->CH1b

GR3-5(1) PF12 ADC_IN2b RI_ASCR2->CH2b

Group
4

GR4-1 PA8

NA

RI_ASCR2->GR4-1

-GR4-2 PA9 RI_ASCR2->GR4-2

GR4-3 PA10 RI_ASCR2->GR4-3

Group
5

GR5-1 PA13

NA

RI_ASCR2->GR5-1

-GR5-2 PA14 RI_ASCR2->GR5-2

GR5-3 PA15 RI_ASCR2->GR5-3

Group
6

GR6-1 PB4

NA

RI_ASCR2->GR6-1

COMP2_INP GR6-2 PB5 RI_ASCR2->GR6-2

GR6-3(1) PB6 RI_ASCR2->GR6-3

GR6-4(1) PB7 RI_ASCR2->GR6-4 COMP2_INP/PVD_IN

Group
7

GR7-1 PB12
ADC_IN18

/ADC_IN18b
RI_ASCR1->CH18

COMP1_INP

GR7-2 PB13
ADC_IN19/
ADC_IN19b

RI_ASCR1->CH19

GR7-3 PB14
ADC_IN20/
ADC_IN20b

RI_ASCR1->CH20

GR7-4 PB15
ADC_IN21/
ADC_IN21b

RI_ASCR1->CH21

GR7-5(1) PG2(2) ADC_IN10b RI_ASCR2->CH10b

GR7-6(1) PG3(2) ADC_IN11b RI_ASCR2->CH11b

GR7-7(1) PG4(2) ADC_IN12b RI_ASCR2->CH12b

DocID15965 Rev 14 197/908

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

223

Group
8

GR8-1 PC0 ADC_IN10 RI_ASCR1->CH10

COMP1_INP

GR8-2 PC1 ADC_IN11 RI_ASCR1->CH11

GR8-3 PC2 ADC_IN12 RI_ASCR1->CH12

GR8-4 PC3
ADC_IN13/
ADC_IN13b

RI_ASCR1->CH13

Group
9

GR9-1 PC4
ADC_IN14/
ADC_IN14b

RI_ASCR1->CH14

COMP1_INPGR9-2 PC5
ADC_IN15/
ADC_IN15b

RI_ASCR1->CH15

GR9-3(1) PF13 ADC_IN3b RI_ASCR2->GR9-3

GR9-4(1) PF14 ADC_IN6b RI_ASCR2->GR9-4

Group
10

GR10-1 PC6

NA

RI_ASCR2->GR10-1

-
GR10-2 PC7 RI_ASCR2->GR10-2

GR10-3 PC8 RI_ASCR2->GR10-3

GR10-4 PC9 RI_ASCR2->GR10-4

Group
11

GR11-1 PF6
ADC_IN27/
ADC_IN27b

RI_ASCR1->CH27

COMP1_INP

GR11-2 PF7
ADC_IN28/
ADC_IN28b

RI_ASCR1->CH28

GR11-3 PF8
ADC_IN29/
ADC_IN29b

RI_ASCR1->CH29

GR11-4 PF9
ADC_IN30/
ADC_IN30b

RI_ASCR1->CH30

GR11-5 PF10
ADC_IN31/
ADC_IN31b

RI_ASCR1->CH31

Direct channels

PA4
ADC_IN4/
ADC_IN4b

RI_ASCR1->CH4 COMP1_INP/DAC1

PA5
ADC_IN5/
ADC_IN5b

RI_ASCR1->CH5 COMP1_INP/DAC2

PE7
ADC_IN22/
ADC_IN22b

RI_ASCR1->CH22 COMP1_INP

PE8
ADC_IN23/
ADC_IN23b

RI_ASCR1->CH23 COMP1_INP

PE9
ADC_IN24/
ADC_IN24b

RI_ASCR1->CH24 COMP1_INP

PE10
ADC_IN25/
ADC_IN25b

RI_ASCR1->CH25 COMP1_INP

OPAMP1_VOUT - ADC_IN3 NA -

Direct channel PA3 ADC_IN3 COMP_CSR->FCH3 -

Table 41. I/O groups and selection (continued)

Group
numbering

GPIO port
Analog ADC

channel
I/O + ADC analog switch I/O functions

System configuration controller (SYSCFG) and routing interface (RI) RM0038

198/908 DocID15965 Rev 14

OPAMP2_VOUT ADC_IN8 NA -

Direct channel PB0 ADC_IN8 COMP_CSR->FADC_IN8 -

OPAMP3_VOUT ADC_IN13 NA -

- PC3 ADC_IN13 COMP_CSR->RCH13 -

- VTS
ADC_IN16/
ADC_IN16b

NA -

- VREFINT
ADC_IN17/
ADC_IN17b

NA -

- VCOMP
ADC_IN26/
ADC_IN26b

NA -

NA PB3 NA COMP2_INM

NA PB6(1) NA COMP2_INP

NA PB7 NA PVD_IN/COMP2_INP

1. Available only in Cat.3, Cat.4, Cat.5 and Cat.6 devices.

2. When used in touch sensing solutions, these GPIOs can only be configured as sampling capacitor I/Os.

Table 41. I/O groups and selection (continued)

Group
numbering

GPIO port
Analog ADC

channel
I/O + ADC analog switch I/O functions

DocID15965 Rev 14 199/908

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

223

8.3.2 Input capture routing

By default (at reset), the four input captures of the three general-purpose timers (TIM2,
TIM3, TIM4) are connected to the I/O port specified in the STM32L1xxxx datasheet’s “pin
descriptions” table.

The I/O routing can be changed by programming register RI_ICR as indicated below:

• The input capture 1 of TIM2, TIM3 and TIM4 can be rerouted from any I/O by
configuring the IC1IOS[3:0] bits in RI_ICR.

• The input capture 2 of TIM2, TIM3 and TIM4 can be rerouted from any I/O by
configuring the IC2IOS[3:0] bits in RI_ICR.

• The input capture 3 of TIM2, TIM3 and TIM4 can be rerouted from any I/O by
configuring the IC3IOS[3:0] bits in RI_ICR.

• The input capture 4 of TIM2, TIM3 and TIM4 can be rerouted from any I/O by
configuring the IC4IOS[3:0] bits in RI_ICR.

Refer to the following table for I/O routing to the input capture timers.

This capability can be applied on only one out of the three timers at a time by configuring
TIM[1:0] in RI_ICR. When TIM[1:0]= 00 none of the three timers are affected by the I/O
routing: the defaults connections are enabled.

Moreover, when a timer is selected, I/O routing can be enabled for one or more input
captures by configuring the IC1, IC2, IC3 and IC4 bits in RI_ICR.

Refer to Table 42 for the I/O correspondence and to Table 43 for the timer selection.

Table 42. Input capture mapping

IC1IOS / IC2IOS / IC3IOS / IC4IOS TIMx IC1 / TIMx IC2 / TIMx IC3 / TIMx IC4

0000 PA0 / PA1 / PA2 / PA3

0001 PA4 / PA5 / PA6 / PA7

0010 PA8 / PA9 / PA10 / PA11

0011 PA12 / PA13 / PA14 / PA15

0100 PC0 / PC1 / PC2 / PC3

0101 PC4 / PC5 / PC6 / PC7

0110 PC8 / PC9 / PC10 / PC11

0111 PC12 / PC13 / PC14 / PC15

1000 PD0 / PD1 / PD2 / PD3

1001 PD4 / PD5 / PD6 / PD7

1010 PD8 / PD9 / PD10 / PD11

1011 PD12 / PD13 / PD14 / PD15

1100 PE0 / PE1 / PE2 / PE3

1101 PE4 / PE5 / PE6 / PE7

1110 PE8 / PE9 / PE10 / PE11

1111 PE12 / PE13 / PE14 / PE15

System configuration controller (SYSCFG) and routing interface (RI) RM0038

200/908 DocID15965 Rev 14

Note: The I/O should be configured in alternate function mode (AF14).

8.3.3 Reference voltage routing

Figure 28. Internal reference voltage output

The VREFINT output can be routed to any I/O in group 3 by following this procedure:

1. Set the VREFOUTEN bit in COMP_CSR.

2. Close the analog switch of I/Os in group 3 by setting CH8 or CH9 in RI_ASCR1.

Table 43. Timer selection

TIM[1:0] Selected timer

00 No timer selected, default routing on all timers

01 TIM2 selected

10 TIM3 selected

11 TIM4 selected

Table 44. Input capture selection

IC4 / IC3 / IC2 / IC1 Selected input capture

0 IC deselected, default routing on the input capture (AF)

1 Input capture routing follows Table 43

DocID15965 Rev 14 201/908

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

223

8.4 RI registers

The peripheral registers have to be accessed by words (32-bit).

8.4.1 RI input capture register (RI_ICR)

The RI_ICR register is used to select the routing of 4 full ports to the input captures of TIM2,
TIM3 and TIM4.

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
IC4 IC3 IC2 IC1 TIM[1:0]

rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IC4IOS[3:0] IC3IOS[3:0] IC2IOS[3:0] IC1IOS[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:22 Reserved, must be kept at reset value

Bit 21 IC4: This bit is set and cleared by software to select the standard AF or the large routing
capability on the input capture 4 of the timer selected by TIM[1:0] (bits 17:16).

0: AF on IC4
1: Multiple port routing capability according to IC4IOS[3:0] (bits 15:12)

Bit 20 IC3: This bit is set and cleared by software to select the standard AF or the large routing
capability on the input capture 3 of the timer selected by TIM[1:0] (bits 17:16).

0: AF on IC3
1: Multiple port routing capability according to IC3IOS[3:0] (bits 11:8)

Bit 19 IC2: This bit is set and cleared by software to select the standard AF or the large routing
capability on the input capture 2 of the timer selected by TIM[1:0] (bits 17:16).

0: AF on IC2
1: Multiple port routing capability according to IC2IOS[3:0] (bits 7:4)

Bit 18 IC1: This bit is set and cleared by software to select the standard AF or the large routing
capability on the input capture 2 of the timer selected by TIM[1:0] (bits 17:16).

0: AF on IC1
1: Multiple port routing capability according to IC1IOS[3:0] (bits 3:0)

Bits 17:16 TIM[1:0]: Timer select bits

These bits are set and cleared by software. They are used to select one out of three timers
or none.
00: non timer selected
01: TIM2 selected
10: TIM3 selected
11: TIM4 selected

System configuration controller (SYSCFG) and routing interface (RI) RM0038

202/908 DocID15965 Rev 14

Note: The standard AFs dedicated to TIM2 are:
IC4-> PA3,PB11 or PE12
IC3-> PA2, PB10 or PE11
IC2-> PA1, PB3 or PE10
IC1-> PA0, PA5, PA15 or PE9

The standard AFs dedicated to TIM3 are:
IC4-> PB1 or PC9

Bits 15:12 IC4IOS[3:0]: Input capture 4 select bits

These bits are set and cleared by software. They select the input port to be routed to the IC4 of
the selected timer (see bits 16:17).

0000: PA3 1000: PD3
0001: PA7 1001: PD7
0010: PA11 1010: PD11
0011: PA15 1011: PD15
0100: PC3 1100: PE3
0101: PC7 1101: PE7
0110: PC11 1110: PE11
0111: PC15 1111: PE15

Bits 11:8 IC3IOS[3:0]: Input capture 3 select bits

These bits are set and cleared by software. They select the input port to be routed toward the
IC3 of the selected timer (see bits 16:17).

0000: PA2 1000: PD2
0001: PA6 1001: PD6
0010: PA10 1010: PD10
0011: PA14 1011: PD14
0100: PC2 1100: PE2
0101: PC6 1101: PE6
0110: PC10 1110: PE10
0111: PC14 1111: PE14

Bits 7:4 IC2IOS[3:0]: Input capture 2 select bits

These bits are set and cleared by software. They select the input port to be routed toward the
IC2 of the selected timer (see bits 16:17).

0000: PA1 1000: PD1
0001: PA5 1001: PD5
0010: PA9 1010: PD9
0011: PA13 1011: PD13
0100: PC 11100: PE1
0101: PC5 1101: PE5
0110: PC9 1110: PE9
0111: PC13 1111: PE13

Bits 3:0 IC1IOS[3:0]: Input capture 1 select bits

These bits are set and cleared by software. They select the input port to be routed toward the
IC1 of the selected timer (see bits 16:17).

0000: PA0 1000: PD0
0001: PA4 1001: PD4
0010: PA8 1010: PD8
0011: PA12 1011: PD12
0100: PC0 1100: PE0
0101: PC4 1101: PE4
0110: PC8 1110: PE8
0111: PC12 1111: PE12

DocID15965 Rev 14 203/908

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

223

IC3-> PB0 or PC8
IC2-> PA7, PC7, PB5 or PE4
IC1-> PA6, PC6, PB4 or PE3

The standard AFs dedicated to TIM4 are:
IC4-> PD15 or PB9
IC3-> PD14 or PB8
IC2-> PD13 or PB7
IC1-> PD12 or PB6

8.4.2 RI analog switches control register (RI_ASCR1)

The RI_ASCR1 register is used to configure the analog switches of the I/Os linked to the
ADC. These I/Os are pointed to by the ADC channel number.

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SCM
CH30
GR11-

4

CH29
GR11-

3

CH28
GR11-

2

CH27
GR11-

1
Vcomp CH25 CH24 CH23 CH22

CH21
GR7-4

CH20
GR7-3

CH19
GR7-2

CH18
GR7-1 Res.

CH31
GR11-5

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CH15
GR9-2

CH14
GR9-1

CH13
GR8-4

CH12
GR8-3

CH11
GR8-2

CH10
GR8-1

CH9
GR3-2

CH8
GR3-1

CH7
GR2-2

CH6
GR2-1

CH5 CH4
CH3

GR1-4
CH2

GR1-3
CH1

GR1-2
CH0

GR1-1

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31 SCM: ADC Switch control mode

This bit is set and cleared by software. When this bit is set, setting a bit in RI_ASCRx that
controls an analog I/O switch will also close the corresponding switch of the ADC switch
matrix. When this bit is reset, the other bits in RI_ASCRx do not control the switches of the
ADC switch matrix.
0: ADC analog switches open or controlled by the ADC interface
1: ADC analog switches closed if the corresponding I/O switch is also closed

Bits 30:27 CH[30:27]/GR11[4:1] I/O Analog switch control

These bits are set and cleared by software to control the I/O analog switches.

0: Analog switch open or controlled by the ADC interface
1: Analog switch closed

Note: These bits are available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only

Bit 26 VCOMP: ADC analog switch selection for internal node to comparator 1

This bit is set and cleared by software to control the VCOMP ADC analog switch. See
Figure 63 on page 334 and Figure 64 on page 335.
0: Analog switch open
1: Analog switch closed

Bits 25:22 CH[25:22]: Analog I/O switch control of channels CH[25:22]

These bits are set and cleared by software to control the analog switches of the ADC switch
matrix. If the I/O is used as an ADC input, the switch must be left open to allow the ADC to
control it.
0: Analog switch open
1: Analog switch closed

System configuration controller (SYSCFG) and routing interface (RI) RM0038

204/908 DocID15965 Rev 14

Bits 21:18 CH[21:18]/GR7[4:1] I/O Analog switch control

These bits are set and cleared by software to control the I/O analog switches.

0: Analog switch open or controlled by the ADC interface
1: Analog switch closed

Bit 17 Reserved

Bit 16 CH31/GR11-5 I/O Analog switch control

This bit is set and cleared by software to control the I/O analog switch.

0: Analog switch open or controlled by the ADC interface
1: Analog switch closed

Note: This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only

Bits 15:14 CH[15:14] GR9[2:1]: I/O Analog switch control

These bits are set and cleared by software to control the I/O analog switches.

0: Analog switch open or controlled by the ADC interface
1: Analog switch closed

Bits 13:10 CH[13:10] GR8[4:1]: I/O Analog switch control

These bits are set and cleared by software to control the I/O analog switches.

0: Analog switch open or controlled by the ADC interface
1: Analog switch closed

Bits 9:8 CH[9:8] GR3[2:1]: I/O Analog switch control

These bits are set and cleared by software to control the I/O analog switches.

0: Analog switch open or controlled by the ADC interface
1: Analog switch closed

Bits 7:6 CH[7:6] GR2[2:1]: I/O Analog switch control

These bits are set and cleared by software to control the I/O analog switches.

0: Analog switch open or controlled by the ADC interface
1: Analog switch closed

Bit 5 CH5: Comparator 1 analog switch

This bit is set and cleared by software to control the core analog switch of the ADC switch
matrix connecting the positive input of the COMP1 comparator. It can be used to route the
ADC matrix or OPAMP3 output to the comparator1 positive input. See Figure 64 on page 335.

0: Analog switch open
1: Analog switch closed

Bit 4 CH4: Analog switch control

This bit is set and cleared by software to control the analog switches of the ADC switch matrix.

0: Analog switch open
1: Analog switch closed

Bits 3:0 CH[3:0] GR1[4:1]: I/O Analog switch control

These bits are set and cleared by software to control the I/O analog switches.

0: Analog switch open or controlled by the ADC interface
1: Analog switch closed

DocID15965 Rev 14 205/908

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

223

Note: The ADC_IN16 and ADC_IN17 channels are internal and controlled only by the ADC
interface for data acquisition purposes.

The ADC_IN4, ADC_IN5, ADC_IN22, ADC_IN23, ADC_IN24 and ADC_IN25 channels are
directly connected to the ADC through a resistor, no need to close external I/O analog
switches.

When the SCM bit is low, the CH bits are used to connect groups of I/Os together by analog
switches, independently of the ADC.

When the SCM bit is high, the CH bits are used to connect several I/Os together through the
ADC switch matrix in order to allow a possible wakeup by COMP1 if the VCOMP bit is high.

8.4.3 RI analog switch control register 2 (RI_ASCR2)

The RI_ASCR2 register is used to configure the analog switches of groups of I/Os not linked
to the ADC. In this way, predefined groups of I/Os can be connected together.

Address offset: 0x08

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
GR6-4 GR6-3

CH12b
GR7-7

CH11b
GR7-6

CH10b
GR7-5

CH9b
GR2-5

CH8b
GR2-4

CH7b
GR2-3

CH6b
GR9-4

CH3b
GR9-3

CH2b
GR3-5

CH1b
GR3-4

CH0b
GR3-3

rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
GR4-3 GR4-2 GR4-1 GR5-3 GR5-2 GR5-1 GR6-2 GR6-1 GR10-4 GR10-3 GR10-2 GR10-1

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:29 Reserved, must be kept at reset value

Bits 28:16 GRx-x: GRx-x I/O analog switch control

These bits are set and cleared by software to control the I/O analog switches independently
from the ADC interface. Refer to Table 41: I/O groups and selection on page 196.
0: Analog switch open or controlled by the ADC interface
1: Analog switch closed

Note: These bits are available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bits 15:12 Reserved, must be kept at reset value

Bits 11:0 GRx-x: GRx-x I/O analog switch control

These bits are set and cleared by software to control the I/O analog switches independently
from the ADC interface. Refer to Table 41: I/O groups and selection on page 196 .
0: Analog switch open or controlled by the ADC interface
1: Analog switch closed

System configuration controller (SYSCFG) and routing interface (RI) RM0038

206/908 DocID15965 Rev 14

8.4.4 RI hysteresis control register (RI_HYSCR1)

The RI_HYSCR1 register is used to enable/disable the hysteresis of the input Schmitt
trigger of ports A and B.

Address offset: 0x0C

Reset value: 0x0000 0000

8.4.5 RI Hysteresis control register (RI_HYSCR2)

RI_HYSCR2 register allows to enable/disable hysteresis of input Schmitt trigger of ports C
and D.

Address offset: 0x10

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PB[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PA[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 PB[15:0]: Port B hysteresis control on/off

These bits are set and cleared by software to control the Schmitt trigger hysteresis of the
Port B[15:0].
0: Hysteresis on
1: Hysteresis off

Bits 15:0 PA[15:0]: Port A hysteresis control on/off

These bits are set and cleared by software to control the Schmitt trigger hysteresis of the
Port A[15:0].
0: Hysteresis on
1: Hysteresis off

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PD[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

DocID15965 Rev 14 207/908

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

223

8.4.6 RI Hysteresis control register (RI_HYSCR3)

The RI_HYSCR3 register is used to enable/disable the hysteresis of the input Schmitt
trigger of the entire port E and F.

Address offset: 0x14

Reset value: 0x0000 0000

Bits 31:16 PD[15:0]: Port D hysteresis control on/off

These bits are set and cleared by software to control the Schmitt trigger hysteresis of the
Port D[15:0].

0: Hysteresis on
1: Hysteresis off

Bits 15:0 PC[15:0]: Port C hysteresis control on/off

These bits are set and cleared by software to control the Schmitt trigger hysteresis of the Port
C[15:0].

0: Hysteresis on
1: Hysteresis off

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PF[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PE[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:6 PF[15:0]: Port F hysteresis control on/off

These bits are set and cleared by software to control the Schmitt trigger hysteresis of the
Port F[15:0].

0: Hysteresis on
1: Hysteresis off

Note: These bits are available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bits 15:0 PE[15:0]: Port E hysteresis control on/off

These bits are set and cleared by software to control the Schmitt trigger hysteresis of the
Port E[15:0].

0: Hysteresis on
1: Hysteresis off

System configuration controller (SYSCFG) and routing interface (RI) RM0038

208/908 DocID15965 Rev 14

8.4.7 RI Hysteresis control register (RI_HYSCR4)

The RI_HYSCR4 register is used to enable/disable the hysteresis of the input Schmitt
trigger of the entire port G.

Address offset: 0x18

Reset value: 0x0000 0000

8.4.8 Analog switch mode register (RI_ASMR1)

The RI_ASMR1 register is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only and is
used to select if analog switches of port A are to be controlled by the timer OC or through
the ADC interface or RI_ASCRx registers.

Address offset: 0x1C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PG[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:0 PG[15:0]: Port G hysteresis control on/off

These bits are set and cleared by software to control the Schmitt trigger hysteresis of the
Port G[15:0].

0: Hysteresis on
1: Hysteresis off

Note: These bits are available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PA[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:0 PA[15:0]: Port A analog switch mode selection

These bits are set and cleared by software to select the mode of controlling the analog switches for
Port A.

0: ADC interface or RI_ASCRx controlled
1: Timer controlled

DocID15965 Rev 14 209/908

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

223

8.4.9 Channel mask register (RI_CMR1)

RI_CMR1 is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only and is used to mask a
port A channel designated as a timer input capture (after acquisition completion to avoid
triggering multiple detections).

Address offset: 0x20

Reset value: 0x0000 0000

8.4.10 Channel identification for capture register (RI_CICR1)

The RI_CICR1 register is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only and is used
when analog switches are controlled by a timer OC. RI_CICR1 allows a channel to be
identified for timer input capture.

Address offset: 0x24

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PA[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:0 PA[15:0]: Port A channel masking

These bits are set and cleared by software to mask the input of port A during the capacitive sensing
acquisition.

0: Masked
1: Not masked

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PA[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:0 PA[15:0]: Port A channel identification for capture

These bits are set and cleared by software to identify the sampling capacitor I/Os on Port A.

0: Channel I/O
1: Sampling capacitor I/O

System configuration controller (SYSCFG) and routing interface (RI) RM0038

210/908 DocID15965 Rev 14

8.4.11 Analog switch mode register (RI_ASMR2)

The RI_ASMR2 register is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only and is
used to select if analog switches of port B are to be controlled by the timer OC or through
the ADC interface or RI_ASCRx registers.

Address offset: 0x28

Reset value: 0x0000 0000

8.4.12 Channel mask register (RI_CMR2)

RI_CMR2 is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only and is used to mask a
por B channel designated as a timer input capture (after acquisition completion to avoid
triggering multiple detections)

Address offset: 0x2C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PB[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:0 PB[15:0]: Port B analog switch mode selection

These bits are set and cleared by software to select the mode of controlling the analog switches for
Port B.

0: ADC interface or RI_ASCRx controlled
1: Timer controlled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PB[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:0 PB[15:0]: Port B channel masking

These bits are set and cleared by software to mask the input of port B during the capacitive sensing
acquisition.

0: Masked
1: Not masked

DocID15965 Rev 14 211/908

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

223

8.4.13 Channel identification for capture register (RI_CICR2)

The RI_CICR2 register is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only and is used
when analog switches are controlled by a timer OC. RI_CICR2 allows a port B channel to be
identified for timer input capture.

Address offset: 0x30

Reset value: 0x0000 0000

8.4.14 Analog switch mode register (RI_ASMR3)

The RI_ASMR3 register is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only and is
used to select if analog switches of port C are to be controlled by the timer OC or through
the ADC interface or RI_ASCRx registers.

Address offset: 0x34

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PB[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:0 PB[15:0]: Port B channel identification for capture

These bits are set and cleared by software to identify the sampling capacitor I/Os on Port B.

0: Channel I/O
1: Sampling capacitor I/O

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:0 PC[15:0]: Port C analog switch mode selection

These bits are set and cleared by software to select the mode of controlling the analog switches for
Port C.

0: ADC interface or RI_ASCRx controlled
1: Timer controlled

System configuration controller (SYSCFG) and routing interface (RI) RM0038

212/908 DocID15965 Rev 14

8.4.15 Channel mask register (RI_CMR3)

RI_CMR3 is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only and is used to mask a
port C channel designated as a timer input capture (after acquisition completion to avoid
triggering multiple detections)

Address offset: 0x38

Reset value: 0x0000 0000

8.4.16 Channel identification for capture register (RI_CICR3)

The RI_CICR3 register is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only and is used
when analog switches are controlled by a timer OC. RI_CICR3 allows a port C channel to be
identified for timer input capture.

Address offset: 0x3C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:0 PC[15:0]: Port C channel masking

These bits are set and cleared by software to mask the input of port C during the capacitive sensing
acquisition.

0: Masked
1: Not masked

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:0 PC[15:0]: Port C channel identification for capture

These bits are set and cleared by software to identify the sampling capacitor I/Os on Port C.

0: Channel I/O
1: Sampling capacitor I/O

DocID15965 Rev 14 213/908

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

223

8.4.17 Analog switch mode register (RI_ASMR4)

The RI_ASMR4 register is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only and is
used to select if analog switches of port F are to be controlled by the timer OC or through
the ADC interface or RI_ASCRx registers.

Address offset: 0x40

Reset value: 0x0000 0000

8.4.18 Channel mask register (RI_CMR4)

RI_CMR4 is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only and is used to mask a
port F channel designated as a timer input capture (after acquisition completion to avoid
triggering multiple detections).

Address offset: 0x44

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PF[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:0 PF[15:0]: Port F analog switch mode selection

These bits are set and cleared by software to select the mode of controlling the analog switches for
Port F.

0: ADC interface or RI_ASCRx controlled
1: Timer controlled

Note: These bits are available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PF[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:0 PF[15:0]: Port F channel masking

These bits are set and cleared by software to mask the input of port F during the capacitive sensing
acquisition.

0: Masked
1: Not masked

Note: These bits are available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

System configuration controller (SYSCFG) and routing interface (RI) RM0038

214/908 DocID15965 Rev 14

8.4.19 Channel identification for capture register (RI_CICR4)

The RI_CICR4 register is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only and is used
when analog switches are controlled by a timer OC. RI_CICR4 allows a port F channel to be
identified for timer input capture.

Address offset: 0x48

Reset value: 0x0000 0000

8.4.20 Analog switch mode register (RI_ASMR5)

The RI_ASMR5 register is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only and is
used to select if analog switches of port G are to be controlled by the timer OC or through
the ADC interface or RI_ASCRx registers.

Address offset: 0x4C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PF[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:0 PF[15:0]: Port F channel identification for capture

These bits are set and cleared by software to identify the sampling capacitor I/Os on Port F.

0: Channel I/O
1: Sampling capacitor I/O

Note: These bits are available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PG[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:0 PG[15:0]: Port G analog switch mode selection

These bits are set and cleared by software to select the mode of controlling the analog switches for
Port G.

0: ADC interface or RI_ASCRx controlled
1: Timer controlled

Note: These bits are available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

DocID15965 Rev 14 215/908

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

223

8.4.21 Channel mask register (RI_CMR5)

RI_CMR5 is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only and is used to mask a
port G channel designated as a timer input capture (after acquisition completion to avoid
triggering multiple detections).

Address offset: 0x50

Reset value: 0x0000 0000

8.4.22 Channel identification for capture register (RI_CICR5)

The RI_CICR5 register is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only and is used
when analog switches are controlled by a timer OC. RI_CICR5 allows a port G channel to
be identified for timer input capture.

Address offset: 0x54

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PG[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:0 PG[15:0]: Port G channel masking

These bits are set and cleared by software to mask the input of port G during the capacitive sensing
acquisition.

0: Masked
1: Not masked

Note: These bits are available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PG[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:0 PG[15:0]: Port G channel identification for capture

These bits are set and cleared by software to identify the sampling capacitor I/Os on Port G.

0: Channel I/O
1: Sampling capacitor I/O

Note: These bits are available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

System configuration controller (SYSCFG) and routing interface (RI) RM0038

216/908 DocID15965 Rev 14

8.4.23 RI register map

Table 45 summarizes the RI registers.The reserved memory areas are highlighted in gray in
the table.

Table 45. RI register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
RI_ICR

Reserved

IC
4

IC
3

IC
2

IC
1

T
IM

[1
:0

]

IC4IOS[3:0] IC3IOS[3:0] IC2IOS[3:0] IC1IOS[3:0]

Reset value 0

0x04

RI_ASCR
1 S

C
M GR11[4:1]

V
C

O
M

P

CH25:22 GR7[4:1]

R
e

se
rv

e
d

G
R

11
-5

GR9
[2:1]

GR8[4:1]
GR3
[2:1]

GR2
[2:1] C

H
5

C
H

4

GR1[4:1]

Reset value 0

0x08

RI_ASCR
2 Reserved

GR
6

[4:3
]

GR7[7:5] GR2[5:3]
GR9
[4:3]

GR3[5:3] Reserve
d

GR4[3:1] GR5[3:1]

GR
6

[2:1]
GR10[4:1]

Reset value 0

00C0

RI_HYSC
R1

PB[15:0] PA[15:0]

Reset value 0

0x10

RI_HYSC
R2

PD[15:0] PC[15:0]

Reset value 0

0x14

RI_HYSC
R3

PF[15:0] PE[15:0]

Reset value 0

0x18

RI_HYSC
R4 Reserved

PG[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C

RI_ASMR
1 Reserved

PA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
RI_CMR1

Reserved
PA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x24
RI_CICR1

Reserved
PA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28

RI_ASMR
2 Reserved

PB[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

DocID15965 Rev 14 217/908

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

223

0x2C
RI_CMR2

Reserved
PB[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x30
RI_CICR2

Reserved
PB[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x34

RI_ASMR
3 Reserved

PC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x38
RI_CMR3

Reserved
PC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x3C
RI_CICR3

Reserved
PC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x40

RI_ASMR
4 Reserved

PF[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x44
RI_CMR4

Reserved
PF[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x48
RI_CICR4

Reserved
PF[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x4C

RI_ASMR
5 Reserved

PG[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x50
RI_CMR5

Reserved
PG[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x54
RI_CICR5

Reserved
PG[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 45. RI register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

System configuration controller (SYSCFG) and routing interface (RI) RM0038

218/908 DocID15965 Rev 14

8.5 SYSCFG registers

The peripheral registers have to be accessed by words (32-bit).

8.5.1 SYSCFG memory remap register (SYSCFG_MEMRMP)

This register is used for specific configurations on memory remap:

• Two bits are used to configure the type of memory accessible at address 0x0000 0000.
These bits are used to select the physical remap by software and so, bypass the BOOT
pins.

• After reset these bits take the value selected by the BOOT pins.

Note: This register is not reset through the SYSCFGRST bit in the RCC_APB2RSTR register.

Address offset: 0x00

Reset value: 0x0000 00XX (X is the memory mode selected by the BOOT pins)

)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
BOOT_MODE

Reserved
MEM_MODE

r r rw rw

Bits 31:10 Reserved

Bits 9:8 BOOT_MODE: Boot mode selected by the boot pins

These bits are read only. They indicate the boot mode selected by the boot pins. Bit 9
corresponds to the value sampled on the BOOT1 pin, and bit 8 corresponds to value sampled
on the BOOT0 pin. See also Section 2.7: Boot configuration on page 50.

00: Main Flash memory boot mode
01: System Flash memory boot mode
10: Reserved
11: Embedded SRAM boot mode

Bits 7:2 Reserved

Bits 1:0 MEM_MODE: Memory mapping selection

Set and cleared by software. This bit controls the memory’s internal mapping at address
0x0000 0000. After reset these bits take on the memory mapping selected by the BOOT pins.

00: Main Flash memory mapped at 0x0000 0000
01: System Flash memory mapped at 0x0000 0000
10: FSMC
11: SRAM mapped at 0x0000 0000

DocID15965 Rev 14 219/908

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

223

8.5.2 SYSCFG peripheral mode configuration register (SYSCFG_PMC)

An internal pull-up resistor (1.5 kΩ) can be connected by software on the USB data + (DP)
line. This internal pull-up resistor is enabled if the USB is not in power-down mode and if the
USB_PU bit is set.

Address offset: 0x04

Reset value: 0x0000 0000

8.5.3 SYSCFG external interrupt configuration register 1
(SYSCFG_EXTICR1)

Address offset: 0x08

Reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
LCD_CAPA USB_PU

rw rw

Bits 31:6 Reserved

Bit 5:1 LCD_CAPA decoupling capacitance connection (see device datasheet for this device
capability)

Bit 1 controls the connection of VLCDrail2 on PB2/LCD_VCAP2

 0: VLCDrail2 not connected to PB2/LCD_VCAP2

 1: VLCDrail2 connected to PB2/LCD_VCAP2

Bit 2 controls the connection of VLCDrail1 on PB12/LCD_VCAP1

Bit 3 controls the connection of VLCDrail3 on PB0/LCD_VCAP3

Bit 4 controls the connection of VLCDrail1 on PE11/LCD_VCAP1

Bit 5 controls the connection of VLCDrail3 on PE12/LCD_VCAP3

Bit 0 USB_PU USB pull-up enable on DP line

Set and cleared by software. This bit controls the internal pull-up (1.5 kΩ) on the USB DP line.

0: no pull-up on the USB DP line (even if USB is not in power down mode)
1: internal pull-up is connected on USB DP line (only if USB is not in power down mode)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI3[3:0] EXTI2[3:0] EXTI1[3:0] EXTI0[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

System configuration controller (SYSCFG) and routing interface (RI) RM0038

220/908 DocID15965 Rev 14

Bits 31:16 Reserved

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 0 to 3)

These bits are written by software to select the source input for the EXTIx external interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin
0100: PE[x] pin
0101: PH[x] (only PH[2:0], PH3 is not available)
0110: PF[x] pin (Cat.3, Cat.4, Cat.5 and Cat.6 devices only)
0111: PG[x] pin (Cat.3, Cat.4, Cat.5 and Cat.6 devices only)

DocID15965 Rev 14 221/908

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

223

8.5.4 SYSCFG external interrupt configuration register 2
(SYSCFG_EXTICR2)

Address offset: 0x0C

Reset value: 0x0000

8.5.5 SYSCFG external interrupt configuration register 3
(SYSCFG_EXTICR3)

Address offset: 0x10

Reset value: 0x0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI7[3:0] EXTI6[3:0] EXTI5[3:0] EXTI4[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 4 to 7)

These bits are written by software to select the source input for the EXTIx external interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin
0100: PE[x] pin
0110: PF[x] pin (Cat.3, Cat.4, Cat.5 and Cat.6 devices only)
0111: PG[x] pin (Cat.3, Cat.4, Cat.5 and Cat.6 devices only)
PH[7:4] are not available.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI11[3:0] EXTI10[3:0] EXTI9[3:0] EXTI8[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 8 to 11)

These bits are written by software to select the source input for the EXTIx external interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin
0100: PE[x] pin
0110: PF[x] pin (Cat.3, Cat.4, Cat.5 and Cat.6 devices only)
0111: PG[x] pin (Cat.3, Cat.4, Cat.5 and Cat.6 devices only)
PH[11:8] are not available.

System configuration controller (SYSCFG) and routing interface (RI) RM0038

222/908 DocID15965 Rev 14

8.5.6 SYSCFG external interrupt configuration register 4
(SYSCFG_EXTICR4)

Address offset: 0x14

Reset value: 0x0000

8.5.7 SYSCFG register map

The following table gives the SYSCFG register map and the reset values. The reserved
memory areas are highlighted in gray in the table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI15[3:0] EXTI14[3:0] EXTI13[3:0] EXTI12[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 12 to 15)

These bits are written by software to select the source input for the EXTIx external interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0011: PD[x] pin
0100: PE[x] pin
0110: PF[x] pin (Cat.3, Cat.4, Cat.5 and Cat.6 devices only)
0111: PG[x] pin (Cat.3, Cat.4, Cat.5 and Cat.6 devices only)
PH[15:12] are not available.

Table 46. SYSCFG register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00

SYSCFG_
MEMRMP Reserved

B
O

O
T

_M
O

D
E

Reserved

M
E

M
_M

O
D

E

Reset value x x x x

0x04

SYSCFG_PM
C Reserved

U
S

B
_P

U

Reset value 0

DocID15965 Rev 14 223/908

RM0038 System configuration controller (SYSCFG) and routing interface (RI)

223

Refer to Table 5: Register boundary addresses on page 47.

0x08

SYSCFG_
EXTICR1 Reserved

EXTI3[3:
0]

EXTI2[3:
0]

EXTI1[3:
0]

EXTI0[3:
0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C

SYSCFG_
EXTICR2 Reserved

EXTI7[3:
0]

EXTI6[3:
0]

EXTI5[3:
0]

EXTI4[3:
0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10

SYSCFG_
EXTICR3 Reserved

EXTI11[3:0] EXTI10[3:0] EXTI9[3:0] EXTI8[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14

SYSCFG_
EXTICR4 Reserved

EXTI15[3:0] EXTI14[3:0] EXTI13[3:0] EXTI12[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 46. SYSCFG register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Touch sensing I/Os RM0038

224/908 DocID15965 Rev 14

9 Touch sensing I/Os

9.1 Introduction

All STM32L151xx devices except the value line provide a simple solution for adding
capacitive sensing functionality to any application. Capacitive sensing technology is able to
detect finger presence near an electrode which is protected from direct touch by a dielectric
(glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive
object) is measured using a proven implementation based on a surface charge transfer
acquisition principle. It consists of charging the electrode capacitance and then transferring
a part of the accumulated charges into a sampling capacitor until the voltage across this
capacitor has reached a specific threshold. In the STM32L1xxxx, this acquisition is
managed directly by the GPIOs, timers and analog I/O groups (see Section 8: System
configuration controller (SYSCFG) and routing interface (RI)).

Reliable touch sensing solution can be quickly and easily implemented using the free
STM32L1xx STMTouch firmware library.

9.2 Main features

• Proven and robust surface charge transfer acquisition principle

• Management of the charge transfer acquisition sequence in two modes: software mode
or timer mode

• Supports up to 34 capacitive sensing channels

• Up to 11 capacitive sensing channels can be acquired in parallel offering a very good
response time

• One sampling capacitor for up to 4 capacitive sensing channels which reduces the
system BOM

• Compatible with touchkey, proximity, linear and rotary touch sensors

• Designed to operate with STM32L1xx STMTouch firmware library

DocID15965 Rev 14 225/908

RM0038 Touch sensing I/Os

229

9.3 Functional description

9.3.1 Surface charge transfer acquisition overview

The surface charge transfer acquisition is a proven, robust and efficient way to measure a
capacitance. It uses a minimum of external components to operate with single ended
electrode type. This acquisition is designed around an analog IO group which is composed
of up to seven GPIOs (see Figure 29). The device offers several analog IO groups to allow
acquiring simultaneously several capacitive sensing channels and to support a larger
number of channels. Within a same analog IO group, the capacitive sensing channels
acquisition is sequential.

One of the GPIOs is dedicated to the sampling capacitor CS. Only one sampling capacitor
per analog IO group must be enabled at a time.

The remaining GPIOs are dedicated to the electrodes and are commonly called channels.

Figure 29. Surface charge transfer analog IO group structure

Note: Gx_IOy where x is the analog IO group number and y the GPIO number within the selected
group.

Touch sensing I/Os RM0038

226/908 DocID15965 Rev 14

For some specific needs (for example proximity detection), it is possible to enable, more
than one channel per analog IO group simultaneously.

For the table of capacitive sensing I/Os refer to Table 41: I/O groups and selection on
page 196.

The surface charge transfer acquisition principle consists in charging an electrode
capacitance (CX) and transferring a part of the accumulated charge into a sampling
capacitor (CS). This sequence is repeated until the voltage across CS reaches a given
threshold (typically VIH). The number of charge transfers required to reach the threshold is a
direct representation of the size of the electrode capacitance.

The Table 47 details the acquisition sequence of the capacitive sensing channel 1.The
states 3 to 7 are repeated until the voltage across CS reaches the given threshold. The
same sequence applies to the acquisition of the other channels. The electrode serial
resistor RS allows improving the ESD immunity of the solution.

The voltage variation over the time of the sampling capacitor CS is detailed below:

Table 47. Acquisition switching sequence summary

State S1 S2 S3 S4 S5 S6 S7 S8 State description

#1 Open Closed Open Open Closed Closed Closed Closed Discharge all CX and CS

#2 Open Open Open Open Open Open Open Open Dead time

#3 Closed Open Open Open Open Open Open Open Charge CX1

#4 Open Open Open Open Open Open Open Open Dead time

#5 Open Open Open Open Closed Closed Open Open Charge transfer from CX1 to CS

#6 Open Open Open Open Open Open Open Open Dead time

#7 Open Open Open Open Open Open Open Open Measure voltage across CS

DocID15965 Rev 14 227/908

RM0038 Touch sensing I/Os

229

Figure 30. Sampling capacitor charge overview

9.3.2 Charge transfer acquisition management

In STM32L1xxxx devices, the acquisition can be managed in two modes:

• Software mode: the GPIO port toggling and counting of the number of pulses is fully
handled by the CPU.

• Timer mode: the GPIO port toggling and counting of the number of pulses is handled
by the timers (only in Cat.3, Cat.4, Cat.5 and Cat.6 devices).

Software mode acquisition

This mode uses the two following peripherals to control of the channel and sampling
capacitor I/Os according to:

• General purpose I/Os (see Section 7: General-purpose I/Os (GPIO))

• Routing interface (see Section 8: System configuration controller (SYSCFG) and
routing interface (RI) on page 191)

Touch sensing I/Os RM0038

228/908 DocID15965 Rev 14

Timer mode acquisition

This mode requires the use of the following peripherals:

• General purpose I/Os (see Section 7 on page 171)

• Routing interface (see Section 8 on page 191)

• General-purpose timer 9 (see Section 18 on page 440)

• General-purpose timer 10 or 11 (see Section 18 on page 440)

Figure 31. Timer mode acquisition logic

Table 48. Channel and sampling capacitor I/Os configuration summary

State Channel I/O configuration Sampling capacitor I/O configuration

#1 Output push-pull low Output push-pull low

#2 Input floating

Input floating with hysteresis disabled#3 Output push-pull high

#4 Input floating

#5 Input floating with analog switch closed
Input floating with hysteresis disabled and

analog switch closed

#6

Input floating Input floating with hysteresis disabled

#7

DocID15965 Rev 14 229/908

RM0038 Touch sensing I/Os

229

Both timers are used to manage the GPIO port toggling which dramatically reduces the CPU
load. TIM9 is handles the charge transfer sequence generation by directly controlling the
channel and sampling capacitor I/Os. TIM10 or 11 count the number of charge transfer
cycles generated before an end of acquisition is detected on one of the enabled analog I/O
groups.

The software sequence can be used to configure the different peripherals and to perform
the acquisition.

Configuration steps:

1. Configure the I/O ports in alternate push-pull output mode, for the capacitive sensing
channel I/Os to be acquired. Note that only one channel per group must be enabled at
a time.

2. Configure the sampling capacitor I/Os in floating input mode with hysteresis disabled.

3. Configure TIM9 timer in center-aligned mode and generate PWM signals on OC1 and
OC2. The typical frequency of the PWM signal is 250 KHz.

4. Configure TIM10 or 11 in slave mode with the clock signal generated by TIM9. In
addition, IC1 must be enabled to capture the counter value on detection of an end of
acquisition. Interrupt generation can be optionally enabled.

5. Enable TIM10 or 11.

6. Enable the control of analog switches of the channel and sampling capacitor I/Os by
TIM9 using the RI_ASMRx registers (see Section 8.4: RI registers on page 201).

7. Identify the sampling capacitor I/Os using the registers RI_CICRx.

8. Start the acquisition by enabling TIM9.

Measurement steps:

At the end of acquisition on one sampling capacitor:

9. Clear the capture interrupt flag of TIM10 or 11 if interrupt generation enabled.

10. Read the IC register and save its contents in RAM.

11. Perform a XOR between RI_CMRx and GPIOx_IDR registers to determine which new
channel(s) has (have) triggered an end of acquisition and update the corresponding
channel information with the counter value.

12. Update the RI_CMRx registers to mask further end of acquisition detections on already
detected channels. This will automatically restart TIM9.

9.4 Touch sensing library

In order to facilitate the development of a touch sensing solution based on STM32L1xxxx
devices, STMicroelectronics offers a STM32L1xx STMTouch sensing library that provides a
complete robust C source-code solution. This firmware library is available as a free
download from www.st.com. For information how to download the STM32L1xx STMTouch
sensing library, please contact your local ST representative.

Interrupts and events RM0038

230/908 DocID15965 Rev 14

10 Interrupts and events

This section applies to the whole STM32L1xxxx family, unless otherwise specified.

10.1 Nested vectored interrupt controller (NVIC)

Features

• 45 maskable interrupt channels in Cat.1 and Cat.2 devices (see Table 49), 54
maskable interrupt channels in Cat.3 devices (see Table 50) and 57 channels in Cat.4,
Cat.5 and Cat.6 devices (see Table 51). These do not include the 16 interrupt lines of
Cortex®-M3.

• 16 programmable priority levels (4 bits of interrupt priority are used)

• Low-latency exception and interrupt handling

• Power management control

• Implementation of system control registers

The NVIC and the processor core interface are closely coupled, which enables low-latency
interrupt processing and efficient processing of late arriving interrupts.

All interrupts including the core exceptions are managed by the NVIC. For more information
on exceptions and NVIC programming, refer to the PM0056 programming manual.

10.1.1 SysTick calibration value register

The SysTick calibration value is fixed to 4000, which gives a reference time base of 1 ms
with the SysTick clock set to 4 MHz (max HCLK/8).

10.1.2 Interrupt and exception vectors

Table 49 is the vector table for STM32L1xxxx devices.

Table 49. Vector table (Cat.1 and Cat.2 devices)

Position Priority
Type of
priority

Acronym Description Address

- - - - Reserved 0x0000_0000

- -3 fixed Reset Reset 0x0000_0004

- -2 fixed NMI_Handler
Non maskable interrupt. The RCC
Clock Security System (CSS) is
linked to the NMI vector.

0x0000_0008

- -1 fixed HardFault_Handler All class of fault 0x0000_000C

- 0 settable MemManage_Handler Memory management 0x0000_0010

- 1 settable BusFault_Handler Pre-fetch fault, memory access fault 0x0000_0014

- 2 settable UsageFault_Handler Undefined instruction or illegal state 0x0000_0018

- - - - Reserved
0x0000_001C -
0x0000_002B

DocID15965 Rev 14 231/908

RM0038 Interrupts and events

245

- 3 settable SVC_Handler
System service call via SWI
instruction

0x0000_002C

- 4 settable DebugMon_Handler Debug Monitor 0x0000_0030

- - - - Reserved 0x0000_0034

- 5 settable PendSV_Handler Pendable request for system service 0x0000_0038

- 6 settable SysTick_Handler System tick timer 0x0000_003C

0 7 settable WWDG Window Watchdog interrupt 0x0000_0040

1 8 settable PVD
PVD through EXTI Line detection
interrupt

0x0000_0044

2 9 settable TAMPER_STAMP
Tamper and TimeStamp through
EXTI line interrupts

0x0000_0048

3 10 settable RTC_WKUP
RTC Wakeup through EXTI line
interrupt

0x0000_004C

4 11 settable FLASH Flash global interrupt 0x0000_0050

5 12 settable RCC RCC global interrupt 0x0000_0054

6 13 settable EXTI0 EXTI Line0 interrupt 0x0000_0058

7 14 settable EXTI1 EXTI Line1 interrupt 0x0000_005C

8 15 settable EXTI2 EXTI Line2 interrupt 0x0000_0060

9 16 settable EXTI3 EXTI Line3 interrupt 0x0000_0064

10 17 settable EXTI4 EXTI Line4 interrupt 0x0000_0068

11 18 settable DMA1_Channel1 DMA1 Channel1 global interrupt 0x0000_006C

12 19 settable DMA1_Channel2 DMA1 Channel2 global interrupt 0x0000_0070

13 20 settable DMA1_Channel3 DMA1 Channel3 global interrupt 0x0000_0074

14 21 settable DMA1_Channel4 DMA1 Channel4 global interrupt 0x0000_0078

15 22 settable DMA1_Channel5 DMA1 Channel5 global interrupt 0x0000_007C

16 23 settable DMA1_Channel6 DMA1 Channel6 global interrupt 0x0000_0080

17 24 settable DMA1_Channel7 DMA1 Channel7 global interrupt 0x0000_0084

18 25 settable ADC1 ADC1 global interrupt 0x0000_0088

19 26 settable USB HP USB High priority interrupt 0x0000_008C

20 27 settable USB_LP USB Low priority interrupt 0x0000_0090

21 28 settable DAC DAC interrupt 0x0000_0094

22 29 settable COMP, TSC(1)
Comparator wakeup through EXTI
line (21 and 22) interrupt, touch
sense interrupt(1)

0x0000_0098

23 30 settable EXTI9_5 EXTI Line[9:5] interrupts 0x0000_009C

24 31 settable LCD LCD global interrupt 0x0000_00A0

Table 49. Vector table (Cat.1 and Cat.2 devices) (continued)

Position Priority
Type of
priority

Acronym Description Address

Interrupts and events RM0038

232/908 DocID15965 Rev 14

25 32 settable TIM9 TIM9 global interrupt 0x0000_00A4

26 33 settable TIM10 TIM10 global interrupt 0x0000_00A8

27 34 settable TIM11 TIM11 global interrupt 0x0000_00AC

28 35 settable TIM2 TIM2 global interrupt 0x0000_00B0

29 36 settable TIM3 TIM3 global interrupt 0x0000_00B4

30 37 settable TIM4 TIM4 global interrupt 0x0000_00B8

31 38 settable I2C1_EV I2C1 event interrupt 0x0000_00BC

32 39 settable I2C1_ER I2C1 error interrupt 0x0000_00C0

33 40 settable I2C2_EV I2C2 event interrupt 0x0000_00C4

34 41 settable I2C2_ER I2C2 error interrupt 0x0000_00C8

35 42 settable SPI1 SPI1 global interrupt 0x0000_00CC

36 43 settable SPI2 SPI2 global interrupt 0x0000_00D0

37 44 settable USART1 USART1 global interrupt 0x0000_00D4

38 45 settable USART2 USART2 global interrupt 0x0000_00D8

39 46 settable USART3 USART3 global interrupt 0x0000_00DC

40 47 settable EXTI15_10 EXTI Line[15:10] interrupts 0x0000_00E0

41 48 settable RTC_Alarm
RTC Alarms (A and B) through EXTI
line interrupt

0x0000_00E4

42 49 settable USB_FS_WKUP
USB Device FS Wakeup through
EXTI line interrupt

0x0000_00E8

43 50 settable TIM6 TIM6 global interrupt 0x0000_00EC

44 51 settable TIM7 TIM7 global interrupt 0x0000_00F0

1. Touch sense interrupt is only in Cat.2 devices.

Table 49. Vector table (Cat.1 and Cat.2 devices) (continued)

Position Priority
Type of
priority

Acronym Description Address

Table 50. Vector table (Cat.3 devices)

Position Priority
Type of
priority

Acronym Description Address

- - - - Reserved 0x0000_0000

- -3 fixed Reset Reset 0x0000_0004

- -2 fixed NMI_Handler
Non maskable interrupt. The RCC
Clock Security System (CSS) is
linked to the NMI vector.

0x0000_0008

- -1 fixed HardFault_Handler All class of fault 0x0000_000C

- 0 settable MemManage_Handler Memory management 0x0000_0010

DocID15965 Rev 14 233/908

RM0038 Interrupts and events

245

- 1 settable BusFault_Handler Pre-fetch fault, memory access fault 0x0000_0014

- 2 settable UsageFault_Handler Undefined instruction or illegal state 0x0000_0018

- - - - Reserved
0x0000_001C -
0x0000_002B

- 3 settable SVC_Handler
System service call via SWI
instruction

0x0000_002C

- 4 settable DebugMon_Handler Debug Monitor 0x0000_0030

- - - - Reserved 0x0000_0034

- 5 settable PendSV_Handler Pendable request for system service 0x0000_0038

- 6 settable SysTick_Handler System tick timer 0x0000_003C

0 7 settable WWDG Window Watchdog interrupt 0x0000_0040

1 8 settable PVD
PVD through EXTI Line16 detection
interrupt

0x0000_0044

2 9 settable TAMPER_STAMP
Tamper, LSECSS and TimeStamp
through EXTI line19 interrupts

0x0000_0048

3 10 settable RTC_WKUP
RTC Wakeup through EXTI line20
interrupt

0x0000_004C

4 11 settable FLASH Flash global interrupt 0x0000_0050

5 12 settable RCC RCC global interrupt 0x0000_0054

6 13 settable EXTI0 EXTI Line0 interrupt 0x0000_0058

7 14 settable EXTI1 EXTI Line1 interrupt 0x0000_005C

8 15 settable EXTI2 EXTI Line2 interrupt 0x0000_0060

9 16 settable EXTI3 EXTI Line3 interrupt 0x0000_0064

10 17 settable EXTI4 EXTI Line4 interrupt 0x0000_0068

11 18 settable DMA1_Channel1 DMA1 Channel1 global interrupt 0x0000_006C

12 19 settable DMA1_Channel2 DMA1 Channel2 global interrupt 0x0000_0070

13 20 settable DMA1_Channel3 DMA1 Channel3 global interrupt 0x0000_0074

14 21 settable DMA1_Channel4 DMA1 Channel4 global interrupt 0x0000_0078

15 22 settable DMA1_Channel5 DMA1 Channel5 global interrupt 0x0000_007C

16 23 settable DMA1_Channel6 DMA1 Channel6 global interrupt 0x0000_0080

17 24 settable DMA1_Channel7 DMA1 Channel7 global interrupt 0x0000_0084

18 25 settable ADC1 ADC1 global interrupt 0x0000_0088

19 26 settable USB HP USB High priority interrupt 0x0000_008C

20 27 settable USB_LP USB Low priority interrupt 0x0000_0090

21 28 settable DAC DAC interrupt 0x0000_0094

Table 50. Vector table (Cat.3 devices) (continued)

Position Priority
Type of
priority

Acronym Description Address

Interrupts and events RM0038

234/908 DocID15965 Rev 14

22 29 settable COMP/CA
Comparator wakeup through EXTI
line (21 and 22) interrupt/Channel
acquisition interrupt

0x0000_0098

23 30 settable EXTI9_5 EXTI Line[9:5] interrupts 0x0000_009C

24 31 settable LCD LCD global interrupt 0x0000_00A0

25 32 settable TIM9 TIM10 global interrupt 0x0000_00A4

26 33 settable TIM10 TIM10 global interrupt 0x0000_00A8

27 34 settable TIM11 TIM11 global interrupt 0x0000_00AC

28 35 settable TIM2 TIM2 global interrupt 0x0000_00B0

29 36 settable TIM3 TIM3 global interrupt 0x0000_00B4

30 37 settable TIM4 TIM4 global interrupt 0x0000_00B8

31 38 settable I2C1_EV I2C1 event interrupt 0x0000_00BC

32 39 settable I2C1_ER I2C1 error interrupt 0x0000_00C0

33 40 settable I2C2_EV I2C2 event interrupt 0x0000_00C4

34 41 settable I2C2_ER I2C2 error interrupt 0x0000_00C8

35 42 settable SPI1 SPI1 global interrupt 0x0000_00CC

36 43 settable SPI2 SPI2 global interrupt 0x0000_00D0

37 44 settable USART1 USART1 global interrupt 0x0000_00D4

38 45 settable USART2 USART2 global interrupt 0x0000_00D8

39 46 settable USART3 USART3 global interrupt 0x0000_00DC

40 47 settable EXTI15_10 EXTI Line[15:10] interrupts 0x0000_00E0

41 48 settable RTC_Alarm
RTC Alarms (A and B) through EXTI
line17 interrupt

0x0000_00E4

42 49 settable USB_FS_WKUP
USB Device FS Wakeup through
EXTI line18 interrupt

0x0000_00E8

43 50 settable TIM6 TIM6 global interrupt 0x0000_00EC

44 51 settable TIM7 TIM7 global interrupt 0x0000_00F0

45 53 settable TIM5 TIM5 Global interrupt 0x0000_00F8

46 54 settable SPI3 SPI3 Global interrupt 0x0000_00FC

47 57 settable DMA2_CH1 DMA2 Channel 1 interrupt 0x0000_0108

48 58 settable DMA2_CH2 DMA2 Channel 2 interrupt 0x0000_010C

49 59 settable DMA2_CH3 DMA2 Channel 3 interrupt 0x0000_0110

50 60 settable DMA2_CH4 DMA2 Channel 4 interrupt 0x0000_0114

51 61 settable DMA2_CH5 DMA2 Channel 5 interrupt 0x0000_0118

Table 50. Vector table (Cat.3 devices) (continued)

Position Priority
Type of
priority

Acronym Description Address

DocID15965 Rev 14 235/908

RM0038 Interrupts and events

245

52 62 settable AES AES global interrupt 0x0000_011C

53 63 settable COMP_ACQ
Comparator Channel Acquisition
Interrupt

0x0000_0120

Table 50. Vector table (Cat.3 devices) (continued)

Position Priority
Type of
priority

Acronym Description Address

Table 51. Vector table (Cat.4, Cat.5 and Cat.6 devices)

Position Priority
Type of
priority

Acronym Description Address

- - - - Reserved 0x0000_0000

- -3 fixed Reset Reset 0x0000_0004

- -2 fixed NMI_Handler
Non maskable interrupt. The RCC
Clock Security System (CSS) is
linked to the NMI vector.

0x0000_0008

- -1 fixed HardFault_Handler All class of fault 0x0000_000C

- 0 settable MemManage_Handler Memory management 0x0000_0010

- 1 settable BusFault_Handler Pre-fetch fault, memory access fault 0x0000_0014

- 2 settable UsageFault_Handler Undefined instruction or illegal state 0x0000_0018

- - - - Reserved
0x0000_001C -
0x0000_002B

- 3 settable SVC_Handler
System service call via SWI
instruction

0x0000_002C

- 4 settable DebugMon_Handler Debug Monitor 0x0000_0030

- - - - Reserved 0x0000_0034

- 5 settable PendSV_Handler Pendable request for system service 0x0000_0038

- 6 settable SysTick_Handler System tick timer 0x0000_003C

0 7 settable WWDG Window Watchdog interrupt 0x0000_0040

1 8 settable PVD
PVD through EXTI Line16 detection
interrupt

0x0000_0044

2 9 settable TAMPER_STAMP
Tamper, LSECSS and TimeStamp
through EXTI line19 interrupts

0x0000_0048

3 10 settable RTC_WKUP
RTC Wakeup through EXTI line20
interrupt

0x0000_004C

4 11 settable FLASH Flash global interrupt 0x0000_0050

5 12 settable RCC RCC global interrupt 0x0000_0054

6 13 settable EXTI0 EXTI Line0 interrupt 0x0000_0058

7 14 settable EXTI1 EXTI Line1 interrupt 0x0000_005C

8 15 settable EXTI2 EXTI Line2 interrupt 0x0000_0060

9 16 settable EXTI3 EXTI Line3 interrupt 0x0000_0064

Interrupts and events RM0038

236/908 DocID15965 Rev 14

10 17 settable EXTI4 EXTI Line4 interrupt 0x0000_0068

11 18 settable DMA1_Channel1 DMA1 Channel1 global interrupt 0x0000_006C

12 19 settable DMA1_Channel2 DMA1 Channel2 global interrupt 0x0000_0070

13 20 settable DMA1_Channel3 DMA1 Channel3 global interrupt 0x0000_0074

14 21 settable DMA1_Channel4 DMA1 Channel4 global interrupt 0x0000_0078

15 22 settable DMA1_Channel5 DMA1 Channel5 global interrupt 0x0000_007C

16 23 settable DMA1_Channel6 DMA1 Channel6 global interrupt 0x0000_0080

17 24 settable DMA1_Channel7 DMA1 Channel7 global interrupt 0x0000_0084

18 25 settable ADC1 ADC1 global interrupt 0x0000_0088

19 26 settable USB HP USB High priority interrupt 0x0000_008C

20 27 settable USB_LP USB Low priority interrupt 0x0000_0090

21 28 settable DAC DAC interrupt 0x0000_0094

22 29 settable COMP/CA
Comparator wakeup through EXTI
line (21 and 22) interrupt/Channel
acquisition interrupt

0x0000_0098

23 30 settable EXTI9_5 EXTI Line[9:5] interrupts 0x0000_009C

24 31 settable LCD LCD global interrupt 0x0000_00A0

25 32 settable TIM9 TIM10 global interrupt 0x0000_00A4

26 33 settable TIM10 TIM10 global interrupt 0x0000_00A8

27 34 settable TIM11 TIM11 global interrupt 0x0000_00AC

28 35 settable TIM2 TIM2 global interrupt 0x0000_00B0

29 36 settable TIM3 TIM3 global interrupt 0x0000_00B4

30 37 settable TIM4 TIM4 global interrupt 0x0000_00B8

31 38 settable I2C1_EV I2C1 event interrupt 0x0000_00BC

32 39 settable I2C1_ER I2C1 error interrupt 0x0000_00C0

33 40 settable I2C2_EV I2C2 event interrupt 0x0000_00C4

34 41 settable I2C2_ER I2C2 error interrupt 0x0000_00C8

35 42 settable SPI1 SPI1 global interrupt 0x0000_00CC

36 43 settable SPI2 SPI2 global interrupt 0x0000_00D0

37 44 settable USART1 USART1 global interrupt 0x0000_00D4

38 45 settable USART2 USART2 global interrupt 0x0000_00D8

39 46 settable USART3 USART3 global interrupt 0x0000_00DC

40 47 settable EXTI15_10 EXTI Line[15:10] interrupts 0x0000_00E0

41 48 settable RTC_Alarm
RTC Alarms (A and B) through EXTI
line17 interrupt

0x0000_00E4

Table 51. Vector table (Cat.4, Cat.5 and Cat.6 devices) (continued)

Position Priority
Type of
priority

Acronym Description Address

DocID15965 Rev 14 237/908

RM0038 Interrupts and events

245

10.2 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of up to 24 (or 23 for Cat.1 and Cat.2
devices) edge detectors for generating event/interrupt requests. Each input line can be
independently configured to select the type (event or interrupt) and the corresponding
trigger event (rising edge, falling edge or both). Each line can also be masked
independently. A pending register maintains the status line of the interrupt requests.

10.2.1 Main features

The main features of the EXTI controller are the following:

• Independent trigger and mask on each interrupt/event line

• Dedicated status bit for each interrupt line

• Generation of up to 24 (or 23 for Cat.1 and Cat.2 devices) software event/interrupt
requests

• Detection of external signals with a pulse width lower than the APB2 clock period.
Refer to the electrical characteristics section of the STM32L1xxxx datasheet for details
on this parameter.

10.2.2 Block diagram

The block diagram is shown in Figure 32.

42 49 settable USB_FS_WKUP
USB Device FS Wakeup through
EXTI line18 interrupt

0x0000_00E8

43 50 settable TIM6 TIM6 global interrupt 0x0000_00EC

44 51 settable TIM7 TIM7 global interrupt 0x0000_00F0

45 52 settable SDIO SDIO Global interrupt 0x0000_00F4

46 53 settable TIM5 TIM5 Global interrupt 0x0000_00F8

47 54 settable SPI3 SPI3 Global interrupt 0x0000_00FC

48 55 settable UART4 UART4 Global interrupt 0x0000_0100

49 56 settable UART5 UART5 Global interrupt 0x0000_0104

50 57 settable DMA2_CH1 DMA2 Channel 1 interrupt 0x0000_0108

51 58 settable DMA2_CH2 DMA2 Channel 2 interrupt 0x0000_010C

52 59 settable DMA2_CH3 DMA2 Channel 3 interrupt 0x0000_0110

53 60 settable DMA2_CH4 DMA2 Channel 4 interrupt 0x0000_0114

54 61 settable DMA2_CH5 DMA2 Channel 5 interrupt 0x0000_0118

55 62 settable AES AES global interrupt 0x0000_011C

56 63 settable COMP_ACQ
Comparator Channel Acquisition
Interrupt

0x0000_0120

Table 51. Vector table (Cat.4, Cat.5 and Cat.6 devices) (continued)

Position Priority
Type of
priority

Acronym Description Address

Interrupts and events RM0038

238/908 DocID15965 Rev 14

Figure 32. External interrupt/event controller block diagram

10.2.3 Wakeup event management

The STM32L1xxxx is able to handle external or internal events in order to wake up the core
(WFE). The wakeup event can be generated by either:

• enabling an interrupt in the peripheral control register but not in the NVIC, and enabling
the SEVONPEND bit in the Cortex®-M3 system control register. When the MCU
resumes from WFE, the peripheral interrupt pending bit and the peripheral NVIC IRQ
channel pending bit (in the NVIC interrupt clear pending register) have to be cleared.

• or configuring an external or internal EXTI line in event mode. When the CPU resumes
from WFE, it is not necessary to clear the peripheral interrupt pending bit or the NVIC
IRQ channel pending bit as the pending bit corresponding to the event line is not set.

To use an external line as a wakeup event, refer to Section 10.2.4: Functional description.

10.2.4 Functional description

To generate the interrupt, the interrupt line should be configured and enabled. This is done
by programming the two trigger registers with the desired edge detection and by enabling
the interrupt request by writing a ‘1 to the corresponding bit in the interrupt mask register.
When the selected edge occurs on the external interrupt line, an interrupt request is
generated. The pending bit corresponding to the interrupt line is also set. This request is
reset by writing a ‘1 into the pending register.

DocID15965 Rev 14 239/908

RM0038 Interrupts and events

245

To generate the event, the event line should be configured and enabled. This is done by
programming the two trigger registers with the desired edge detection and by enabling the
event request by writing a ‘1 to the corresponding bit in the event mask register. When the
selected edge occurs on the event line, an event pulse is generated. The pending bit
corresponding to the event line is not set

An interrupt/event request can also be generated by software by writing a ‘1 into the
software interrupt/event register.

Hardware interrupt selection

To configure the 24 (or 23 for Cat.1 and Cat.2 devices) lines as interrupt sources, use the
following procedure:

• Configure the mask bits of the Interrupt lines (EXTI_IMR)

• Configure the Trigger Selection bits of the Interrupt lines (EXTI_RTSR and
EXTI_FTSR)

• Configure the enable and mask bits that control the NVIC IRQ channel mapped to the
external interrupt controller (EXTI) so that an interrupt coming from any one of the lines
can be correctly acknowledged.

Hardware event selection

To configure the 24 (or 23 for Cat.1 and Cat.2 devices) lines as event sources, use the
following procedure:

• Configure the mask bits of the Event lines (EXTI_EMR)

• Configure the Trigger Selection bits of the Event lines (EXTI_RTSR and EXTI_FTSR)

Software interrupt/event selection

The 24 (or 23 for Cat.1 and Cat.2 devices) lines can be configured as software
interrupt/event lines. The following is the procedure to generate a software interrupt.

• Configure the mask bits of the Interrupt/Event lines (EXTI_IMR, EXTI_EMR)

• Set the required bit in the software interrupt register (EXTI_SWIER)

10.2.5 External interrupt/event line mapping

Up to 116 GPIOs are connected to the 16 external interrupt/event lines in the following
manner:

Interrupts and events RM0038

240/908 DocID15965 Rev 14

Figure 33. External interrupt/event GPIO mapping

DocID15965 Rev 14 241/908

RM0038 Interrupts and events

245

The other EXTI lines are connected as follows:

• EXTI line 16 is connected to the PVD output

• EXTI line 17 is connected to the RTC Alarm event

• EXTI line 18 is connected to the USB Device FS wakeup event

• EXTI line 19 is connected to the RTC Tamper and TimeStamp events

• EXTI line 20 is connected to the RTC Wakeup event

• EXTI line 21 is connected to the Comparator 1 wakeup event

• EXTI line 22 is connected to the Comparator 2 wakeup event

• EXTI line 23 is connected to the channel acquisition interrupt

10.3 EXTI registers

Refer to Section 1.1 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32-bit).

10.3.1 EXTI interrupt mask register (EXTI_IMR)

Address offset: 0x00
Reset value: 0x0000 0000

10.3.2 EXTI event mask register (EXTI_EMR)

Address offset: 0x04
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
MR23(1) MR22 MR21 MR20 MR19 MR18 MR17 MR16

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MR15 MR14 MR13 MR12 MR11 MR10 MR9 MR8 MR7 MR6 MR5 MR4 MR3 MR2 MR1 MR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

1. Only in Cat.3, Cat.4, Cat.5 and Cat.6 devices

Bits 31:24 Reserved, must be kept at reset value.

Bits 23:0 MRx: Interrupt mask on line x

0: Interrupt request from Line x is masked
1: Interrupt request from Line x is not masked

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
MR23(1) MR22 MR21 MR20 MR19 MR18 MR17 MR16

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MR15 MR14 MR13 MR12 MR11 MR10 MR9 MR8 MR7 MR6 MR5 MR4 MR3 MR2 MR1 MR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

1. Only in Cat.3, Cat.4, Cat.5 and Cat.6 devices

Interrupts and events RM0038

242/908 DocID15965 Rev 14

10.3.3 EXTI rising edge trigger selection register (EXTI_RTSR)

Address offset: 0x08
Reset value: 0x0000 0000

Note: The external wakeup lines are edge triggered, no glitch must be generated on these lines.
If a rising edge on the external interrupt line occurs while writing to the EXTI_RTSR register,
the pending bit will not be set.

Rising and falling edge triggers can be set for the same interrupt line. In this configuration,
both generate a trigger condition.

10.3.4 Falling edge trigger selection register (EXTI_FTSR)

Address offset: 0x0C
Reset value: 0x0000 0000

Bits 31:24 Reserved, must be kept at reset value.

Bits 23:0 MRx: Event mask on line x

0: Event request from Line x is masked
1: Event request from Line x is not masked

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
TR23(1) TR22 TR21 TR20 TR19 TR18 TR17 TR16

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TR15 TR14 TR13 TR12 TR11 TR10 TR9 TR8 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

1. Only in Cat.3, Cat.4, Cat.5 and Cat.6 devices

Bits 31:24 Reserved, must be kept at reset value.

Bits 23:0 TRx: Rising edge trigger event configuration bit of line x

0: Rising edge trigger disabled (for Event and Interrupt) for input line x
1: Rising edge trigger enabled (for Event and Interrupt) for input line x

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
TR23(1) TR22 TR21 TR20 TR19 TR18 TR17 TR16

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TR15 TR14 TR13 TR12 TR11 TR10 TR9 TR8 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

1. Only in Cat.3, Cat.4, Cat.5 and Cat.6 devices

DocID15965 Rev 14 243/908

RM0038 Interrupts and events

245

Note: The external wakeup lines are edge triggered, no glitch must be generated on these lines.
If a falling edge on the external interrupt line occurs while writing to the EXTI_FTSR register,
the pending bit will not be set.

Rising and falling edge triggers can be set for the same interrupt line. In this configuration,
both generate a trigger condition.

10.3.5 EXTI software interrupt event register (EXTI_SWIER)

Address offset: 0x10
Reset value: 0x0000 0000

Bits 31:24 Reserved, must be kept at reset value.

Bits 23:0 TRx: Falling edge trigger event configuration bit of line x

0: Falling edge trigger disabled (for Event and Interrupt) for input line x
1: Falling edge trigger enabled (for Event and Interrupt) for input line x

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

SWIER

23(1)
SWIER

22
SWIER

21
SWIER

20
SWIER

19
SWIER

18
SWIER

17
SWIER

16

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SWIER
15

SWIER
14

SWIER
13

SWIER
12

SWIER
11

SWIER
10

SWIER
9

SWIER
8

SWIER
7

SWIER
6

SWIER
5

SWIER
4

SWIER
3

SWIER
2

SWIER
1

SWIER
0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

1. Only in Cat.3, Cat.4, Cat.5 and Cat.6 devices

Bits 31:23 Reserved, must be kept at reset value.

Bits 22:0 SWIERx: Software interrupt on line x

If the interrupt is enabled on this line in the EXTI_IMR, writing a '1' to this bit when it is at '0'
sets the corresponding pending bit in EXTI_PR resulting in an interrupt request generation.
This bit is cleared by clearing the corresponding bit in EXTI_PR (by writing a ‘1’ to this bit).

Interrupts and events RM0038

244/908 DocID15965 Rev 14

10.3.6 EXTI pending register (EXTI_PR)

Address offset: 0x14
Reset value: undefined

10.3.7 EXTI register map

The following table gives the EXTI register map and the reset values. The reserved memory
areas are highlighted in gray in the table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
PR23(1) PR22 PR21 PR20 PR19 PR18 PR17 PR16

rw rw rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PR15 PR14 PR13 PR12 PR11 PR10 PR9 PR8 PR7 PR6 PR5 PR4 PR3 PR2 PR1 PR0

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

1. Only in Cat.3, Cat.4, Cat.5 and Cat.6 devices

Bits 31:24 Reserved, must be kept at reset value.

Bits 23:0 PRx: Pending bit

0: No trigger request occurred
1: The selected trigger request occurred
This bit is set when the selected edge event arrives on the external interrupt line. This bit is
cleared by writing a ‘1’ to the bit.

Table 52. External interrupt/event controller register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
EXTI_IMR

Reserved
MR[23:0]

Reset value 0

0x04
EXTI_EMR

Reserved
MR[23:0]

Reset value 0

0x08
EXTI_RTSR

Reserved
TR[23:0]

Reset value 0

0x0C
EXTI_FTSR

Reserved
TR[23:0]

Reset value 0

0x10

EXTI_SWIE
R Reserved

SWIER[23:0]

Reset value 0

DocID15965 Rev 14 245/908

RM0038 Interrupts and events

245

Refer to Table 5 on page 47 for the register boundary addresses.

0x14
EXTI_PR

Reserved
PR[23:0]

Reset value 0

Table 52. External interrupt/event controller register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Direct memory access controller (DMA) RM0038

246/908 DocID15965 Rev 14

11 Direct memory access controller (DMA)

11.1 DMA introduction

Direct memory access (DMA) is used in order to provide high-speed data transfer between
peripherals and memory as well as memory to memory. Data can be quickly moved by DMA
without any CPU actions. This keeps CPU resources free for other operations.

The two DMA controllers have 12 channels in total (7 for DMA1 and 5 for DMA2), each
dedicated to managing memory access requests from one or more peripherals. It has an
arbiter for handling the priority between DMA requests.

11.2 DMA main features

• 12 independently configurable channels (requests): 7 for DMA1 and 5 for DMA2

• Each of the 12 channels is connected to dedicated hardware DMA requests, software
trigger is also supported on each channel. This configuration is done by software.

• Priorities between requests from channels of one DMA are software programmable (4
levels consisting of very high, high, medium, low) or hardware in case of equality
(request 1 has priority over request 2, etc.)

• Independent source and destination transfer size (byte, half word, word), emulating
packing and unpacking. Source/destination addresses must be aligned on the data
size.

• Support for circular buffer management

• 3 event flags (DMA Half Transfer, DMA Transfer complete and DMA Transfer Error)
logically ORed together in a single interrupt request for each channel

• Memory-to-memory transfer

• Peripheral-to-memory and memory-to-peripheral, and peripheral-to-peripheral
transfers

• Access to SRAM, APB1, APB2 and AHB peripherals as source and destination and
access to Flash as source

• Programmable number of data to be transferred: up to 65536

The block diagram is shown in Figure 34.

DocID15965 Rev 14 247/908

RM0038 Direct memory access controller (DMA)

264

Figure 34. DMA block diagram in Cat.1 and Cat.2 STM32L1xxxx devices

Direct memory access controller (DMA) RM0038

248/908 DocID15965 Rev 14

Figure 35. DMA block diagram in Cat.3 STM32L1xxxx devices

DocID15965 Rev 14 249/908

RM0038 Direct memory access controller (DMA)

264

Figure 36. DMA block diagram in Cat.4, Cat.5 and Cat.6 STM32L1xxxx devices

Note: The DMA2 controller and its related requests are available only in Cat.3, Cat.4,Cat.5 and
Cat.6 devices.

SPI3 and TIM5 DMA requests are available only in Cat.3, Cat.4, Cat.5 and Cat.6 devices.

UART4 and UART5 are available only in Cat.4, Cat.5 and Cat.6 devices.

FSMC and SDIO are available only in Cat.4 devices.

11.3 DMA functional description

The DMA controller performs direct memory transfer by sharing the system bus with the
Cortex®-M3 core. The DMA request may stop the CPU access to the system bus for some
bus cycles, when the CPU and DMA are targeting the same destination (memory or
peripheral). The bus matrix implements round-robin scheduling, thus ensuring at least half
of the system bus bandwidth (both to memory and peripheral) for the CPU.

11.3.1 DMA transactions

After an event, the peripheral sends a request signal to the DMA Controller. The DMA
controller serves the request depending on the channel priorities. As soon as the DMA
Controller accesses the peripheral, an Acknowledge is sent to the peripheral by the DMA
Controller. The peripheral releases its request as soon as it gets the Acknowledge from the
DMA Controller. Once the request is deasserted by the peripheral, the DMA Controller

Direct memory access controller (DMA) RM0038

250/908 DocID15965 Rev 14

release the Acknowledge. If there are more requests, the peripheral can initiate the next
transaction.

In summary, each DMA transfer consists of three operations:

• The loading of data from the peripheral data register or a location in memory addressed
through an internal current peripheral/memory address register. The start address used
for the first transfer is the base peripheral/memory address programmed in the
DMA_CPARx or DMA_CMARx register

• The storage of the data loaded to the peripheral data register or a location in memory
addressed through an internal current peripheral/memory address register. The start
address used for the first transfer is the base peripheral/memory address programmed
in the DMA_CPARx or DMA_CMARx register

• The post-decrementing of the DMA_CNDTRx register, which contains the number of
transactions that have still to be performed.

11.3.2 Arbiter

The arbiter manages the channel requests based on their priority and launches the
peripheral/memory access sequences.

The priorities are managed in two stages:

• Software: each channel priority can be configured in the DMA_CCRx register. There
are four levels:

– Very high priority

– High priority

– Medium priority

– Low priority

• Hardware: if 2 requests have the same software priority level, the channel with the
lowest number will get priority versus the channel with the highest number. For
example, channel 2 gets priority over channel 4.

11.3.3 DMA channels

Each channel can handle DMA transfer between a peripheral register located at a fixed
address and a memory address. The amount of data to be transferred (up to 65535) is
programmable. The register which contains the amount of data items to be transferred is
decremented after each transaction.

Programmable data sizes

Transfer data sizes of the peripheral and memory are fully programmable through the
PSIZE and MSIZE bits in the DMA_CCRx register.

Pointer incrementation

Peripheral and memory pointers can optionally be automatically post-incremented after
each transaction depending on the PINC and MINC bits in the DMA_CCRx register. If
incremented mode is enabled, the address of the next transfer will be the address of the
previous one incremented by 1, 2 or 4 depending on the chosen data size. The first transfer
address is the one programmed in the DMA_CPARx/DMA_CMARx registers. During
transfer operations, these registers keep the initially programmed value. The current

DocID15965 Rev 14 251/908

RM0038 Direct memory access controller (DMA)

264

transfer addresses (in the current internal peripheral/memory address register) are not
accessible by software.

If the channel is configured in noncircular mode, no DMA request is served after the last
transfer (that is once the number of data items to be transferred has reached zero). In order
to reload a new number of data items to be transferred into the DMA_CNDTRx register, the
DMA channel must be disabled.

Note: If a DMA channel is disabled, the DMA registers are not reset. The DMA channel registers
(DMA_CCRx, DMA_CPARx and DMA_CMARx) retain the initial values programmed during
the channel configuration phase.

In circular mode, after the last transfer, the DMA_CNDTRx register is automatically reloaded
with the initially programmed value. The current internal address registers are reloaded with
the base address values from the DMA_CPARx/DMA_CMARx registers.

Channel configuration procedure

The following sequence should be followed to configure a DMA channelx (where x is the
channel number).

1. Set the peripheral register address in the DMA_CPARx register. The data will be
moved from/ to this address to/ from the memory after the peripheral event.

2. Set the memory address in the DMA_CMARx register. The data will be written to or
read from this memory after the peripheral event.

3. Configure the total number of data to be transferred in the DMA_CNDTRx register.
After each peripheral event, this value will be decremented.

4. Configure the channel priority using the PL[1:0] bits in the DMA_CCRx register

5. Configure data transfer direction, circular mode, peripheral & memory incremented
mode, peripheral & memory data size, and interrupt after half and/or full transfer in the
DMA_CCRx register

6. Activate the channel by setting the ENABLE bit in the DMA_CCRx register.

As soon as the channel is enabled, it can serve any DMA request from the peripheral
connected on the channel.

Once half of the bytes are transferred, the half-transfer flag (HTIF) is set and an interrupt is
generated if the Half-Transfer Interrupt Enable bit (HTIE) is set. At the end of the transfer,
the Transfer Complete Flag (TCIF) is set and an interrupt is generated if the Transfer
Complete Interrupt Enable bit (TCIE) is set.

Circular mode

Circular mode is available to handle circular buffers and continuous data flows (e.g. ADC
scan mode). This feature can be enabled using the CIRC bit in the DMA_CCRx register.
When circular mode is activated, the number of data to be transferred is automatically
reloaded with the initial value programmed during the channel configuration phase, and the
DMA requests continue to be served.

Memory-to-memory mode

The DMA channels can also work without being triggered by a request from a peripheral.
This mode is called Memory to Memory mode.

If the MEM2MEM bit in the DMA_CCRx register is set, then the channel initiates transfers
as soon as it is enabled by software by setting the Enable bit (EN) in the DMA_CCRx

Direct memory access controller (DMA) RM0038

252/908 DocID15965 Rev 14

register. The transfer stops once the DMA_CNDTRx register reaches zero. Memory to
Memory mode may not be used at the same time as Circular mode.

11.3.4 Programmable data width, data alignment and endians

When PSIZE and MSIZE are not equal, the DMA performs some data alignments as
described in Table 53.

Addressing an AHB peripheral that does not support byte or halfword write
operations

When the DMA initiates an AHB byte or halfword write operation, the data are duplicated on
the unused lanes of the HWDATA[31:0] bus. So when the used AHB slave peripheral does
not support byte or halfword write operations (when HSIZE is not used by the peripheral)

Table 53. Programmable data width & endian behavior (when bits PINC = MINC = 1)

Source
port
width

Desti-
nation
port
width

Number
of data
items to
transfer
(NDT)

Source content:
address / data

Transfer operations
Destination content:

address / data

8 8 4

@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3

1: READ B0[7:0] @0x0 then WRITE B0[7:0] @0x0
2: READ B1[7:0] @0x1 then WRITE B1[7:0] @0x1
3: READ B2[7:0] @0x2 then WRITE B2[7:0] @0x2
4: READ B3[7:0] @0x3 then WRITE B3[7:0] @0x3

@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3

8 16 4

@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3

1: READ B0[7:0] @0x0 then WRITE 00B0[15:0] @0x0
2: READ B1[7:0] @0x1 then WRITE 00B1[15:0] @0x2
3: READ B3[7:0] @0x2 then WRITE 00B2[15:0] @0x4
4: READ B4[7:0] @0x3 then WRITE 00B3[15:0] @0x6

@0x0 / 00B0
@0x2 / 00B1
@0x4 / 00B2
@0x6 / 00B3

8 32 4

@0x0 / B0
@0x1 / B1
@0x2 / B2
@0x3 / B3

1: READ B0[7:0] @0x0 then WRITE 000000B0[31:0] @0x0
2: READ B1[7:0] @0x1 then WRITE 000000B1[31:0] @0x4
3: READ B3[7:0] @0x2 then WRITE 000000B2[31:0] @0x8
4: READ B4[7:0] @0x3 then WRITE 000000B3[31:0] @0xC

@0x0 / 000000B0
@0x4 / 000000B1
@0x8 / 000000B2
@0xC / 000000B3

16 8 4

@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6

1: READ B1B0[15:0] @0x0 then WRITE B0[7:0] @0x0
2: READ B3B2[15:0] @0x2 then WRITE B2[7:0] @0x1
3: READ B5B4[15:0] @0x4 then WRITE B4[7:0] @0x2
4: READ B7B6[15:0] @0x6 then WRITE B6[7:0] @0x3

@0x0 / B0
@0x1 / B2
@0x2 / B4
@0x3 / B6

16 16 4

@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6

1: READ B1B0[15:0] @0x0 then WRITE B1B0[15:0] @0x0
2: READ B3B2[15:0] @0x2 then WRITE B3B2[15:0] @0x2
3: READ B5B4[15:0] @0x4 then WRITE B5B4[15:0] @0x4
4: READ B7B6[15:0] @0x6 then WRITE B7B6[15:0] @0x6

@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6

16 32 4

@0x0 / B1B0
@0x2 / B3B2
@0x4 / B5B4
@0x6 / B7B6

1: READ B1B0[15:0] @0x0 then WRITE 0000B1B0[31:0] @0x0
2: READ B3B2[15:0] @0x2 then WRITE 0000B3B2[31:0] @0x4
3: READ B5B4[15:0] @0x4 then WRITE 0000B5B4[31:0] @0x8
4: READ B7B6[15:0] @0x6 then WRITE 0000B7B6[31:0] @0xC

@0x0 / 0000B1B0
@0x4 / 0000B3B2
@0x8 / 0000B5B4
@0xC / 0000B7B6

32 8 4

@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC

1: READ B3B2B1B0[31:0] @0x0 then WRITE B0[7:0] @0x0
2: READ B7B6B5B4[31:0] @0x4 then WRITE B4[7:0] @0x1
3: READ BBBAB9B8[31:0] @0x8 then WRITE B8[7:0] @0x2
4: READ BFBEBDBC[31:0] @0xC then WRITE BC[7:0] @0x3

@0x0 / B0
@0x1 / B4
@0x2 / B8
@0x3 / BC

32 16 4

@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC

1: READ B3B2B1B0[31:0] @0x0 then WRITE B1B0[7:0] @0x0
2: READ B7B6B5B4[31:0] @0x4 then WRITE B5B4[7:0] @0x1
3: READ BBBAB9B8[31:0] @0x8 then WRITE B9B8[7:0] @0x2
4: READ BFBEBDBC[31:0] @0xC then WRITE BDBC[7:0] @0x3

@0x0 / B1B0
@0x2 / B5B4
@0x4 / B9B8
@0x6 / BDBC

32 32 4

@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC

1: READ B3B2B1B0[31:0] @0x0 then WRITE B3B2B1B0[31:0] @0x0
2: READ B7B6B5B4[31:0] @0x4 then WRITE B7B6B5B4[31:0] @0x4
3: READ BBBAB9B8[31:0] @0x8 then WRITE BBBAB9B8[31:0] @0x8
4: READ BFBEBDBC[31:0] @0xC then WRITE BFBEBDBC[31:0] @0xC

@0x0 / B3B2B1B0
@0x4 / B7B6B5B4
@0x8 / BBBAB9B8
@0xC / BFBEBDBC

DocID15965 Rev 14 253/908

RM0038 Direct memory access controller (DMA)

264

and does not generate any error, the DMA writes the 32 HWDATA bits as shown in the two
examples below:

• To write the halfword “0xABCD”, the DMA sets the HWDATA bus to “0xABCDABCD”
with HSIZE = HalfWord

• To write the byte “0xAB”, the DMA sets the HWDATA bus to “0xABABABAB” with
HSIZE = Byte

Assuming that the AHB/APB bridge is an AHB 32-bit slave peripheral that does not take the
HSIZE data into account, it will transform any AHB byte or halfword operation into a 32-bit
APB operation in the following manner:

• an AHB byte write operation of the data “0xB0” to 0x0 (or to 0x1, 0x2 or 0x3) will be
converted to an APB word write operation of the data “0xB0B0B0B0” to 0x0

• an AHB halfword write operation of the data “0xB1B0” to 0x0 (or to 0x2) will be
converted to an APB word write operation of the data “0xB1B0B1B0” to 0x0

For instance, to write the APB backup registers (16-bit registers aligned to a 32-bit address
boundary), the memory source size (MSIZE) must be configured to “16-bit” and the
peripheral destination size (PSIZE) to “32-bit”.

11.3.5 Error management

A DMA transfer error can be generated by reading from or writing to a reserved address
space. When a DMA transfer error occurs during a DMA read or a write access, the faulty
channel is automatically disabled through a hardware clear of its EN bit in the corresponding
Channel configuration register (DMA_CCRx). The channel's transfer error interrupt flag
(TEIF) in the DMA_IFR register is set and an interrupt is generated if the transfer error
interrupt enable bit (TEIE) in the DMA_CCRx register is set.

11.3.6 Interrupts

An interrupt can be produced on a Half-transfer, Transfer complete or Transfer error for
each DMA channel. Separate interrupt enable bits are available for flexibility.

11.3.7 DMA request mapping

DMA1 controller

The 7 requests from the peripherals (TIMx[2,3,4,6,7], ADC1, SPI[1,2], I2Cx[1,2],
USARTx[1,2,3]) and DAC Channelx[1,2] are simply logically ORed before entering the
DMA1, this means that only one request must be enabled at a time. Refer to Figure 37.

The peripheral DMA requests can be independently activated/de-activated by programming
the DMA control bit in the registers of the corresponding peripheral.

Table 54. DMA interrupt requests

Interrupt event Event flag Enable Control bit

Half-transfer HTIF HTIE

Transfer complete TCIF TCIE

Transfer error TEIF TEIE

Direct memory access controller (DMA) RM0038

254/908 DocID15965 Rev 14

Figure 37. DMA1 request mapping

Table 55 lists the DMA requests for each channel.

Fixed hardware priority

Channel 3

internal

HW request 3

High priority

Low priority

Peripheral

Channel 2
HW request 2

Channel 1

SW trigger (MEM2MEM bit)

Channel 1 EN bit

HW request 1

Channel 4
HW request 4

DMA

Channel 5
HW request 5

Channel 6
HW REQUEST 6

Channel 7
HW request 7

 request

ADC1

USART1_TX

SPI1_TX

USART3_TX

USART1_RX

I2C1_TX

TIM3_CH1

I2C1_RX

TIM2_CH2

 SPI1_RX

 TIM4_CH3
TIM2_CH1

 I2C2_RX

USART2_RX

TIM3_TRIG

 USART2_TX

 TIM2_CH4
 TIM4_UP

I2C2_TX

 TIM4_CH2

TIM3_CH4
TIM3_UP

 USART3_RX

 TIM3_CH3
TIM2_UP

TIM2_CH3
TIM4_CH1

Channel 2 EN bit

Channel 3 EN bit

Channel 4 EN bit

Channel 5 EN bit

Channel 6 EN bit

Channel 7 EN bit

SW trigger (MEM2MEM bit)

SW trigger (MEM2MEM bit)

SW trigger (MEM2MEM bit)

SW trigger (MEM2MEM bit)

SW TRIGGER (MEM2MEM bit)

SW trigger (MEM2MEM bit)

 request signals

ai17147b

SPI2_RX

SPI2_TX

TIM6_UP/DAC_Channel1

TIM7_UP/DAC_Channel2

DocID15965 Rev 14 255/908

RM0038 Direct memory access controller (DMA)

264

Table 55. Summary of DMA1 requests for each channel

Peripherals Channel 1 Channel 2 Channel 3 Channel 4 Channel 5 Channel 6 Channel 7

ADC1 ADC1 - - - - - -

SPI - SPI1_RX SPI1_TX SPI2_RX SPI2_TX - -

USART - USART3_TX USART3_RX USART1_TX USART1_RX USART2_RX USART2_TX

I2C - - - I2C2_TX I2C2_RX I2C1_TX I2C1_RX

TIM2 TIM2_CH3 TIM2_UP - - TIM2_CH1 -
TIM2_CH2
TIM2_CH4

TIM3 - TIM3_CH3
TIM3_CH4
TIM3_UP

- -
TIM3_CH1
TIM3_TRIG

-

TIM4 TIM4_CH1 - - TIM4_CH2 TIM4_CH3 - TIM4_UP

TIM6/DAC_
Channel1

-
TIM6_UP/DA
C_Channel1

- - - - -

TIM7/DAC_
Channel2

- -
TIM7_UP/DA
C_Channel2

- - - -

Direct memory access controller (DMA) RM0038

256/908 DocID15965 Rev 14

Figure 38. DMA2 request mapping

Table 56 lists the DMA2 requests for each channel.

Table 56. Summary of DMA2 requests for each channel

Peripherals Channel 1 Channel 2 Channel 3 Channel 4 Channel 5

SPI3 SPI3_RX SPI3_TX - - -

UART4 - - UART4_RX - UART4_TX

UART5 UART5_TX UART5_RX - - -

TIM5
TIM5_CH4
TIM5_TRIG
TIM5_COM

TIM5_CH3
TIM5_UP

- TIM5_CH2 TIM5_CH1

SDIO - - - SD/MMC -

AES - - AES_OUT - AES_IN

DocID15965 Rev 14 257/908

RM0038 Direct memory access controller (DMA)

264

11.4 DMA registers

Refer to Section 1.1: List of abbreviations for registers on page 38 for a list of abbreviations
used in register descriptions.

Note: In the following registers, all bits related to channel6 and channel7 are not relevant for
DMA2 since it has only 5 channels.

The peripheral registers can be accessed by bytes (8-bit), half-words (16-bit) or words (32-
bit).

11.4.1 DMA interrupt status register (DMA_ISR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
TEIF7 HTIF7 TCIF7 GIF7 TEIF6 HTIF6 TCIF6 GIF6 TEIF5 HTIF5 TCIF5 GIF5

r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TEIF4 HTIF4 TCIF4 GIF4 TEIF3 HTIF3 TCIF3 GIF3 TEIF2 HTIF2 TCIF2 GIF2 TEIF1 HTIF1 TCIF1 GIF1

r r r r r r r r r r r r r r r r

Bits 31:28 Reserved, must be kept at reset value.

Bits 27, 23, 19, 15,
11, 7, 3

TEIFx: Channel x transfer error flag (x = 1 ..7)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_IFCR register.
0: No transfer error (TE) on channel x
1: A transfer error (TE) occurred on channel x

Bits 26, 22, 18, 14,
10, 6, 2

HTIFx: Channel x half transfer flag (x = 1 ..7)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_IFCR register.
0: No half transfer (HT) event on channel x
1: A half transfer (HT) event occurred on channel x

Bits 25, 21, 17, 13,
9, 5, 1

TCIFx: Channel x transfer complete flag (x = 1 ..7)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_IFCR register.
0: No transfer complete (TC) event on channel x
1: A transfer complete (TC) event occurred on channel x

Bits 24, 20, 16, 12,
8, 4, 0

GIFx: Channel x global interrupt flag (x = 1 ..7)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_IFCR register.
0: No TE, HT or TC event on channel x
1: A TE, HT or TC event occurred on channel x

Direct memory access controller (DMA) RM0038

258/908 DocID15965 Rev 14

11.4.2 DMA interrupt flag clear register (DMA_IFCR)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

CTEIF
7

CHTIF
7

CTCIF7 CGIF7 CTEIF6 CHTIF6 CTCIF6 CGIF6 CTEIF5 CHTIF5 CTCIF5 CGIF5

w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTEIF
4

CHTIF
4

CTCIF
4

CGIF4
CTEIF

3
CHTIF

3
CTCIF3 CGIF3 CTEIF2 CHTIF2 CTCIF2 CGIF2 CTEIF1 CHTIF1 CTCIF1 CGIF1

w w w w w w w w w w w w w w w w

Bits 31:28 Reserved, must be kept at reset value.

Bits 27, 23, 19, 15,
11, 7, 3

CTEIFx: Channel x transfer error clear (x = 1 ..7)

This bit is set and cleared by software.
0: No effect
1: Clears the corresponding TEIF flag in the DMA_ISR register

Bits 26, 22, 18, 14,
10, 6, 2

CHTIFx: Channel x half transfer clear (x = 1 ..7)

This bit is set and cleared by software.
0: No effect
1: Clears the corresponding HTIF flag in the DMA_ISR register

Bits 25, 21, 17, 13,
9, 5, 1

CTCIFx: Channel x transfer complete clear (x = 1 ..7)

This bit is set and cleared by software.
0: No effect
1: Clears the corresponding TCIF flag in the DMA_ISR register

Bits 24, 20, 16, 12,
8, 4, 0

CGIFx: Channel x global interrupt clear (x = 1 ..7)

This bit is set and cleared by software.
0: No effect
1: Clears the GIF, TEIF, HTIF and TCIF flags in the DMA_ISR register

DocID15965 Rev 14 259/908

RM0038 Direct memory access controller (DMA)

264

11.4.3 DMA channel x configuration register (DMA_CCRx) (x = 1..7,
where x = channel number)

Address offset: 0x08 + 0d20 × (channel number – 1)

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.

MEM2
MEM

PL[1:0] MSIZE[1:0] PSIZE[1:0] MINC PINC CIRC DIR TEIE HTIE TCIE EN

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:15 Reserved, must be kept at reset value.

Bit 14 MEM2MEM: Memory to memory mode

This bit is set and cleared by software.
0: Memory to memory mode disabled
1: Memory to memory mode enabled

Bits 13:12 PL[1:0]: Channel priority level

These bits are set and cleared by software.
00: Low
01: Medium
10: High
11: Very high

Bits 11:10 MSIZE[1:0]: Memory size

These bits are set and cleared by software.
00: 8-bits
01: 16-bits
10: 32-bits
11: Reserved

Bits 9:8 PSIZE[1:0]: Peripheral size

These bits are set and cleared by software.
00: 8-bits
01: 16-bits
10: 32-bits
11: Reserved

Bit 7 MINC: Memory increment mode

This bit is set and cleared by software.
0: Memory increment mode disabled
1: Memory increment mode enabled

Bit 6 PINC: Peripheral increment mode

This bit is set and cleared by software.
0: Peripheral increment mode disabled
1: Peripheral increment mode enabled

Bit 5 CIRC: Circular mode

This bit is set and cleared by software.
0: Circular mode disabled
1: Circular mode enabled

Direct memory access controller (DMA) RM0038

260/908 DocID15965 Rev 14

11.4.4 DMA channel x number of data register (DMA_CNDTRx) (x = 1..7,
where x = channel number)

Address offset: 0x0C + 0d20 × (channel number – 1)

Reset value: 0x0000 0000

Bit 4 DIR: Data transfer direction

This bit is set and cleared by software.
0: Read from peripheral
1: Read from memory

Bit 3 TEIE: Transfer error interrupt enable

This bit is set and cleared by software.
0: TE interrupt disabled
1: TE interrupt enabled

Bit 2 HTIE: Half transfer interrupt enable

This bit is set and cleared by software.
0: HT interrupt disabled
1: HT interrupt enabled

Bit 1 TCIE: Transfer complete interrupt enable

This bit is set and cleared by software.
0: TC interrupt disabled
1: TC interrupt enabled

Bit 0 EN: Channel enable

This bit is set and cleared by software.
0: Channel disabled
1: Channel enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NDT

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 NDT[15:0]: Number of data to transfer

Number of data to be transferred (0 up to 65535). This register can only be written when the
channel is disabled. Once the channel is enabled, this register is read-only, indicating the
remaining bytes to be transmitted. This register decrements after each DMA transfer.
Once the transfer is completed, this register can either stay at zero or be reloaded
automatically by the value previously programmed if the channel is configured in auto-
reload mode.
If this register is zero, no transaction can be served whether the channel is enabled or not.

DocID15965 Rev 14 261/908

RM0038 Direct memory access controller (DMA)

264

11.4.5 DMA channel x peripheral address register (DMA_CPARx) (x = 1..7,
where x = channel number)

Address offset: 0x10 + 0d20 × (channel number – 1)

Reset value: 0x0000 0000

This register must not be written when the channel is enabled.

11.4.6 DMA channel x memory address register (DMA_CMARx) (x = 1..7,
where x = channel number)

Address offset: 0x14 + 0d20 × (channel number – 1)

Reset value: 0x0000 0000

This register must not be written when the channel is enabled.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PA

rw rw

Bits 31:0 PA[31:0]: Peripheral address

Base address of the peripheral data register from/to which the data will be read/written.
When PSIZE is 01 (16-bit), the PA[0] bit is ignored. Access is automatically aligned to a half-
word address.
When PSIZE is 10 (32-bit), PA[1:0] are ignored. Access is automatically aligned to a word
address.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MA

rw rw

Bits 31:0 MA[31:0]: Memory address

Base address of the memory area from/to which the data will be read/written.
When MSIZE is 01 (16-bit), the MA[0] bit is ignored. Access is automatically aligned to a
half-word address.
When MSIZE is 10 (32-bit), MA[1:0] are ignored. Access is automatically aligned to a word
address.

Direct memory access controller (DMA) RM0038

262/908 DocID15965 Rev 14

11.4.7 DMA register map

The following table gives the DMA register map and the reset values. The reserved memory
areas are highlighted in gray in the table.

Table 57. DMA register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x000
DMA_ISR

Reserved T
E

IF
7

H
T

IF
7

T
C

IF
7

G
IF

7

T
E

IF
6

H
T

IF
6

T
C

IF
6

G
IF

6

T
E

IF
5

H
T

IF
5

T
C

IF
5

G
IF

5

T
E

IF
4

H
T

IF
4

T
C

IF
4

G
IF

4

T
E

IF
3

H
T

IF
3

T
C

IF
3

G
IF

3

T
E

IF
2

H
T

IF
2

T
C

IF
2

G
IF

2

T
E

IF
1

H
T

IF
1

T
C

IF
1

G
IF

1

Reset value 0

0x004
DMA_IFCR

Reserved

C
T

E
IF

7

C
H

T
IF

7

C
T

C
IF

7

C
G

IF
7

C
T

E
IF

6

C
H

T
IF

6

C
T

C
IF

6

C
G

IF
6

C
T

E
IF

5

C
H

T
IF

5

C
T

C
IF

5

C
G

IF
5

C
T

E
IF

4

C
H

T
IF

4

C
T

C
IF

4

C
G

IF
4

C
T

E
IF

3

C
H

T
IF

3

C
T

C
IF

3

C
G

IF
3

C
T

E
IF

2

C
H

T
IF

2

C
T

C
IF

2

C
G

IF
2

C
T

E
IF

1

C
H

T
IF

1

C
T

C
IF

1

C
G

IF
1

Reset value 0

0x008
DMA_CCR1

Reserved

M
E

M
2

M
E

M

PL
[1:0]

M
 S

IZ
E

 [
1

:0
]

P
S

IZ
E

 [
1

:0
]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x00C
DMA_CNDTR1

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x010
DMA_CPAR1 PA[31:0]

Reset value 0

0x014
DMA_CMAR1 MA[31:0]

Reset value 0

0x018 Reserved

0x01C
DMA_CCR2

Reserved

M
E

M
2

M
E

M

PL
[1:0]

M
 S

IZ
E

 [
1:

0]

P
S

IZ
E

 [
1:

0
]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x020
DMA_CNDTR2

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x024
DMA_CPAR2 PA[31:0]

Reset value 0

0x028
DMA_CMAR2 MA[31:0]

Reset value 0

0x02C Reserved

0x030
DMA_CCR3

Reserved

M
E

M
2

M
E

M

PL
[1:0]

M
 S

IZ
E

 [
1

:0
]

P
S

IZ
E

 [
1

:0
]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x034
DMA_CNDTR3

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x038
DMA_CPAR3 PA[31:0]

Reset value 0

0x03C
DMA_CMAR3 MA[31:0]

Reset value 0

DocID15965 Rev 14 263/908

RM0038 Direct memory access controller (DMA)

264

0x040 Reserved

0x044
DMA_CCR4

Reserved

M
E

M
2M

E
M

PL
[1:0]

M
 S

IZ
E

 [1
:0

]

P
S

IZ
E

 [
1:

0]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x048
DMA_CNDTR4

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04C
DMA_CPAR4 PA[31:0]

Reset value 0

0x050
DMA_CMAR4 MA[31:0]

Reset value 0

0x054 Reserved

0x058
DMA_CCR5

Reserved

M
E

M
2

M
E

M

PL
[1:0]

M
 S

IZ
E

 [
1

:0
]

P
S

IZ
E

 [
1

:0
]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x05C
DMA_CNDTR5

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x060
DMA_CPAR5 PA[31:0]

Reset value 0

0x064
DMA_CMAR5 MA[31:0]

Reset value 0

0x068 Reserved

0x06C
DMA_CCR6

Reserved

M
E

M
2M

E
M

PL
[1:0]

M
 S

IZ
E

 [
1:

0]

P
S

IZ
E

 [
1:

0
]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x070
DMA_CNDTR6

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x074
DMA_CPAR6 PA[31:0]

Reset value 0

0x078
DMA_CMAR6 MA[31:0]

Reset value 0

0x07C Reserved

0x080
DMA_CCR7

Reserved

M
E

M
2

M
E

M

PL
[1:0]

M
 S

IZ
E

 [
1

:0
]

P
S

IZ
E

 [
1

:0
]

M
IN

C

P
IN

C

C
IR

C

D
IR

T
E

IE

H
T

IE

T
C

IE

E
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x084
DMA_CNDTR7

Reserved
NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x088
DMA_CPAR7 PA[31:0]

Reset value 0

Table 57. DMA register map and reset values (continued)

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Direct memory access controller (DMA) RM0038

264/908 DocID15965 Rev 14

Refer to Table 5 on page 47 for the register boundary addresses.

0x08C
DMA_CMAR7 MA[31:0]

Reset value 0

0x090 Reserved

Table 57. DMA register map and reset values (continued)

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DocID15965 Rev 14 265/908

RM0038 Analog-to-digital converter (ADC)

310

12 Analog-to-digital converter (ADC)

This section applies to the whole STM32L1xxxx family, unless otherwise specified.

12.1 ADC introduction

The 12-bit ADC is a successive approximation analog-to-digital converter. It has up to 42
multiplexed channels allowing it measure signals from up to 40 external and two internal
sources. The A/D conversion of the channels can be performed in single, continuous, scan
or discontinuous mode. The result of the ADC is stored into a left- or right-aligned 16-bit
data register.

The analog watchdog feature allows the application to detect if the input voltage goes
beyond the user-defined, higher or lower thresholds.

Conversions are always performed at maximum speed to have the highest possible
conversion rate for a given system clock frequency. The automatic power control
dramatically reduces the consumption by powering-on the ADC only during conversions.

12.2 ADC main features

• 12-bit, 10-bit, 8-bit or 6-bit configurable resolution

• Interrupt generation at the end of regular conversions, end of injected conversions, and
in case of analog watchdog or overrun events (for regular conversions)

• Single and continuous conversion modes

• Scan mode for automatic conversions in a fully programmable order

• Programmable data alignment with in-built data coherency

• Programmable and individual sampling time for each ADC channel

• External trigger option with configurable edge detection for both regular and injected
conversions

• Discontinuous mode

• ADC conversion time: 1 µs at full speed (ADC clocked at 16 MHz) down to 4 µs at low
speed (ADC clocked at 4 MHz), independent of the APB clock

• Automatic power-up/power-down to reduce the power consumption

• ADC supply requirements:

– 2.4 V to 3.6 V at full speed or with reference zooming (VREF+ < VDDA)

– down to 1.8 V at slower speeds

• ADC input range: VREF– ≤ VIN ≤ VREF+

• Automatic programmable hardware delay insertion between conversions

• DMA request generation during regular channel conversion

Figure 39 shows the block diagram of the ADC.

Note: VREF–, if available (depending on package), must be tied to VSSA.

Analog-to-digital converter (ADC) RM0038

266/908 DocID15965 Rev 14

12.3 ADC functional description

Figure 39 and Figure 40 show the ADC block diagram, Table 58 gives the pin description.

Figure 39. ADC block diagram (Cat.1 and Cat.2 devices)

DocID15965 Rev 14 267/908

RM0038 Analog-to-digital converter (ADC)

310

Note: Due to internal connections (ADC multiplexer switches), ADC channels 4, 5, 22, 23, 24 and
25 are direct channels with the highest available sampling rate and the other channels are
multiplexed with reduced sampling rate, for more details see product datasheet. For more
details, refer to Figure 25: Routing interface (RI) block diagram for Cat.1 and Cat.2 devices
on page 192, Figure 26: Routing interface (RI) block diagram for Cat.3 devices on page 193
and Figure 27: Routing interface (RI) block diagram for Cat.4, Cat.5 and Cat.6 devices on
page 194.

Table 58. ADC pins

Name Signal type Remarks

VREF+
Input, analog
reference positive

The higher/positive reference voltage for the
ADC is:

2.4V ≤ VREF+ = VDDA for full speed (ADCCLK =
16 MHz, 1 Msps)

1.8V ≤ VREF+ = VDDA for medium speed
(ADCCLK = 8 MHz, 500 Ksps)

2.4V ≤ VREF+ ≠ VDDA for medium speed
(ADCCLK = 8 MHz, 500 Ksps)

1.8V ≤ VREF+ < VDDA for low speed (ADCCLK
= 4 MHz, 250 Ksps)

When product voltage range 3 is selected
(VCORE = 1.2 V), the ADC is low speed
(ADCCLK = 4 MHz, 250 Ksps)

VDDA Input, analog supply
Analog power supply equal to VDD and
2.4 V ≤ VDDA ≤ VDD (3.6 V) for full speed
1.8 V ≤ VDDA ≤ VDD (3.6 V) for medium and low speed

VREF–
Input, analog
reference negative

The lower/negative reference voltage for the ADC,
VREF– = VSSA

VSSA
Input, analog supply
ground

Ground for analog power supply equal to VSS

ADC_IN[15:0] and
ADC_IN[25:18]

ADC_IN[31:27],

ADC_IN[3:0]b

and ADC_IN[12:6]b

Analog input signals
24 analog input channels in Cat.1 and Cat.2 devices

Up to 40 channels in Cat.3, Cat.4, Cat.5 and Cat.6
devices

Analog-to-digital converter (ADC) RM0038

268/908 DocID15965 Rev 14

Figure 40. ADC block diagram (Cat.3, Cat.4, Cat.5 and Cat.6 devices)

DocID15965 Rev 14 269/908

RM0038 Analog-to-digital converter (ADC)

310

12.3.1 ADC power on-off control

The ADC is powered on by setting the ADON bit in the ADC_CR2 register. When the ADON
bit is set for the first time, it wakes up the ADC from the Power-down mode.

Conversion starts when either the SWSTART or the JSWSTART bit is set, or in response to
an external trigger. These software or hardware triggers must be enabled only when the
ADC is ready to convert (ADONS=1).

Resetting the ADON bit stops the conversions and put the ADC in power down mode. In this
mode the ADC consumes almost no power. ADONS is cleared after ADON has been
synchronized to the ADCCLK clock domain.

Note: Due to the latency introduced by the synchronization between the two clock domains,
ADON must be set only when ADONS=0 and it must be cleared only when the ADC is ready
to convert (ADONS=1).

Power down configurations (PDI and PDD)

In order to reduce the consumption when the ADC is ready to convert (ADONS=1), the ADC
can be automatically powered off when it is not converting, until the next conversion starts
depending on the PDI and PDD bits in the ADC_CR1 register. Refer to Section 12.10:
Power saving on page 282 for more details.

Using the PDI bit, the user can determine whether the ADC is powered up or down when it
is not converting (waiting for a hardware or software trigger event).

Using the PDD bit, the user can determine whether the ADC is powered up or down
between 2 conversions (or sequences of conversions) when a delay is inserted (DELS bits).

When PDI=1, ADONS is the image of ADON (same value) as viewed from the ADCCLK
clock.

Conversion starts after the ADC power-up time (tSTAB) when either the SWSTART or the
JSWSTART bit is set, or in response to an external trigger. These software or hardware
triggers must be enabled only when the ADC is ready to convert (ADONS=1).

Resetting the ADON bit stops the conversions and places the ADC in a mode where it is no
longer supplied.

Note: Due to the latency introduced by the synchronization between the two clock domains,
ADON must be set only when ADONS=0 and it must be cleared only when ADONS=1.

12.3.2 ADC clock

To avoid unnecessary consumption while not converting, the ADC digital interface has been
designed to operate in a completely independent manner, at its maximum speed using an
internal 16 MHz clock source (HSI), whatever the CPU operating frequency (which can
range from a few sub-kHz up to 32 MHz).

Note: When entering Stop mode, the ADC analog and digital interfaces remain inactive as the HSI
and PCLK2 are disabled. Since the HSI is still deactived after resuming from Stop mode, the
user must enable the HSI as the ADC analog interface clock source and continue using
ADC conversions.

The ADCCLK clock is provided by the clock controller. It is generated from the HSI oscillator
after a clock divider:

• by 1 for full speed (fADCCLK = 16 MHz)

• by 2 for medium speed and by 4 for low speed (fADCCLK = 4 MHz)

Analog-to-digital converter (ADC) RM0038

270/908 DocID15965 Rev 14

Depending on the APB clock (PCLK) frequency, the ADCCLK clock frequency can be higher
or lower than PCLK. In particular, when the APB becomes too low, it can become difficult to
get the results of conversions at full speed without losing any data (because the data flow is
higher than what the CPU or the DMA can handle). This problem can be solved by inserting
a delay between 2 conversions or between 2 sequences of conversions in order to give the
system enough time to read and save the converted data before the next data arrive. Refer
to Section 12.9: Hardware freeze and delay insertion modes for slow conversions on
page 279 for more details.

12.3.3 Channel selection

In Cat.1 and Cat.2 devices, there are up to 26 multiplexed channels ADC_IN0..25.

In Cat.3, Cat.4, Cat.5 and Cat.6 devices there are up to 42 multiplexed channels organized
in 2 banks. Channels ADC_IN0 to ADC_IN31 are available in Bank A and channels
ADC_IN0b to ADC_IN31b are available in Bank B. The bank selection is configured by the
ADC_CFG bit in the ADC_CR2 register. Temperature sensor input, internal voltage
reference input and selected external analog inputs i.e. ADC_IN4 / ADC_IN4b () are
available in both banks. For details see Table 41: I/O groups and selection.

It is possible to organize the conversions in two groups: regular and injected. A group
consists of a sequence of conversions that can be done in any order and on any available
input channels from the selected bank. For instance, it is possible to implement the
conversion sequence in the following order: ADC_IN3, ADC_IN8, ADC_IN2, ADC_IN2,
ADC_IN0, ADC_IN2.

• A regular group is composed of up to 28 conversions. The regular channels and their
order in the conversion sequence must be selected in the ADC_SQRx registers. The
total number of conversions, which can be up to 28 in the regular group must be written
in the L[4:0] bits in the ADC_SQR1 register.

• An injected group is composed of up to 4 conversions. The injected channels and
their order in the conversion sequence must be selected in the ADC_JSQR register.
The total number of conversions, which can be up to 4 in the injected group must be
written in the L[1:0] bits in the ADC_JSQR register.

Note: If the ADC_SQRx register is modified during a regular conversion or the ADC_JSQR
register is modified during an injected conversion, the current conversion is reset and the
ADC waits for a new start pulse. If the conversion that is reset is an injected conversion that
had interrupted a regular conversion, then the regular conversion is resumed.

Up to 6 direct channels are connected to the input switch matrix of ADC allowing to sample
at the full speed of 1 MSamples/s. The rest of the input channels are multiplexed through
routing interface reducing speed to 800 kSamples/s. For more information see Section 8.2:
RI main features.

Temperature sensor, VREFINT internal channels

The temperature sensor is connected to channel ADC_IN16 and the internal reference
voltage VREFINT is connected to ADC_IN17. These two internal channels can be selected
and converted as injected or regular channels.

DocID15965 Rev 14 271/908

RM0038 Analog-to-digital converter (ADC)

310

12.3.4 Single conversion mode

In Single conversion mode the ADC does one conversion. This mode is started with the
CONT bit in the ADC_CR2 at 0 by either:

• setting the SWSTART bit in the ADC_CR2 register (for a regular channel only)

• setting the JSWSTART bit (for an injected channel)

• external trigger (for a regular or injected channel)

Once the conversion of the selected channel is complete:

• If a regular channel was converted (converted channel is selected by the SQ1[4:0] bits
in the SQR5 register):

– The converted data are stored into the 16-bit ADC_DR register

– The EOC (end of conversion) flag is set

– An interrupt is generated if the EOCIE bit is set

• If an injected channel was converted (converted channel is selected by the JSQ1[4:0]
bits in the JSQR register):

– The converted data are stored into the 16-bit ADC_JDR1 register

– The JEOC (end of conversion injected) flag is set

– An interrupt is generated if the JEOCIE bit is set

Then the ADC stops.

12.3.5 Continuous conversion mode

In continuous conversion mode, the ADC starts a new conversion as soon as it finishes one.
This mode is started with the CONT bit at 1 either by external trigger or by setting the
SWSTART bit in the ADC_CR2 register (for regular channels only).

After each conversion:

• If a regular channel was converted (converted channel is selected by the SQ1[4:0] bits
in the SQR5 register):

– The last converted data are stored into the 16-bit ADC_DR register

– The EOC (end of conversion) flag is set

– An interrupt is generated if the EOCIE bit is set

Note: Injected channels cannot be converted continuously. The only exception is when an injected
channel is configured to be converted automatically after regular channels in continuous
mode (using JAUTO bit), refer to Auto-injected conversion section).

12.3.6 Timing diagram

As shown in Figure 41, the ADC needs a stabilization time (tSTAB) before it can actually
convert. The ADONS bit is set when a conversion can be triggered. A conversion is
launched when the SWSTART bit is set (or when an external trigger is detected). After the
conversion time (programmable sampling time + 12 ADCCLK clock cycles for 12-bit data),
the EOC flag is set and the ADC data register contains the result of the conversion. Note
that some delays are needed to resynchronize the different signals from one clock domain
to the other.

Analog-to-digital converter (ADC) RM0038

272/908 DocID15965 Rev 14

Figure 41. Timing diagram (normal mode, PDI=0)

12.3.7 Analog watchdog

The AWD analog watchdog status bit is set if the analog voltage converted by the ADC is
below a lower threshold or above a higher threshold. These thresholds are programmed in
the 12 least significant bits of the ADC_HTR and ADC_LTR 16-bit registers. An interrupt can
be enabled by using the AWDIE bit in the ADC_CR1 register.

The threshold value is independent of the alignment selected by the ALIGN bit in the
ADC_CR2 register. The analog voltage is compared to the lower and higher thresholds
before alignment.

Table 59 shows how the ADC_CR1 register should be configured to enable the analog
watchdog on one or more channels.

Figure 42. Analog watchdog’s guarded area

DocID15965 Rev 14 273/908

RM0038 Analog-to-digital converter (ADC)

310

12.3.8 Scan mode

This mode is used to scan a group of analog channels.

The Scan mode is selected by setting the SCAN bit in the ADC_CR1 register. Once this bit
has been set, the ADC scans all the channels selected in the ADC_SQRx registers (for
regular channels) or in the ADC_JSQR register (for injected channels). All the channels to
be converted must be located in the same bank as the ADC_CFG bit is stable during the
scan. A single conversion is performed for each channel of the group. After each end of
conversion, the next channel in the group is converted automatically. If the CONT bit in the
ADC_CR2 register is set, regular channel conversion does not stop at the last selected
channel in the group but continues again from the first selected channel.

If the DMA bit is set, the direct memory access (DMA) controller is used to transfer the data
converted from the regular group of channels (stored in the ADC_DR register) to memory
after each regular channel conversion.

The EOC bit is set in the ADC_SR register if:

• At the end of each regular group sequence the EOCS bit is cleared to 0

• At the end of each regular channel conversion the EOCS bit is set to 1

The data converted from an injected channel is always stored into the ADC_JDRx registers.

12.3.9 Injected channel management

Triggered injected conversion

To use triggered injection, the JAUTO bit must be cleared in the ADC_CR1 register.

1. Start the conversion of a group of injected channels either by external trigger or by
setting the JSWSTART bit in the ADC_CR2 register.

2. If an external injected trigger occurs or if the JSWSTART bit is set during the
conversion of a regular group of channels, the current conversion is reset and the
injected channel sequence switches to Scan-once mode.

3. Then, the regular conversion of the regular group of channels is resumed from the last
interrupted regular conversion.
If a regular event occurs during an injected conversion, the injected conversion is not

Table 59. Analog watchdog channel selection

Channels guarded by the analog
watchdog

ADC_CR1 register control bits (x = don’t care)

AWDSGL bit AWDEN bit JAWDEN bit

None x 0 0

All injected channels 0 0 1

All regular channels 0 1 0

All regular and injected channels 0 1 1

Single(1) injected channel

1. Selected by the AWDCH[4:0] bits

1 0 1

Single(1) regular channel 1 1 0

Single (1) regular or injected channel 1 1 1

Analog-to-digital converter (ADC) RM0038

274/908 DocID15965 Rev 14

interrupted but the regular sequence is executed at the end of the injected sequence.
Figure 43 shows the corresponding timing diagram.

Note: When using triggered injection, one must ensure that the interval between trigger events is
longer than the injection sequence. For instance, if the sequence length is 30 ADC clock
cycles (that is two conversions with a sampling time of 3 clock periods), the minimum
interval between triggers must be 31 ADC clock cycles.

Figure 43. Injected conversion latency

1. The maximum latency value can be found in the electrical characteristics of the STM32L1xxxx datasheet.

Auto-injected conversion

If the JAUTO bit is set, then the channels in the injected group are automatically converted
after the regular group of channels. This can be used to convert a sequence of up to 31
conversions programmed in the ADC_SQRx and ADC_JSQR registers.

In this mode, external trigger on injected channels must be disabled.

If the CONT bit is also set in addition to the JAUTO bit, regular channels followed by injected
channels are continuously converted.

Note: It is not possible to use both the auto-injected and discontinuous modes simultaneously.

12.3.10 Discontinuous mode

Regular group

This mode is enabled by setting the DISCEN bit in the ADC_CR1 register. It can be used to
convert a short sequence of n conversions (n ≤ 8) that is part of the sequence of conversions
selected in the ADC_SQRx registers. The value of n is specified by writing to the
DISCNUM[2:0] bits in the ADC_CR1 register.

When an external trigger occurs, it starts the next n conversions selected in the ADC_SQRx
registers until all the conversions in the sequence are done. The total sequence length is
defined by the L[4:0] bits in the ADC_SQR1 register.

DocID15965 Rev 14 275/908

RM0038 Analog-to-digital converter (ADC)

310

Example:

n = 3, regular channels to be converted = 0, 1, 2, 3, 6, 7, 9, 10
1st trigger: sequence converted 0, 1, 2
2nd trigger: sequence converted 3, 6, 7
3rd trigger: sequence converted 9, 10 and an EOC event generated
4th trigger: sequence converted 0, 1, 2

Note: When a regular group is converted in discontinuous mode, no rollover occurs.

When all subgroups are converted, the next trigger starts the conversion of the first
subgroup. In the example above, the 4th trigger reconverts the channels 0, 1 and 2 in the
1st subgroup.

Injected group

This mode is enabled by setting the JDISCEN bit in the ADC_CR1 register. It can be used to
convert a short sequence of n conversions (n ≤ 3) part of the sequence of conversions
selected in the ADC_JSQR registers. The value of n is specified by writing to the
DISCNUM[2:0] bits in the ADC_CR1 register.

When an external trigger occurs, it starts the next channel conversions selected in the
ADC_JSQR registers until all the conversions in the sequence are done. The total sequence
length is defined by the JL[1:0] bits in the ADC_JSQR register.

Example:

n = 1, injected channels to be converted = 1, 2, 3
1st trigger: channel 1 converted
2nd trigger: channel 2 converted
3rd trigger: channel 3 converted and EOC and JEOC events generated
4th trigger: channel 1

Note: When all injected channels are converted, the next trigger starts the conversion of the first
injected channel. In the example above, the 4th trigger reconverts the 1st injected channel
1.

It is not possible to use both the auto-injected and discontinuous modes simultaneously.

Discontinuous mode must not be set for regular and injected groups at the same time.

12.4 Data alignment

The ALIGN bit in the ADC_CR2 register selects the alignment of the data stored after
conversion. Data can be right- or left-aligned as shown in Figure 44 and Figure 45.

The converted data value from the injected group of channels is decreased by the user-
defined offset written in the ADC_JOFRx registers so the result can be a negative value.
The SEXT bit represents the extended sign value.

For channels in a regular group, no offset is subtracted so only twelve bits are significant.

Analog-to-digital converter (ADC) RM0038

276/908 DocID15965 Rev 14

Figure 44. Right alignment of 12-bit data

Figure 45. Left alignment of 12-bit data

Special case: when left-aligned, the data are aligned on a half-word basis except when the
resolution is set to 6-bit. in that case, the data are aligned on a byte basis as shown in
Figure 46.

Figure 46. Left alignment of 6-bit data

12.5 Channel-wise programmable sampling time

The ADC samples the input voltage for a number of ADCCLK cycles that can be modified
using the SMP[2:0] bits in the ADC_SMPRx registers (x =1 to 3). Each channel of a given
bank can be sampled with a different sampling time. Nevertheless, the sampling time
selection is shared between the 2 banks.

The total conversion time is calculated as follows:

Tconv = Sampling time + channel conversion time

Example:

With ADCCLK = 16 MHz and sampling time = 4 cycles:

Tconv = 4 + 12 = 16 cycles = 1 µs (for 12-bit conversion)

Tconv = 4 + 7 = 11 cycles = 685 ns (for 6-bit conversion)

DocID15965 Rev 14 277/908

RM0038 Analog-to-digital converter (ADC)

310

12.6 Conversion on external trigger

Conversion can be triggered by an external event (e.g. timer capture, EXTI line). If the
EXTEN[1:0] control bits (for a regular conversion) or JEXTEN[1:0] bits (for an injected
conversion) are different from “0b00”, then external events are able to trigger a conversion
with the selected edge. Table 60 provides the correspondence between the EXTEN[1:0] and
JEXTEN[1:0] values and the trigger edge.

Note: The edge detection of the external trigger can be changed on the fly.

The EXTSEL[3:0] and JEXTSEL[3:0] control bits are used to select which out of 16 possible
events can trigger conversion for the regular and injected groups.

Table 61 gives the possible external trigger for regular conversion.

Table 62 gives the possible external trigger for injected conversion.

Table 60. Configuring the trigger edge detection

Source EXTEN[1:0] / JEXTEN[1:0]

Trigger detection disabled 00

Detection on the rising edge 01

Detection on the falling edge 10

Detection on both the rising and falling edges 11

Table 61. External trigger for regular channels

Source Type EXTSEL[3:0]

TIM9_CC2 event

Internal signal from on-chip
timers

0000

TIM9_TRGO event 0001

TIM2_CC3 event 0010

TIM2_CC2 event 0011

TIM3_TRGO event 0100

TIM4_CC4 event 0101

TIM2_TRGO event 0110

TIM3_CC1 event 0111

TIM3_CC3 event 1000

TIM4_TRGO event 1001

TIM6_TRGO event 1010

Reserved

NA

1011

Reserved 1100

Reserved 1101

Reserved 1110

EXTI line11 External pin 1111

Analog-to-digital converter (ADC) RM0038

278/908 DocID15965 Rev 14

A regular group conversion can be interrupted by an injected trigger.

Note: The trigger selection can be changed on the fly. When this is done, however, trigger
detection is disabled for a period of 2 PCLK cycles. This is to avoid spurious detections
during the transition.

The interval between trigger events must be longer than:

• the sequence for regular conversions

• the sequence + 1 ADCCLK cycle for injected conversions

For instance, if the sequence length is 32 ADC clock cycles (that is two conversions with a 4
clock-period sampling time), the minimum interval between regular triggers must be greater
than 32 ADC clock cycles and the interval between injected triggers must be greater than 33
ADC clock cycles.

12.7 Aborting a conversion

12.7.1 Injected channels

An injected conversion or a sequence of conversions can be stopped by writing to the JSQR
register (the JL[1:0] bitfield has to be written with its current value). Then any ongoing
injected conversion aborts and any pending trigger is reset. A new injected conversion can
start when a new hardware or software trigger occurs.

Table 62. External trigger for injected channels

Source Type EXTSEL[3:0]

TIM9_CC1 event

Internal signal from on-chip timers

 0000

TIM9_TRGO event 0001

TIM2_TRGO event 0010

TIM2_CC1 event 0011

TIM3_CC4 event 0100

TIM4_TRGO event 0101

TIM4_CC1 event 0110

TIM4_CC2 event 0111

TIM4_CC3 event 1000

TIM10_CC1 event 1001

TIM7_TRGO event 1010

Reserved

NA

 1011

Reserved 1100

Reserved 1101

Reserved 1110

EXTI line15 External pin 1111

DocID15965 Rev 14 279/908

RM0038 Analog-to-digital converter (ADC)

310

After aborting an injected conversion, the system requires a few clock cycles before a new
injected conversion can start (3 to 5 ADC clock cycles + 2 to 5 APB clock cycles). To meet
this requirement, JSWSTART should not be set before JCNR=0.

12.7.2 Regular channels

A regular conversion or a sequence of conversions can be stopped by writing to any of the
SQR1 to SQR5 registers (if SQR1 is written, the L[4:0] bitfield has to be written with its
current value). The ADC then behaves in the same way as in the case of injected
conversions (see Section 12.7.2: Regular channels).

If several of the SQRi registers have to be written in order to configure a new sequence, no
conversion should be launched between the different write accesses. In this case, the
following sequence must be applied:

1. Disable the external triggers by writing the EXTEN bits to 00 (when external triggers
are used)

2. Change the sequence configuration (by writing to the SQRi registers)

3. Wait for RCNR=0 in the ADC_SR register

4. Enable the external trigger or set the SWSTART bit

12.8 Conversion resolution

It is possible to perform faster conversion by reducing the ADC resolution. The RES[1:0] bits
are used to select the number of bits available in the data register. The minimal conversion
time for each resolution, when the sampling time is 4 cycles, is then as follows:

• for 12-bit resolution : 12 + 4 = 16 cycles

• for 10-bit resolution : 11 + 4 = 15 cycles

• for 8-bit resolution : 9 + 4 = 13 cycles

• for 6-bit resolution : 7 + 4 = 11 cycles

12.9 Hardware freeze and delay insertion modes for slow
conversions

When the APB clock is not fast enough to manage the data rate, a delay can be introduced
between conversions to reduce this data rate. The delay is inserted after each regular
conversion and after each sequence of injected conversions as, during conversion, a trigger
event (for the same group of conversions) occurring during this delay is ignored.

No delay is inserted between conversions of different groups (a regular conversion followed
by an injected conversion or conversely):

• If an injected trigger occurs during the delay of a regular conversion, the injected
conversion starts immediately.

• If a regular conversion is to be resumed after being interrupted by an injected
sequence, it starts as soon as the delay of the previous regular conversion is finished.

The behavior is slightly different in auto-injected mode where a new regular conversion can
start only when the delay of the previous injected conversion has ended. This is to ensure
that the software can read all the data of a given sequence before starting a new sequence.
In this mode, a regular trigger is ignored if it occurs during the delay that follows a regular

Analog-to-digital converter (ADC) RM0038

280/908 DocID15965 Rev 14

conversion. It is however considered pending if it occurs after this delay, even if it occurs
during an injected sequence or the delay that follows it. The conversion then starts at the
end of the delay of the injected sequence.

The length of the delay is configured using the DELS[2:0] bits in the ADC_CR2 register. Two
cases should be considered:

• ADC freeze mode:
When DELS[2:0]=001, a new conversion can start only if all the previous data of the
same group have been treated:

– for a regular conversion: once the ADC_DR register has been read or if the EOC
bit has been cleared

– for an injected conversion: when the JEOC bit has been cleared

• ADC delay insertion mode:
When DELS[2:0]>001, a new conversion can start only after a given number of APB
clock cycles after the end of the previous conversion in the same group.

Figure 47. ADC freeze mode

12.9.1 Inserting a delay after each regular conversion

When enabled, a delay is inserted at the end of each regular conversion before a new
regular conversion can start. It gives time to read the converted data in the ADC_DR
register before a new regular conversion is completed. The length of the delay is configured
by the DELS[2:0] bits. Figure 48 shows an example of continuous regular conversions
where a 10 PCLK cycle delay is inserted after each conversion.

Note: When ADC_CR2_EOCS = 1, the delay is inserted after each sequence of regular group
conversions.

DocID15965 Rev 14 281/908

RM0038 Analog-to-digital converter (ADC)

310

Figure 48. Continuous regular conversions with a delay

1. tconv1: including sampling and conversion times (for instance 16 ADC clock cycles with the minimum
sampling time)

2. tdelay: delay from the end of a conversion to the start of the next conversion (number of PCLK periods
configured with the DELS[2:0] bits) + delay to synchronize the end of conversion (0 to 1 PCLK clock cycles)
+ delay to synchronize the end of delay (2 or 3 ADC clock cycles).

12.9.2 Inserting a delay after each sequence of auto-injected conversions

When enabled, a delay is inserted at the end of each sequence of injected conversions. Up
to 5 conversion results can be stored into the ADC_DR and the ADC_JDRx registers. The
length of the delay is configured by the DELS[2:0] bits. Figure 49 shows an example of
continuous conversions (the CONT bit is set) where a delay is inserted after each sequence
of injected conversions. Here the JAUTO bit is set and the sequence ends after the last
injected conversion (the sequence is made of 1 regular conversion + 2 injected
conversions).

Analog-to-digital converter (ADC) RM0038

282/908 DocID15965 Rev 14

Figure 49. Continuous conversions with a delay between each conversion

1. tconv1/2/3: including sampling and conversion times for channels 1, 2 and 3.

2. tdelay: delay from the end of the previous sequence to the start of the new sequence (number of PCLK
periods configured with the DELS bits) + delay to synchronize the end of conversion (0 to 1 PCLK clock
cycles) + delay to synchronize the end of delay (2 or 3 ADC clock cycles).

12.10 Power saving

ADC power-on and power-off can be managed by hardware to cut the consumption when
the ADC is not converting. The ADC can be powered down:

• during the delay described above (when the PDD bit is set). Then the ADC is powered
up again at the end of the delay
and/or

• when the ADC is waiting for a trigger event (when the PDI bit is set). In this case the
ADC is powered up at the next trigger event.

DocID15965 Rev 14 283/908

RM0038 Analog-to-digital converter (ADC)

310

The ADC needs a certain time to start up before a conversion can actually be launched.
This startup time must be taken into account before selecting the automatic power control
modes or when configuring the delay. For this reason, it is also more efficient (from the
power point of view and when possible) when scanning several channels to launch a
sequence of several conversions and stop the consumption after the sequence, than when
launching each conversion one by one with a delay after each conversion.

For a given sequence of conversions, the ADCCLK clock must be enabled before launching
the first conversion, and be present until the EOC bit (or the JEOC bit in case of injected
channels) is set.

Figure 50, Figure 51 and Figure 52 show examples of power management in different
configurations. ADON=1 in all these examples.

Figure 50. Automatic power-down control: example 1

Figure 51. Automatic power-down control: example 2

Analog-to-digital converter (ADC) RM0038

284/908 DocID15965 Rev 14

Figure 52. Automatic power-down control: example 3

12.11 Data management and overrun detection

12.11.1 Using the DMA

Since converted regular channel values are stored into a unique data register, it is useful to
use DMA for conversion of more than one regular channel. This avoids the loss of the data
already stored in the ADC_DR register.

When the DMA mode is enabled (DMA bit set to 1 in the ADC_CR2 register), after each
conversion of a regular channel, a DMA request is generated. This allows the transfer of the
converted data from the ADC_DR register to the destination location selected by the
software.

Despite this, if data are lost (overrun), the OVR bit in the ADC_SR register is set and an
interrupt is generated (if the OVRIE enable bit is set). DMA transfers are then disabled and
DMA requests are no longer accepted. In this case, if a DMA request is made, the regular
conversion in progress is aborted and further regular triggers are ignored. It is then
necessary to clear the OVR flag and the DMAEN bit in the used DMA stream, and to re-
initialize both the DMA and the ADC to have the wanted converted channel data transferred
to the right memory location. Only then can the conversion be resumed and the data
transfer, enabled again. Injected channel conversions are not impacted by overrun errors.

When OVR = 1 in DMA mode, the DMA requests are blocked after the last valid data have
been transferred, which means that all the data transferred to the RAM can be considered
as valid.

At the end of the last DMA transfer (number of transfers configured in the DMA controller’s
DMA_SxRTR register):

• No new DMA request is issued to the DMA controller if the DDS bit is cleared to 0 in the
ADC_CR2 register (this avoids generating an overrun error). However the DMA bit is
not cleared by hardware. It must be written to 0, then to 1 to start a new transfer.

• Requests can continue to be generated if the DDS bit is set to 1. This allows
configuring the DMA in double-buffer circular mode.

12.11.2 Managing a sequence of conversions without using the DMA

If the conversions are slow enough, the conversion sequence can be handled by the
software. In this case the EOCS bit must be set in the ADC_CR2 register for the EOC status

DocID15965 Rev 14 285/908

RM0038 Analog-to-digital converter (ADC)

310

bit to be set at the end of each conversion, and not only at the end of the sequence. When
EOCS = 1, overrun detection is automatically enabled. Thus, each time a conversion is
complete, EOC is set and the ADC_DR register can be read. The overrun management is
the same as when the DMA is used.

12.11.3 Conversions without reading all the data

It may be useful to let the ADC convert one or more channels without reading the data each
time (if there is an analog watchdog for instance). For that, the DMA must be disabled
(DMA = 0) and the EOC bit must be set at the end of a sequence only (EOCS = 0). In this
configuration no overrun error is reported if a conversion finishes when the result of the
previous conversion has not been read.

12.11.4 Overrun detection

Overrun detection is always enabled. It takes place before the data are synchronized to the
APB clock.

Note: Only regular channel conversions generate overrun errors.

At the end of a conversion, the result is stored into an intermediate buffer (in the ADC clock
domain) until it is transferred to the data register (ADC_DR, in the APB clock domain). If
new data arrive before the previous data are transferred, the new data are lost and an
overrun error is detected. The OVR bit is set in the ADC_SR register and an interrupt is
generated if the OVRIE bit is set.

This may occur in two cases:

• either the delay is not properly set with respect to the APB clock frequency (the delay is
too short to synchronize the data), or

• the previous data could not be synchronized to the APB clock because the ADC_DR
register is not empty (when DMA=1 or EOCS=1). Indeed, in these modes, the contents
of the ADC_DR register cannot be overwritten and so the register always contains the
last valid data. ADC_DR is emptied by reading it or by clearing the EOC bit in the
ADC_SR register.

Note: An overrun may happen to be detected just after clearing the DMA (or EOCS) when the last
data transferred by the DMA are read very late, which causes the next data to be lost.

After clearing the OVR bit, the software should not launch a new regular conversion until
RCNR=0 in the ADC_SR register.

12.12 Temperature sensor and internal reference voltage

The temperature sensor can be used to measure the junction temperature (TJ) of the
device. The temperature sensor is internally connected to the ADC_IN16 input channel
which is used to convert the sensor’s output voltage to a digital value. When not in use, the
sensor can be put in power down mode.

The temperature sensor output voltage changes linearly with temperature, however its
characteristics may vary significantly from chip to chip due to the process variations. To
improve the accuracy of the temperature sensor (especially for absolute temperature
measurement), calibration values are individually measured for each part by ST during
production test and stored in the system memory area. Refer to the specific device
datasheet for additional information.

Analog-to-digital converter (ADC) RM0038

286/908 DocID15965 Rev 14

The internal voltage reference (VREFINT) provides a stable (bandgap) voltage output for the
ADC and Comparators. VREFINT is internally connected to the ADC_IN17 input channel. The
precise voltage of VREFINT is individually measured for each part by ST during production
test and stored in the system memory area.

Figure 53 shows the block diagram of connections between the temperature sensor, the
internal voltage reference and the ADC.

The TSVREFE bit must be set to enable the conversion of ADC_IN16 (temperature sensor)
and the conversion of ADC_IN17 (VREFINT).

Figure 53. Temperature sensor and VREFINT channel block diagram

Reading the temperature

1. Select the ADC_IN16 input channel.

2. Select appropriate sampling time specified in device datasheet (TS_temp)

3. Set the TSVREFE bit in the ADC_CCR register to wake up the temperature sensor
from power-down mode and wait for its stabilization time (tSTART).

4. Start the ADC conversion.

5. Read the resulting data in the ADC_DR register.

6. Calculate the temperature using the following formulae:

Where:

• TS_CAL2 is the temperature sensor calibration value acquired at 110°C

• TS_CAL1 is the temperature sensor calibration value acquired at 30°C

• TS_DATA is the actual temperature sensor output value converted by ADC

Refer to the specific device datasheet for more information about TS_CAL1 and TS_CAL2
calibration points.

Temperature
110° C 30° C–

TS_CAL2 TS_CAL1–
-- TS_DATA TS_CAL1–() 30° C+×=

DocID15965 Rev 14 287/908

RM0038 Analog-to-digital converter (ADC)

310

Note: The sensor has a startup time after waking from power down mode before it can output
VSENSE at the correct level. The ADC also has a startup time after power-on, so to minimize
the delay, the ADON and TSVREFE bits should be set at the same time.

Calculating the actual VDDA voltage using the internal reference voltage

The VDDA power supply voltage applied to the microcontroller may be subject to variation or
not precisely known. The embedded internal voltage reference (VREFINT) and its calibration
data acquired by the ADC during the manufacturing process at VDDA = 3 V can be used to
evaluate the actual VDDA voltage level.

The following formula gives the actual VDDA voltage supplying the device:

VDDA = 3 V x VREFINT_CAL / VREFINT_DATA

Where:

• VREFINT_CAL is the VREFINT calibration value

• VREFINT_DATA is the actual VREFINT output value converted by ADC

Converting a supply-relative ADC measurement to an absolute voltage value

The ADC is designed to deliver a digital value corresponding to the ratio between the analog
power supply and the voltage applied on the converted channel. For most application use
cases, it is necessary to convert this ratio into a voltage independent of VDDA. For
applications where VDDA is known and ADC converted values are right-aligned you can use
the following formula to get this absolute value:

For applications where VDDA value is not known, you must use the internal voltage
reference and VDDA can be replaced by the expression provided in Section : Calculating the
actual VDDA voltage using the internal reference voltage, resulting in the following formula:

Where:

• VREFINT_CAL is the VREFINT calibration value

• ADC_DATAx is the value measured by the ADC on channel x (right-aligned)

• VREFINT_DATA is the actual VREFINT output value converted by the ADC

• FULL_SCALE is the maximum digital value of the ADC output. For example with 12-bit
resolution, it will be 212 - 1 = 4095 or with 8-bit resolution, 28 - 1 = 255.

Note: If ADC measurements are done using an output format other than 12-bit right-aligned, all
the parameters must first be converted to a compatible format before the calculation is
done.

VCHANNELx

VDDA

FULL_SCALE
------------------------------------- ADC_DATAx×=

VCHANNELx

3 V VREFINT_CAL ADC_DATAx××
VREFINT_DATA FULL_SCALE×

--=

Analog-to-digital converter (ADC) RM0038

288/908 DocID15965 Rev 14

12.13 Internal reference voltage (VREFINT) conversion

The internal reference voltage is internally connected to the VREFINT channel. This analog
input channel is used to convert the internal reference voltage into a digital value.

The TSVREFE bit in the ADC_CCR register must be set to enable the internal reference
voltage (and also the Temperature sensor). This reference voltage must be enabled only if
its conversion is required.

The internal reference voltage is factory measured and the result of the ADC conversion is
stored in a specific data address : the VREFINT_Factory_CONV byte.

12.14 ADC interrupts

An interrupt can be produced on the end of conversion for regular and injected groups,
when the analog watchdog status bit is set and when the overrun status bit is set. Separate
interrupt enable bits are available for flexibility.

Five other flags are present in the ADC_SR register, but there is no interrupt associated with
them:

• JCNR (injected channel not ready)

• RCNR (regular channel not ready)

• ADONS (ADON status)

• JSTRT (Start of conversion for channels of an injected group)

• STRT (Start of conversion for channels of a regular group)

Figure 54. ADC flags and interrupts

DocID15965 Rev 14 289/908

RM0038 Analog-to-digital converter (ADC)

310

12.15 ADC registers

Refer to Section 1.1 on page 38 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32-bit).

12.15.1 ADC status register (ADC_SR)

Address offset: 0x00

Reset value: 0x0000 0000

Table 63. ADC interrupts

Interrupt event Event flag Enable control bit

End of conversion of a regular group EOC EOCIE

End of conversion of an injected group JEOC JEOCIE

Analog watchdog status bit is set AWD AWDIE

Overrun OVR OVRIE

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
JCNR RCNR

Res.
ADONS OVR STRT JSTRT JEOC EOC AWD

r r r rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 31:10 Reserved, must be kept at reset value

Bit 9 JCNR: Injected channel not ready

This bit is set and cleared by hardware after the JSQR register is written. It indicates if a new
injected conversion can be launched (by setting the JSWSTART bit).
0: Injected channel ready
1: Injected channel not ready, JSWSTART must not be set

Bit 8 RCNR: Regular channel not ready

This bit is set and cleared by hardware after one of the SQRx register is written or after the
OVR bit is cleared. It indicates if a new regular conversion can be launched (by setting the
SWSTART bit).
0: Regular channel ready
1: Regular channel not ready, SWSTART must not be set

Bit 7 Reserved, must be kept at reset value

Bit 6 ADONS: ADC ON status

This bit is set and cleared by hardware to indicate if the ADC is ready to convert.
0: The ADC is not ready
1: The ADC is ready to convert. External triggers can be enabled, the SWSTART and
JSWSTART bits can be set.

Analog-to-digital converter (ADC) RM0038

290/908 DocID15965 Rev 14

Bit 5 OVR: Overrun

This bit is set by hardware when regular conversion data are lost. It is cleared by software.
Overrun detection is enabled only when DMA = 1 or EOCS = 1.
0: No overrun occurredF
1: Overrun has occurred

Bit 4 STRT: Regular channel start flag

This bit is set by hardware when regular channel conversion starts. It is cleared by software.
0: No regular channel conversion started
1: Regular channel conversion has started

Bit 3 JSTRT: Injected channel start flag

This bit is set by hardware when injected group conversion starts. It is cleared by software.
0: No injected group conversion started
1: Injected group conversion has started

Bit 2 JEOC: Injected channel end of conversion

This bit is set by hardware at the end of the conversion of all injected channels in the group.
It is cleared by software.
0: Conversion is not complete
1: Conversion complete

Bit 1 EOC: Regular channel end of conversion

This bit is set by hardware at the end of the conversion of a regular group of channels. It is
cleared by software or by reading the ADC_DR register.
0: Conversion not complete (EOCS=0), or sequence of conversions not complete (EOCS=1)
1: Conversion complete (EOCS=0), or sequence of conversions complete (EOCS=1)

Bit 0 AWD: Analog watchdog flag

This bit is set by hardware when the converted voltage crosses the values programmed in
the ADC_LTR and ADC_HTR registers. It is cleared by software.
0: No analog watchdog event occurred
1: Analog watchdog event occurred

DocID15965 Rev 14 291/908

RM0038 Analog-to-digital converter (ADC)

310

12.15.2 ADC control register 1 (ADC_CR1)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
OVRIE RES[1:0] AWDEN JAWDEN

Reserved
PDI PDD

rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DISCNUM[2:0]
JDISCE

N
DISC
EN

JAUTO
AWDSG

L
SCAN JEOCIE AWDIE EOCIE AWDCH[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:27 Reserved, must be kept at reset value

Bit 26 OVRIE: Overrun interrupt enable

This bit is set and cleared by software to enable/disable the Overrun interrupt.
0: Overrun interrupt disabled
1: Overrun interrupt enabled. An interrupt is generated when the OVR bit is set.

Bits 25:24 RES[1:0]: Resolution

These bits are written by software to select the resolution of the conversion.
00: 12-bit (TCONV = 12 ADCCLK cycles)
01: 10-bit (TCONV = 11 ADCCLK cycles)
10: 8-bit (TCONV = 9 ADCCLK cycles)
11: 6-bit (TCONV = 7 ADCCLK cycles)
This bit must be written only when ADON=0.

Bit 23 AWDEN: Analog watchdog enable on regular channels

This bit is set and cleared by software.
0: Analog watchdog disabled on regular channels
1: Analog watchdog enabled on regular channels

Bit 22 JAWDEN: Analog watchdog enable on injected channels

This bit is set and cleared by software.
0: Analog watchdog disabled on injected channels
1: Analog watchdog enabled on injected channels

Bits 21:18 Reserved, must be kept at reset value

Bit 17 PDI: Power down during the idle phase

This bit is written and cleared by software. When ADON=1, it determines whether the ADC is
powered up or down when not converting (waiting for a hardware or software trigger event).
0: The ADC is powered up when waiting for a start event
1: The ADC is powered down when waiting for a start event

Note: This bit must be written only when ADON=0.

Bit 16 PDD: Power down during the delay phase

This bit is written and cleared by software. When ADON=1, it determines whether the ADC is
powered up or down between 2 conversions (or sequences of conversions) when a delay is
inserted (DELS bits).
0: The ADC is powered up during the delay
1: The ADC is powered down during the delay

Note: This bit must be written only when ADON=0.

Analog-to-digital converter (ADC) RM0038

292/908 DocID15965 Rev 14

Bits 15:13 DISCNUM[2:0]: Discontinuous mode channel count

These bits are written by software to define the number of channels to be converted in
discontinuous mode, after receiving an external trigger.
000: 1 channel
001: 2 channels
...
111: 8 channels

Note: This bit must be written only when ADON=0.

Bit 12 JDISCEN: Discontinuous mode on injected channels

This bit is set and cleared by software to enable/disable discontinuous mode on the injected
channels of a group.
0: Discontinuous mode on injected channels disabled
1: Discontinuous mode on injected channels enabled

Note: This bit must be written only when ADON=0.

Bit 11 DISCEN: Discontinuous mode on regular channels

This bit is set and cleared by software to enable/disable Discontinuous mode on regular
channels.
0: Discontinuous mode on regular channels disabled
1: Discontinuous mode on regular channels enabled

Note: This bit must be written only when ADON=0.

Bit 10 JAUTO: Automatic injected group conversion

This bit is set and cleared by software to enable/disable automatic injected group conversion
after regular group conversion.
0: Automatic injected group conversion disabled
1: Automatic injected group conversion enabled

Note: This bit must be written only when ADON=0.

Bit 9 AWDSGL: Enable the watchdog on a single channel in scan mode

This bit is set and cleared by software to enable/disable the analog watchdog on the channel
identified by the AWDCH[4:0] bits.
0: Analog watchdog enabled on all channels
1: Analog watchdog enabled on a single channel

Bit 8 SCAN: Scan mode

This bit is set and cleared by software to enable/disable the Scan mode. In the Scan mode,
the inputs selected through the ADC_SQRx or ADC_JSQRx registers are converted.
0: Scan mode disabled
1: Scan mode enabled

Note: This bit must be written only when ADON=0.

Bit 7 JEOCIE: Interrupt enable for injected channels

This bit is set and cleared by software to enable/disable the end of conversion interrupt for
injected channels.
0: JEOC interrupt disabled
1: JEOC interrupt enabled. An interrupt is generated when the JEOC bit is set.

DocID15965 Rev 14 293/908

RM0038 Analog-to-digital converter (ADC)

310

12.15.3 ADC control register 2 (ADC_CR2)

Address offset: 0x08

Reset value: 0x0000 0000

Bit 6 AWDIE: Analog watchdog interrupt enable

This bit is set and cleared by software to enable/disable the analog watchdog interrupt. In
Scan mode if the watchdog thresholds are crossed, scan is aborted only if this bit is enabled.
0: Analog watchdog interrupt disabled
1: Analog watchdog interrupt enabled

Bit 5 EOCIE: Interrupt enable for EOC

This bit is set and cleared by software to enable/disable the end of conversion interrupt.
0: EOC interrupt disabled
1: EOC interrupt enabled. An interrupt is generated when the EOC bit is set.

Bits 4:0 AWDCH[4:0]: Analog watchdog channel select bits

These bits are set and cleared by software. They select the input channel to be guarded by
the analog watchdog.
00000: ADC analog input ADC_IN0
00001: ADC analog input ADC_IN1
...

11000: ADC analog input ADC_IN24
11001: ADC analog input ADC_IN25
11010: ADC analog input ADC_IN26
Other values reserved.

Note: ADC analog inputs ADC_IN16, ADC_IN17 and ADC_IN26 are internally connected to
the temperature sensor, to VREFINT and to VCOMP, respectively.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res.

SWST
ART

EXTEN EXTSEL[3:0]
Res.

JSWST
ART

JEXTEN JEXTSEL[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
ALIGN EOCS DDS DMA

Res.
DELS

Res.

ADC_C
FG

CONT ADON

rw rw rw rw rw rw rw rw rw rw

Analog-to-digital converter (ADC) RM0038

294/908 DocID15965 Rev 14

Bit 31 Reserved, must be kept at reset value

Bit 30 SWSTART: Start conversion of regular channels

This bit is set by software to start conversion and cleared by hardware as soon as the
conversion starts.
0: Reset state
1: Starts conversion of regular channels

Note: This bit must be set only when ADONS=1 and RCNR=0.

Bits 29:28 EXTEN: External trigger enable for regular channels

These bits are set and cleared by software to select the external trigger polarity and enable
the trigger of a regular group.
00: Trigger detection disabled
01: Trigger detection on the rising edge
10: Trigger detection on the falling edge
11: Trigger detection on both the rising and falling edges

Note: The external trigger must be enabled only when ADONS=1.

Bits 27:24 EXTSEL[3:0]: External event select for regular group

These bits select the external event used to trigger the start of conversion of a regular group:
0000: TIM9_CC2 event
0001: TIM9_TRGO event
0010: TIM2_CC3 event
0011: TIM2_CC2 event
0100: TIM3_TRGO event
0101: TIM4_CC4 event
0110: TIM2_TRGO event
0111: TIM3_CC1 event
1000: TIM3_CC3 event
1001: TIM4_TRGO event
1010: TIM6_TRGO event
1011: Reserved
1100: Reserved
1101: Reserved
1110: Reserved
1111: EXTI line11

Bit 23 Reserved, must be kept at reset value

Bit 22 JSWSTART: Start conversion of injected channels

This bit is set by software and cleared by hardware as soon as the conversion starts.
0: Reset state
1: Starts conversion of injected channels

Note: This bit must be set only when ADONS=1 and JCNR=0.

Bits 21:20 JEXTEN: External trigger enable for injected channels

These bits are set and cleared by software to select the external trigger polarity and enable
the trigger of an injected group.
00: Trigger detection disabled
01: Trigger detection on the rising edge
10: Trigger detection on the falling edge
11: Trigger detection on both the rising and falling edges

Note: The external trigger must be enabled only when ADONS=1.

DocID15965 Rev 14 295/908

RM0038 Analog-to-digital converter (ADC)

310

Bits 19:16 JEXTSEL[3:0]: External event select for injected group

These bits select the external event used to trigger the start of conversion of an injected
group.
0000: TIM9_CC1 event
0001: TIM9_TRGO event
0010: TIM2_TRGO event
0011: TIM2_CC1 event
0100: TIM3_CC4 event
0101: TIM4_TRGO event
0110: TIM4_CC1 event
0111: TIM4_CC2 event
1000: TIM4_CC3 event
1001: TIM10_CC1 event
1010: TIM7_TRGO event
1011: Reserved
1100: Reserved
1101: Reserved
1110: Reserved
1111: EXTI line15

Bits 15:12 Reserved, must be kept at reset value

Bit 11 ALIGN: Data alignment

This bit is set and cleared by software. Refer to Figure 44 and Figure 45.
0: Right alignment
1: Left alignment

Bit 10 EOCS: End of conversion selection

This bit is set and cleared by software.
0: The EOC bit is set at the end of each sequence of regular conversions
1: The EOC bit is set at the end of each regular conversion

Bit 9 DDS: DMA disable selection

This bit is set and cleared by software.
0: No new DMA request is issued after the last transfer (as configured in the DMA controller)
1: DMA requests are issued as long as data are converted and DMA=1

Bit 8 DMA: Direct memory access mode

This bit is set and cleared by software. Refer to the DMA controller chapter for more details.
0: DMA mode disabled
1: DMA mode enabled

Bit 7 Reserved, must be kept at reset value

Analog-to-digital converter (ADC) RM0038

296/908 DocID15965 Rev 14

Bit 6:4 DELS: Delay selection

These bits are set and cleared by software. They define the length of the delay which is
applied after a conversion or a sequence of conversions.
000: No delay
001: Until the converted data have been read (DR read or EOC=0 for regular conversions,
JEOC=0 for injected conversions)
010: 7 APB clock cycles after the end of conversion
011: 15 APB clock cycles after the end of conversion
100: 31 APB clock cycles after the end of conversion
101: 63 APB clock cycles after the end of conversion
110: 127 APB clock cycles after the end of conversion
111: 255 APB clock cycles after the end of conversion

Note: 1- This bit must be written only when ADON=0.

2- Due to clock domain crossing, a latency of 2 or 3 ADC clock cycles is added to the
delay before a new conversion can start.

3- The delay required for a given frequency ratio between the APB clock and the ADC
clock depends on the activity on the AHB and APB busses. If the ADC is the only
peripheral that needs to transfer data, then a minimum delay should be configured:
15 APB clock cycles if fAPB < fADCCLK/2 or else 7 APB clock cycles if fAPB < fADCCLK,
otherwise no delay is needed.

Bit 3 Reserved, must be kept at reset value

Bit 2 ADC_CFG: ADC configuration

This bit is set and cleared by software. It selects the bank of channels to be converted.
0: Bank A selected for channels ADC_IN0..31
1: Bank B selected for channels ADC_IN0..31b

Note: This bit must be modified only when no conversion is on going.

This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only

Bit 1 CONT: Continuous conversion

This bit is set and cleared by software. If it is set, conversion takes place continuously until it
is cleared.
0: Single conversion mode
1: Continuous conversion mode

Bit 0 ADON: A/D Converter ON / OFF

This bit is set and cleared by software.
0: Disable ADC conversion and go to power down mode
1: Enable ADC: conversions can start as soon as a start event (hardware or software) is
received. When not converting, the ADC goes to the power up or power down mode
depending on the PDI and PDD bits.

Note: This bit must be set only when ADONS=0 and cleared only when ADONS=1.

DocID15965 Rev 14 297/908

RM0038 Analog-to-digital converter (ADC)

310

12.15.4 ADC sample time register 1 (ADC_SMPR1)

Address offset: 0x0C

Reset value: 0x0000 0000

12.15.5 ADC sample time register 2 (ADC_SMPR2)

Address offset: 0x10

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
SMP29[2:0] SMP28[2:0] SMP27[2:0] SMP26[2:0] SMP25[2:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SMP25[0] SMP24[2:0] SMP23[2:0] SMP22[2:0] SMP21[2:0] SMP20[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31: 30 Reserved, must be kept at reset value

Bits 29:0 SMPx[2:0]: Channel x sampling time selection

These bits are written by software to select the sampling time individually for each channel.
During sampling cycles, the channel selection bits must remain unchanged.
000: 4 cycles
001: 9 cycles
010: 16 cycles
011: 24 cycles
100: 48 cycles
101: 96 cycles
110: 192 cycles
111: 384 cycles

Note: These bits must be written only when ADON=0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
SMP19[2:0] SMP18[2:0] SMP17[2:0] SMP16[2:0] SMP15[2:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SMP15[0
]

SMP14[2:0] SMP13[2:0] SMP12[2:0] SMP11[2:0] SMP10[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Analog-to-digital converter (ADC) RM0038

298/908 DocID15965 Rev 14

12.15.6 ADC sample time register 3 (ADC_SMPR3)

Address offset: 0x14

Reset value: 0x0000 0000

Bits 31:30 Reserved, must be kept at reset value

Bits 29:0 SMPx[2:0]: Channel x sampling time selection

These bits are written by software to select the sampling time individually for each channel.
During sample cycles, the channel selection bits must remain unchanged.
000: 4 cycles
001: 9 cycles
010: 16 cycles
011: 24 cycles
100: 48 cycles
101: 96 cycles
110: 192 cycles
111: 384 cycles

Note: These bits must be written only when ADON=0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
SMP9[2:0] SMP8[2:0] SMP7[2:0] SMP6[2:0] SMP5[2:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SMP5[0] SMP4[2:0] SMP3[2:0] SMP2[2:0] SMP1[2:0] SMP0[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept at reset value

Bits 29:0 SMPx[2:0]: Channel x Sample time selection

These bits are written by software to select the sampling time individually for each channel.
During the sampling cycles, the channel selection bits must remain unchanged.
000: 4 cycles
001: 9 cycles
010: 16 cycles
011: 24 cycles
100: 48 cycles
101: 96 cycles
110: 192 cycles
111: 384 cycles

Note: These bits must be written only when ADON=0.

DocID15965 Rev 14 299/908

RM0038 Analog-to-digital converter (ADC)

310

12.15.7 ADC injected channel data offset register x (ADC_JOFRx)(x=1..4)

Address offset: 0x18-0x24

Reset value: 0x0000 0000

12.15.8 ADC watchdog higher threshold register (ADC_HTR)

Address offset: 0x28

Reset value: 0x0000 0FFF

Note: The software can write to these registers when an ADC conversion is ongoing. The
programmed value will be effective when the next conversion is complete. Writing to this
register is performed with a write delay that can create uncertainty on the effective time at
which the new value is programmed.

12.15.9 ADC watchdog lower threshold register (ADC_LTR)

Address offset: 0x2C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
JOFFSETx[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value

Bits 11:0 JOFFSETx[11:0]: Data offset for injected channel x

These bits are written by software to define the offset to be subtracted from the raw
converted data when converting injected channels. The conversion result can be read from
in the ADC_JDRx registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
HT[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value

Bits 11:0 HT[11:0]: Analog watchdog higher threshold

These bits are written by software to define the higher threshold for the analog watchdog.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
LT[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Analog-to-digital converter (ADC) RM0038

300/908 DocID15965 Rev 14

Note: The software can write to these registers when an ADC conversion is ongoing. The
programmed value will be effective when the next conversion is complete. Writing to this
register is performed with a write delay that can create uncertainty on the effective time at
which the new value is programmed.

Bits 31:12 Reserved, must be kept at reset value

Bits 11:0 LT[11:0]: Analog watchdog lower threshold

These bits are written by software to define the lower threshold for the analog watchdog.

DocID15965 Rev 14 301/908

RM0038 Analog-to-digital converter (ADC)

310

12.15.10 ADC regular sequence register 1 (ADC_SQR1)

Address offset: 0x30

Reset value: 0x0000 0000

12.15.11 ADC regular sequence register 2 (ADC_SQR2)

Address offset: 0x34

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
L[4:0] SQ28[4:1]

rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SQ28[0] SQ27[4:0] SQ26[4:0] SQ25[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:25 Reserved, must be kept at reset value

Bits 24:20 L[4:0]: Regular channel sequence length

These bits are written by software to define the total number of conversions in the regular
channel conversion sequence.
00000: 1 conversion
00001: 2 conversions
...
11010: 27 conversions
11011: 28 conversions (applicable in Cat.3, Cat.4, Cat.5 and Cat.6 devices only)

Bits 19:15 SQ28[4:0]: 28th conversion in regular sequence

These bits are written by software with the channel number (0..31) assigned as the 28th in
the conversion sequence. The channel is selected in bank A or bank B depending on the
ADC_CFG bit in the ADC_CR2 register.

Note: These bits are available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only

Bits 14:10 SQ27[4:0]: 27th conversion in regular sequence

Cat.1 and Cat.2 devices: These bits are written by software with the channel number
(0..26) assigned as the 27th in the conversion sequence.
Cat.3, Cat.4, Cat.5 and Cat.6 devices: 27th conversion in regular sequence

Bits 9:5 SQ26[4:0]: 26th conversion in regular sequence

Bits 4:0 SQ25[4:0]: 25th conversion in regular sequence

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
SQ24[4:0] SQ23[4:0] SQ22[4:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SQ22[0] SQ21[4:0] SQ20[4:0] SQ19[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Analog-to-digital converter (ADC) RM0038

302/908 DocID15965 Rev 14

12.15.12 ADC regular sequence register 3 (ADC_SQR3)

Address offset: 0x38

Reset value: 0x0000 0000

Bits 31:30 Reserved, must be kept at reset value

Bits 29:26 SQ24[4:0]: 24th conversion in regular sequence

These bits are written by software with the channel number (0.31) assigned as the 24th in the
sequence to be converted.

Bits 24:20 SQ23[4:0]: 23rd conversion in regular sequence

Bits 19:15 SQ22[4:0]: 22nd conversion in regular sequence

Bits 14:10 SQ21[4:0]: 21st conversion in regular sequence

Bits 9:5 SQ20[4:0]: 20th conversion in regular sequence

Bits 4:0 SQ19[4:0]: 19th conversion in regular sequence

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
SQ18[4:0] SQ17[4:0] SQ16[4:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SQ16[0
]

SQ15[4:0] SQ14[4:0] SQ13[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept at reset value

Bits 29:25 SQ18[4:0]: 18th conversion in regular sequence

These bits are written by software with the channel number (0..31) assigned as the 18th in
the sequence to be converted.

Bits 24:20 SQ17[4:0]: 17th conversion in regular sequence

Bits 19:15 SQ16[4:0]: 16th conversion in regular sequence

Bits 14:10 SQ15[4:0]: 15th conversion in regular sequence

Bits 9:5 SQ14[4:0]: 14th conversion in regular sequence

Bits 4:0 SQ13[4:0]: 13th conversion in regular sequence

DocID15965 Rev 14 303/908

RM0038 Analog-to-digital converter (ADC)

310

12.15.13 ADC regular sequence register 4 (ADC_SQR4)

Address offset: 0x3C

Reset value: 0x0000 0000

12.15.14 ADC regular sequence register 5 (ADC_SQR5)

Address offset: 0x40

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
SQ12[4:0] SQ11[4:0] SQ10[4:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SQ10[0] SQ9[4:0] SQ8[4:0] SQ7[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept at reset value

Bits 29:26 SQ12[4:0]: 12th conversion in regular sequence

These bits are written by software with the channel number (0..31) assigned as the 12th in the
sequence to be converted.

Bits 24:20 SQ11[4:0]: 11th conversion in regular sequence

Bits 19:15 SQ10[4:0]: 10th conversion in regular sequence

Bits 14:10 SQ9[4:0]: 9th conversion in regular sequence

Bits 9:5 SQ8[4:0]: 8th conversion in regular sequence

Bits 4:0 SQ7[4:0]: 7th conversion in regular sequence

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
SQ6[4:0] SQ5[4:0] SQ4[4:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SQ4_0 SQ3[4:0] SQ2[4:0] SQ1[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept at reset value

Bits 29:25 SQ6[4:0]: 6th conversion in regular sequence

These bits are written by software with the channel number (0..31) assigned as the 6th in the
sequence to be converted.

Bits 24:20 SQ5[4:0]: 5th conversion in regular sequence

Bits 19:15 SQ4[4:0]: 4th conversion in regular sequence

Bits 14:10 SQ3[4:0]: 3rd conversion in regular sequence

Bits 9:5 SQ2[4:0]: 2nd conversion in regular sequence

Bits 4:0 SQ1[4:0]: 1st conversion in regular sequence

Analog-to-digital converter (ADC) RM0038

304/908 DocID15965 Rev 14

12.15.15 ADC injected sequence register (ADC_JSQR)

Address offset: 0x44

Reset value: 0x0000 0000

Note: When JL[1:0]=3 (4 injected conversions in the sequencer), the ADC converts the channels
in the following order: JSQ1[4:0], JSQ2[4:0], JSQ3[4:0], and JSQ4[4:0].

When JL=2 (3 injected conversions in the sequencer), the ADC converts the channels in
the following order: JSQ2[4:0], JSQ3[4:0], and JSQ4[4:0].

When JL=1 (2 injected conversions in the sequencer), the ADC converts the channels in
starting from JSQ3[4:0], and then JSQ4[4:0].

When JL=0 (1 injected conversion in the sequencer), the ADC converts only JSQ4[4:0]
channel.

12.15.16 ADC injected data register x (ADC_JDRx) (x= 1..4)

Address offset: 0x48 - 0x54

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
JL[1:0] JSQ4[4:1]

rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JSQ4[0] JSQ3[4:0] JSQ2[4:0] JSQ1[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:22 Reserved, must be kept at reset value

Bits 21:20 JL[1:0]: Injected sequence length

These bits are written by software to define the total number of conversions in the injected
channel conversion sequence.
00: 1 conversion
01: 2 conversions
10: 3 conversions
11: 4 conversions

Bits 19:15 JSQ4[4:0]: 4th conversion in injected sequence (when JL[1:0]=3, see note below)

These bits are written by software with the channel number (0..31) assigned as the 4th in the
sequence to be converted. The channel is selected in bank A or bank B depending on the
ADC_CFG bit in the ADC_CR2 register.

Bits 14:10 JSQ3[4:0]: 3rd conversion in injected sequence (when JL[1:0]=3, see note below)

Bits 9:5 JSQ2[4:0]: 2nd conversion in injected sequence (when JL[1:0]=3, see note below)

Bits 4:0 JSQ1[4:0]: 1st conversion in injected sequence (when JL[1:0]=3, see note below)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JDATA[15:0]

r r r r r r r r r r r r r r r r

DocID15965 Rev 14 305/908

RM0038 Analog-to-digital converter (ADC)

310

12.15.17 ADC regular data register (ADC_DR)

Address offset: 0x58

Reset value: 0x0000 0000

12.15.18 ADC sample time register 0 (ADC_SMPR0)

Address offset: 0x5C

Reset value: 0x0000 0000

Note: This register is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bits 31:16 Reserved, must be kept at reset value

Bits 15:0 JDATA[15:0]: Injected data

These bits are read-only. They contain the conversion result from injected channel x. The
data are left -or right-aligned as shown in Figure 44 and Figure 45.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA[15:0]

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved.

Bits 15:0 DATA[15:0]: Regular data

These bits are read-only. They contain the conversion result from the regular channels. The
data are left- or right-aligned as shown in Figure 44 and Figure 45.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
SMP31[2:0] SMP30[2:0]

rw rw rw rw rw rw

Bits 31:6 Reserved, must be kept at reset value

Bits 5:0 SMPx[2:0]: Channel x Sample time selection

These bits are written by software to select the sampling time individually for each channel.
During the sampling cycles, the channel selection bits must remain unchanged.
000: 4 cycles
001: 9 cycles
010: 16 cycles
011: 24 cycles
100: 48 cycles
101: 96 cycles
110: 192 cycles
111: 384 cycles

Note: These bits must be written only when ADON=0.

Analog-to-digital converter (ADC) RM0038

306/908 DocID15965 Rev 14

12.15.19 ADC common status register (ADC_CSR)

Address offset: 0x00 (this offset address is relative to the base address of ADC common
registers, i.e. 0x300)

Reset value: 0x0000 0000

This register provides an image of the status bits of the different ADCs. Nevertheless it is
read-only and does not allow to clear the different status bits. Instead each status bit must
be cleared by writing it to 0 in the corresponding ADC_SR register.

12.15.20 ADC common control register (ADC_CCR)

Address offset: 0x04 (this offset address is relative to the base address of ADC common
registers, i.e. 0x300)

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
ADONS1 OVR1 STRT1 JSTRT1 JEOC 1 EOC1 AWD1

r r r r r r r

Bits 31:7 Reserved, must be kept at reset value

Bit 6 ADONS1: ADON Status of ADC1

This bit is a copy of the ADONS bit in the ADC_SR register.

Bit 5 OVR1: Overrun flag of the ADC

This bit is a copy of the OVR bit in the ADC_SR register.

Bit 4 STRT1: Regular channel Start flag of the ADC

This bit is a copy of the STRT bit in the ADC_SR register.

Bit 3 JSTRT1: Injected channel Start flag of the ADC

This bit is a copy of the JSTRT bit in the ADC_SR register.

Bit 2 JEOC1: Injected channel end of conversion of the ADC

This bit is a copy of the JEOC bit in the ADC_SR register.

Bit 1 EOC1: End of conversion of the ADC

This bit is a copy of the EOC bit in the ADC_SR register.

Bit 0 AWD1: Analog watchdog flag of the ADC

This bit is a copy of the AWD bit in the ADC_SR register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
TSVREFE

Reserved
ADCPRE[1:0]

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

DocID15965 Rev 14 307/908

RM0038 Analog-to-digital converter (ADC)

310

Bits 31:24 Reserved, must be kept at reset value

Bit 23 TSVREFE: Temperature sensor and VREFINT enable

This bit is set and cleared by software to enable/disable the temperature sensor and the
VREFINT channel.
0: Temperature sensor and VREFINT channel disabled
1: Temperature sensor and VREFINT channel enabled

Bits 22:18 Reserved, must be kept at reset value

Bits 17:16 ADCPRE: ADC prescaler

Set and cleared by software to select the frequency of the clock to the ADC.
00: HSI divided by 1
01: HSI divided by 2
10: HSI divided by 4
11: Reserved

Bits 15:0 Reserved, must be kept at reset value

Analog-to-digital converter (ADC) RM0038

308/908 DocID15965 Rev 14

12.15.21 ADC register map

Table 64 summarizes the ADC registers. The reserved memory areas are highlighted in
gray in the tables.

Table 64. ADC global register map

Offset Register

0x000 - 0x058 ADC

0x05C - 0x2FC Reserved

0x300 - 0x304 Common registers

Table 65. ADC register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
ADC_SR

Reserved JC
N

R

R
C

N
R

R
es

er
ve

d

A
D

O
N

S

O
V

R

S
T

R
T

JS
T

R
T

JE
O

C

E
O

C

A
W

D

Reset value 0 0 0 0 0 0 0 0 0

0x04
ADC_CR1

Reserved O
V

R
IE

R
E

S
[1

:0
]

A
W

D
E

N

JA
W

D
E

N

Reserved P
D

I

P
D

D DISC
NUM
[2:0]

JD
IS

C
E

N

D
IS

C
E

N

JA
U

T
O

A
W

D
 S

G
L

S
C

A
N

JE
O

C
IE

A
W

D
IE

E
O

C
IE

AWDCH[4:0]

Reset value 0

0x08
ADC_CR2

R
e

se
rv

e
d

S
W

S
TA

R
T

E
X

T
E

N
[1

:0
]

EXTSEL
[3:0]

R
e

se
rv

e
d

JS
W

S
TA

R
T

JE
X

T
E

N
[1

:0
]

JEXTSEL
[3:0] Reserved A

L
IG

N

E
O

C
S

D
D

S

D
M

A

R
e

se
rv

e
d DELS[2:0

]

R
e

se
rv

e
d

A
D

C
_

C
F

G

C
O

N
T

A
D

O
N

Reset value 0

0x0C
ADC_SMPR1 Sample time bits SMPx_x

Reset value 0

0x10
ADC_SMPR2 Sample time bits SMPx_x

Reset value 0

0x14
ADC_SMPR3 Sample time bits SMPx_x

Reset value 0

0x18
ADC_JOFR1

Reserved
JOFFSET1[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
ADC_JOFR2

Reserved
JOFFSET2[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

DocID15965 Rev 14 309/908

RM0038 Analog-to-digital converter (ADC)

310

0x20
ADC_JOFR3

Reserved
JOFFSET3[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x24
ADC_JOFR4

Reserved
JOFFSET4[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x28
ADC_HTR

Reserved
HT[11:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1

0x2C
ADC_LTR

Reserved
LT[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x30
ADC_SQR1

Reserved
L[4:0] Regular channel sequence SQx_x bits

Reset value 0

0x34
ADC_SQR2

R
e

se
rv

e
d

Regular channel sequence SQx_x bits

Reset value 0

0x38
ADC_SQR3

R
e

se
rv

e
d

Regular channel sequence SQx_x bits

Reset value 0

0x3C
ADC_SQR4

R
e

se
rv

e
d

Regular channel sequence SQx_x bits

Reset value 0

0x40
ADC_SQR5

R
e

se
rv

ed Regular channel sequence SQx_x bits

Reset value 0

0x44
ADC_JSQR

Reserved
JL[1:0] Injected channel sequence JSQx_x bits

Reset value 0

0x48
ADC_JDR1

Reserved
JDATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x4C
ADC_JDR2

Reserved
JDATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x50
ADC_JDR3

Reserved
JDATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 65. ADC register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Analog-to-digital converter (ADC) RM0038

310/908 DocID15965 Rev 14

Refer to Table 5 on page 47 for the Register boundary addresses table.

0x54
ADC_JDR4

Reserved
JDATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x58
ADC_DR

Reserved
Regular DATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x5C
ADC_SMPR0 Sample time bits SMPx_x

Reset value 0

Table 65. ADC register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Table 66. ADC register map and reset values (common registers)

Off-
set

Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00

ADC_CSR

Reserved

A
D

O
N

S

O
V

R

S
T

R
T

JS
T

R
T

JE
O

C

E
O

C

A
W

D

Reset value 0 0 0 0 0 0 0

ADC1

0x04
ADC_CCR

Reserved

T
S

V
R

E
F

E

Reserved

A
D

C
P

R
E

Reserved

Reset value 0 0 0

DocID15965 Rev 14 311/908

RM0038 Digital-to-analog converter (DAC)

332

13 Digital-to-analog converter (DAC)

13.1 DAC introduction

The DAC module is a 12-bit, voltage output digital-to-analog converter. The DAC can be
configured in 8- or 12-bit mode and may be used in conjunction with the DMA controller. In
12-bit mode, the data could be left- or right-aligned. The DAC has two output channels, each
with its own converter. In dual DAC channel mode, conversions could be done
independently or simultaneously when both channels are grouped together for synchronous
update operations. An input reference pin, VREF+ (shared with ADC) is available for better
resolution.

13.2 DAC main features

• Two DAC converters: one output channel each

• Left or right data alignment in 12-bit mode

• Synchronized update capability

• Noise-wave generation

• Triangular-wave generation

• Dual DAC channel for independent or simultaneous conversions

• DMA capability for each channel

• DMA underrun error detection

• External triggers for conversion

• Input voltage reference, VREF+

Figure 55 shows the block diagram of a DAC channel and Table 67 gives the pin
description.

Digital-to-analog converter (DAC) RM0038

312/908 DocID15965 Rev 14

Figure 55. DAC channel block diagram

Note: Once the DAC channelx is enabled, the corresponding GPIO pin (PA4 or PA5) is
automatically connected to the analog converter output (DAC_OUTx). In order to avoid
parasitic consumption, the PA4 or PA5 pin should first be configured to analog (AIN).

Table 67. DAC pins

Name Signal type Remarks

VREF+
Input, analog reference
positive

The higher/positive reference voltage for the DAC,
1.8 V ≤ VREF+ ≤ VDDA

VDDA Input, analog supply Analog power supply

VSSA Input, analog supply ground Ground for analog power supply

DAC_OUTx Analog output signal DAC channelx analog output

DocID15965 Rev 14 313/908

RM0038 Digital-to-analog converter (DAC)

332

13.3 DAC functional description

13.3.1 DAC channel enable

Each DAC channel can be powered on by setting its corresponding ENx bit in the DAC_CR
register. The DAC channel is then enabled after a startup time tWAKEUP.

Note: The ENx bit enables the analog DAC Channelx macrocell only. The DAC Channelx digital
interface is enabled even if the ENx bit is reset.

13.3.2 DAC output buffer enable

The DAC integrates two output buffers that can be used to reduce the output impedance,
and to drive external loads directly without having to add an external operational amplifier.
Each DAC channel output buffer can be enabled and disabled using the corresponding
BOFFx bit in the DAC_CR register.

13.3.3 DAC data format

Depending on the selected configuration mode, the data have to be written into the specified
register as described below:

• Single DAC channelx, there are three possibilities:

– 8-bit right alignment: the software has to load data into the DAC_DHR8Rx [7:0]
bits (stored into the DHRx[11:4] bits)

– 12-bit left alignment: the software has to load data into the DAC_DHR12Lx [15:4]
bits (stored into the DHRx[11:0] bits)

– 12-bit right alignment: the software has to load data into the DAC_DHR12Rx [11:0]
bits (stored into the DHRx[11:0] bits)

Depending on the loaded DAC_DHRyyyx register, the data written by the user is shifted and
stored into the corresponding DHRx (data holding registerx, which are internal non-memory-
mapped registers). The DHRx register is then loaded into the DORx register either
automatically, by software trigger or by an external event trigger.

Digital-to-analog converter (DAC) RM0038

314/908 DocID15965 Rev 14

Figure 56. Data registers in single DAC channel mode

• Dual DAC channels, there are three possibilities:

– 8-bit right alignment: data for DAC channel1 to be loaded into the DAC_DHR8RD
[7:0] bits (stored into the DHR1[11:4] bits) and data for DAC channel2 to be loaded
into the DAC_DHR8RD [15:8] bits (stored into the DHR2[11:4] bits)

– 12-bit left alignment: data for DAC channel1 to be loaded into the DAC_DHR12LD
[15:4] bits (stored into the DHR1[11:0] bits) and data for DAC channel2 to be
loaded into the DAC_DHR12LD [31:20] bits (stored into the DHR2[11:0] bits)

– 12-bit right alignment: data for DAC channel1 to be loaded into the
DAC_DHR12RD [11:0] bits (stored into the DHR1[11:0] bits) and data for DAC
channel2 to be loaded into the DAC_DHR12LD [27:16] bits (stored into the
DHR2[11:0] bits)

Depending on the loaded DAC_DHRyyyD register, the data written by the user is shifted
and stored into DHR1 and DHR2 (data holding registers, which are internal non-memory-
mapped registers). The DHR1 and DHR2 registers are then loaded into the DOR1 and
DOR2 registers, respectively, either automatically, by software trigger or by an external
event trigger.

Figure 57. Data registers in dual DAC channel mode

13.3.4 DAC conversion

The DAC_DORx cannot be written directly and any data transfer to the DAC channelx must
be performed by loading the DAC_DHRx register (write to DAC_DHR8Rx, DAC_DHR12Lx,
DAC_DHR12Rx, DAC_DHR8RD, DAC_DHR12LD or DAC_DHR12LD).

Data stored in the DAC_DHRx register are automatically transferred to the DAC_DORx
register after one APB1 clock cycle, if no hardware trigger is selected (TENx bit in DAC_CR
register is reset). However, when a hardware trigger is selected (TENx bit in DAC_CR
register is set) and a trigger occurs, the transfer is performed three APB1 clock cycles later.

31 24 15 7 0

8-bit right aligned

12-bit left aligned

12-bit right aligned

ai14709

DocID15965 Rev 14 315/908

RM0038 Digital-to-analog converter (DAC)

332

When DAC_DORx is loaded with the DAC_DHRx contents, the analog output voltage
becomes available after a time tSETTLING that depends on the power supply voltage and the
analog output load.

Figure 58. Timing diagram for conversion with trigger disabled TEN = 0

13.3.5 DAC output voltage

Digital inputs are converted to output voltages on a linear conversion between 0 and VREF+.

The analog output voltages on each DAC channel pin are determined by the following
equation:

13.3.6 DAC trigger selection

If the TENx control bit is set, conversion can then be triggered by an external event (timer
counter, external interrupt line). The TSELx[2:0] control bits determine which out of 8
possible events will trigger conversion as shown in Table 68.

Each time a DAC interface detects a rising edge on the selected timer TRGO output, or on
the selected external interrupt line 9, the last data stored into the DAC_DHRx register are
transferred into the DAC_DORx register. The DAC_DORx register is updated three APB1
cycles after the trigger occurs.

DACoutput VREF
DOR
4095
--------------×=

Table 68. External triggers

Source Type TSEL[2:0]

Timer 6 TRGO event

Internal signal from on-chip
timers

000

Reserved 001

Timer 7 TRGO event 010

Timer 9 TRGO event 011

Timer 2 TRGO event 100

Timer 4 TRGO event 101

EXTI line9 External pin 110

SWTRIG Software control bit 111

Digital-to-analog converter (DAC) RM0038

316/908 DocID15965 Rev 14

If the software trigger is selected, the conversion starts once the SWTRIG bit is set.
SWTRIG is reset by hardware once the DAC_DORx register has been loaded with the
DAC_DHRx register contents.

Note: TSELx[2:0] bit cannot be changed when the ENx bit is set.

When software trigger is selected, the transfer from the DAC_DHRx register to the
DAC_DORx register takes only one APB1 clock cycle.

13.3.7 DMA request

Each DAC channel has a DMA capability. Two DMA channels are used to service DAC
channel DMA requests.

A DAC DMA request is generated when an external trigger (but not a software trigger)
occurs while the DMAENx bit is set. The value of the DAC_DHRx register is then transferred
into the DAC_DORx register.
In dual mode, if both DMAENx bits are set, two DMA requests are generated. If only one
DMA request is needed, the user should set only the corresponding DMAENx bit. In this
way, the application can manage both DAC channels in dual mode by using one DMA
request and a unique DMA channel.

DMA underrun

The DAC DMA request is not queued so that if a second external trigger arrives before the
acknowledgement for the first external trigger is received (first request), then no new
request is issued and the DMA channelx underrun flag DMAUDRx in the DAC_SR register
is set, reporting the error condition. DMA data transfers are then disabled and no further
DMA request is treated. The DAC channelx continues to convert old data.

The software should clear the DMAUDRx flag by writing “1”, clear the DMAEN bit of the
used DMA stream and re-initialize both DMA and DAC channelx to restart the transfer
correctly. The software should modify the DAC trigger conversion frequency or lighten the
DMA workload to avoid a new DMA underrun. Finally, the DAC conversion could be
resumed by enabling both DMA data transfer and conversion trigger.

For each DAC channelx, an interrupt is also generated if its corresponding DMAUDRIEx bit
in the DAC_CR register is enabled.

13.3.8 Noise generation

In order to generate a variable-amplitude pseudonoise, an LFSR (linear feedback shift
register) is available. DAC noise generation is selected by setting WAVEx[1:0] to “01”. The
preloaded value in LFSR is 0xAAA. This register is updated three APB1 clock cycles after
each trigger event, following a specific calculation algorithm.

DocID15965 Rev 14 317/908

RM0038 Digital-to-analog converter (DAC)

332

Figure 59. DAC LFSR register calculation algorithm

The LFSR value, that may be masked partially or totally by means of the MAMPx[3:0] bits in
the DAC_CR register, is added up to the DAC_DHRx contents without overflow and this
value is then stored into the DAC_DORx register.

If LFSR is 0x0000, a ‘1 is injected into it (antilock-up mechanism).

It is possible to reset LFSR wave generation by resetting the WAVEx[1:0] bits.

Figure 60. DAC conversion (SW trigger enabled) with LFSR wave generation

Note: The DAC trigger must be enabled for noise generation by setting the TENx bit in the
DAC_CR register.

13.3.9 Triangle-wave generation

It is possible to add a small-amplitude triangular waveform on a DC or slowly varying signal.
DAC triangle-wave generation is selected by setting WAVEx[1:0] to “10”. The amplitude is
configured through the MAMPx[3:0] bits in the DAC_CR register. An internal triangle counter
is incremented three APB1 clock cycles after each trigger event. The value of this counter is
then added to the DAC_DHRx register without overflow and the sum is stored into the
DAC_DORx register. The triangle counter is incremented as long as it is less than the
maximum amplitude defined by the MAMPx[3:0] bits. Once the configured amplitude is
reached, the counter is decremented down to 0, then incremented again and so on.

Digital-to-analog converter (DAC) RM0038

318/908 DocID15965 Rev 14

It is possible to reset triangle wave generation by resetting the WAVEx[1:0] bits.

Figure 61. DAC triangle wave generation

Figure 62. DAC conversion (SW trigger enabled) with triangle wave generation

Note: The DAC trigger must be enabled for noise generation by setting the TENx bit in the
DAC_CR register.

The MAMPx[3:0] bits must be configured before enabling the DAC, otherwise they cannot
be changed.

13.4 Dual DAC channel conversion

To efficiently use the bus bandwidth in applications that require the two DAC channels at the
same time, three dual registers are implemented: DHR8RD, DHR12RD and DHR12LD. A
unique register access is then required to drive both DAC channels at the same time.

Eleven possible conversion modes are possible using the two DAC channels and these dual
registers. All the conversion modes can nevertheless be obtained using separate DHRx
registers if needed.

All modes are described in the paragraphs below.

DocID15965 Rev 14 319/908

RM0038 Digital-to-analog converter (DAC)

332

13.4.1 Independent trigger without wave generation

To configure the DAC in this conversion mode, the following sequence is required:

• Set the two DAC channel trigger enable bits TEN1 and TEN2

• Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

• Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a DAC channel1 trigger arrives, the DHR1 register is transferred into DAC_DOR1
(three APB1 clock cycles later).

When a DAC channel2 trigger arrives, the DHR2 register is transferred into DAC_DOR2
(three APB1 clock cycles later).

13.4.2 Independent trigger with single LFSR generation

To configure the DAC in this conversion mode, the following sequence is required:

• Set the two DAC channel trigger enable bits TEN1 and TEN2

• Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

• Configure the two DAC channel WAVEx[1:0] bits as “01” and the same LFSR mask
value in the MAMPx[3:0] bits

• Load the dual DAC channel data into the desired DHR register (DHR12RD, DHR12LD
or DHR8RD)

When a DAC channel1 trigger arrives, the LFSR1 counter, with the same mask, is added to
the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles
later). Then the LFSR1 counter is updated.

When a DAC channel2 trigger arrives, the LFSR2 counter, with the same mask, is added to
the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles
later). Then the LFSR2 counter is updated.

13.4.3 Independent trigger with different LFSR generation

To configure the DAC in this conversion mode, the following sequence is required:

• Set the two DAC channel trigger enable bits TEN1 and TEN2

• Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

• Configure the two DAC channel WAVEx[1:0] bits as “01” and set different LFSR masks
values in the MAMP1[3:0] and MAMP2[3:0] bits

• Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a DAC channel1 trigger arrives, the LFSR1 counter, with the mask configured by
MAMP1[3:0], is added to the DHR1 register and the sum is transferred into DAC_DOR1
(three APB1 clock cycles later). Then the LFSR1 counter is updated.

When a DAC channel2 trigger arrives, the LFSR2 counter, with the mask configured by
MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2
(three APB1 clock cycles later). Then the LFSR2 counter is updated.

Digital-to-analog converter (DAC) RM0038

320/908 DocID15965 Rev 14

13.4.4 Independent trigger with single triangle generation

To configure the DAC in this conversion mode, the following sequence is required:

• Set the two DAC channel trigger enable bits TEN1 and TEN2

• Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

• Configure the two DAC channel WAVEx[1:0] bits as “1x” and the same maximum
amplitude value in the MAMPx[3:0] bits

• Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a DAC channel1 trigger arrives, the DAC channel1 triangle counter, with the same
triangle amplitude, is added to the DHR1 register and the sum is transferred into
DAC_DOR1 (three APB1 clock cycles later). The DAC channel1 triangle counter is then
updated.

When a DAC channel2 trigger arrives, the DAC channel2 triangle counter, with the same
triangle amplitude, is added to the DHR2 register and the sum is transferred into
DAC_DOR2 (three APB1 clock cycles later). The DAC channel2 triangle counter is then
updated.

13.4.5 Independent trigger with different triangle generation

To configure the DAC in this conversion mode, the following sequence is required:

• Set the two DAC channel trigger enable bits TEN1 and TEN2

• Configure different trigger sources by setting different values in the TSEL1[2:0] and
TSEL2[2:0] bits

• Configure the two DAC channel WAVEx[1:0] bits as “1x” and set different maximum
amplitude values in the MAMP1[3:0] and MAMP2[3:0] bits

• Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a DAC channel1 trigger arrives, the DAC channel1 triangle counter, with a triangle
amplitude configured by MAMP1[3:0], is added to the DHR1 register and the sum is
transferred into DAC_DOR1 (three APB1 clock cycles later). The DAC channel1 triangle
counter is then updated.

When a DAC channel2 trigger arrives, the DAC channel2 triangle counter, with a triangle
amplitude configured by MAMP2[3:0], is added to the DHR2 register and the sum is
transferred into DAC_DOR2 (three APB1 clock cycles later). The DAC channel2 triangle
counter is then updated.

13.4.6 Simultaneous software start

To configure the DAC in this conversion mode, the following sequence is required:

• Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

In this configuration, one APB1 clock cycle later, the DHR1 and DHR2 registers are
transferred into DAC_DOR1 and DAC_DOR2, respectively.

DocID15965 Rev 14 321/908

RM0038 Digital-to-analog converter (DAC)

332

13.4.7 Simultaneous trigger without wave generation

To configure the DAC in this conversion mode, the following sequence is required:

• Set the two DAC channel trigger enable bits TEN1 and TEN2

• Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

• Load the dual DAC channel data to the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a trigger arrives, the DHR1 and DHR2 registers are transferred into DAC_DOR1 and
DAC_DOR2, respectively (after three APB1 clock cycles).

13.4.8 Simultaneous trigger with single LFSR generation

To configure the DAC in this conversion mode, the following sequence is required:

• Set the two DAC channel trigger enable bits TEN1 and TEN2

• Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

• Configure the two DAC channel WAVEx[1:0] bits as “01” and the same LFSR mask
value in the MAMPx[3:0] bits

• Load the dual DAC channel data to the desired DHR register (DHR12RD, DHR12LD or
DHR8RD)

When a trigger arrives, the LFSR1 counter, with the same mask, is added to the DHR1
register and the sum is transferred into DAC_DOR1 (three APB1 clock cycles later). The
LFSR1 counter is then updated. At the same time, the LFSR2 counter, with the same mask,
is added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1
clock cycles later). The LFSR2 counter is then updated.

13.4.9 Simultaneous trigger with different LFSR generation

To configure the DAC in this conversion mode, the following sequence is required:

• Set the two DAC channel trigger enable bits TEN1 and TEN2

• Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

• Configure the two DAC channel WAVEx[1:0] bits as “01” and set different LFSR mask
values using the MAMP1[3:0] and MAMP2[3:0] bits

• Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a trigger arrives, the LFSR1 counter, with the mask configured by MAMP1[3:0], is
added to the DHR1 register and the sum is transferred into DAC_DOR1 (three APB1 clock
cycles later). The LFSR1 counter is then updated.
At the same time, the LFSR2 counter, with the mask configured by MAMP2[3:0], is added to
the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock cycles
later). The LFSR2 counter is then updated.

Digital-to-analog converter (DAC) RM0038

322/908 DocID15965 Rev 14

13.4.10 Simultaneous trigger with single triangle generation

To configure the DAC in this conversion mode, the following sequence is required:

• Set the two DAC channel trigger enable bits TEN1 and TEN2

• Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

• Configure the two DAC channel WAVEx[1:0] bits as “1x” and the same maximum
amplitude value using the MAMPx[3:0] bits

• Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a trigger arrives, the DAC channel1 triangle counter, with the same triangle
amplitude, is added to the DHR1 register and the sum is transferred into DAC_DOR1 (three
APB1 clock cycles later). The DAC channel1 triangle counter is then updated.
At the same time, the DAC channel2 triangle counter, with the same triangle amplitude, is
added to the DHR2 register and the sum is transferred into DAC_DOR2 (three APB1 clock
cycles later). The DAC channel2 triangle counter is then updated.

13.4.11 Simultaneous trigger with different triangle generation

To configure the DAC in this conversion mode, the following sequence is required:

• Set the two DAC channel trigger enable bits TEN1 and TEN2

• Configure the same trigger source for both DAC channels by setting the same value in
the TSEL1[2:0] and TSEL2[2:0] bits

• Configure the two DAC channel WAVEx[1:0] bits as “1x” and set different maximum
amplitude values in the MAMP1[3:0] and MAMP2[3:0] bits

• Load the dual DAC channel data into the desired DHR register (DAC_DHR12RD,
DAC_DHR12LD or DAC_DHR8RD)

When a trigger arrives, the DAC channel1 triangle counter, with a triangle amplitude
configured by MAMP1[3:0], is added to the DHR1 register and the sum is transferred into
DAC_DOR1 (three APB1 clock cycles later). Then the DAC channel1 triangle counter is
updated.
At the same time, the DAC channel2 triangle counter, with a triangle amplitude configured
by MAMP2[3:0], is added to the DHR2 register and the sum is transferred into DAC_DOR2
(three APB1 clock cycles later). Then the DAC channel2 triangle counter is updated.

DocID15965 Rev 14 323/908

RM0038 Digital-to-analog converter (DAC)

332

13.5 DAC registers

Refer to Section: List of abbreviations for registers for a list of abbreviations used in register
descriptions.

The peripheral registers have to be accessed by words (32 bits).

13.5.1 DAC control register (DAC_CR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

DMAU
DRIE2

DMA
EN2

MAMP2[3:0] WAVE2[1:0] TSEL2[2:0] TEN2 BOFF2 EN2

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

DMAU
DRIE1

DMA
EN1

MAMP1[3:0] WAVE1[1:0] TSEL1[2:0] TEN1 BOFF1 EN1

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept at reset value.

Bits 29 DMAUDRIE2: DAC channel2 DMA underrun interrupt enable

This bit is set and cleared by software.
0: DAC channel2 DMA underrun interrupt disabled
1: DAC channel2 DMA underrun interrupt enabled

Bit 28 DMAEN2: DAC channel2 DMA enable

This bit is set and cleared by software.
0: DAC channel2 DMA mode disabled
1: DAC channel2 DMA mode enabled

Bits 27:24 MAMP2[3:0]: DAC channel2 mask/amplitude selector

These bits are written by software to select mask in wave generation mode or amplitude in
triangle generation mode.
0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1
0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3
0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7
0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15
0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31
0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63
0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127
0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255
1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511
1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023
1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047
≥ 1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095

Bits 23:22 WAVE2[1:0]: DAC channel2 noise/triangle wave generation enable

These bits are set/reset by software.
00: wave generation disabled
01: Noise wave generation enabled
1x: Triangle wave generation enabled

Note: Only used if bit TEN2 = 1 (DAC channel2 trigger enabled)

Digital-to-analog converter (DAC) RM0038

324/908 DocID15965 Rev 14

Bits 21:19 TSEL2[2:0]: DAC channel2 trigger selection

These bits select the external event used to trigger DAC channel2
000: Timer 6 TRGO event
001: Reserved
010: Timer 7 TRGO event
011: Timer 9 TRGO event
100: Timer 2 TRGO event
101: Timer 4 TRGO event
110: External line9
111: Software trigger

Note: Only used if bit TEN2 = 1 (DAC channel2 trigger enabled).

Bit 18 TEN2: DAC channel2 trigger enable

This bit is set and cleared by software to enable/disable DAC channel2 trigger
0: DAC channel2 trigger disabled and data written into the DAC_DHRx register are
transferred one APB1 clock cycle later to the DAC_DOR2 register
1: DAC channel2 trigger enabled and data from the DAC_DHRx register are transferred
three APB1 clock cycles later to the DAC_DOR2 register

Note: When software trigger is selected, the transfer from the DAC_DHRx register to the
DAC_DOR2 register takes only one APB1 clock cycle.

Bit 17 BOFF2: DAC channel2 output buffer disable

This bit is set and cleared by software to enable/disable DAC channel2 output buffer.
0: DAC channel2 output buffer enabled
1: DAC channel2 output buffer disabled

Bit 16 EN2: DAC channel2 enable

This bit is set and cleared by software to enable/disable DAC channel2.
0: DAC channel2 disabled
1: DAC channel2 enabled

Bits 15:14 Reserved, must be kept at reset value.

Bit 13 DMAUDRIE1: DAC channel1 DMA Underrun Interrupt enable

This bit is set and cleared by software.
0: DAC channel1 DMA Underrun Interrupt disabled
1: DAC channel1 DMA Underrun Interrupt enabled

Bit 12 DMAEN1: DAC channel1 DMA enable

This bit is set and cleared by software.
0: DAC channel1 DMA mode disabled
1: DAC channel1 DMA mode enabled

DocID15965 Rev 14 325/908

RM0038 Digital-to-analog converter (DAC)

332

Bits 11:8 MAMP1[3:0]: DAC channel1 mask/amplitude selector

These bits are written by software to select mask in wave generation mode or amplitude in
triangle generation mode.
0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1
0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3
0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7
0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15
0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31
0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63
0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127
0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255
1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511
1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023
1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047
≥ 1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095

Bits 7:6 WAVE1[1:0]: DAC channel1 noise/triangle wave generation enable

These bits are set and cleared by software.
00: wave generation disabled
01: Noise wave generation enabled
1x: Triangle wave generation enabled

Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled).

Bits 5:3 TSEL1[2:0]: DAC channel1 trigger selection

These bits select the external event used to trigger DAC channel1.
000: Timer 6 TRGO event
001: Reserved
010: Timer 7 TRGO event
011: Timer 9 TRGO event
100: Timer 2 TRGO event
101: Timer 4 TRGO event
110: External line9
111: Software trigger

Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled).

Bit 2 TEN1: DAC channel1 trigger enable

This bit is set and cleared by software to enable/disable DAC channel1 trigger.
0: DAC channel1 trigger disabled and data written into the DAC_DHRx register are
transferred one APB1 clock cycle later to the DAC_DOR1 register
1: DAC channel1 trigger enabled and data from the DAC_DHRx register are transferred
three APB1 clock cycles later to the DAC_DOR1 register

Note: When software trigger is selected, the transfer from the DAC_DHRx register to the
DAC_DOR1 register takes only one APB1 clock cycle.

Bit 1 BOFF1: DAC channel1 output buffer disable

This bit is set and cleared by software to enable/disable DAC channel1 output buffer.
0: DAC channel1 output buffer enabled
1: DAC channel1 output buffer disabled

Bit 0 EN1: DAC channel1 enable

This bit is set and cleared by software to enable/disable DAC channel1.
0: DAC channel1 disabled
1: DAC channel1 enabled

Digital-to-analog converter (DAC) RM0038

326/908 DocID15965 Rev 14

13.5.2 DAC software trigger register (DAC_SWTRIGR)

Address offset: 0x04
Reset value: 0x0000 0000

13.5.3 DAC channel1 12-bit right-aligned data holding register
(DAC_DHR12R1)

Address offset: 0x08
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
SWTRIG2 SWTRIG1

w w

Bits 31:2 Reserved, must be kept at reset value.

Bit 1 SWTRIG2: DAC channel2 software trigger

This bit is set and cleared by software to enable/disable the software trigger.
0: Software trigger disabled
1: Software trigger enabled

Note: This bit is cleared by hardware (one APB1 clock cycle later) once the DAC_DHR2
register value has been loaded into the DAC_DOR2 register.

Bit 0 SWTRIG1: DAC channel1 software trigger

This bit is set and cleared by software to enable/disable the software trigger.
0: Software trigger disabled
1: Software trigger enabled

Note: This bit is cleared by hardware (one APB1 clock cycle later) once the DAC_DHR1
register value has been loaded into the DAC_DOR1 register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC1DHR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data

These bits are written by software which specifies 12-bit data for DAC channel1.

DocID15965 Rev 14 327/908

RM0038 Digital-to-analog converter (DAC)

332

13.5.4 DAC channel1 12-bit left aligned data holding register
(DAC_DHR12L1)

Address offset: 0x0C

Reset value: 0x0000 0000

13.5.5 DAC channel1 8-bit right aligned data holding register
(DAC_DHR8R1)

Address offset: 0x10

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DACC1DHR[11:0]
Reserved

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data

These bits are written by software which specifies 12-bit data for DAC channel1.

Bits 3:0 Reserved, must be kept at reset value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC1DHR[7:0]

rw rw rw rw rw rw rw rw

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data

These bits are written by software which specifies 8-bit data for DAC channel1.

Digital-to-analog converter (DAC) RM0038

328/908 DocID15965 Rev 14

13.5.6 DAC channel2 12-bit right aligned data holding register
(DAC_DHR12R2)

Address offset: 0x14

Reset value: 0x0000 0000

13.5.7 DAC channel2 12-bit left aligned data holding register
(DAC_DHR12L2)

Address offset: 0x18

Reset value: 0x0000 0000

13.5.8 DAC channel2 8-bit right-aligned data holding register
(DAC_DHR8R2)

Address offset: 0x1C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC2DHR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data

These bits are written by software which specifies 12-bit data for DAC channel2.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DACC2DHR[11:0]
Reserved

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:4 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data

These bits are written by software which specify 12-bit data for DAC channel2.

Bits 3:0 Reserved, must be kept at reset value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC2DHR[7:0]

rw rw rw rw rw rw rw rw

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data

These bits are written by software which specifies 8-bit data for DAC channel2.

DocID15965 Rev 14 329/908

RM0038 Digital-to-analog converter (DAC)

332

13.5.9 Dual DAC 12-bit right-aligned data holding register
(DAC_DHR12RD)

Address offset: 0x20

Reset value: 0x0000 0000

13.5.10 DUAL DAC 12-bit left aligned data holding register
(DAC_DHR12LD)

Address offset: 0x24

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
DACC2DHR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC1DHR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:28 Reserved, must be kept at reset value.

Bits 27:16 DACC2DHR[11:0]: DAC channel2 12-bit right-aligned data

These bits are written by software which specifies 12-bit data for DAC channel2.

Bits 15:12 Reserved, must be kept at reset value.

Bits 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data

These bits are written by software which specifies 12-bit data for DAC channel1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DACC2DHR[11:0]
Reserved

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DACC1DHR[11:0]
Reserved

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:20 DACC2DHR[11:0]: DAC channel2 12-bit left-aligned data

These bits are written by software which specifies 12-bit data for DAC channel2.

Bits 19:16 Reserved, must be kept at reset value.

Bits 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data

These bits are written by software which specifies 12-bit data for DAC channel1.

Bits 3:0 Reserved, must be kept at reset value.

Digital-to-analog converter (DAC) RM0038

330/908 DocID15965 Rev 14

13.5.11 DUAL DAC 8-bit right aligned data holding register
(DAC_DHR8RD)

Address offset: 0x28

Reset value: 0x0000 0000

13.5.12 DAC channel1 data output register (DAC_DOR1)

Address offset: 0x2C

Reset value: 0x0000 0000

13.5.13 DAC channel2 data output register (DAC_DOR2)

Address offset: 0x30
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DACC2DHR[7:0] DACC1DHR[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:8 DACC2DHR[7:0]: DAC channel2 8-bit right-aligned data

These bits are written by software which specifies 8-bit data for DAC channel2.

Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data

These bits are written by software which specifies 8-bit data for DAC channel1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC1DOR[11:0]

r r r r r r r r r r r r

Bits 31:12 Reserved, must be kept at reset value.

Bit 11:0 DACC1DOR[11:0]: DAC channel1 data output

These bits are read-only, they contain data output for DAC channel1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DACC2DOR[11:0]

r r r r r r r r r r r r

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 DACC2DOR[11:0]: DAC channel2 data output

These bits are read-only, they contain data output for DAC channel2.

DocID15965 Rev 14 331/908

RM0038 Digital-to-analog converter (DAC)

332

13.5.14 DAC status register (DAC_SR)

Address offset: 0x34

Reset value: 0x0000 0000

13.5.15 DAC register map

Table 69 summarizes the DAC registers. The reserved memory areas are highlighted in
gray in the table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
DMAUDR2

Reserved
rc_w1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DMAUDR1

Reserved
rc_w1

Bits 31:30 Reserved, must be kept at reset value.

Bit 29 DMAUDR2: DAC channel2 DMA underrun flag

This bit is set by hardware and cleared by software (by writing it to 1).
0: No DMA underrun error condition occurred for DAC channel2
1: DMA underrun error condition occurred for DAC channel2 (the currently selected trigger is
driving DAC channel2 conversion at a frequency higher than the DMA service capability rate)

Bits 28:14 Reserved, must be kept at reset value.

Bit 13 DMAUDR1: DAC channel1 DMA underrun flag

This bit is set by hardware and cleared by software (by writing it to 1).
0: No DMA underrun error condition occurred for DAC channel1
1: DMA underrun error condition occurred for DAC channel1 (the currently selected trigger is
driving DAC channel1 conversion at a frequency higher than the DMA service capability rate)

Bits 12:0 Reserved, must be kept at reset value.

Table 69. DAC register map

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00 DAC_CR

R
e

se
rv

e
d

D
M

A
U

D
R

IE
2

D
M

A
E

N
2

MAMP2[3:0]
WAVE
2[2:0]

TSEL2[2:0]

T
E

N
2

B
O

F
F

2

E
N

2

R
e

se
rv

e
d

D
M

A
U

D
R

IE
1

D
M

A
E

N
1

MAMP1[3:0]
WAVE
1[2:0]

TSEL1[2
:0]

T
E

N
1

B
O

F
F

1

E
N

1

0x04
DAC_

SWTRIGR
Reserved

S
W

T
R

IG
2

S
W

T
R

IG
1

0x08
DAC_

DHR12R1
Reserved DACC1DHR[11:0]

0x0C
DAC_

DHR12L1
Reserved DACC1DHR[11:0] Reserved

0x10
DAC_

DHR8R1
Reserved DACC1DHR[7:0]

0x14
DAC_

DHR12R2
Reserved DACC2DHR[11:0]

Digital-to-analog converter (DAC) RM0038

332/908 DocID15965 Rev 14

Refer to Section: Memory map for the register boundary addresses.

0x18
DAC_

DHR12L2
Reserved DACC2DHR[11:0] Reserved

0x1C
DAC_

DHR8R2
Reserved DACC2DHR[7:0]

0x20
DAC_

DHR12RD
Reserved DACC2DHR[11:0] Reserved DACC1DHR[11:0]

0x24
DAC_

DHR12LD
DACC2DHR[11:0] Reserved DACC1DHR[11:0] Reserved

0x28
DAC_

DHR8RD
Reserved DACC2DHR[7:0] DACC1DHR[7:0]

0x2C
DAC_
DOR1

Reserved DACC1DOR[11:0]

0x30
DAC_
DOR2

Reserved DACC2DOR[11:0]

0x34 DAC_SR

R
e

se
rv

e
d

D
M

A
U

D
R

2

Reserved

D
M

A
U

D
R

1

Reserved

Table 69. DAC register map (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

DocID15965 Rev 14 333/908

RM0038 Comparators (COMP)

343

14 Comparators (COMP)

This section applies to the whole STM32L1xxxx family, unless otherwise specified.

14.1 Introduction

The STM32L1xxxx contains two zero-crossing comparators COMP1 and COMP2, that
share the same current bias.

Note: For all I/Os used as comparator inputs, the GPIO registers must be configured in analog
mode.

When using the routing interface (see Section 8: System configuration controller (SYSCFG)
and routing interface (RI)), the comparator inputs can be connected to external I/Os.

14.2 Main features

• A comparator (COMP1) with fixed threshold (internal reference voltage). The non-
inverting input can be selected among 24 external I/Os.

• A rail-to-rail comparator (COMP2) with selectable threshold. The non-inverting input
can be selected among 2 I/Os for Cat.1 and Cat.2 devices or among 4 I/Os for Cat.3,
Cat.4, Cat.5 and Cat.6 devices. The inverting input can be selected among 7 inputs:

– the internal reference voltage (VREFINT)

– an internal reference voltage submultiple (1/4, 1/2, 3/4) provided by buffered
VREFINT divider.

– the DAC1 output

– the DAC2 output

– an external I/O (PB3)

• The 2 comparators can be combined to form window comparators.

• Zero-crossing can generate a rising or falling edge on the comparator outputs
depending on the trigger configuration.

• Each comparator has an interrupt generation capability with wakeup from the Sleep
and Stop.

• The COMP2 output can be redirected to TIM2/TIM3/TIM4’s input capture 4 (IC4) or
OCREF_CLR inputs, or to the TIM10s input capture 1 (IC1).

• COMP2 speed is configurable for optimum speed/consumption ratio.

The complete block diagram of the comparators, routing interface and ADC interface is
shown in section Section 8: System configuration controller (SYSCFG) and routing interface
(RI).

14.3 COMP clock

The COMP clock provided by the clock controller is synchronous with the PCLK1 (APB1
clock).

Comparators (COMP) RM0038

334/908 DocID15965 Rev 14

14.4 Comparator 1 (COMP1)

Figure 63 and Figure 64 show the comparator 1 interconnections.

Figure 63. COMP1 interconnections (Cat.1 and Cat.2 devices)

Note: The internal reference voltage and temperature sensor cannot be used as COMP1 non-
inverting input.

COMP1 comparator and ADC cannot be used at the same time since they share the ADC
switch matrix.

DocID15965 Rev 14 335/908

RM0038 Comparators (COMP)

343

Figure 64. COMP1 interconnections (Cat.3, Cat.4, Cat.5 and Cat.6 devices)

Note: The internal reference voltage and temperature sensor cannot be used as COMP1 non-
inverting input.

COMP1 comparator and ADC cannot be used at the same time since they share the ADC
switch matrix.

To use the COMP1 comparator, the application has to perform the following steps:

Comparators (COMP) RM0038

336/908 DocID15965 Rev 14

1. Enable the comparator 1 by setting the CMP1EN bit in the COMP_CSR register

2. Wait until the comparator is ready (when the startup time has elapsed). Refer to the
electrical characteristics of the STM32L1xxxx datasheet.

3. Set the SCM bit in the RI_ASCR1 register so as to close the ADC switches if the
corresponding I/O switch is also closed

4. Close the ADC switches to create the path from the selected I/O to the non-inverting
input. The input can be any of the up to 29 available I/Os and can be split into groups or
not (see Figure 41: I/O groups and selection on page 196):

a) Close the VCOMP ADC analog switch by setting the VCOMP bit in the RI_ASCR1
register.

b) Close the I/O analog switch number n corresponding to the I/O group that must be
connected to the COMP1 non-inverting input, by setting the CHn bit in RI_ASCR1.

5. If required enable the COMP1 interrupt by configuring and enabling EXTI line21 in
interrupt mode and selecting the desired trigger event (rising edge, falling edge or
both).

DocID15965 Rev 14 337/908

RM0038 Comparators (COMP)

343

14.5 Comparator 2 (COMP2)

Figure 65 and Figure 66 show the comparator 2 interconnections.

Figure 65. COMP2 interconnections (Cat.1 and Cat.2 devices)

Figure 66. COMP2 interconnections (Cat.3, Cat.4, Cat.5 and Cat.6 devices)

To use the COMP2 comparator, the application has to perform the following steps:

1. Select COMP2's inverting input with the INSEL[2:0] bits in COMP_CSR.

– In the case of an external I/O selection (PB3 I/O), the I/O should be configured in
analog input mode.

2. Close the I/O's analog switch to connect to COMP2 non-inverting input. The input can
be any I/O in group 6 (see Table 41: I/O groups and selection on page 196). GR6-1 or

Comparators (COMP) RM0038

338/908 DocID15965 Rev 14

GR6-2 switches are closed as soon as the corresponding I/O is configured in analog
mode.

3. Wait until the comparator is ready (when the startup time has elapsed). Refer to the
electrical characteristics of the STM32L1xxxx datasheet.

4. If required, perform the following procedures:

– Select the speed with the SPEED bit in COMP_CSR.

– Redirect the COMP2 output to TIM2, TIM3, TIM4 or TIM10 by configuring the
OUTSEL[2:0] bits in COMP_CSR (refer to Figure 67).

– Enable the COMP2 interrupt by configuring and enabling EXTI line22 in interrupt
mode and selecting the desired sensitivity level.

Note: GR6-1 and GR6-2 I/O switches can be closed by either configuring the corresponding I/O
(PB4 or PB5) in analog mode (Schmitt trigger disabled) or configuring the I/O in input
floating mode and setting GR6-1 or GR6-2 in RI_ASCR2 (Schmitt trigger enabled).
If PB4 or PB5 is used as comparator input, it is recommended to use analog configuration to
avoid any overconsumption around VDD/2.

Note: The COMP2 comparator is enabled as soon as the inverting input is selected.

The channel can be changed when the comparator is enabled.

The following figure shows the output redirection possibilities of the COMP2 output.

Figure 67. Redirecting the COMP2 output

Note: For more details about “clearing TIMx OCREF”, refer to Section 17.3.11: Clearing the
OCxREF signal on an external event on page 406.

DocID15965 Rev 14 339/908

RM0038 Comparators (COMP)

343

14.6 Comparators in Window mode

Figure 68. Comparators in Window mode

To use the COMP1 and COMP2 comparators in window mode, the application has to
perform the following steps:

1. Enable the Window mode by setting WNDWE in the COMP_CSR register.

2. Configure the comparators:

– for COMP1: enable the comparator: follow the steps 1 and 2 from Section 14.4:
Comparator 1 (COMP1)

– for COMP2: enable the comparator, select inverting and non-inverting inputs:
follow steps 1, 2, 3 and 4 from Section 14.5: Comparator 2 (COMP2).

Note: In Window mode, only the Group 6 (PB4 and PB5 for Cat.1 and Cat.2 devices, PB4, PB5,
PB6, PB7 for Cat.3, Cat.4, Cat.5 and Cat.6 devices) can be used as a non-inverting input.

14.7 Low-power modes

Note: Comparators cannot be used to exit the device from Sleep or Stop mode when the internal
reference voltage is switched off using the ULP bit in the PWR_CR register.

Table 70. Comparator behavior in the low-power modes

Mode Description

Sleep
No effect on the comparators.
Comparator interrupts cause the device to exit the Sleep mode.

Stop
No effect on the comparators.
Comparator interrupts cause the device to exit the Stop mode.

Comparators (COMP) RM0038

340/908 DocID15965 Rev 14

14.8 Interrupts

The comparator interrupts are connected to EXTI controller (lines 21 and 22).

To enable the COMP interrupt, the following sequence is required:

1. Configure and enable the EXTI line 21 (COMP1) or EXTI line 22 (COMP2) in interrupt
mode and select the desired trigger event (rising edge, falling edge, or both),

2. Configure and enable the COMP_IRQ channel in the NVIC.

14.9 COMP registers

The peripheral registers have to be accessed by words (32-bit).

14.9.1 COMP comparator control and status register (COMP_CSR)

The COMP_CSR register is the control/status register of the comparators. It contains all the
bits related to both comparators.

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TSUS
P

CAIF CAIE RCH13 FCH8 FCH3
Reserved

OUTSEL[2:0] INSEL[2:0]
WNDW

E
VREFOU

TEN

rw r rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

CMP2
OUT

SPEED
Reserved

CMP1OUT
Res.

COMP
1_SW1

CMP1
EN

400KPD 10KPD 400KPU 10KPU

r rw r rw rw rw rw rw rw

Bit 31 TSUSP: Suspend Timer Mode

0: TIM9 ITR enabled to suspend OC TIM9 generation

1: TIM9 ITR not used to suspend OC TIM9 generation

Note: This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only

Bit 30 CAIF: Channel acquisition interrupt flag

0: Channel acquisition ongoing or not started

1: Channel acquisition completed

Note: This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only

Bit 29 CAIE: Channel Acquisition Interrupt Enable / Clear

This bit is set and cleared to enable the Channel Acquisition interrupt. When the Caif bit is set,
it must be cleared by writing 0 to the CAIE bit.

0: Channel acquisition interrupt disabled

1: Channel acquisition interrupt enabled

This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only

DocID15965 Rev 14 341/908

RM0038 Comparators (COMP)

343

Bit 28 RCH13: Select GPIO port PC3 as re-routed ADC input channel CH13.

This bit is set and cleared by software in order configure PC3 to be used as re-routed
channel CH13 (selected by the ADC interface) if OPAMP3 is in power down mode (OPA3PD
bit = 0 in OPAMP_CSR register (Cat.4 devices only). See Figure 71: OPAMP3 signal routing
(Cat.4 devices only) on page 346.
0: PC3 can be used as slow ADC channel
1: PC3 can be used as re-routed ADC channel

Note: This bit is available in Cat.4 devices only

Bit 27 FCH8: Select GPIO port PB0 as fast ADC input channel CH8.

This bit is set and cleared by software in order configure PB0 to be used as direct channel
CH8 (selected by the ADC interface) if OPAMP2 is in power down mode (OPA2PD bit = 0 in
OPAMP_CSR register. See Figure 70: OPAMP2 signal routing on page 345.
0: PB0 can be used as slow ADC channel
1: PB0 can be used as fast ADC channel

Note: This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only

Bit 26 FCH3: Select GPIO port PA3 as fast ADC input channel CH3.

This bit is set and cleared by software in order configure PA3 to be used as direct channel
CH3 (selected by the ADC interface) if OPAMP1 is in power down mode (OPA1PD bit = 0 in
OPAMP_CSR register. See Figure 69: OPAMP1 signal routing on page 345.
0: PA3 can be used as slow ADC channel
1: PA3 can be used as fast ADC channel

Note: This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only

Bits 25:24 Reserved, must be kept cleared.

Bits 23:21 OUTSEL: Comparator 2 output selection

These bits are written by software to connect the output of COMP2 to a selected timer input.
000 = TIM2 Input Capture 4
001 = TIM2 OCREF_CLR
010 = TIM3 Input Capture 4
011 = TIM3 OCREF_CLR
100 = TIM4 Input Capture 4
101 = TIM4 OCREF_CLR
110 = TIM10 Input Capture 1
111 = no redirection

Bits 20:18 INSEL: Inverted input selection

000 = no selection
001 = External I/O: PB3 (COMP2_INM)
010 = VREFINT
011 = 3/4 VREFINT
100 = 1/2 VREFINT
101 = 1/4 VREFINT
110 = DAC_OUT1
111 = DAC_OUT2

Note: The COMP2 comparator is enabled when the INSEL bit values are different from "000”.

Bit 17 WNDWE: Window mode enable

0: Disabled
1: Enabled

Comparators (COMP) RM0038

342/908 DocID15965 Rev 14

Bit 16 VREFOUTEN: VREFINT output enable

This bit is used to output VREFINT on Group 3 (refer to Figure 28: Internal reference voltage
output).
0: Disabled
1: Enabled

Bits 15:14 Reserved, must be kept at reset value

Bit 13 CMP2OUT: Comparator 2 output

This bit indicates the low or high level of the comparator 2 output.
0: Comparator 2 output is low when the non-inverting input is at a lower voltage than the
inverting input
1: Comparator 2 output is high when the non-inverting input is at a higher voltage than the
inverting input

Bit 12 SPEED: Comparator 2 speed mode

0: slow speed
1: fast speed

Bits 11:8 Reserved, must be kept at reset value

Bit 7 CMP1OUT: Comparator 1 output

This bit indicates the high or low level of the comparator 1 output.
0: Comparator 1 output is low when the non-inverting input is at a lower voltage than the
inverting input
1: Comparator 1 output is high when the non-inverting input is at a higher voltage than the
inverting input

Bit 6 Reserved, must be kept at reset value

Bit 5 SW1: COMP1_SW1 analog switch enable

This bit is set and cleared by software to control the COMP1_SW1 analog switch in order to
redirect OPAMP3 output or PC3 to the ADC switch matrix and/or the positive input of COMP1.

0: COMP1_SW1 analog switch open

1: COMP1_SW1 analog switch closed

Note: This bit is available in Cat.4 devices only

Bit 4 CMP1EN: Comparator 1 enable

0: Comparator 1 disabled
1: Comparator 1 enabled

Bit 3 400KPD: 400 kΩ pull-down resistor

This bit enables the 400 kΩ pull-down resistor.

0: 400 kΩ pull-down resistor disabled
1: 400 kΩ pull-down resistor enabled

DocID15965 Rev 14 343/908

RM0038 Comparators (COMP)

343

Note: To avoid extra power consumption, only one resistor should be enabled at a time.

14.9.2 COMP register map

Table 71: COMP register map and reset values summarizes the COMP registers. The
reserved memory areas are highlighted in gray in the table.

Refer to Table 5 on page 47 for the Register boundary addresses table.

Bit 2 10KPD: 10 kΩ pull-down resistor

This bit enables the 10 kΩ pull-down resistor.

0: 10 kΩ pull-down resistor disabled
1: 10 kΩ pull-down resistor enabled

Bit 1 400KPU: 400 kΩ pull-up resistor

This bit enables the 400 kΩ pull-up resistor.

0: 400 kΩ pull-up resistor disabled
1: 400 kΩ pull-up resistor enabled

Bit 0 10KPU: 10 kΩ pull-up resistor

This bit enables the 10 kΩ pull-up resistor.

0: 10 kΩ pull-up resistor disabled
1: 10 kΩ pull-up resistor enabled

Table 71. COMP register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
COMP_CSR

T
S

U
S

P

C
A

IF

C
A

IE

R
C

H
1

3

F
C

H
8

F
C

H
3

Res.

OUTSEL
[2:0]

INSEL
[2:0]

W
N

D
W

E

V
R

E
F

O
U

T
E

N

R
es

er
ve

d

C
M

P
2

O
U

T

S
P

E
E

D

R
es

er
ve

d

C
M

P
1

O
U

T

R
es

er
ve

d

C
O

M
P

1
_

S
W

1

C
M

P
1

E
N

4
00

K
P

D

1
0

K
P

D

4
00

K
P

U

1
0

K
P

U

Reset value 0

Operational amplifiers (OPAMP) RM0038

344/908 DocID15965 Rev 14

15 Operational amplifiers (OPAMP)

This section applies to Cat.3, Cat.4, Cat.5 and Cat.6 devices only. See device datasheet for
OPAMP availability (OPAMP is not present in STM32L100xx product categories - see
Table 2).

15.1 OPAMP introduction

The MCU has three operational amplifiers with external or internal follower routing capability
(or even amplifier and filter capability with external components). When one operational
amplifier is selected, one external ADC channel is used to enable output measurement.

15.2 OPAMP main features

• Rail-to-rail input and output voltage range

• Low input bias current

• Low input offset voltage

• Low-power mode

15.3 OPAMP functional description

Three operational amplifiers (OPAMP1, OPAMP2 and OPAMP3) are available on Cat.4
devices and two operational amplifiers (OPAMP1 and OPAMP2) are available on Cat.3,
Cat.5 and Cat.6 devices. OPAMP is not available in STM32L100xx product categories - see
Table 2. The connection with dedicated I/O are listed below:

• OPAMP1_VINP --> PA1

• OPAMP1_VINM- --> PA2(a)

• OPAMP1_VOUT --> PA3 (ADC input CH3)

• OPAMP2_VINP --> PA6

• OPAMP2_VINM --> PA7 (a)

• OPAMP2_VOUT --> PB0 (ADC input CH8)

• OPAMP3_VINP --> PC1

• OPAMP3_VINM --> PC2 (a)

• OPAMP3_VOUT --> PC3 (ADC input CH13)

a. Or dedicated OPAMPx_VINM pin available on some packages.

DocID15965 Rev 14 345/908

RM0038 Operational amplifiers (OPAMP)

353

15.3.1 Signal routing

Figure 69. OPAMP1 signal routing

The routing for the three operational amplifiers can be selected by OPAMP_CSR register.

Analog switches S3 to S6 and SanA can be opened and closed by programming the
corresponding OPAMP_CSR register bits independently of whether the amplifiers are
enabled or not by the OPA1_PD, OPA2_PD and/or OPA3_PD bits.

Analog switch SanB automatically follows the selection of the S3 or S4 switches. It is not
controlled individually.

For OPAMP1, S6 is used to connect DAC_Channel1 to its positive input.

For OPAMP2, there is an additional S7 switch in parallel with S6 in order to select the
positive input source as either I/O or DAC_Channel1 or DAC_Channel2.

For OPAMP3, S6 is used to connect DAC_Channel2 to its positive input.

All operational amplifiers can be powered down by setting the OPAx_PD bit. The
corresponding inputs and outputs are then in high impedance.

Figure 70. OPAMP2 signal routing

Operational amplifiers (OPAMP) RM0038

346/908 DocID15965 Rev 14

Figure 71. OPAMP3 signal routing (Cat.4 devices only)

15.3.2 Using the OPAMP outputs as ADC inputs

In order to use OPAMP outputs as ADC inputs, the operational amplifiers must be enabled
and the ADC must use the OPAMP output channel number. (OPA1: CH3 ; OPA2: CH8 ;
OPA3: CH13).

In addition for OPA3 or FCH13, the user must close COMP1_SW1 analog switch to do an
acquisition (refer to Section 14.9.1: COMP comparator control and status register
(COMP_CSR) on page 340).

15.3.3 Calibration

At startup, the trimming values are initialized with the preset ‘factory’ trimming value.

Furthermore each operational amplifier offset can be trimmed by the user. All switches
related to the inputs of each operational amplifier must be open during the trimming
operation (SanA, S3, S4, S5,S6).

There are two registers for trimming the offsets of the 3 operational amplifiers for normal
mode and low-power mode. Two words of 30-bits, one for standard mode and the other for
low-power mode are available in OPAMP_OTR and OPAMP_LPOTR registers. This is the
‘user’ value.

The user is able to switch from ‘factory’ values to ‘user’ trimmed values using the OT_USER
bit in the OPAMP_OTR register. This bit is reset at startup to send ‘factory’ value to the
OPAMPs. It is common to the 3 OPAMPs.

The offset of each operational amplifier can be trimmed by programming the OPAMP offset
trimming register for normal mode (OPAMP_OTR). The trimming values are stored in non-
volatile memory.

DocID15965 Rev 14 347/908

RM0038 Operational amplifiers (OPAMP)

353

The offset trimming register can be written, typically after a calibration operation initialized
by the OPAx_CAL bits.

• Setting the OPAxCAL_L bit initializes offset calibration for the P differential pair (low
voltage reference used).

• Setting the OPAxCAL_H bit initializes offset calibration for the N differential pair (high
voltage reference used).

The 30 useful bits of OPA_OTR or OPA_LP_OTR are composed of three 10-bit words one
for each operational amplifier. Each 10-bit is composed of 2 calibration values, the 5 lower
bits are for trimming the offset of the PMOS differential pair. The 5 upper bits are for the
NMOS ones.

After offset calibration is initialized by setting the control bit as shown in Table 72, write the
new trimming values in the OPAMP offset trimming register for normal mode
(OPAMP_OTR) register value until the OPAxCALOUT flag toggles to indicate that the
calibration has successfully completed.

Table 72. Operating modes and calibration

Mode

Control bits Output

OPAxPD OPAxLPM OPAxCAL_H OPAxCAL_L VOUT
CALout

flag

Normal operating
mode

0 0
0 0

analog 0
1 1

Low-power mode 0 1
0 0

analog 0
1 1

Power down 1 X X X Z 0

Offset cal high 0 X 1 0 analog X

Offset cal low 0 X 0 1 analog X

Operational amplifiers (OPAMP) RM0038

348/908 DocID15965 Rev 14

Calibration procedure

Follow these steps to perform a full calibration of either one of the operational amplifiers:

1. Program the OPAMP_CSR register to open all the switches connected to the
operational amplifier.

2. Set the OT_USER bit in the OPAMP_OTR register to 1.

3. Choose a calibration mode (refer to Table 72: Operating modes and calibration). You
can begin with:

• Normal mode, offset cal high

To do this, set OPAxPD=0, OPAxLPM=0, OPAxCAL_H=1, OPAxCAL_L=0 in the
OPAM_CSR register.

4. The code in OPAMP_OTR[OPAxOPT_OFFSET_TRIM_High] is incremented from
00000b to the first value code that causes the OPAxCALOUT output level to change
from 0 to 1.

Note: Between the write to the OPAMP_OTR register and the read of the OPAxCALOUT value,
take care to wait for the tOFFTRIMmax delay specified in the datasheet electrical
characteristics section, to get the correct OPAxCALOUT value.

The commutation means that the offset is correctly compensated and the corresponding
trim code must kept in the OPAMP_OTR register.

The value 11111b is forbidden for OPAMP_OTR[OPAxOPT_OFFSET_TRIM_High].

Repeat steps 3 to 4 for:

• Normal_mode and offset cal low

• Low-power mode and offset cal high

• Low-power mode and offset cal low

If a mode is not used its calibration serves no purpose.

Note: During the whole calibration phase the external connection of the operational amplifier
output must not pull up or down currents higher than 500 µA.

15.4 OPAMP registers

15.4.1 OPAMP control/status register (OPAMP_CSR)

Address offset: 0x00

Reset value: 0x0001 0101

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OPA3C
ALOUT

OPA2C
ALOUT

OPA1C
ALOUT

OPA_R
ANGE

S7SEL
2

ANAW
SEL3

ANAWS
EL2

ANAWS
EL1

OPA3L
PM

OPA3C
AL_H

OPA3C
AL_L

S6SEL
3

S5SEL
3

S4SEL
3

S3SEL
3

OPA3P
D

r r r rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPA2L
PM

OPA2C
AL_H

OPA2C
AL_L

S6SEL
2

S5SEL
2

S4SEL
2

S3SEL
2

OPA2P
D

OPA1L
PM

OPA1C
AL_H

OPA1C
AL_L

S6SEL
1

S5SEL
1

S4SEL
1

S3SEL
1

OPA1P
D

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

DocID15965 Rev 14 349/908

RM0038 Operational amplifiers (OPAMP)

353

Bit 31 OPA3CALOUT: OPAMP3 calibration output

During calibration mode, the offset is trimmed when this signal toggles.

Bit 30 OPA2CALOUT: OPAMP2 calibration output

During calibration mode, the offset is trimmed when this signal toggles.

Bit 29 OPA1CALOUT: OPAMP1 calibration output

During calibration mode, the offset is trimmed when this signal toggles.

Bit 28 OPA_RANGE: Power range selection

This bit can be set and cleared by software when the operational amplifiers are in powered down. It
select the operational amplifier power supply range for stability.

0: Low range (VDDA < 2.4 V)

1: High range (VDDA > 2.4 V)

Bit 27 S7SEL2: Switch 7 for OPAMP2 enable

0: S7 opened

1: S7 closed

Bit 26 ANAWSEL3: Switch SanA enable for OPAMP3

0: SanA switch opened

1: SanA switch closed

Bit 25 ANAWSEL2: Switch SanA enable for OPAMP2

0: SanA switch opened

1: SanA switch closed

Bit 24 ANAWSEL1: Switch SanA enable for OPAMP1

0: SanA switch opened

1: SanA switch closed

Bit 23 OPA3LPM: OPAMP3 low-power mode

0: OPAMP3 low-power mode off
1: OPAMP3 low-power mode on

Bit 22 OPA3CAL_H: OPAMP3 offset calibration for N differential pair

0: OPAMP3 offset calibration for N diff OFF
1: OPAMP3 offset calibration for N diff ON if OPA3CAL_L = 0

Bit 21 OPA3CAL_L: OPAMP3 offset Calibration for P differential pair

0: OPAMP3 offset calibration for P diff OFF
1: OPAMP3 offset calibration for P diff ON if OPA3CAL_H = 0

Bit 20 S6SEL3: Switch 6 for OPAMP3 enable

0: S6 switch opened
1: S6 switch closed

Bit 19 S5SEL3: Switch 5 for OPAMP3 enable

0: S5 switch opened
1: S5 switch closed

Bit 18 S4SEL3: Switch 4 for OPAMP3 enable

0: S4 switch opened
1: S4 switch closed

Bit 17 S3SEL3: Switch 3 for OPAMP3 Enable

0: S3 switch opened
1: S3 switch closed

Operational amplifiers (OPAMP) RM0038

350/908 DocID15965 Rev 14

Bit 16 OPA3PD: OPAMP3 power down

0: OPAMP3 enabled
1: OPAMP3 disabled

Bit 15 OPA2LPM: OPAMP2 low-power mode

0: OPAMP2 low-power mode off
1: OPAMP2 low-power mode on

Bit 14 OPA2CAL_H: OPAMP2 offset calibration for N differential pair

0: OPAMP2 offset calibration for N diff OFF
1: OPAMP2 offset calibration for N diff ON if OPA2CAL_L = 0

Bit 13 OPA2CAL_L: OPAMP2 offset Calibration for P differential pair

0: OPAMP2 offset calibration for P diff OFF
1: OPAMP2 offset calibration for P diff ON if OPA2CAL_H = 0

Bit 12 S6SEL2: Switch 6 for OPAMP2 enable

0: S6 switch opened
1: S6 switch closed

Bit 11 S5SEL2: Switch 5 for OPAMP2 enable

0: S5 switch opened
1: S5 switch closed

Bit 10 S4SEL2: Switch 4 for OPAMP2 enable

0: S4 switch opened
1: S4 switch closed

Bit 9 S3SEL2: Switch 3 for OPAMP2 enable

0: S3 switch opened
1: S3 switch closed

Bit 8 OPA2PD: OPAMP2 power down

0: OPAMP2 enabled
1: OPAMP2 disabled

Bit 7 OPA1LPM: OPAMP1 low-power mode

0: OPAMP1 low-power mode off
1: OPAMP1 in low-power mode on

Bit 6 OPA1CAL_H: OPAMP1 offset calibration for N differential pair

0: OPAMP1 offset calibration for N diff OFF
1: OPAMP1 offset calibration for N diff ON if OPA1CAL_L = 0

Bit 5 OPA1CAL_L: OPAMP1 offset calibration for P differential pair

0: OPAMP1 offset calibration for P diff OFF
1: OPAMP1 offset calibration for P diff ON if OPA1CAL_H = 0

Bit 4 S6SEL1: Switch 6 for OPAMP1 enable

0: S6 switch opened
1: S6 switch closed

Bit 3 S5SEL1: Switch 5 for OPAMP1 enable

0: S5 switch opened
1: S5 switch closed

DocID15965 Rev 14 351/908

RM0038 Operational amplifiers (OPAMP)

353

15.4.2 OPAMP offset trimming register for normal mode (OPAMP_OTR)

Address offset: 0x04

Bit 31 reset value: 0

Bits 29:0 reset value: Factory trimmed value is restored.

Bit 2 S4SEL1: Switch 4 for OPAMP1 enable

0: S4 switch opened
1: S4 switch closed

Bit 1 S3SEL1: Switch 3 for OPAMP1 enable

0: S3 switch opened
1: S3 switch closed

Bit 0 OPA1PD: OPAMP1 power down

0: OPAMP1 enabled
1: OPAMP1 disabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OT_
USER Res.

OA3_OPT_OFFSET_TRIM_HIGH OA3_OPT_OFFSET_TRIM_LOW
OA2_OPT_OFFSET_TRIM_

HIGH[4:1]

w rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

O
A

2
_

O
P

T
_

O
F

F
S

E
T

_T
R

IM
_

 H
IG

H
0

OA2_OPT_OFFSET_TRIM_LOW OA1_OPT_OFFSET_TRIM_HIGH OA1_OPT_OFFSET_TRIM_LOW

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31 OT_USER Select user or factory trimming value

This bit is set and cleared by software, it is always read as 0. It is used to select if the OPAMPx offset
is trimmed by the preset factory-programmed trimming values or the user programmed trimming
value.

0: Trim the OPAMP offset using default factory values
1: Trim the OPAMP offset using user programmed values

Bit 30 Reserved, must be kept at reset value

Bit 29:25 OA3_OPT_OFFSET_TRIM_HIGH[4:0]: OPAMP3, normal mode 5-bit offset trim value for NMOS pairs

Bit 24:20 OA3_OPT_OFFSET_TRIM_LOW[4:0]: OPAMP3, normal mode 5-bit offset trim value for PMOS pairs

Bit 19:15 OA2_OPT_OFFSET_TRIM_HIGH[4:0]: OPAMP2, normal mode 5-bit offset trim value for NMOS pairs

Bit 14:10 OA2_OPT_OFFSET_TRIM_LOW[4:0]: OPAMP2, normal mode 5-bit offset trim value for PMOS pairs

Bit 9:5 OA1_OPT_OFFSET_TRIM_HIGH[4:0]: OPAMP1, normal mode 5-bit offset trim value for NMOS pairs

Bit 4:0 OA1_OPT_OFFSET_TRIM_LOW[4:0]: OPAMP1, normal mode 5-bit offset trim value for PMOS pairs

Operational amplifiers (OPAMP) RM0038

352/908 DocID15965 Rev 14

15.4.3 OPAMP offset trimming register for low-power mode
(OPAMP_LPOTR)

Address offset: 0x08

Bits 29:0 reset value: Factory trimmed value is restored.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
OA3_OPT_OFFSET_TRIM_LP_HIGH OA3_OPT_OFFSET_TRIM_LP_LOW

OA2_OPT_OFFSET_TRIM_LP_
HIGH[4:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

O
A

2
_

O
P

T
_

O
F

F
S

E
T

_
T

R
IM

_
L

P
_

 H
IG

H
0

OA2_OPT_OFFSET_TRIM_LP_LOW OA1_OPT_OFFSET_TRIM_LP_HIGH OA1_OPT_OFFSET_TRIM_LP_LOW

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept at reset value

Bit 29:25 OA3_OPT_OFFSET_TRIM_LP_HIGH[4:0]: OPAMP3, low-power mode 5-bit offset trim value for
NMOS pairs

Bit 24:20 OA3_OPT_OFFSET_TRIM_LP_LOW[4:0]: OPAMP3, low-power mode 5-bit offset trim value for
PMOS pairs

Bit 19:15 OA2_OPT_OFFSET_TRIM_LP_HIGH[4:0]: OPAMP2, low-power mode 5-bit offset trim value for
NMOS pairs

Bit 14:10 OA2_OPT_OFFSET_TRIM_LP_LOW[4:0]: OPAMP2, low-power mode 5-bit offset trim value for
PMOS pairs

Bit 9:5 OA1_OPT_OFFSET_TRIM_LP_HIGH[4:0]: OPAMP1, low-power mode 5-bit offset trim value for
NMOS pairs

Bit 4:0 OA1_OPT_OFFSET_TRIM_LP_LOW[4:0]: OPAMP1, low-power mode 5-bit offset trim value for
PMOS pairs

DocID15965 Rev 14 353/908

RM0038 Operational amplifiers (OPAMP)

353

15.4.4 OPAMP register map

Refer to Table 5 on page 47 for the Register boundary addresses table.

Table 73. OPAMP register map

Offset
Register

name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
OPAMP_

CSR

O
P

A
3

C
A

L
O

U
T

O
P

A
2

C
A

L
O

U
T

O
P

A
1

C
A

L
O

U
T

O
P

A
_

R
A

N
G

E

S
7

S
E

L
2

A
N

A
W

S
E

L3

A
N

A
W

S
E

L2

A
N

A
W

S
E

L1

O
P

A
3

LP
M

O
P

A
3

C
A

L
_

H

O
P

A
3

C
A

L
_

L

S
6

S
E

L
3

S
5

S
E

L
3

S
4

S
E

L
3

S
3

S
E

L
3

O
P

A
3P

D

O
P

A
2

LP
M

O
P

A
2

C
A

L
_

H

O
P

A
2

C
A

L
_

L

S
6

S
E

L
2

S
5

S
E

L
2

S
4

S
E

L
2

S
3

S
E

L
2

O
P

A
2P

D

O
P

A
1

LP
M

O
P

A
1

C
A

L
_

H

O
P

A
1

C
A

L
_

L

S
6

S
E

L
1

S
5

S
E

L
1

S
4

S
E

L
1

S
3

S
E

L
1

O
P

A
1P

D

0x04
OPAMP_

OTR

O
T

_
U

S
E

R

R
e

se
rv

e
d

OA3_OPT_
OFFSET_TRIM_

HIGH

OA3_OPT_
OFFSET_TRIM_

LOW

OA2_OPT_
OFFSET_TRIM_

HIGH

OA2_OPT_
OFFSET_TRIM_

LOW

OA1_OPT_
OFFSET_TRIM_

HIGH

OA1_OPT_
OFFSET_TRIM_

LOW

0x08
OPAMP_
LPOTR

R
es

er
ve

d

OA3_OPT_OFF
SET_TRIM_LP_

HIGH

OA3_OPT_OFFS
ET_TRIM_LP_

LOW

OA2_OPT_OFF
SET_TRIM_LP_

HIGH

OA2_OPT_OFF
SET_TRIM_LP_

LOW

OA1_OPT_OFF
SET_TRIM_LP_

HIGH

OA1_OPT_OFF
SET_TRIM_LP_

LOW

Liquid crystal display controller (LCD) RM0038

354/908 DocID15965 Rev 14

16 Liquid crystal display controller (LCD)

16.1 Introduction

The LCD controller is a digital controller/driver for monochrome passive liquid crystal display
(LCD) with up to 8 common terminals and up to 44 segment terminals to drive 176 (44x4) or
320 (40x8) LCD picture elements (pixels). The exact number of terminals depends on the
device pinout as described in the datasheet.

The LCD is made up of several segments (pixels or complete symbols) which can be turned
visible or invisible. Each segment consists of a layer of liquid crystal molecules aligned
between two electrodes. When a voltage greater than a threshold voltage is applied across
the liquid crystal, the segment becomes visible. The segment voltage must be alternated to
avoid an electrophoresis effect in the liquid crystal (which degrades the display). The
waveform across a segment must then be generated so as to avoid having a direct current
(DC).

DocID15965 Rev 14 355/908

RM0038 Liquid crystal display controller (LCD)

381

16.2 LCD main features

• Highly flexible frame rate control.

• Supports Static, 1/2, 1/3, 1/4 and 1/8 duty.

• Supports Static, 1/2, 1/3 and 1/4 bias.

• Double buffered memory allows data in LCD_RAM registers to be updated at any time
by the application firmware without affecting the integrity of the data displayed.

– LCD data RAM of up to 16 x 32-bit registers which contain pixel information
(active/inactive)

• Software selectable LCD output voltage (contrast) from VLCDmin to VLCDmax.

• No need for external analog components:

– A step-up converter is embedded to generate an internal VLCD voltage higher than
VDD

– Software selection between external and internal VLCD voltage source. In case of
an external source, the internal boost circuit is disabled to reduce power
consumption

– A resistive network is embedded to generate intermediate VLCD voltages
(VLCDrail1, VLCDrail2, VLCDrail3)

– The structure of the resistive network is configurable by software to adapt the
power consumption to match the capacitive charge required by the LCD panel.

• The contrast can be adjusted using two different methods:

– When using the internal step-up converter, the software can adjust VLCD between
VLCDmin and VLCDmax.

– Programmable dead time (up to 8 phase periods) between frames.

• Full support of Low-power modes: the LCD controller can be displayed in Sleep, Low-
power run, Low-power sleep and STOP modes or can be fully disabled to reduce
power consumption

• Built in phase inversion for reduced power consumption and EMI. (electromagnetic
interference)

• Start of frame interrupt to synchronize the software when updating the LCD data RAM.

• Blink capability:

– Up to 1, 2, 3, 4, 8 or all pixels which can be programmed to blink at a configurable
frequency.

– Software adjustable blink frequency to achieve around 0.5 Hz, 1 Hz, 2 Hz or 4 Hz.

• Used LCD segment and common pins should be configured as GPIO alternate
functions and unused segment and common pins can be used for general purpose I/O
or for another peripheral alternate function.

• VLCD rails (VLCDrail1, VLCDrail2, VLCDrail3) decoupling capability

Note: When the LCD relies on the internal step-up converter, the VLCD pin should be connected to
VSS with a capacitor. Its typical value is 1 µF (see CEXT value in the product datasheets for
further information).

The VLCD pin should be connected to VDDA:
- For devices without LCD
- If the LCD peripheral is not used for devices with LCD.

Liquid crystal display controller (LCD) RM0038

356/908 DocID15965 Rev 14

16.3 Glossary

Bias: Number of voltage levels used when driving an LCD. It is defined as 1/(number of
voltage levels used to drive an LCD display - 1).

Boost circuit: Contrast controller circuit

Common: Electrical connection terminal connected to several segments (44 segments).

Duty ratio: Number defined as 1/(number of common terminals on a given LCD display).

Frame: One period of the waveform written to a segment.

Frame rate: Number of frames per second, that is the number of times the LCD segments
are energized per second.

LCD: (liquid crystal display) a passive display panel with terminals leading directly to a
segment.

Segment: The smallest viewing element (a single bar or dot that is used to help create a
character on an LCD display).

DocID15965 Rev 14 357/908

RM0038 Liquid crystal display controller (LCD)

381

16.4 LCD functional description

16.4.1 General description

The LCD controller has five main blocks (see Figure 72):

Figure 72. LCD controller block diagram

Note: LCDCLK is the same as RTCCLK. Please refer to the RTC/LCD clock description in the
RCC section of this manual.

Liquid crystal display controller (LCD) RM0038

358/908 DocID15965 Rev 14

16.4.2 Frequency generator

The frequency generator allows you to achieve various LCD frame rates starting from an
LCD input clock frequency (LCDCLK) which can vary from 32 kHz up to 1 MHz.

3 different clock sources can be used to provide the LCD clock (LCDCLK/RTCCLK):

• 32 kHz Low speed external RC (LSE)

• 37 kHz Low speed internal RC (LSI)

• 1-24 MHz High speed external crystal oscillator (HSE) divided by 2, 4, 8 or 16 to obtain
a 1 MHz clock

Please refer to the RTC/LCD Clock configuration in the RCC section of this manual.

This clock source must be stable in order to obtain accurate LCD timing and hence minimize
DC voltage offset across LCD segments. The input clock LCDCLK can be divided by any
value from 1 to 215x 31 (see Section 16.5.2: LCD frame control register (LCD_FCR) on
page 375). The frequency generator consists of a prescaler (16-bit ripple counter) and a 16
to 31 clock divider. The PS[3:0] bits, in the LCD_FCR register, select LCDCLK divided by
2PS[3:0]. If a finer resolution rate is required, the DIV[3:0] bits, in the LCD_FCR register, can
be used to divide the clock further by 16 to 31. In this way you can roughly scale the
frequency, and then fine-tune it by linearly scaling the clock with the counter. The output of
the frequency generator block is fck_div which constitutes the time base for the entire LCD
controller. The ck_div frequency is equivalent to the LCD phase frequency, rather than the
frame frequency (they are equal only in case of static duty). The frame frequency (fframe) is
obtained from fck_div by dividing it by the number of active common terminals (or by
multiplying it for the duty). Thus the relation between the input clock frequency (fLCDCLK) of
the frequency generator and its output clock frequency fck_div is:

This makes the frequency generator very flexible. An example of frame rate calculation is
shown in Table 74.

Table 74. Example of frame rate calculation

LCDCLK PS[3:0] DIV[3:0] Ratio Duty fframe

32.768 kHz 3 1 136 1/8 30.12 Hz

32.768 kHz 4 1 272 1/4 30.12 Hz

32.768 kHz 4 6 352 1/3 31.03 Hz

32.768 kHz 5 1 544 1/2 30.12 Hz

32.768 kHz 6 1 1088 static 30.12 Hz

32.768 kHz 1 4 40 1/8 102.40 Hz

32.768 kHz 2 4 80 1/4 102.40 Hz

32.768 kHz 2 11 108 1/3 101.14 Hz

32.768 kHz 3 4 160 1/2 102.40 Hz

32.768 kHz 4 4 320 static 102.40 Hz

fckdiv

fLCDCLK

2PS 16 DIV+〈 〉×
---=

fframe fckdiv duty×=

DocID15965 Rev 14 359/908

RM0038 Liquid crystal display controller (LCD)

381

The frame frequency must be selected to be within a range of around ~30 Hz to ~100 Hz
and is a compromise between power consumption and the acceptable refresh rate. In
addition, a dedicated blink prescaler selects the blink frequency. This frequency is defined
as:

 fBLINK = fck_div/2(BLINKF + 3),

with BLINKF[2:0] = 0, 1, 2, ..,7

The blink frequency achieved is in the range of 0.5 Hz, 1 Hz, 2 Hz or 4 Hz.

16.4.3 Common driver

Common signals are generated by the common driver block (see Figure 72).

COM signal bias

Each COM signal has identical waveforms, but different phases. It has its max amplitude
VLCD or VSS only in the corresponding phase of a frame cycle, while during the other
phases, the signal amplitude is:

• 1/4 VLCD or 3/4 VLCD in case of 1/4 bias

• 1/3 VLCD or 2/3 VLCD in case of 1/3 bias

• and 1/2 VLCD in case of 1/2 bias.

Selection between 1/2, 1/3 and 1/4 bias mode can be done through the BIAS bits in the
LCD_CR register.

A pixel is activated when both of its corresponding common and segment lines have max
amplitudes during the same phase. Common signals are phase inverted in order to reduce
EMI. As shown in Figure 73, with phase inversion, there is a mean voltage of 1/2 VLCD at the
end of every odd cycle.

1.00 MHz 6 3 1216 1/8 102.80 Hz

1.00 MHz 7 3 2432 1/4 102.80 Hz

1.00 MHz 7 10 3328 1/3 100.16 Hz

1.00 MHz 8 3 4864 1/2 102.80 Hz

1.00 MHz 9 3 9728 static 102.80 Hz

Table 74. Example of frame rate calculation (continued)

LCDCLK PS[3:0] DIV[3:0] Ratio Duty fframe

Liquid crystal display controller (LCD) RM0038

360/908 DocID15965 Rev 14

Figure 73. 1/3 bias, 1/4 duty

In case of 1/2 bias (BIAS = 01) the VLCD pin generates an intermediate voltage on VLCDrail2
equal to 1/2 VLCD for odd and even frames (see Figure 80).

COM signal duty

Depending on the DUTY[2:0] bits in the LCD_CR register, the COM signals are generated
with static duty (see Figure 75), 1/2 duty (see Figure 76), 1/3 duty (see Figure 77), 1/4 duty
(see Figure 78) or 1/8 duty (see Figure 79).

COM[n] n[0 to 7] is active during phase n in the odd frame, so the COM pin is driven to
VLCD,

During phase n of the even frame the COM pin is driven to VSS.

In the case of 1/3 or 1/4) bias:

• COM[n] is inactive during phases other than n so the COM pin is driven to 1/3 (1/4)
VLCD during odd frames and to 2/3 (3/4) VLCD during even frames

In the case of 1/2 bias:

• If COM[n] is inactive during phases other than n, the COM pin is always driven (odd
and even frame) to 1/2 VLCD.

When static duty is selected, the segment lines are not multiplexed, which means that each
segment output corresponds to one pixel. In this way only up to 44 pixels can be driven.
COM[0] is always active while COM[7:1] are not used and are driven to VSS.

When the LCDEN bit in the LCD_CR register is reset, all common lines are pulled down to
VSS and the ENS flag in the LCD_SR register becomes 0. Static duty means that COM[0] is
always active and only two voltage levels are used for the segment and common lines: VLCD
and VSS. A pixel is active if the corresponding SEG line has a voltage opposite to that of the
COM, and inactive when the voltages are equal. In this way the LCD has maximum contrast
(see Figure 74, Figure 75). In the Figure 74 pixel 0 is active while pixel 1 is inactive.

DocID15965 Rev 14 361/908

RM0038 Liquid crystal display controller (LCD)

381

Figure 74. Static duty

In each frame there is only one phase, this is why fframe is equal to fLCD. If 1/4 duty is
selected there are four phases in a frame in which COM[0] is active during phase 0, COM[1]
is active during phase 1, COM[2] is active during phase 2, and COM[3] is active during
phase 3.

Figure 75. Static duty

In this mode, the segment terminals are multiplexed and each of them control four pixels. A
pixel is activated only when both of its corresponding SEG and COM lines are active in the
same phase. In case of 1/4 duty, to deactivate pixel 0 connected to COM[0] the SEG[0]
needs to be inactive during the phase 0 when COM[0] is active. To activate pixel44

Liquid crystal display controller (LCD) RM0038

362/908 DocID15965 Rev 14

connected to COM[1] the SEG[0] needs to be active during phase 1 when COM[1] is active
(see Figure 78). To activate pixels from 0 to 43 connected to COM[0], SEG[0:43] need to be
active during phase 0 when COM[0] is active. These considerations can be extended to the
other pixels.

8 to 1 Mux

When COM[0] is active the common driver block, also drives the 8 to 1 mux shown in
Figure 72 in order to select the content of first two RAM register locations. When COM[7] is
active, the output of the 8 to 1 mux is the content of the last two RAM locations.

Start of frame (SOF)

The common driver block is also able to generate an SOF (start of frame flag) (see
Section 16.5.3: LCD status register (LCD_SR)). The LCD start of frame interrupt is executed
if the SOFIE (start of frame interrupt enable) bit is set (see Section 16.5.2: LCD frame
control register (LCD_FCR)). SOF is cleared by writing the SOFC bit to 1 in the LCD_CLR
register when executing the corresponding interrupt handling vector.

Figure 76. 1/2 duty, 1/2 bias

16.4.4 Segment driver

The segment driver block controls the SEG lines according to the pixel data coming from the
8 to 1 mux driven in each phase by the common driver block.

In the case of 1/4 or 1/8 duty

When COM[0] is active, the pixel information (active/inactive) related to the pixel connected
to COM[0] (content of the first two LCD_RAM locations) goes through the 8 to 1 mux.

DocID15965 Rev 14 363/908

RM0038 Liquid crystal display controller (LCD)

381

The SEG[n] pin n [0 to 43] is driven to VSS (indicating pixel n is active when COM[0] is
active) in phase 0 of the odd frame.

The SEG[n] pin is driven to VLCD in phase 0 of the even frame. If pixel n is inactive then the
SEG[n] pin is driven to 2/3 (2/4) VLCD in the odd frame or 1/3 (2/4) VLCD in the even frame
(current inversion in VLCD pad) (see Figure 73).

In case of 1/2 bias, if the pixel is inactive the SEG[n] pin is driven to VLCD in the odd and to
VSS in the even frame.

When the LCD controller is disabled (LCDEN bit cleared in the LCD_CR register) then the
SEG lines are pulled down to VSS.

Figure 77. 1/3 duty, 1/3 bias

Liquid crystal display controller (LCD) RM0038

364/908 DocID15965 Rev 14

Figure 78. 1/4 duty, 1/3 bias

DocID15965 Rev 14 365/908

RM0038 Liquid crystal display controller (LCD)

381

Figure 79. 1/8 duty, 1/4 bias

Liquid crystal display controller (LCD) RM0038

366/908 DocID15965 Rev 14

Blink

The segment driver also implements a programmable blink feature to allow some pixels to
continuously switch on at a specific frequency. The blink mode can be configured by the
BLINK[1:0] bits in the LCD_FCR register, making possible to blink up to 1, 2, 4, 8 or all
pixels (see Section 16.5.2: LCD frame control register (LCD_FCR)). The blink frequency
can be selected from eight different values using the BLINKF[2:0] bits in the LCD_FCR
register.

Table 75 gives examples of different blink frequencies (as a function of ck_div frequency).

16.4.5 Voltage generator

The LCD voltage levels are generated by the VLCD pin or by the internal voltage step-up
converter (depending on the VSEL bit in the LCD_CR register), through an internal resistor
divider network as shown in Figure 80.

The LCD voltage generator generates intermediate voltage levels between VSS and VLCD:

• 1/3 VLCD, 2/3 VLCD in case of 1/3 bias

• 1/4 VLCD, 2/4 VLCD, 3/4 VLCD in case of 1/4 bias

• only 1/2 VLCD in case of 1/2 bias.

For the divider network, two resistive networks one with low value resistors (RL) and one
with high value resistors (RH) are respectively used to increase the current during transitions
and to reduce power consumption in static state.

The PON[2:0] (Pulse ON duration) bits in the LCD_FCR register configure the time during
which RL is enabled (see Figure 72) when the levels of the common and segment lines
change. A short drive time will lead to lower power consumption, but displays with high
internal resistance may need a longer drive time to achieve satisfactory contrast.

Table 75. Blink frequency

BLINKF[2:0]

bits

ck_div frequency (with LCDCLK frequency of 32.768 kHz)

32 Hz 64 Hz 128 Hz 256 Hz

0 0 0 4.0 Hz N/A N/A N/A

0 0 1 2.0 Hz 4.0 Hz N/A N/A

0 1 0 1.0 Hz 2.0 Hz 4.0 Hz N/A

0 1 1 0.5 Hz 1.0 Hz 2.0 Hz 4.0 Hz

1 0 0 0.25 Hz 0.5 Hz 1.0 Hz 2.0 Hz

1 0 1 N/A 0.25 Hz 0.5 Hz 1.0 Hz

1 1 0 N/A N/A 0.25 Hz 0.5 Hz

1 1 1 N/A N/A N/A 0.25 Hz

DocID15965 Rev 14 367/908

RM0038 Liquid crystal display controller (LCD)

381

Figure 80. LCD voltage control

The RL divider can be always switched on using the HD bit in the LCD_FCR configuration
register (see Section 16.5.2). The VLCD value can be chosen among a wide set of values
from VLCDmin to VLCDmax by means of CC[2:0] (Contrast Control) bits inside LCD_FCR (see
Section 16.5.2) register. New values of VLCD takes effect every beginning of a new frame.

After the LCDEN bit is activated the voltage generator sets the RDY bit in the LCD_SR
register to indicate that the voltage levels are stable and the LCD controller can start to
work.

External decoupling

Devices with VLCD rails decoupling capability (see devices’ datasheet) offer the possibility to
add decoupling capacitors on VLCD intermediate voltage rails (VLCDrail1, VLCDrail2, VLCDrail3 -
see Figure 80) for stabilization purpose. Spikes may be observed when voltage applied to
the pixel is alternated. In this case, these decoupling capacitors will help to get a steady
voltage resulting in a higher contrast. This capability is particulary useful for consumption
reason as it allow to select low PON[2:0] values in the LCD_FCR register.

To connect the Vlcd rails as described in Table 76 to the dedicated GPIOs, configure the
LCD_CAPA[4:0] bits of the SYSCFG_PMC register.

Liquid crystal display controller (LCD) RM0038

368/908 DocID15965 Rev 14

In order to be effective, the values of these decoupling capacitors must be tuned according
to the LCD glass and the PCB capacitances. As a guideline to user can set the decoupling
capacitor values to 10 time the LCD capacitance.

16.4.6 Deadtime

In addition to using the CC[2:0] bits, the contrast can be controlled by programming a dead
time between each frame. During the dead time the COM and SEG values are put to VSS.
The DEAD[2:0] bits in the LCD_FCR register can be used to program a time of up to eight
phase periods. This dead time reduces the contrast without modifying the frame rate.

Figure 81. Deadtime

Table 76. VLCDrail connections to GPIO pins

Bias Pin

(selection by LCD_CAPA[4:0] bits)1/2 1/3 1/4

VLCDrail3 Not used Not used 3/4 Vlcd PB0 or PE12

VLCDrail1 1/2 Vlcd 2/3 Vlcd 1/2 Vlcd PB2

VLCDrail2 Not used 1/3 Vlcd 1/4 Vlcd PB12 or PE11

DocID15965 Rev 14 369/908

RM0038 Liquid crystal display controller (LCD)

381

16.4.7 Double buffer memory

Using its double buffer memory the LCD controller ensures the coherency of the displayed
information without having to use interrupts to control LCD_RAM modification.

The application software can access the first buffer level (LCD_RAM) through the APB
interface. Once it has modified the LCD_RAM, it sets the UDR flag in the LCD_SR register.
This UDR flag (update display request) requests the updated information to be moved into
the second buffer level (LCD_DISPLAY).

This operation is done synchronously with the frame (at the beginning of the next frame),
until the update is completed, the LCD_RAM is write protected and the UDR flag stays high.
Once the update is completed another flag (UDD - Update Display Done) is set and
generates an interrupt if the UDDIE bit in the LCD_FCR register is set.

The time it takes to update LCD_DISPLAY is, in the worst case, one odd and one even
frame.

The update will not occur (UDR = 1 and UDD = 0) until the display is enabled (LCDEN = 1)

16.4.8 COM and SEG multiplexing

Output pins versus duty modes

The output pins consists of:

• SEG[43:0]

• COM[3:0]

Depending on the duty configuration, the COM and SEG output pins may have different
functions:

• In static, 1/2, 1/3 and 1/4 duty modes there are up to 44 SEG pins and respectively 1, 2,
3 and 4 COM pins

• In 1/8 duty mode (DUTY[2:0] = 100), the COM[7:4] outputs are available on the
SEG[43:40] pins, reducing to the number of available segments 40 .

Remapping capability

Additionally, it is possible to remap 4 segments by setting the MUX_SEG bit in the LCD_CR
register. This is particularly useful when using smaller device types with fewer external pins.

When MUX_SEG is set, output pins SEG[43:40] have function SEG[31:28].

Summary of COM and SEG functions versus duty and remap

All the possible ways of multiplexing the COM and SEG functions are described in Table 77.
Figure 82 gives examples showing the signal connections to the external pins.

Liquid crystal display controller (LCD) RM0038

370/908 DocID15965 Rev 14

Table 77. Remapping capability

Configuration bits
Capability Output pin Function

DUTY MUX_SEG

1/8

0 40x8

SEG[43:40] COM[7:4]

COM[3:0] COM[3:0]

SEG[39:0] SEG[39:0]

1 28x8

SEG[43:40] COM[7:4]

COM[3:0] COM[3:0]

SEG[39:28] not used

SEG[27:0] SEG[27:0]

1/4

0 44x4
COM[3:0] COM[3:0]

SEG[43:0] SEG[43:0]

1 32x4

COM[3:0] COM[3:0]

SEG[43:40] SEG[31:28]

SEG[39:28] not used

SEG[27:0] SEG[27:0]

1/3

0 44x3

COM[3] not used

COM[2:0] COM[2:0]

SEG[43:0] SEG[43:0]

1 32x3

COM[3] not used

COM[2:0] COM[2:0]

SEG[43:40] SEG[31:28]

SEG[39:28] not used

SEG[27:0] SEG[27:0]

1/2

0 44x2

COM[3:2] not used

COM[1:0] COM[1:0]

SEG[43:0] SEG[43:0]

1 32x2

COM[3:2] not used

COM[1:0] COM[1:0]

SEG[43:40] SEG[31:28]

SEG[39:28] not used

SEG[27:0] SEG[27:0]

DocID15965 Rev 14 371/908

RM0038 Liquid crystal display controller (LCD)

381

STATIC

0 44x1

COM[3:1] not used

COM[0] COM[0]

SEG[43:0] SEG[43:0]

1 32x1

COM[3:1] not used

COM[0] COM[0]

SEG[43:40] SEG[31:28]

SEG[39:28] not used

SEG[27:0] SEG[27:0]

Table 77. Remapping capability (continued)

Configuration bits
Capability Output pin Function

DUTY MUX_SEG

Liquid crystal display controller (LCD) RM0038

372/908 DocID15965 Rev 14

Figure 82. SEG/COM mux feature example

DocID15965 Rev 14 373/908

RM0038 Liquid crystal display controller (LCD)

381

16.4.9 Flowchart

Figure 83. Flowchart example

Liquid crystal display controller (LCD) RM0038

374/908 DocID15965 Rev 14

16.5 LCD registers

The peripheral registers have to be accessed by words (32-bit).

16.5.1 LCD control register (LCD_CR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

MUX_
SEG

BIAS[1:0] DUTY[2:0] VSEL LCDEN

rw/r rw/r rw/r rw/r rw/r rw/r rw/r rw

Bits 31:8 Reserved, must be kept at reset value

Bit 7 MUX_SEG: Mux segment enable

This bit is used to enable SEG pin remapping. Four SEG pins can be multiplexed with
SEG[31:28]. See Section 16.4.8.

0: SEG pin multiplexing disabled
1: SEG[31:28] are multiplexed with SEG[43:40]

Bits 6:5 BIAS[1:0]: Bias selector

These bits determine the bias used. Value 11 is forbidden.

00: Bias 1/4
01: Bias 1/2
10: Bias 1/3
11: Reserved

Bits 4:2 DUTY[2:0]: Duty selection

These bits determine the duty cycle. Values 101, 110 and 111 are forbidden.

000: Static duty
001: 1/2 duty
010: 1/3 duty
011: 1/4 duty
100: 1/8 duty
101: Reserved
110: Reserved
111: Reserved

Bit 1 VSEL: Voltage source selection

The VSEL bit determines the voltage source for the LCD.

0: Internal source (voltage step-up converter)
1: External source (VLCD pin)

DocID15965 Rev 14 375/908

RM0038 Liquid crystal display controller (LCD)

381

Note: The VSEL, MUX_SEG, BIAS and DUTY bits are write protected when the LCD is enabled
(ENS bit in LCD_SR to 1).

16.5.2 LCD frame control register (LCD_FCR)

Address offset: 0x04

Reset value: 0x0000 0000

Bit 0 LCDEN: LCD controller enable

This bit is set by software to enable the LCD Controller/Driver. It is cleared by software to turn
off the LCD at the beginning of the next frame. When the LCD is disabled all COM and SEG
pins are driven to VSS.

0: LCD Controller disabled
1: LCD Controller enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
PS[3:0] DIV[3:0] BLINK[1:0]

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BLINKF[2:0] CC[2:0] DEAD[2:0] PON[2:0] UDDIE
Res.

SOFIE HD

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:26 Reserved, must be kept at reset value

Bits 25:22 PS[3:0]: PS 16-bit prescaler

These bits are written by software to define the division factor of the PS 16-bit prescaler.
ck_ps = LCDCLK/(2). See Section 16.4.2.

0000: ck_ps = LCDCLK

0001: ck_ps = LCDCLK/2

0011: ck_ps = LCDCLK/4

...

1111: ck_ps = LCDCLK/32768

Bits 21:18 DIV[3:0]: DIV clock divider

These bits are written by software to define the division factor of the DIV divider. See
Section 16.4.2.

0000: ck_div = ck_ps/16

0001: ck_div = ck_ps/17

0011: ck_div = ck_ps/18

...

1111: ck_div = ck_ps/31

Bits 17:16 BLINK[1:0]: Blink mode selection

00: Blink disabled
01: Blink enabled on SEG[0], COM[0] (1 pixel)
10: Blink enabled on SEG[0], all COMs (up to 8 pixels depending on the programmed duty)
11: Blink enabled on all SEGs and all COMs (all pixels)

Liquid crystal display controller (LCD) RM0038

376/908 DocID15965 Rev 14

Bits 15:13 BLINKF[2:0]: Blink frequency selection

000: fLCD/8100: fLCD/128
001: fLCD/16101: fLCD/256
010: fLCD/32110: fLCD/512
011: fLCD/64111: fLCD/1024

Bits 12:10 CC[2:0]: Contrast control

These bits specify one of the VLCD maximum voltages (independent of VDD). It ranges from
2.60 V to 3.51V.
000: VLCD0100: VLCD4
001: VLCD1101: VLCD5
010: VLCD2110 VLCD6
011: VLCD3111: VLCD7

Note: Refer to the product datasheet for the VLCDx values.

Bits 9:7 DEAD[2:0]: Dead time duration

These bits are written by software to configure the length of the dead time between frames.
During the dead time the COM and SEG voltage levels are held at 0 V to reduce the
contrast without modifying the frame rate.
000: No dead time
001: 1 phase period dead time
010: 2 phase period dead time
......
111: 7 phase period dead time

Bits 6:4 PON[2:0]: Pulse ON duration

These bits are written by software to define the pulse duration in terms of ck_ps pulses,
during which the low resistance divider is enabled. A short pulse will lead to lower power
consumption, but displays with
high internal resistance may need a longer pulse to achieve satisfactory contrast.
Note that the pulse will never be longer than one half prescaled LCD clock period.
000: 0 100: 4/ck_ps
001: 1/ck_ps101: 5/ck_ps
010: 2/ck_ps110: 6/ck_ps
011: 3/ck_ps111: 7/ck_ps

PON duration example with LCDCLK = 32.768 kHz and PS=0x03:
000: 0 µs100: 976 µs
001: 244 µs101: 1.22 ms
010: 488 µs110: 1.46 ms
011: 782 µs111: 1.71 ms

Bit 3 UDDIE: Update display done interrupt enable

This bit is set and cleared by software.

0: LCD Update Display Done interrupt disabled
1: LCD Update Display Done interrupt enabled

DocID15965 Rev 14 377/908

RM0038 Liquid crystal display controller (LCD)

381

Note: The data in this register can be updated any time, however the new values are applied only
at the beginning of the next frame (except for CC, UDDIE, SOFIE that affect the device
behavior immediately).

Reading this register obtains the last value written in the register and not the configuration
used to display the current frame.

16.5.3 LCD status register (LCD_SR)

Address offset: 0x08

Reset value: 0x0000 0020

Bit 2 Reserved, must be kept at reset value

Bit 1 SOFIE: Start of frame interrupt enable

This bit is set and cleared by software.

0: LCD Start of Frame interrupt disabled
1: LCD Start of Frame interrupt enabled

Bit 0 HD: High drive enable

This bit is written by software to enable a low resistance divider. Displays with high internal
resistance may need a stronger drive to achieve satisfactory contrast. This bit is useful in this
case if some additional power consumption can be tolerated.

0: High drive disabled
1: High drive enabled. When HD=1, then the PON bits have to be programmed to a value
different than 000.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
FCRSF RDY UDD UDR SOF ENS

r r r rs r r

Bits 31:6 Reserved, must be kept at reset value

Bit 5 FCRSF: LCD Frame Control Register Synchronization flag

This bit is set by hardware each time the LCD_FCR register is updated in the LCDCLK
domain. It is cleared by hardware when writing to the LCD_FCR register.

0: LCD Frame Control Register not yet synchronized
1: LCD Frame Control Register synchronized

Bit 4 RDY: Ready flag

This bit is set and cleared by hardware. It indicates the status of the step-up converter.

0: Not ready
1: Step-up converter is enabled and ready to provide the correct voltage.

Liquid crystal display controller (LCD) RM0038

378/908 DocID15965 Rev 14

16.5.4 LCD clear register (LCD_CLR)

Address offset: 0x0C

Reset value: 0x0000 0000

Bit 3 UDD: Update Display Done

This bit is set by hardware. It is cleared by writing 1 to the UDDC bit in the LCD_CLR register.
The bit set has priority over the clear.

0: No event
1: Update Display Request done. A UDD interrupt is generated if the UDDIE bit in the
LCD_FCR register is set.

Note: If the device is in STOP mode (PCLK not provided) UDD will not generate an interrupt
even if UDDIE = 1.

If the display is not enabled the UDD interrupt will never occur.

Bit 2 UDR: Update display request

Each time software modifies the LCD_RAM it must set the UDR bit to transfer the updated
data to the second level buffer. The UDR bit stays set until the end of the update and during
this time the LCD_RAM is write protected.

0: No effect
1: Update Display request

Note: When the display is disabled, the update is performed for all LCD_DISPLAY locations.
When the display is enabled, the update is performed only for locations for which
commons are active (depending on DUTY). For example if DUTY = 1/2, only the
LCD_DISPLAY of COM0 and COM1 will be updated.

Note: Writing 0 on this bit or writing 1 when it is already 1 has no effect. This bit can be
cleared by hardware only. It can be cleared only when LCDEN = 1

Bit 1 SOF: Start of frame flag

This bit is set by hardware at the beginning of a new frame, at the same time as the display
data is updated. It is cleared by writing a 1 to the SOFC bit in the LCD_CLR register. The bit
clear has priority over the set.

0: No event

1: Start of Frame event occurred. An LCD Start of Frame Interrupt is generated if the SOFIE
bit is set.

Bit 0 ENS: LCD enabled status

This bit is set and cleared by hardware. It indicates the LCD controller status.

0: LCD Controller disabled.
1: LCD Controller enabled

Note: The ENS bit is set immediately when the LCDEN bit in the LCD_CR goes from 0 to 1.
On deactivation it reflects the real status of LCD so it becomes 0 at the end of the last
displayed frame.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
UDDC

Res.
SOFC

Res.
w w

DocID15965 Rev 14 379/908

RM0038 Liquid crystal display controller (LCD)

381

16.5.5 LCD display memory (LCD_RAM)

Address offset: 0x14-0x50

Reset value: 0x0000 0000

16.5.6 LCD register map

The following table summarizes the LCD registers. The reserved memory areas are
highlighted in gray in the table.

Bits 31:2 Reserved, must be kept at reset value

Bit 3 UDDC: Update display done clear

This bit is written by software to clear the UDD flag in the LCD_SR register.

0: No effect
1: Clear UDD flag

Bit 2 Reserved, must be kept at reset value

Bit 1 SOFC: Start of frame flag clear

This bit is written by software to clear the SOF flag in the LCD_SR register.

0: No effect
1: Clear SOF flag

Bit 0 Reserved, must be kept at reset value

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SEGMENT_DATA[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SEGMENT_DATA[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 SEGMENT_DATA[31:0]

Each bit corresponds to one pixel of the LCD display.

0: Pixel inactive
1: Pixel active

Table 78. LCD register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
LCD_CR

Reserved

M
U

X
_S

E
G

B
IA

S
[1

:0
]

DUTY[2:0]

V
S

E
L

L
C

D
E

N

Reset value 0 0 0 0 0 0 0 0

Liquid crystal display controller (LCD) RM0038

380/908 DocID15965 Rev 14

0x04
LCD_FCR

Reserved
PS[3:0] DIV[3:0]

B
L

IN
K

[1
:0

]

B
LI

N
K

F
[2

:0
]

CC[2:0]
DEAD
[2:0]

PON[2:0]

U
D

D
IE

R
e

se
rv

e
d

S
O

F
IE

H
D

Reset value 0

0x08
LCD_SR

Reserved F
C

R
S

F

R
D

Y

U
D

D

U
D

R

S
O

F

E
N

S

Reset value 1 0 0 0 0 0

0x0C
LCD_CLR

Reserved U
D

D
C

R
e

se
rv

e
d

S
O

F
C

R
e

se
rv

e
d

Reset value 0 0

0x14

LCD_RAM
(COM0)

S
31

S
30

S
29

S
28

S
27

S
26

S
25

S
24

S
23

S
22

S
21

S
20

S
19

S
18

S
17

S
16

S
15

S
14

S
13

S
12

S
11

S
10

S
09

S
08

S
07

S
06

S
05

S
04

S
03

S
02

S
01

S
00

0 0

0x18 Reserved S
4

3

S
4

2

S
4

1

S
4

0

S
3

9

S
3

8

S
3

7

S
3

6

S
3

5

S
3

4

S
3

3

S
3

2

0 0 0 0 0 0 0 0 0 0 0 0

0x1C

LCD_RAM
(COM1)

S
3

1

S
3

0

S
2

9

S
2

8

S
2

7

S
2

6

S
2

5

S
2

4

S
2

3

S
2

2

S
2

1

S
2

0

S
1

9

S
1

8

S
1

7

S
1

6

S
1

5

S
1

4

S
1

3

S
1

2

S
11

S
1

0

S
0

9

S
0

8

S
0

7

S
0

6

S
0

5

S
0

4

S
0

3

S
0

2

S
0

1

S
0

0

0 0

0x20 Reserved S
4

3

S
4

2

S
4

1

S
4

0

S
3

9

S
3

8

S
3

7

S
3

6

S
3

5

S
3

4

S
3

3

S
3

2

0 0 0 0 0 0 0 0 0 0 0 0

0x24

LCD_RAM
(COM2)

S
3

1

S
3

0

S
2

9

S
2

8

S
2

7

S
2

6

S
2

5

S
2

4

S
2

3

S
2

2

S
2

1

S
2

0

S
1

9

S
1

8

S
1

7

S
1

6

S
1

5

S
1

4

S
1

3

S
1

2

S
11

S
1

0

S
0

9

S
0

8

S
0

7

S
0

6

S
0

5

S
0

4

S
0

3

S
0

2

S
0

1

S
0

0
0 0

0x28 Reserved S
43

S
42

S
41

S
40

S
39

S
38

S
37

S
36

S
35

S
34

S
33

S
32

0 0 0 0 0 0 0 0 0 0 0 0

0x2C

LCD_RAM
(COM3)

S
3

1

S
3

0

S
2

9

S
2

8

S
2

7

S
2

6

S
2

5

S
2

4

S
2

3

S
2

2

S
2

1

S
2

0

S
1

9

S
1

8

S
1

7

S
1

6

S
1

5

S
1

4

S
1

3

S
1

2

S
11

S
1

0

S
0

9

S
0

8

S
0

7

S
0

6

S
0

5

S
0

4

S
0

3

S
0

2

S
0

1

S
0

0

0 0

0x30 Reserved S
4

3

S
4

2

S
4

1

S
4

0

S
3

9

S
3

8

S
3

7

S
3

6

S
3

5

S
3

4

S
3

3

S
3

2

0 0 0 0 0 0 0 0 0 0 0 0

Table 78. LCD register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

DocID15965 Rev 14 381/908

RM0038 Liquid crystal display controller (LCD)

381

Refer to Table 5 on page 47 for the Register boundary addresses table.

0x34

LCD_RAM
(COM4)

S
31

S
30

S
29

S
28

S
27

S
26

S
25

S
24

S
23

S
22

S
21

S
20

S
19

S
18

S
17

S
16

S
15

S
14

S
13

S
12

S
11

S
10

S
09

S
08

S
07

S
06

S
05

S
04

S
03

S
02

S
01

S
00

0 0

0x38 Reserved S
39

S
38

S
37

S
36

S
35

S
34

S
33

S
32

0 0 0 0 0 0 0 0

0x3C

LCD_RAM
(COM5)

S
3

1

S
3

0

S
2

9

S
2

8

S
2

7

S
2

6

S
2

5

S
2

4

S
2

3

S
2

2

S
2

1

S
2

0

S
1

9

S
1

8

S
1

7

S
1

6

S
1

5

S
1

4

S
1

3

S
1

2

S
11

S
1

0

S
0

9

S
0

8

S
0

7

S
0

6

S
0

5

S
0

4

S
0

3

S
0

2

S
0

1

S
0

0

0 0

0x40 Reserved S
3

9

S
3

8

S
3

7

S
3

6

S
3

5

S
3

4

S
3

3

S
3

2

0 0 0 0 0 0 0 0

0x44

LCD_RAM
(COM6)

S
3

1

S
3

0

S
2

9

S
2

8

S
2

7

S
2

6

S
2

5

S
2

4

S
2

3

S
2

2

S
2

1

S
2

0

S
1

9

S
1

8

S
1

7

S
1

6

S
1

5

S
1

4

S
1

3

S
1

2

S
11

S
1

0

S
0

9

S
0

8

S
0

7

S
0

6

S
0

5

S
0

4

S
0

3

S
0

2

S
0

1

S
0

0

0 0

0x48 Reserved S
39

S
38

S
37

S
36

S
35

S
34

S
33

S
32

0 0 0 0 0 0 0 0

0x4C

LCD_RAM
(COM7)

S
3

1

S
3

0

S
2

9

S
2

8

S
2

7

S
2

6

S
2

5

S
2

4

S
2

3

S
2

2

S
2

1

S
2

0

S
1

9

S
1

8

S
1

7

S
1

6

S
1

5

S
1

4

S
1

3

S
1

2

S
11

S
1

0

S
0

9

S
0

8

S
0

7

S
0

6

S
0

5

S
0

4

S
0

3

S
0

2

S
0

1

S
0

0

0 0

0x50 Reserved S
3

9

S
3

8

S
3

7

S
3

6

S
3

5

S
3

4

S
3

3

S
3

2

0 0 0 0 0 0 0 0

Table 78. LCD register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

General-purpose timers (TIM2 to TIM5) RM0038

382/908 DocID15965 Rev 14

17 General-purpose timers (TIM2 to TIM5)

17.1 TIM2 to TIM5 introduction

The general-purpose timers consist of a 16-bit or 32-bit auto-reload counter driven by a
programmable prescaler.

They may be used for a variety of purposes, including measuring the pulse lengths of input
signals (input capture) or generating output waveforms (output compare and PWM).

Pulse lengths and waveform periods can be modulated from a few microseconds to several
milliseconds using the timer prescaler and the RCC clock controller prescalers.

The timers are completely independent, and do not share any resources. They can be
synchronized together as described in Section 17.3.15.

TIM5 is not present in STM32L100xx product categories - see Table 2.

17.2 TIM2 to TIM5 main features

General-purpose TIMx timer features include:

• 16-bit (TIM3 and TIM4) or 32-bit (TIM5)up, down, up/down auto-reload counter.

• 16-bit programmable prescaler used to divide (also “on the fly”) the counter clock
frequency by any factor between 1 and 65536.

• Up to 4 independent channels for:

– Input capture

– Output compare

– PWM generation (Edge- and Center-aligned modes)

– One-pulse mode output

• Synchronization circuit to control the timer with external signals and to interconnect
several timers.

• Interrupt/DMA generation on the following events:

– Update: counter overflow/underflow, counter initialization (by software or
internal/external trigger)

– Trigger event (counter start, stop, initialization or count by internal/external trigger)

– Input capture

– Output compare

• Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning
purposes

• Trigger input for external clock or cycle-by-cycle current management

DocID15965 Rev 14 383/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

Figure 84. General-purpose timer block diagram

17.3 TIM2 to TIM5 functional description

17.3.1 Time-base unit

The main block of the programmable timer is a 16-bit/32-bit counter with its related auto-
reload register. The counter can count up but also down or both up and down. The counter
clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

General-purpose timers (TIM2 to TIM5) RM0038

384/908 DocID15965 Rev 14

The time-base unit includes:

• Counter Register (TIMx_CNT)

• Prescaler Register (TIMx_PSC):

• Auto-Reload Register (TIMx_ARR)

The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The content of the preload register are transferred into the
shadow register permanently or at each update event (UEV), depending on the auto-reload
preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter
reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the
TIMx_CR1 register. It can also be generated by software. The generation of the update
event is described in detail for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller
description to get more details on counter enabling).

Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit/32-bit register (in the TIMx_PSC
register). It can be changed on the fly as this control register is buffered. The new prescaler
ratio is taken into account at the next update event.

Figure 85 and Figure 86 give some examples of the counter behavior when the prescaler
ratio is changed on the fly:

Figure 85. Counter timing diagram with prescaler division change from 1 to 2

DocID15965 Rev 14 385/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

Figure 86. Counter timing diagram with prescaler division change from 1 to 4

17.3.2 Counter modes

Upcounting mode

In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a counter overflow event.

An Update event can be generated at each counter overflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller).

The UEV event can be disabled by software by setting the UDIS bit in TIMx_CR1 register.
This is to avoid updating the shadow registers while writing new values in the preload
registers. Then no update event occurs until the UDIS bit has been written to 0. However,
the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate
does not change). In addition, if the URS bit (update request selection) in TIMx_CR1
register is set, setting the UG bit generates an update event UEV but without setting the UIF
flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and
capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register)

• The auto-reload shadow register is updated with the preload value (TIMx_ARR)

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

General-purpose timers (TIM2 to TIM5) RM0038

386/908 DocID15965 Rev 14

Figure 87. Counter timing diagram, internal clock divided by 1

Figure 88. Counter timing diagram, internal clock divided by 2

Figure 89. Counter timing diagram, internal clock divided by 4

DocID15965 Rev 14 387/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

Figure 90. Counter timing diagram, internal clock divided by N

Figure 91. Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not
preloaded)

General-purpose timers (TIM2 to TIM5) RM0038

388/908 DocID15965 Rev 14

Figure 92. Counter timing diagram, Update event when ARPE=1 (TIMx_ARR
preloaded)

Downcounting mode

In downcounting mode, the counter counts from the auto-reload value (content of the
TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a
counter underflow event.

An Update event can be generate at each counter underflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller)

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until UDIS bit has been written to 0.
However, the counter restarts from the current auto-reload value, whereas the counter of the
prescaler restarts from 0 (but the prescale rate doesn’t change).

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or
DMA request is sent). This is to avoid generating both update and capture interrupts when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

• The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that the auto-reload is updated before the counter is
reloaded, so that the next period is the expected one.

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

DocID15965 Rev 14 389/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

Figure 93. Counter timing diagram, internal clock divided by 1

Figure 94. Counter timing diagram, internal clock divided by 2

Figure 95. Counter timing diagram, internal clock divided by 4

General-purpose timers (TIM2 to TIM5) RM0038

390/908 DocID15965 Rev 14

Figure 96. Counter timing diagram, internal clock divided by N

Figure 97. Counter timing diagram, Update event

Center-aligned mode (up/down counting)

In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register) – 1, generates a counter overflow event, then counts from the auto-
reload value down to 1 and generates a counter underflow event. Then it restarts counting
from 0.

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are not equal to
'00'. The Output compare interrupt flag of channels configured in output is set when: the
counter counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center
aligned mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3,
CMS = "11").

DocID15965 Rev 14 391/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

In this mode, the direction bit (DIR from TIMx_CR1 register) cannot be written. It is updated
by hardware and gives the current direction of the counter.

The update event can be generated at each counter overflow and at each counter underflow
or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event. In this case, the counter restarts counting from
0, as well as the counter of the prescaler.

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until the UDIS bit has been written to 0.
However, the counter continues counting up and down, based on the current auto-reload
value.

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or
DMA request is sent). This is to avoid generating both update and capture interrupt when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

• The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that if the update source is a counter overflow, the auto-
reload is updated before the counter is reloaded, so that the next period is the expected
one (the counter is loaded with the new value).

The following figures show some examples of the counter behavior for different clock
frequencies.

Figure 98. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6

1. Here, center-aligned mode 1 is used, for more details refer to Section 17.4.1: TIMx control register 1 (TIMx_CR1).

General-purpose timers (TIM2 to TIM5) RM0038

392/908 DocID15965 Rev 14

Figure 99. Counter timing diagram, internal clock divided by 2

Figure 100. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36

1. Center-aligned mode 2 or 3 is used with an UIF on overflow.

Figure 101. Counter timing diagram, internal clock divided by N

DocID15965 Rev 14 393/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

Figure 102. Counter timing diagram, Update event with ARPE=1 (counter underflow)

Figure 103. Counter timing diagram, Update event with ARPE=1 (counter overflow)

17.3.3 Clock selection

The counter clock can be provided by the following clock sources:

• Internal clock (CK_INT)

• External clock mode1: external input pin (TIx)

• External clock mode2: external trigger input (ETR).

• Internal trigger inputs (ITRx): using one timer as prescaler for another timer, for
example, Timer3 can be configured to act as a prescaler for Timer 2. Refer to Using
one timer as prescaler for another timer for more details.

General-purpose timers (TIM2 to TIM5) RM0038

394/908 DocID15965 Rev 14

Internal clock source (CK_INT)

If the slave mode controller is disabled (SMS=000 in the TIMx_SMCR register), then the
CEN, DIR (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual
control bits and can be changed only by software (except UG which remains cleared
automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal
clock CK_INT.

Figure 104 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.

Figure 104. Control circuit in normal mode, internal clock divided by 1

External clock source mode 1

This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count at
each rising or falling edge on a selected input.

DocID15965 Rev 14 395/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

Figure 105. TI2 external clock connection example

For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:

1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S= ‘01 in the
TIMx_CCMR1 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1
register (if no filter is needed, keep IC2F=0000).

Note: The capture prescaler is not used for triggering, so there’s no need to configure it.

3. Select rising edge polarity by writing CC2P=0 and CC2NP=0 in the TIMx_CCER
register.

4. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR
register.

5. Select TI2 as the input source by writing TS=110 in the TIMx_SMCR register.

6. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.

The delay between the rising edge on TI2 and the actual clock of the counter is due to the
resynchronization circuit on TI2 input.

General-purpose timers (TIM2 to TIM5) RM0038

396/908 DocID15965 Rev 14

Figure 106. Control circuit in external clock mode 1

External clock source mode 2

This mode is selected by writing ECE=1 in the TIMx_SMCR register.

The counter can count at each rising or falling edge on the external trigger input ETR.

Figure 107 gives an overview of the external trigger input block.

Figure 107. External trigger input block

For example, to configure the upcounter to count each 2 rising edges on ETR, use the
following procedure:

1. As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx_SMCR register.

2. Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR register

3. Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR
register

4. Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register.

5. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

The counter counts once each 2 ETR rising edges.

DocID15965 Rev 14 397/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

The delay between the rising edge on ETR and the actual clock of the counter is due to the
resynchronization circuit on the ETRP signal.

Figure 108. Control circuit in external clock mode 2

17.3.4 Capture/compare channels

Each Capture/Compare channel (see Figure 109) is built around a capture/compare register
(including a shadow register), an input stage for capture (with digital filter, multiplexing and
prescaler) and an output stage (with comparator and output control).

The input stage samples the corresponding TIx input to generate a filtered signal TIxF.
Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be
used as trigger input by the slave mode controller or as the capture command. It is
prescaled before the capture register (ICxPS).

Figure 109. Capture/compare channel (example: channel 1 input stage)

General-purpose timers (TIM2 to TIM5) RM0038

398/908 DocID15965 Rev 14

The output stage generates an intermediate waveform which is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.

Figure 110. Capture/compare channel 1 main circuit

Figure 111. Output stage of capture/compare channel (channel 1)

The capture/compare block is made of one preload register and one shadow register. Write
and read always access the preload register.

In capture mode, captures are actually done in the shadow register, which is copied into the
preload register.

In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.

DocID15965 Rev 14 399/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

17.3.5 Input capture mode

In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the
value of the counter after a transition detected by the corresponding ICx signal. When a
capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or
a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was
already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be
cleared by software by writing it to 0 or by reading the captured data stored in the
TIMx_CCRx register. CCxOF is cleared when written to 0.

The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises. To do this, use the following procedure:

• Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00,
the channel is configured in input and the TIMx_CCR1 register becomes read-only.

• Program the needed input filter duration with respect to the signal connected to the
timer (by programming the ICxF bits in the TIMx_CCMRx register if the input is one of
the TIx inputs). Let’s imagine that, when toggling, the input signal is not stable during at
must five internal clock cycles. We must program a filter duration longer than these five
clock cycles. We can validate a transition on TI1 when eight consecutive samples with
the new level have been detected (sampled at fDTS frequency). Then write IC1F bits to
0011 in the TIMx_CCMR1 register.

• Select the edge of the active transition on the TI1 channel by writing the CC1P and
CC1NP bits to 0 in the TIMx_CCER register (rising edge in this case).

• Program the input prescaler. In our example, we wish the capture to be performed at
each valid transition, so the prescaler is disabled (write IC1PS bits to 00 in the
TIMx_CCMR1 register).

• Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER register.

• If needed, enable the related interrupt request by setting the CC1IE bit in the
TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the
TIMx_DIER register.

When an input capture occurs:

• The TIMx_CCR1 register gets the value of the counter on the active transition.

• CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures
occurred whereas the flag was not cleared.

• An interrupt is generated depending on the CC1IE bit.

• A DMA request is generated depending on the CC1DE bit.

In order to handle the overcapture, it is recommended to read the data before the
overcapture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.

Note: IC interrupt and/or DMA requests can be generated by software by setting the
corresponding CCxG bit in the TIMx_EGR register.

General-purpose timers (TIM2 to TIM5) RM0038

400/908 DocID15965 Rev 14

17.3.6 PWM input mode

This mode is a particular case of input capture mode. The procedure is the same except:

• Two ICx signals are mapped on the same TIx input.

• These 2 ICx signals are active on edges with opposite polarity.

• One of the two TIxFP signals is selected as trigger input and the slave mode controller
is configured in reset mode.

For example, the user can measure the period (in TIMx_CCR1 register) and the duty cycle
(in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure
(depending on CK_INT frequency and prescaler value):

• Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1
register (TI1 selected).

• Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): write the CC1P to ‘0’ and the CC1NP bit to ‘0’ (active on rising edge).

• Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1
register (TI1 selected).

• Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P
bit to ‘1’ and the CC2NP bit to ’0’ (active on falling edge).

• Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register
(TI1FP1 selected).

• Configure the slave mode controller in reset mode: write the SMS bits to 100 in the
TIMx_SMCR register.

• Enable the captures: write the CC1E and CC2E bits to ‘1 in the TIMx_CCER register.

Figure 112. PWM input mode timing

17.3.7 Forced output mode

In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal
(OCxREF and then OCx) can be forced to active or inactive level directly by software,
independently of any comparison between the output compare register and the counter.

DocID15965 Rev 14 401/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

To force an output compare signal (ocxref/OCx) to its active level, the user just needs to
write 101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus ocxref is
forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity
bit.

e.g.: CCxP=0 (OCx active high) => OCx is forced to high level.

ocxref signal can be forced low by writing the OCxM bits to 100 in the TIMx_CCMRx
register.

Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still
performed and allows the flag to be set. Interrupt and DMA requests can be sent
accordingly. This is described in the Output Compare Mode section.

17.3.8 Output compare mode

This function is used to control an output waveform or indicating when a period of time has
elapsed.

When a match is found between the capture/compare register and the counter, the output
compare function:

• Assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set
active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match.

• Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).

• Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the
TIMx_DIER register).

• Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the
TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request
selection).

The TIMx_CCRx registers can be programmed with or without preload registers using the
OCxPE bit in the TIMx_CCMRx register.

In output compare mode, the update event UEV has no effect on ocxref and OCx output.
The timing resolution is one count of the counter. Output compare mode can also be used to
output a single pulse (in One-pulse mode).

Procedure:

1. Select the counter clock (internal, external, prescaler).

2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers.

3. Set the CCxIE and/or CCxDE bits if an interrupt and/or a DMA request is to be
generated.

4. Select the output mode. For example, the user must write OCxM=011, OCxPE=0,
CCxP=0 and CCxE=1 to toggle OCx output pin when CNT matches CCRx, CCRx
preload is not used, OCx is enabled and active high.

5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

The TIMx_CCRx register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OCxPE=0, else TIMx_CCRx
shadow register is updated only at the next update event UEV). An example is given in
Figure 113.

General-purpose timers (TIM2 to TIM5) RM0038

402/908 DocID15965 Rev 14

Figure 113. Output compare mode, toggle on OC1

17.3.9 PWM mode

Pulse width modulation mode allows generating a signal with a frequency determined by the
value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing 110 (PWM mode 1) or ‘111 (PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. The user must enable the corresponding preload register by setting
the OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register
(in upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, the user has to initialize all the registers by setting the
UG bit in the TIMx_EGR register.

OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It
can be programmed as active high or active low. OCx output is enabled by the CCxE bit in
the TIMx_CCER register. Refer to the TIMx_CCERx register description for more details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CCRx≤ TIMx_CNT or TIMx_CNT≤ TIMx_CCRx (depending on the direction of
the counter). However, to comply with the ETRF (OCREF can be cleared by an external
event through the ETR signal until the next PWM period), the OCREF signal is asserted
only:

• When the result of the comparison changes, or

• When the output compare mode (OCxM bits in TIMx_CCMRx register) switches from
the “frozen” configuration (no comparison, OCxM=‘000) to one of the PWM modes
(OCxM=‘110 or ‘111).

This forces the PWM by software while the timer is running.

The timer is able to generate PWM in edge-aligned mode or center-aligned mode
depending on the CMS bits in the TIMx_CR1 register.

DocID15965 Rev 14 403/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

PWM edge-aligned mode

Upcounting configuration

Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to Upcounting
mode.

In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is
high as long as TIMx_CNT <TIMx_CCRx else it becomes low. If the compare value in
TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at ‘1.
If the compare value is 0 then OCxREF is held at ‘0. Figure 114 shows some edge-aligned
PWM waveforms in an example where TIMx_ARR=8.

Figure 114. Edge-aligned PWM waveforms (ARR=8)

Downcounting configuration

Downcounting is active when DIR bit in TIMx_CR1 register is high. Refer to Downcounting
mode.

In PWM mode 1, the reference signal ocxref is low as long as TIMx_CNT>TIMx_CCRx else
it becomes high. If the compare value in TIMx_CCRx is greater than the auto-reload value in
TIMx_ARR, then ocxref is held at ‘1. 0% PWM is not possible in this mode.

PWM center-aligned mode

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from
‘00 (all the remaining configurations having the same effect on the ocxref/OCx signals). The
compare flag is set when the counter counts up, when it counts down or both when it counts
up and down depending on the CMS bits configuration. The direction bit (DIR) in the

General-purpose timers (TIM2 to TIM5) RM0038

404/908 DocID15965 Rev 14

TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to
Center-aligned mode (up/down counting).

Figure 115 shows some center-aligned PWM waveforms in an example where:

• TIMx_ARR=8,

• PWM mode is the PWM mode 1,

• The flag is set when the counter counts down corresponding to the center-aligned
mode 1 selected for CMS=01 in TIMx_CR1 register.

Figure 115. Center-aligned PWM waveforms (ARR=8)

Hints on using center-aligned mode:

• When starting in center-aligned mode, the current up-down configuration is used. It
means that the counter counts up or down depending on the value written in the DIR bit

DocID15965 Rev 14 405/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the
same time by the software.

• Writing to the counter while running in center-aligned mode is not recommended as it
can lead to unexpected results. In particular:

– The direction is not updated if the user writes a value in the counter that is greater
than the auto-reload value (TIMx_CNT>TIMx_ARR). For example, if the counter
was counting up, it continues to count up.

– The direction is updated if the user writes 0 or write the TIMx_ARR value in the
counter but no Update Event UEV is generated.

• The safest way to use center-aligned mode is to generate an update by software
(setting the UG bit in the TIMx_EGR register) just before starting the counter and not to
write the counter while it is running.

17.3.10 One-pulse mode

One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the slave mode controller. Generating the
waveform can be done in output compare mode or PWM mode. Select One-pulse mode by
setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at
the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be:

• In upcounting: CNT<CCRx≤ ARR (in particular, 0<CCRx),

• In downcounting: CNT>CCRx.

Figure 116. Example of one-pulse mode

For example the user may want to generate a positive pulse on OC1 with a length of tPULSE
and after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.

General-purpose timers (TIM2 to TIM5) RM0038

406/908 DocID15965 Rev 14

Let’s use TI2FP2 as trigger 1:

• Map TI2FP2 on TI2 by writing CC2S=01 in the TIMx_CCMR1 register.

• TI2FP2 must detect a rising edge, write CC2P=0 and CC2NP=’0’ in the TIMx_CCER
register.

• Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=110 in
the TIMx_SMCR register.

• TI2FP2 is used to start the counter by writing SMS to ‘110 in the TIMx_SMCR register
(trigger mode).

The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler).

• The tDELAY is defined by the value written in the TIMx_CCR1 register.

• The tPULSE is defined by the difference between the auto-reload value and the compare
value (TIMx_ARR - TIMx_CCR + 1).

• Let us say user wants to build a waveform with a transition from ‘0 to ‘1 when a
compare match occurs and a transition from ‘1 to ‘0 when the counter reaches the
auto-reload value. To do this enable PWM mode 2 by writing OC1M=111 in the
TIMx_CCMR1 register. The user can optionally enable the preload registers by writing
OC1PE=1 in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this
case write the compare value in the TIMx_CCR1 register, the auto-reload value in the
TIMx_ARR register, generate an update by setting the UG bit and wait for external
trigger event on TI2. CC1P is written to ‘0 in this example.

In our example, the DIR and CMS bits in the TIMx_CR1 register should be low.

User only wants one pulse (Single mode), so write '1 in the OPM bit in the TIMx_CR1
register to stop the counter at the next update event (when the counter rolls over from the
auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0', so the
Repetitive Mode is selected.

Particular case: OCx fast enable:

In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tDELAY min we can get.

To output a waveform with the minimum delay, the user can set the OCxFE bit in the
TIMx_CCMRx register. Then OCxRef (and OCx) is forced in response to the stimulus,
without taking in account the comparison. Its new level is the same as if a compare match
had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode.

17.3.11 Clearing the OCxREF signal on an external event

The OCxREF signal for a given channel can be driven Low by applying a High level to the
ETRF input (OCxCE enable bit of the corresponding TIMx_CCMRx register set to '1'). The
OCxREF signal remains Low until the next update event, UEV, occurs.

This function can only be used in output compare and PWM modes, and does not work in
forced mode.

For example, the ETR signal can be connected to the output of a comparator to be used for
current handling. In this case, ETR must be configured as follows:

DocID15965 Rev 14 407/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

1. The external trigger prescaler should be kept off: bits ETPS[1:0] in the TIMx_SMCR
register are cleared to 00.

2. The external clock mode 2 must be disabled: bit ECE in the TIM1_SMCR register is
cleared to 0.

3. The external trigger polarity (ETP) and the external trigger filter (ETF) can be
configured according to the application’s needs.

Figure 117 shows the behavior of the OCxREF signal when the ETRF input becomes high,
for both values of the OCxCE enable bit. In this example, the timer TIMx is programmed in
PWM mode.

Figure 117. Clearing TIMx OCxREF

Note: In case of a PWM with a 100% duty cycle (if CCRx>ARR), OCxREF is enabled again at the
next counter overflow.

17.3.12 Encoder interface mode

To select Encoder Interface mode write SMS=‘001 in the TIMx_SMCR register if the counter
is counting on TI2 edges only, SMS=010 if it is counting on TI1 edges only and SMS=011 if
it is counting on both TI1 and TI2 edges.

Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the TIMx_CCER
register. CC1NP and CC2NP must be kept cleared. When needed, program the input filter
as well.

The two inputs TI1 and TI2 are used to interface to an incremental encoder. Refer to
Table 79. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2
after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted,
TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in
TIMx_CR1 register written to ‘1). The sequence of transitions of the two inputs is evaluated
and generates count pulses as well as the direction signal. Depending on the sequence the
counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware
accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever
the counter is counting on TI1 only, TI2 only or both TI1 and TI2.

Encoder interface mode acts simply as an external clock with direction selection. This
means that the counter just counts continuously between 0 and the auto-reload value in the
TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So the user

General-purpose timers (TIM2 to TIM5) RM0038

408/908 DocID15965 Rev 14

must configure TIMx_ARR before starting. In the same way, the capture, compare,
prescaler, trigger output features continue to work as normal.

In this mode, the counter is modified automatically following the speed and the direction of
the incremental encoder and its content, therefore, always represents the encoder’s
position. The count direction correspond to the rotation direction of the connected sensor.
The table summarizes the possible combinations, assuming TI1 and TI2 don’t switch at the
same time.

An external incremental encoder can be connected directly to the MCU without external
interface logic. However, comparators are normally be used to convert the encoder’s
differential outputs to digital signals. This greatly increases noise immunity. The third
encoder output which indicate the mechanical zero position, may be connected to an
external interrupt input and trigger a counter reset.

Figure 118 gives an example of counter operation, showing count signal generation and
direction control. It also shows how input jitter is compensated where both edges are
selected. This might occur if the sensor is positioned near to one of the switching points. For
this example we assume that the configuration is the following:

• CC1S= ‘01’ (TIMx_CCMR1 register, TI1FP1 mapped on TI1)

• CC2S= ‘01’ (TIMx_CCMR2 register, TI2FP2 mapped on TI2)

• CC1P= ‘0’, CC1NP = ‘0’, IC1F =’0000’ (TIMx_CCER register, TI1FP1 noninverted,
TI1FP1=TI1)

• CC2P= ‘0’, CC2NP = ‘0’, IC2F =’0000’ (TIMx_CCER register, TI2FP2 noninverted,
TI2FP2=TI2)

• SMS= ‘011’ (TIMx_SMCR register, both inputs are active on both rising and falling
edges)

• CEN = 1 (TIMx_CR1 register, Counter is enabled)

Table 79. Counting direction versus encoder signals

Active edge
Level on opposite
signal (TI1FP1 for
TI2, TI2FP2 for TI1)

TI1FP1 signal TI2FP2 signal

Rising Falling Rising Falling

Counting on
TI1 only

High Down Up No Count No Count

Low Up Down No Count No Count

Counting on
TI2 only

High No Count No Count Up Down

Low No Count No Count Down Up

Counting on
TI1 and TI2

High Down Up Up Down

Low Up Down Down Up

DocID15965 Rev 14 409/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

Figure 118. Example of counter operation in encoder interface mode

Figure 119 gives an example of counter behavior when TI1FP1 polarity is inverted (same
configuration as above except CC1P=1).

Figure 119. Example of encoder interface mode with TI1FP1 polarity inverted

The timer, when configured in Encoder Interface mode provides information on the sensor’s
current position. The user can obtain dynamic information (speed, acceleration,
deceleration) by measuring the period between two encoder events using a second timer
configured in capture mode. The output of the encoder which indicates the mechanical zero
can be used for this purpose. Depending on the time between two events, the counter can
also be read at regular times. The user can do this by latching the counter value into a third
input capture register if available (then the capture signal must be periodic and can be
generated by another timer). when available, it is also possible to read its value through a
DMA request generated by a Real-Time clock.

17.3.13 Timer input XOR function

The TI1S bit in the TIMx_CR2 register, allows the input filter of channel 1 to be connected to
the output of a XOR gate, combining the three input pins TIMx_CH1 to TIMx_CH3.

The XOR output can be used with all the timer input functions such as trigger or input
capture.

General-purpose timers (TIM2 to TIM5) RM0038

410/908 DocID15965 Rev 14

17.3.14 Timers and external trigger synchronization

The TIMx Timers can be synchronized with an external trigger in several modes: Reset
mode, Gated mode and Trigger mode.

Slave mode: Reset mode

The counter and its prescaler can be reinitialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

In the following example, the upcounter is cleared in response to a rising edge on TI1 input:

• Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so the user does not need to configure it. The
CC1S bits select the input capture source only, CC1S = 01 in the TIMx_CCMR1
register. Write CC1P=0 and CC1NP=0 in TIMx_CCER register to validate the polarity
(and detect rising edges only).

• Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

• Start the counter by writing CEN=1 in the TIMx_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA
request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register).

Figure 120 shows this behavior when the auto-reload register TIMx_ARR=0x36. The delay
between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

Figure 120. Control circuit in reset mode

Slave mode: Gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

• Configure the channel 1 to detect low levels on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so the user does not need to configure it. The
CC1S bits select the input capture source only, CC1S=01 in TIMx_CCMR1 register.

DocID15965 Rev 14 411/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

Write CC1P=1 and CC1NP=0 in TIMx_CCER register to validate the polarity (and
detect low level only).

• Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

• Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the
counter doesn’t start if CEN=0, whatever is the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as
TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts
or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the
resynchronization circuit on TI1 input.

Figure 121. Control circuit in gated mode

Note: The configuration “CCxP=CCxNP=1” (detection of both rising and falling edges) does not
have any effect in gated mode because gated mode acts on a level and not on an edge.

Slave mode: Trigger mode

The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

• Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC2F=0000). The capture
prescaler is not used for triggering, so the user does not need to configure it. CC2S bits
are selecting the input capture source only, CC2S=01 in TIMx_CCMR1 register. Write
CC2P=1 and CC2NP=0 in TIMx_CCER register to validate the polarity (and detect low
level only).

• Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI2 as the input source by writing TS=110 in TIMx_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the
TIF flag is set.

The delay between the rising edge on TI2 and the actual start of the counter is due to the
resynchronization circuit on TI2 input.

General-purpose timers (TIM2 to TIM5) RM0038

412/908 DocID15965 Rev 14

Figure 122. Control circuit in trigger mode

Slave mode: External Clock mode 2 + trigger mode

The external clock mode 2 can be used in addition to another slave mode (except external
clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock
input, and another input can be selected as trigger input when operating in reset mode,
gated mode or trigger mode. It is recommended not to select ETR as TRGI through the TS
bits of TIMx_SMCR register.

In the following example, the upcounter is incremented at each rising edge of the ETR
signal as soon as a rising edge of TI1 occurs:

1. Configure the external trigger input circuit by programming the TIMx_SMCR register as
follows:

– ETF = 0000: no filter

– ETPS = 00: prescaler disabled

– ETP = 0: detection of rising edges on ETR and ECE=1 to enable the external clock
mode 2.

2. Configure the channel 1 as follows, to detect rising edges on TI:

– IC1F = 0000: no filter.

– The capture prescaler is not used for triggering and does not need to be
configured.

– CC1S = 01 in TIMx_CCMR1 register to select only the input capture source

– CC1P = 0 and CC1NP = 0 in TIMx_CCER register to validate the polarity (and
detect rising edge only).

3. Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts on
ETR rising edges.

The delay between the rising edge of the ETR signal and the actual reset of the counter is
due to the resynchronization circuit on ETRP input.

DocID15965 Rev 14 413/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

Figure 123. Control circuit in external clock mode 2 + trigger mode

17.3.15 Timer synchronization

The TIMx timers are linked together internally for timer synchronization or chaining. When
one Timer is configured in Master Mode, it can reset, start, stop or clock the counter of
another Timer configured in Slave Mode.

Figure 124 presents an overview of the trigger selection and the master mode selection
blocks.

Note: The clock of the slave timer must be enabled prior to receiving events from the master timer,
and must not be changed on-the-fly while triggers are received from the master timer.

Using one timer as prescaler for another timer

Figure 124. Master/Slave timer example

General-purpose timers (TIM2 to TIM5) RM0038

414/908 DocID15965 Rev 14

For example, the user can configure TIM3 to act as a prescaler for TIM2. Refer to
Figure 124. To do this:

• Configure TIM3 in master mode so that it outputs a periodic trigger signal on each
update event UEV. If MMS=010 is written in the TIM3_CR2 register, a rising edge is
output on TRGO1 each time an update event is generated.

• To connect the TRGO1 output of TIM3 to TIM2, TIM2 must be configured in slave mode
using ITR2 as internal trigger. Select this through the TS bits in the TIM2_SMCR
register (writing TS=010).

• Then put the slave mode controller in external clock mode 1 (write SMS=111 in the
TIM2_SMCR register). This causes TIM2 to be clocked by the rising edge of the
periodic TIM3 trigger signal (which correspond to the TIM3 counter overflow).

• Finally both timers must be enabled by setting their respective CEN bits (TIMx_CR1
register).

Note: If OCx is selected on TIM3 as the trigger output (MMS=1xx), its rising edge is used to clock
the counter of TIM2.

Using one timer to enable another timer

In this example, we control the enable of TIM2 with the output compare 1 of Timer 3. Refer
to Figure 124 for connections. TIM2 counts on the divided internal clock only when OC1REF
of TIM3 is high. Both counter clock frequencies are divided by 3 by the prescaler compared
to CK_INT (fCK_CNT = fCK_INT/3).

• Configure TIM3 master mode to send its Output Compare 1 Reference (OC1REF)
signal as trigger output (MMS=100 in the TIM3_CR2 register).

• Configure the TIM3 OC1REF waveform (TIM3_CCMR1 register).

• Configure TIM2 to get the input trigger from TIM3 (TS=010 in the TIM2_SMCR
register).

• Configure TIM2 in gated mode (SMS=101 in TIM2_SMCR register).

• Enable TIM2 by writing ‘1 in the CEN bit (TIM2_CR1 register).

• Start TIM3 by writing ‘1 in the CEN bit (TIM3_CR1 register).

Note: The counter 2 clock is not synchronized with counter 1, this mode only affects the TIM2
counter enable signal.

Figure 125. Gating TIM2 with OC1REF of TIM3

In the example in Figure 125, the TIM2 counter and prescaler are not initialized before being
started. So they start counting from their current value. It is possible to start from a given

DocID15965 Rev 14 415/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

value by resetting both timers before starting TIM3. The user can then write any value in the
timer counters. The timers can easily be reset by software using the UG bit in the
TIMx_EGR registers.

In the next example, we synchronize TIM3 and TIM2. TIM3 is the master and starts from 0.
TIM2 is the slave and starts from 0xE7. The prescaler ratio is the same for both timers. TIM2
stops when TIM3 is disabled by writing ‘0 to the CEN bit in the TIM3_CR1 register:

• Configure TIM3 master mode to send its Output Compare 1 Reference (OC1REF)
signal as trigger output (MMS=100 in the TIM3_CR2 register).

• Configure the TIM3 OC1REF waveform (TIM3_CCMR1 register).

• Configure TIM2 to get the input trigger from TIM3 (TS=010 in the TIM2_SMCR
register).

• Configure TIM2 in gated mode (SMS=101 in TIM2_SMCR register).

• Reset TIM3 by writing ‘1 in UG bit (TIM3_EGR register).

• Reset TIM2 by writing ‘1 in UG bit (TIM2_EGR register).

• Initialize TIM2 to 0xE7 by writing ‘0xE7’ in the TIM2 counter (TIM2_CNTL).

• Enable TIM2 by writing ‘1 in the CEN bit (TIM2_CR1 register).

• Start TIM3 by writing ‘1 in the CEN bit (TIM3_CR1 register).

• Stop TIM3 by writing ‘0 in the CEN bit (TIM3_CR1 register).

Figure 126. Gating TIM2 with Enable of TIM3

Using one timer to start another timer

In this example, we set the enable of Timer 2 with the update event of Timer 3. Refer to
Figure 124 for connections. Timer 2 starts counting from its current value (which can be
non-zero) on the divided internal clock as soon as the update event is generated by Timer 1.
When Timer 2 receives the trigger signal its CEN bit is automatically set and the counter

General-purpose timers (TIM2 to TIM5) RM0038

416/908 DocID15965 Rev 14

counts until we write ‘0 to the CEN bit in the TIM2_CR1 register. Both counter clock
frequencies are divided by 3 by the prescaler compared to CK_INT (fCK_CNT = fCK_INT/3).

• Configure TIM3 master mode to send its Update Event (UEV) as trigger output
(MMS=010 in the TIM3_CR2 register).

• Configure the TIM3 period (TIM3_ARR registers).

• Configure TIM2 to get the input trigger from TIM3 (TS=010 in the TIM2_SMCR
register).

• Configure TIM2 in trigger mode (SMS=110 in TIM2_SMCR register).

• Start TIM3 by writing ‘1 in the CEN bit (TIM3_CR1 register).

Figure 127. Triggering TIM2 with update of TIM3

As in the previous example, both counters can be initialized before starting counting.
Figure 128 shows the behavior with the same configuration as in Figure 127 but in trigger
mode instead of gated mode (SMS=110 in the TIM2_SMCR register).

Figure 128. Triggering TIM2 with Enable of TIM3

DocID15965 Rev 14 417/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

Starting 2 timers synchronously in response to an external trigger

In this example, we set the enable of TIM3 when its TI1 input rises, and the enable of TIM2
with the enable of TIM3. Refer to Figure 124 for connections. To ensure the counters are
aligned, TIM3 must be configured in Master/Slave mode (slave with respect to TI1, master
with respect to TIM2):

• Configure TIM3 master mode to send its Enable as trigger output (MMS=001 in the
TIM3_CR2 register).

• Configure TIM3 slave mode to get the input trigger from TI1 (TS=100 in the
TIM3_SMCR register).

• Configure TIM3 in trigger mode (SMS=110 in the TIM3_SMCR register).

• Configure the TIM3 in Master/Slave mode by writing MSM=1 (TIM3_SMCR register).

• Configure TIM2 to get the input trigger from TIM3 (TS=000 in the TIM2_SMCR
register).

• Configure TIM2 in trigger mode (SMS=110 in the TIM2_SMCR register).

When a rising edge occurs on TI1 (TIM3), both counters starts counting synchronously on
the internal clock and both TIF flags are set.

Note: In this example both timers are initialized before starting (by setting their respective UG
bits). Both counters starts from 0, but the user can easily insert an offset between them by
writing any of the counter registers (TIMx_CNT). The master/slave mode inserts a delay
between CNT_EN and CK_PSC on TIM3.

Figure 129. Triggering TIM3 and TIM2 with TIM3 TI1 input

17.3.16 Debug mode

When the microcontroller enters debug mode (Cortex®-M3 core - halted), the TIMx counter
either continues to work normally or stops, depending on DBG_TIMx_STOP configuration
bit in DBGMCU module. For more details, refer to Section 30.16.2: Debug support for
timers, watchdog and I2C.

General-purpose timers (TIM2 to TIM5) RM0038

418/908 DocID15965 Rev 14

17.4 TIMx registers

Refer to Section: List of abbreviations for registers for a list of abbreviations used in register
descriptions.

The 32-bit peripheral registers have to be written by words (32 bits). All other peripheral
registers have to be written by half-words (16 bits) or words (32 bits). Read accesses can be
done by bytes (8 bits), half-words (16 bits) or words (32 bits).

17.4.1 TIMx control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CKD[1:0] ARPE CMS DIR OPM URS UDIS CEN

rw rw rw rw rw rw rw rw rw rw

Bits 15:10 Reserved, must be kept at reset value.

Bits 9:8 CKD: Clock division

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and
sampling clock used by the digital filters (ETR, TIx),
00: tDTS = tCK_INT
01: tDTS = 2 × tCK_INT
10: tDTS = 4 × tCK_INT
11: Reserved

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered
1: TIMx_ARR register is buffered

Bits 6:5 CMS: Center-aligned mode selection

00: Edge-aligned mode. The counter counts up or down depending on the direction bit
(DIR).
01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting down.
10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting up.
11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
both when the counter is counting up or down.

Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as
the counter is enabled (CEN=1)

Bit 4 DIR: Direction

0: Counter used as upcounter
1: Counter used as downcounter

Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder
mode.

Bit 3 OPM: One-pulse mode

0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the bit CEN)

DocID15965 Rev 14 419/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.
0: Any of the following events generate an update interrupt or DMA request if enabled.
These events can be:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
1: Only counter overflow/underflow generates an update interrupt or DMA request if
enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.
0: UEV enabled. The Update (UEV) event is generated by one of the following events:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
Buffered registers are then loaded with their preload values.
1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is
set or if a hardware reset is received from the slave mode controller.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

Note: External clock, gated mode and encoder mode can work only if the CEN bit has been
previously set by software. However trigger mode can set the CEN bit automatically by
hardware.

CEN is cleared automatically in one-pulse mode, when an update event occurs.

General-purpose timers (TIM2 to TIM5) RM0038

420/908 DocID15965 Rev 14

17.4.2 TIMx control register 2 (TIMx_CR2)

Address offset: 0x04

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TI1S MMS[2:0] CCDS

Reserved
rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 TI1S: TI1 selection

0: The TIMx_CH1 pin is connected to TI1 input
1: The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination)

Bits 6:4 MMS[2:0]: Master mode selection

These bits allow to select the information to be sent in master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the
reset is generated by the trigger input (slave mode controller configured in reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter enable signal, CNT_EN, is used as trigger output (TRGO). It is
useful to start several timers at the same time or to control a window in which a slave timer is
enabled. The Counter Enable signal is generated by a logic OR between CEN control bit
and the trigger input when configured in gated mode.
When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO,
except if the master/slave mode is selected (see the MSM bit description in TIMx_SMCR
register).
010: Update - The update event is selected as trigger output (TRGO). For instance a master
timer can then be used as a prescaler for a slave timer.
011: Compare Pulse - The trigger output send a positive pulse when the CC1IF flag is to be
set (even if it was already high), as soon as a capture or a compare match occurred.
(TRGO)
100: Compare - OC1REF signal is used as trigger output (TRGO)
101: Compare - OC2REF signal is used as trigger output (TRGO)
110: Compare - OC3REF signal is used as trigger output (TRGO)
111: Compare - OC4REF signal is used as trigger output (TRGO)

Note: The clock of the slave timer and ADC must be enabled prior to receiving events from
the master timer, and must not be changed on-the-fly while triggers are received from
the master timer.

Bit 3 CCDS: Capture/compare DMA selection

0: CCx DMA request sent when CCx event occurs
1: CCx DMA requests sent when update event occurs

Bits 2:0 Reserved, must be kept at reset value.

DocID15965 Rev 14 421/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

17.4.3 TIMx slave mode control register (TIMx_SMCR)

Address offset: 0x08

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ETP ECE ETPS[1:0] ETF[3:0] MSM TS[2:0] OCCS SMS[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 ETP: External trigger polarity

This bit selects whether ETR or ETR is used for trigger operations
0: ETR is non-inverted, active at high level or rising edge
1: ETR is inverted, active at low level or falling edge

Bit 14 ECE: External clock enable

This bit enables External clock mode 2
0: External clock mode 2 disabled
1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF
signal.
1: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI
connected to ETRF (SMS=111 and TS=111).
2: It is possible to simultaneously use external clock mode 2 with the following slave modes:
reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be connected to
ETRF in this case (TS bits must not be 111).
3: If external clock mode 1 and external clock mode 2 are enabled at the same time, the
external clock input is ETRF.

Bits 13:12 ETPS: External trigger prescaler

External trigger signal ETRP frequency must be at most 1/4 of CK_INT frequency. A
prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external
clocks.
00: Prescaler OFF
01: ETRP frequency divided by 2
10: ETRP frequency divided by 4
11: ETRP frequency divided by 8

Bits 11:8 ETF[3:0]: External trigger filter

This bit-field then defines the frequency used to sample ETRP signal and the length of the
digital filter applied to ETRP. The digital filter is made of an event counter in which N
consecutive events are needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8

General-purpose timers (TIM2 to TIM5) RM0038

422/908 DocID15965 Rev 14

Bit 7 MSM: Master/Slave mode

0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect
synchronization between the current timer and its slaves (through TRGO). It is useful if we
want to synchronize several timers on a single external event.

Bits 6:4 TS: Trigger selection

This bit-field selects the trigger input to be used to synchronize the counter.
000: Internal Trigger 0 (ITR0).
001: Internal Trigger 1 (ITR1).
010: Internal Trigger 2 (ITR2).
011: Internal Trigger 3 (ITR3).
100: TI1 Edge Detector (TI1F_ED)
101: Filtered Timer Input 1 (TI1FP1)
110: Filtered Timer Input 2 (TI2FP2)
111: External Trigger input (ETRF)
See for more details on ITRx meaning for each Timer.

Note: These bits must be changed only when they are not used (e.g. when SMS=000) to
avoid wrong edge detections at the transition.

Bit 3 OCCS: OCREF clear selection

This bit is used to select the OCREF clear source
0: OCREF_CLR_INT is connected to the OCREF_CLR input
1: OCREF_CLR_INT is connected to ETRF

Bits 2:0 SMS: Slave mode selection

When external signals are selected the active edge of the trigger signal (TRGI) is linked to
the polarity selected on the external input (see Input Control register and Control Register
description.
000: Slave mode disabled - if CEN = ‘1 then the prescaler is clocked directly by the internal
clock.
001: Encoder mode 1 - Counter counts up/down on TI2FP1 edge depending on TI1FP2
level.
010: Encoder mode 2 - Counter counts up/down on TI1FP2 edge depending on TI2FP1
level.
011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges
depending on the level of the other input.
100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter
and generates an update of the registers.
101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The
counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of
the counter are controlled.
110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not
reset). Only the start of the counter is controlled.
111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=100).
Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode
checks the level of the trigger signal.

The clock of the slave timer must be enabled prior to receiving events from the master
timer, and must not be changed on-the-fly while triggers are received from the master
timer.

DocID15965 Rev 14 423/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

17.4.4 TIMx DMA/Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

Table 80. TIMx internal trigger connection

Slave TIM ITR0 (TS = 000) ITR1 (TS = 001) ITR2 (TS = 010) ITR3 (TS = 011)

TIM2 TIM9 TIM10/[TIM5](1)

1. Can be selected by ITR1_RMP or ITR2_RMP bit field in TIM2_OR resp. TIM3_OR option registers

TIM3 TIM4

TIM3 TIM9 TIM2 TIM11/[TIM5](1) TIM4

TIM4 TIM10 TIM2 TIM3 TIM9

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
TDE

Res
CC4DE CC3DE CC2DE CC1DE UDE

Res.
TIE

Res
CC4IE CC3IE CC2IE CC1IE UIE

rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 Reserved, must be kept at reset value.

Bit 14 TDE: Trigger DMA request enable

0: Trigger DMA request disabled
1: Trigger DMA request enabled

Bit 13 Reserved, must be kept at reset value.

Bit 12 CC4DE: Capture/Compare 4 DMA request enable

0: CC4 DMA request disabled
1: CC4 DMA request enabled

Bit 11 CC3DE: Capture/Compare 3 DMA request enable

0: CC3 DMA request disabled
1: CC3 DMA request enabled

Bit 10 CC2DE: Capture/Compare 2 DMA request enable

0: CC2 DMA request disabled
1: CC2 DMA request enabled

Bit 9 CC1DE: Capture/Compare 1 DMA request enable

0: CC1 DMA request disabled
1: CC1 DMA request enabled

Bit 8 UDE: Update DMA request enable

0: Update DMA request disabled
1: Update DMA request enabled

Bit 7 Reserved, must be kept at reset value.

Bit 6 TIE: Trigger interrupt enable

0: Trigger interrupt disabled
1: Trigger interrupt enabled

Bit 5 Reserved, must be kept at reset value.

Bit 4 CC4IE: Capture/Compare 4 interrupt enable

0: CC4 interrupt disabled
1: CC4 interrupt enabled

General-purpose timers (TIM2 to TIM5) RM0038

424/908 DocID15965 Rev 14

17.4.5 TIMx status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

Bit 3 CC3IE: Capture/Compare 3 interrupt enable

0: CC3 interrupt disabled
1: CC3 interrupt enabled

Bit 2 CC2IE: Capture/Compare 2 interrupt enable

0: CC2 interrupt disabled
1: CC2 interrupt enabled

Bit 1 CC1IE: Capture/Compare 1 interrupt enable

0: CC1 interrupt disabled
1: CC1 interrupt enabled

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled
1: Update interrupt enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC4OF CC3OF CC2OF CC1OF

Reserved
TIF

Res
CC4IF CC3IF CC2IF CC1IF UIF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 15:13 Reserved, must be kept at reset value.

Bit 12 CC4OF: Capture/Compare 4 overcapture flag

refer to CC1OF description

Bit 11 CC3OF: Capture/Compare 3 overcapture flag

refer to CC1OF description

Bit 10 CC2OF: Capture/compare 2 overcapture flag

refer to CC1OF description

Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to ‘0.
0: No overcapture has been detected
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was
already set

Bits 8:7 Reserved, must be kept at reset value.

Bit 6 TIF: Trigger interrupt flag

This flag is set by hardware on trigger event (active edge detected on TRGI input when the
slave mode controller is enabled in all modes but gated mode. It is set when the counter
starts or stops when gated mode is selected. It is cleared by software.
0: No trigger event occurred
1: Trigger interrupt pending

Bit 5 Reserved, must be kept at reset value.

Bit 4 CC4IF: Capture/Compare 4 interrupt flag

refer to CC1IF description

DocID15965 Rev 14 425/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

Bit 3 CC3IF: Capture/Compare 3 interrupt flag

refer to CC1IF description

Bit 2 CC2IF: Capture/Compare 2 interrupt flag

refer to CC1IF description

Bit 1 CC1IF: Capture/compare 1 interrupt flag

If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the compare value, with some
exception in center-aligned mode (refer to the CMS bits in the TIMx_CR1 register
description). It is cleared by software.
0: No match
1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register.
When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit
goes high on the counter overflow (in upcounting and up/down-counting modes) or underflow
(in downcounting mode)
If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the
TIMx_CCR1 register.
0: No input capture occurred
1: The counter value has been captured in TIMx_CCR1 register (An edge has been detected
on IC1 which matches the selected polarity)

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred
1: Update interrupt pending. This bit is set by hardware when the registers are updated:
At overflow or underflow (for TIM2 to TIM4) and if UDIS=0 in the TIMx_CR1 register.
When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0 and
UDIS=0 in the TIMx_CR1 register.
When CNT is reinitialized by a trigger event (refer to the synchro control register description),
if URS=0 and UDIS=0 in the TIMx_CR1 register.

General-purpose timers (TIM2 to TIM5) RM0038

426/908 DocID15965 Rev 14

17.4.6 TIMx event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TG

Res.
CC4G CC3G CC2G CC1G UG

w w w w w w

Bits 15:7 Reserved, must be kept at reset value.

Bit 6 TG: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if
enabled.

Bit 5 Reserved, must be kept at reset value.

Bit 4 CC4G: Capture/compare 4 generation

refer to CC1G description

Bit 3 CC3G: Capture/compare 3 generation

refer to CC1G description

Bit 2 CC2G: Capture/compare 2 generation

refer to CC1G description

Bit 1 CC1G: Capture/compare 1 generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set,
the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the
CC1IF flag was already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: Re-initialize the counter and generates an update of the registers. Note that the prescaler
counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if
the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload
value (TIMx_ARR) if DIR=1 (downcounting).

DocID15965 Rev 14 427/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

17.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. Take care that the same bit can have a
different meaning for the input stage and for the output stage.

Output compare mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC2CE OC2M[2:0] OC2PE OC2FE
CC2S[1:0]

OC1CE OC1M[2:0] OC1PE OC1FE
CC1S[1:0]

IC2F[3:0] IC2PSC[1:0] IC1F[3:0] IC1PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 OC2CE: Output compare 2 clear enable

Bits 14:12 OC2M[2:0]: Output compare 2 mode

Bit 11 OC2PE: Output compare 2 preload enable

Bit 10 OC2FE: Output compare 2 fast enable

Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if
an internal trigger input is selected through the TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).

Bit 7 OC1CE: Output compare 1 clear enable

OC1CE: Output Compare 1 Clear Enable
0: OC1Ref is not affected by the ETRF input
1: OC1Ref is cleared as soon as a High level is detected on ETRF input

General-purpose timers (TIM2 to TIM5) RM0038

428/908 DocID15965 Rev 14

Bits 6:4 OC1M: Output compare 1 mode

These bits define the behavior of the output reference signal OC1REF from which OC1 and
OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends
on CC1P and CC1NP bits.
000: Frozen - The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing
base).
001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter
TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the
counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1.
100: Force inactive level - OC1REF is forced low.
101: Force active level - OC1REF is forced high.
110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1
else inactive. In downcounting, channel 1 is inactive (OC1REF=‘0) as long as
TIMx_CNT>TIMx_CCR1 else active (OC1REF=1).
111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1
else active. In downcounting, channel 1 is active as long as TIMx_CNT>TIMx_CCR1 else
inactive.

Note: In PWM mode 1 or 2, the OCREF level changes only when the result of the
comparison changes or when the output compare mode switches from “frozen” mode
to “PWM” mode.

Bit 3 OC1PE: Output compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the
new value is taken in account immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload
register. TIMx_CCR1 preload value is loaded in the active register at each update event.

Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed
(LOCK bits in TIMx_BDTR register) and CC1S=00 (the channel is configured in
output).

2: The PWM mode can be used without validating the preload register only in one-
pulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed.

Bit 2 OC1FE: Output compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is
ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is
5 clock cycles.
1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC
is set to the compare level independently from the result of the comparison. Delay to sample
the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if
the channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output.
01: CC1 channel is configured as input, IC1 is mapped on TI1.
10: CC1 channel is configured as input, IC1 is mapped on TI2.
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

DocID15965 Rev 14 429/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

Input capture mode

Bits 15:12 IC2F: Input capture 2 filter

Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler

Bits 9:8 CC2S: Capture/compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output.
01: CC2 channel is configured as input, IC2 is mapped on TI2.
10: CC2 channel is configured as input, IC2 is mapped on TI1.
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).

Bits 7:4 IC1F: Input capture 1 filter

This bit-field defines the frequency used to sample TI1 input and the length of the digital filter
applied to TI1. The digital filter is made of an event counter in which N consecutive events
are needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).
The prescaler is reset as soon as CC1E=0 (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

General-purpose timers (TIM2 to TIM5) RM0038

430/908 DocID15965 Rev 14

17.4.8 TIMx capture/compare mode register 2 (TIMx_CCMR2)

Address offset: 0x1C

Reset value: 0x0000

Refer to the above CCMR1 register description.

Output compare mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC4CE OC4M[2:0] OC4PE OC4FE
CC4S[1:0]

OC3CE OC3M[2:0] OC3PE OC3FE
CC3S[1:0]

IC4F[3:0] IC4PSC[1:0] IC3F[3:0] IC3PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 OC4CE: Output compare 4 clear enable

Bits 14:12 OC4M: Output compare 4 mode

Bit 11 OC4PE: Output compare 4 preload enable

Bit 10 OC4FE: Output compare 4 fast enable

Bits 9:8 CC4S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on TI4
10: CC4 channel is configured as input, IC4 is mapped on TI3
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER).

Bit 7 OC3CE: Output compare 3 clear enable

Bits 6:4 OC3M: Output compare 3 mode

Bit 3 OC3PE: Output compare 3 preload enable

Bit 2 OC3FE: Output compare 3 fast enable

Bits 1:0 CC3S: Capture/Compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3
10: CC3 channel is configured as input, IC3 is mapped on TI4
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER).

DocID15965 Rev 14 431/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

Input capture mode

17.4.9 TIMx capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

Bits 15:12 IC4F: Input capture 4 filter

Bits 11:10 IC4PSC: Input capture 4 prescaler

Bits 9:8 CC4S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on TI4
10: CC4 channel is configured as input, IC4 is mapped on TI3
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER).

Bits 7:4 IC3F: Input capture 3 filter

Bits 3:2 IC3PSC: Input capture 3 prescaler

Bits 1:0 CC3S: Capture/Compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3
10: CC3 channel is configured as input, IC3 is mapped on TI4
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CC4NP
Res.

CC4P CC4E CC3NP
Res.

CC3P CC3E CC2NP
Res.

CC2P CC2E CC1NP
Res.

CC1P CC1E

rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 CC4NP: Capture/Compare 4 output Polarity.

Refer to CC1NP description

Bit 14 Reserved, must be kept at reset value.

Bit 13 CC4P: Capture/Compare 4 output Polarity.

refer to CC1P description

Bit 12 CC4E: Capture/Compare 4 output enable.

refer to CC1E description

Bit 11 CC3NP: Capture/Compare 3 output Polarity.

refer to CC1NP description

Bit 10 Reserved, must be kept at reset value.

Bit 9 CC3P: Capture/Compare 3 output Polarity.

refer to CC1P description

General-purpose timers (TIM2 to TIM5) RM0038

432/908 DocID15965 Rev 14

Bit 8 CC3E: Capture/Compare 3 output enable.

refer to CC1E description

Bit 7 CC2NP: Capture/Compare 2 output Polarity.

refer to CC1NP description

Bit 6 Reserved, must be kept at reset value.

Bit 5 CC2P: Capture/Compare 2 output Polarity.

refer to CC1P description

Bit 4 CC2E: Capture/Compare 2 output enable.

refer to CC1E description

Bit 3 CC1NP: Capture/Compare 1 output Polarity.

CC1 channel configured as output:
CC1NP must be kept cleared in this case.
CC1 channel configured as input:
This bit is used in conjunction with CC1P to define TI1FP1/TI2FP1 polarity. refer to CC1P
description.

Bit 2 Reserved, must be kept at reset value.

Bit 1 CC1P: Capture/Compare 1 output Polarity.

CC1 channel configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel configured as input:
CC1NP/CC1P bits select TI1FP1 and TI2FP1 polarity for trigger or capture operations.
00: noninverted/rising edge
Circuit is sensitive to TIxFP1 rising edge (capture, trigger in reset, external clock or trigger
mode), TIxFP1 is not inverted (trigger in gated mode, encoder mode).
01: inverted/falling edge
Circuit is sensitive to TIxFP1 falling edge (capture, trigger in reset, external clock or trigger
mode), TIxFP1 is inverted (trigger in gated mode, encoder mode).
10: reserved, do not use this configuration.
11: noninverted/both edges
Circuit is sensitive to both TIxFP1 rising and falling edges (capture, trigger in reset, external
clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode). This configuration
must not be used for encoder mode.

Bit 0 CC1E: Capture/Compare 1 output enable.

CC1 channel configured as output:
0: Off - OC1 is not active
1: On - OC1 signal is output on the corresponding output pin
CC1 channel configured as input:
This bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled
1: Capture enabled

Table 81. Output control bit for standard OCx channels

CCxE bit OCx output state

0 Output Disabled (OCx=0, OCx_EN=0)

1 OCx=OCxREF + Polarity, OCx_EN=1

DocID15965 Rev 14 433/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

Note: The state of the external IO pins connected to the standard OCx channels depends on the
OCx channel state and the GPIO and AFIO registers.

17.4.10 TIMx counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000 0000

17.4.11 TIMx prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

17.4.12 TIMx auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0xFFFF

17.4.13 TIMx capture/compare register 1 (TIMx_CCR1)

Address offset: 0x34

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register or through
trigger controller when configured in “reset mode”).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Auto-reload value
ARR is the value to be loaded in the actual auto-reload register.
Refer to the Section 17.3.1: Time-base unit for more details about ARR update and
behavior.
The counter is blocked while the auto-reload value is null.

General-purpose timers (TIM2 to TIM5) RM0038

434/908 DocID15965 Rev 14

Reset value: 0x0000

17.4.14 TIMx capture/compare register 2 (TIMx_CCR2)

Address offset: 0x38

Reset value: 0x0000

17.4.15 TIMx capture/compare register 3 (TIMx_CCR3)

Address offset: 0x3C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR1[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR1[15:0]: Capture/Compare 1 value

If channel CC1 is configured as output:
CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register
(bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC1 output.

If channel CC1is configured as input:
CCR1 is the counter value transferred by the last input capture 1 event (IC1).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR2[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR2[15:0]: Capture/Compare 2 value

If channel CC2 is configured as output:
CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register
(bit OC2PE). Else the preload value is copied in the active capture/compare 2 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC2 output.
If channel CC2 is configured as input:
CCR2 is the counter value transferred by the last input capture 2 event (IC2).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR3[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

DocID15965 Rev 14 435/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

17.4.16 TIMx capture/compare register 4 (TIMx_CCR4)

Address offset: 0x40

Reset value: 0x0000

17.4.17 TIMx DMA control register (TIMx_DCR)

Address offset: 0x48

Reset value: 0x0000

Bits 15:0 CCR3[15:0]: Capture/Compare value

If channel CC3 is configured as output:
CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register
(bit OC3PE). Else the preload value is copied in the active capture/compare 3 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC3 output.
If channel CC3 is configured as input:
CCR3 is the counter value transferred by the last input capture 3 event (IC3).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR4[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR4[15:0]: Capture/Compare value

1. if CC4 channel is configured as output (CC4S bits):
CCR4 is the value to be loaded in the actual capture/compare 4 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2
register (bit OC4PE). Else the preload value is copied in the active capture/compare 4
register when an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC4 output.

2. if CC4 channel is configured as input (CC4S bits in TIMx_CCMR4 register):
CCR4 is the counter value transferred by the last input capture 4 event (IC4).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DBL[4:0]

Reserved
DBA[4:0]

rw rw rw rw rw rw rw rw rw rw

Bits 15:13 Reserved, must be kept at reset value.

General-purpose timers (TIM2 to TIM5) RM0038

436/908 DocID15965 Rev 14

17.4.18 TIMx DMA address for full transfer (TIMx_DMAR)

Address offset: 0x4C

Reset value: 0x0000

Example of how to use the DMA burst feature

In this example the timer DMA burst feature is used to update the contents of the CCRx
registers (x = 2, 3, 4) with the DMA transferring half words into the CCRx registers.

This is done in the following steps:

1. Configure the corresponding DMA channel as follows:

– DMA channel peripheral address is the DMAR register address

– DMA channel memory address is the address of the buffer in the RAM containing
the data to be transferred by DMA into CCRx registers.

– Number of data to transfer = 3 (See note below).

– Circular mode disabled.

2. Configure the DCR register by configuring the DBA and DBL bit fields as follows:

Bits 12:8 DBL[4:0]: DMA burst length

This 5-bit vector defines the number of DMA transfers (the timer recognizes a burst transfer
when a read or a write access is done to the TIMx_DMAR address).
00000: 1 transfer,
00001: 2 transfers,
00010: 3 transfers,
...
10001: 18 transfers.

Bits 7:5 Reserved, must be kept at reset value.

Bits 4:0 DBA[4:0]: DMA base address

This 5-bit vector defines the base-address for DMA transfers (when read/write access are
done through the TIMx_DMAR address). DBA is defined as an offset starting from the
address of the TIMx_CR1 register.
Example:
00000: TIMx_CR1,
00001: TIMx_CR2,
00010: TIMx_SMCR,
...

Example: Let us consider the following transfer: DBL = 7 transfers & DBA = TIMx_CR1. In this
case the transfer is done to/from 7 registers starting from the TIMx_CR1 address.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMAB[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 DMAB[15:0]: DMA register for burst accesses

A read or write operation to the DMAR register accesses the register located at the address

(TIMx_CR1 address) + (DBA + DMA index) x 4

where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base
address configured in TIMx_DCR register, DMA index is automatically controlled by the
DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR).

DocID15965 Rev 14 437/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

DBL = 3 transfers, DBA = 0xE.

3. Enable the TIMx update DMA request (set the UDE bit in the DIER register).

4. Enable TIMx

5. Enable the DMA channel

Note: This example is for the case where every CCRx register to be updated once. If every CCRx
register is to be updated twice for example, the number of data to transfer should be 6. Let's
take the example of a buffer in the RAM containing data1, data2, data3, data4, data5 and
data6. The data is transferred to the CCRx registers as follows: on the first update DMA
request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to
CCR4 and on the second update DMA request, data4 is transferred to CCR2, data5 is
transferred to CCR3 and data6 is transferred to CCR4.

17.4.19 TIM2 option register (TIM2_OR)

Address offset: 0x50

Reset value: 0x0000

This register is available on Cat.3, Cat.4, Cat.5 and Cat.6 devices.

17.4.20 TIM3 option register (TIM3_OR)

Address offset: 0x50

Reset value: 0x0000

This register is available on Cat.3, Cat.4, Cat.5 and Cat.6 devices.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

ITR1_R
MP

rw

Bits 15:1 Reserved, must be kept at reset value.

Bit 0 ITR1_RMP: Timer 2 Internal trigger 1 remap

Set and cleared by software.
0: TIM2 ITR1 input is connected to TIM10 OC
1: TIM2 ITR1 input is connected to TIM5 TGO

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

ITR2_R
MP

rw

Bits 15:1 Reserved, must be kept at reset value.

Bit 0 ITR2_RMP: Timer 3 Internal trigger 2 remap

Set and cleared by software.
0: TIM3 ITR2 input is connected to TIM11 OC
1: TIM3 ITR2 input is connected to TIM5 TGO

General-purpose timers (TIM2 to TIM5) RM0038

438/908 DocID15965 Rev 14

17.4.21 TIMx register map

TIMx registers are mapped as described in the table below: The reserved memory areas are
highlighted in gray in the table.

Table 82. TIMx register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

Reserved

CKD
[1:0] A

R
P

E CMS
[1:0] D

IR

O
P

M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0 0 0 0 0 0

0x04
TIMx_CR2

Reserved T
I1

S

MMS[2:0]

C
C

D
S

Reserved

Reset value 0 0 0 0 0

0x08
TIMx_SMCR

Reserved E
T

P

E
C

E ETPS
[1:0]

ETF[3:0]

M
S

M

TS[2:0]

R
e

se
rv

e
d

SMS[2:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
TIMx_DIER

Reserved T
D

E

C
O

M
D

E

C
C

4
D

E

C
C

3
D

E

C
C

2
D

E

C
C

1
D

E

U
D

E

R
e

se
rv

e
d

T
IE

R
e

se
rv

e
d

C
C

4I
E

C
C

3I
E

C
C

2I
E

C
C

1I
E

U
IE

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
TIMx_SR

Reserved C
C

4
O

F

C
C

3
O

F

C
C

2
O

F

C
C

1
O

F

R
e

se
rv

e
d

T
IF

R
e

se
rv

e
d

C
C

4
IF

C
C

3
IF

C
C

2
IF

C
C

1
IF

U
IF

Reset value 0 0 0 0 0 0 0 0 0 0

0x14
TIMx_EGR

Reserved

T
G

R
es

er
ve

d

C
C

4
G

C
C

3
G

C
C

2
G

C
C

1
G

U
G

Reset value 0 0 0 0 0 0

0x18

TIMx_CCMR1
Output

Compare
mode

Reserved O
C

2
C

E

OC2M
[2:0]

O
C

2
P

E

O
C

2
F

E

CC2S
[1:0]

O
C

1
C

E

OC1M
[2:0]

O
C

1
P

E

O
C

1
F

E

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMx_CCMR1
Input Capture

mode Reserved
IC2F[3:0]

IC2
PSC
[1:0]

CC2S
[1:0]

IC1F[3:0]
IC1
PSC
[1:0]

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C

TIMx_CCMR2
Output

Compare
mode

Reserved O
2

4
C

E

OC4M
[2:0]

O
C

4
P

E

O
C

4
F

E

CC4S
[1:0]

O
C

3
C

E

OC3M
[2:0]

O
C

3
P

E

O
C

3
F

E

CC3S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMx_CCMR2
Input Capture

mode Reserved
IC4F[3:0]

IC4
PSC
[1:0]

CC4S
[1:0]

IC3F[3:0]
IC3
PSC
[1:0]

CC3S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
TIMx_CCER

Reserved C
C

4
N

P

R
e

se
rv

ed

C
C

4
P

C
C

4
E

C
C

3
N

P

R
e

se
rv

ed

C
C

3
P

C
C

3
E

C
C

2
N

P

R
e

se
rv

ed

C
C

2
P

C
C

2
E

C
C

1
N

P

R
e

se
rv

ed

C
C

1
P

C
C

1
E

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

DocID15965 Rev 14 439/908

RM0038 General-purpose timers (TIM2 to TIM5)

439

Refer to Section: Memory map for the register boundary addresses.

0x24
TIMx_CNT CNT[32:16] (TIM5 only, reserved on the other timers) CNT[15:0]

Reset value 0

0x28
TIMx_PSC

Reserved
PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR ARR[32:16] (TIM5 only, reserved on the other timers) ARR[15:0]

Reset value 1

0x30 Reserved

0x34
TIMx_CCR1 CCR1[32:16] (TIM5 only, reserved on the other timers) CCR1[15:0]

Reset value 0

0x38
TIMx_CCR2 CCR4[32:16] (TIM5 only, reserved on the other timers) CCR2[15:0]

Reset value 0

0x3C
TIMx_CCR3 CCR4[32:16] (TIM5 only, reserved on the other timers) CCR3[15:0]

Reset value 0

0x40
TIMx_CCR4 CCR4[32:16] (TIM5 only, reserved on the other timers) CCR4[15:0]

Reset value 0

0x44 Reserved

0x48
TIMx_DCR

Reserved
DBL[4:0]

R
e

se
rv

ed DBA[4:0]

Reset value 0 0 0 0 0 0 0 0 0 0

0x4C
TIMx_DMAR

Reserved
DMAB[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x50
TIM2_OR

Reserved

IT
R

1
_

R
M

P

Reset value 0

0x50
TIM3_OR

Reserved

IT
R

2_
R

M
P

Reset value 0

Table 82. TIMx register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

General-purpose timers (TIM9/10/11) RM0038

440/908 DocID15965 Rev 14

18 General-purpose timers (TIM9/10/11)

18.1 TIM9/10/11 introduction

The TIM9/10/11 general-purpose timers consist of a 16-bit auto-reload counter driven by a
programmable prescaler.

They may be used for a variety of purposes, including measuring the pulse lengths of input
signals (input capture) or generating output waveforms (output compare, PWM).

Pulse lengths and waveform periods can be modulated from a few microseconds to several
milliseconds using the timer prescaler and the RCC clock controller prescalers.

The TIM9/10/11 timers are completely independent, and do not share any resources. They
can be synchronized together as described in Section 18.3.12.

18.2 TIM9/10/11 main features

18.2.1 TIM9 main features

The features of the general-purpose timer include:

• 16-bit auto-reload upcounter (in Cat.1 and Cat.2 devices)

• 16-bit up, down, up/down auto-reload counter (in Cat.3, Cat.4, Cat.5 and Cat.6
devices)

• 16-bit programmable prescaler used to divide the counter clock frequency by any factor
between 1 and 65536 (can be changed “on the fly”)

• Up to 2 independent channels for:

– Input capture

– Output compare

– PWM generation (edge-aligned mode)

– One-pulse mode output

• Synchronization circuit to control the timer with external signals and to interconnect
several timers together

• Interrupt generation on the following events:

– Update: counter overflow/underflow, counter initialization (by software or internal
trigger)

– Trigger event (counter start, stop, initialization or count by internal trigger)

– Input capture

– Output compare

• Trigger input for external clock or cycle-by-cycle current management

DocID15965 Rev 14 441/908

RM0038 General-purpose timers (TIM9/10/11)

494

Figure 130. General-purpose timer block diagram (TIM9)

18.2.2 TIM10/TIM11 main features

The features of general-purpose timers TIM10/TIM11 include:

• 16-bit auto-reload upcounter

• 16-bit programmable prescaler used to divide the counter clock frequency by any factor
between 1 and 65536 (can be changed “on the fly”)

• independent channel for:

– Input capture

– Output compare

– PWM generation (edge-aligned mode)

• Interrupt generation on the following events:

– Update: counter overflow, counter initialization (by software)

– Input capture

– Output compare

AutoReload Register

Capture/Compare 1 Register

Capture/Compare 2 Register

U

U

U

CC1I

CC2I

Trigger
Controller

Stop, Clear or Up/Down

TI1FP1

TI2FP2

 ITR0

 ITR1

 ITR2

 ITR3
TRGI

Encoder
Interface

output
control

OC1OC1REF

OC2REF

U

UI

Reset, Enable, Count

IC1

IC2
Prescaler

PrescalerInput Filter &
Edge Detector

IC2PS

IC1PSTI1FP1

output
control

OC2

TGI

TRC

TRC

ITR

TRC

TI1F_ED

Input Filter &
Edge Detector

CC1I

CC2I

TI1FP2

TI2FP1
TI2FP2

TI1

TI2

TIMx_CH1

TIMx_CH2

TIMx_CH1

TIMx_CH2

Prescaler COUNTER
+/-CK_PSC PSC CNTCK_CNT

Controller
Mode
Slave

Internal Clock (CK_INT)

GPIO

TIMx_OR

LSE

ETR
Input filterPolarity selection & edge

detector & prescaler

ETRP

ai17092

Reg

event

Notes:

Preload registers transferred
to active registers on U event
according to control bit

interrupt

TRGO

General-purpose timers (TIM9/10/11) RM0038

442/908 DocID15965 Rev 14

Figure 131. General-purpose timer block diagram (TIM10)

DocID15965 Rev 14 443/908

RM0038 General-purpose timers (TIM9/10/11)

494

Figure 132. General-purpose timer block diagram (TIM11)

General-purpose timers (TIM9/10/11) RM0038

444/908 DocID15965 Rev 14

18.3 TIM9/10/11 functional description

18.3.1 Time-base unit

The main block of the timer is a 16-bit counter with its related auto-reload register.

• In Cat.3, Cat.4, Cat.5 and Cat.6 devices: the TIM9 counter can count up, down or both
up and down. The TIM10/11 counters operate in an upcounting mode only.

• In Cat.1 and Cat.2 devices, the TIM9/10/11 counters operate in upcounting mode only.

The counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

The time-base unit includes:

• Counter register (TIMx_CNT)

• Prescaler register (TIMx_PSC)

• Auto-reload register (TIMx_ARR)

The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The content of the preload register are transferred into the
shadow register permanently or at each update event (UEV), depending on the auto-reload
preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter
reaches the overflow and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be
generated by software. The generation of the update event is described in details for each
configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller
description to get more details on counter enabling).

Note that the counter starts counting 1 clock cycle after setting the CEN bit in the TIMx_CR1
register.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register).
It can be changed on the fly as this control register is buffered. The new prescaler ratio is
taken into account at the next update event.

Figure 133 and Figure 134 give some examples of the counter behavior when the prescaler
ratio is changed on the fly.

DocID15965 Rev 14 445/908

RM0038 General-purpose timers (TIM9/10/11)

494

Figure 133. Counter timing diagram with prescaler division change from 1 to 2

Figure 134. Counter timing diagram with prescaler division change from 1 to 4

General-purpose timers (TIM9/10/11) RM0038

446/908 DocID15965 Rev 14

18.3.2 Counter modes

In Cat.3, Cat.4, Cat.5 and Cat.6 devices, TIM9 can operate in downcounting and center-
aligned modes. Refer to Section 17.3.2 on page 385 for the description of this modes.

Upcounting mode

In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a counter overflow event.

Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller on TIM9) also generates an update event.

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until the UDIS bit has been written to 0.
However, the counter restarts from 0, as well as the counter of the prescaler (but the
prescale rate does not change). In addition, if the URS bit (update request selection) in
TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without
setting the UIF flag (thus no interrupt is sent). This is to avoid generating both update and
capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The auto-reload shadow register is updated with the preload value (TIMx_ARR),

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

Figure 135. Counter timing diagram, internal clock divided by 1

DocID15965 Rev 14 447/908

RM0038 General-purpose timers (TIM9/10/11)

494

Figure 136. Counter timing diagram, internal clock divided by 2

Figure 137. Counter timing diagram, internal clock divided by 4

Figure 138. Counter timing diagram, internal clock divided by N

General-purpose timers (TIM9/10/11) RM0038

448/908 DocID15965 Rev 14

Figure 139. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not
preloaded)

Figure 140. Counter timing diagram, update event when ARPE=1 (TIMx_ARR
preloaded)

DocID15965 Rev 14 449/908

RM0038 General-purpose timers (TIM9/10/11)

494

18.3.3 Clock selection

The counter clock can be provided by the following clock sources:

• Internal clock (CK_INT)

• External clock mode1 (for TIM9): external input pin (TIx)

• External clock mode2: external trigger input (ETR connected internally to LSE)

• Internal trigger inputs (ITRx) (for TIM9): connecting the trigger output from another
timer. Refer to Section : Using one timer as prescaler for another timer for more details.

Internal clock source (CK_INT)

The internal clock source is the default clock source for TIM10/TIM11.

For TIM9 and TIM12, the internal clock source is selected when the slave mode controller is
disabled (SMS=’000’). The CEN bit in the TIMx_CR1 register and the UG bit in the
TIMx_EGR register are then used as control bits and can be changed only by software
(except for UG which remains cleared). As soon as the CEN bit is programmed to 1, the
prescaler is clocked by the internal clock CK_INT.

Figure 141 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.

Figure 141. Control circuit in normal mode, internal clock divided by 1

External clock source mode 1(TIM9)

This mode is selected when SMS=’111’ in the TIMx_SMCR register. The counter can count
at each rising or falling edge on a selected input.

General-purpose timers (TIM9/10/11) RM0038

450/908 DocID15965 Rev 14

Figure 142. TI2 external clock connection example

For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:

1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = ‘01’ in
the TIMx_CCMR1 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1
register (if no filter is needed, keep IC2F=’0000’).

3. Select the rising edge polarity by writing CC2P=’0’ and CC2NP=’0’ in the TIMx_CCER
register.

4. Configure the timer in external clock mode 1 by writing SMS=’111’ in the TIMx_SMCR
register.

5. Select TI2 as the trigger input source by writing TS=’110’ in the TIMx_SMCR register.

6. Enable the counter by writing CEN=’1’ in the TIMx_CR1 register.

Note: The capture prescaler is not used for triggering, so no need to configure it.

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.

The delay between the rising edge on TI2 and the actual clock of the counter is due to the
resynchronization circuit on TI2 input.

Figure 143. Control circuit in external clock mode 1

DocID15965 Rev 14 451/908

RM0038 General-purpose timers (TIM9/10/11)

494

18.3.4 Capture/compare channels

Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and
an output stage (with comparator and output control).

Figure 144 to Figure 146 give an overview of a capture/compare channel.

The input stage samples the corresponding TIx input to generate a filtered signal TIxF.
Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be
used as trigger input by the slave mode controller or as the capture command. It is
prescaled before the capture register (ICxPS).

Figure 144. Capture/compare channel (example: channel 1 input stage)

The output stage generates an intermediate waveform which is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.

General-purpose timers (TIM9/10/11) RM0038

452/908 DocID15965 Rev 14

Figure 145. Capture/compare channel 1 main circuit

Figure 146. Output stage of capture/compare channel (channel 1)

The capture/compare block is made of one preload register and one shadow register. Write
and read always access the preload register.

In capture mode, captures are actually done in the shadow register, which is copied into the
preload register.

In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.

18.3.5 Input capture mode

In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the
value of the counter after a transition detected by the corresponding ICx signal. When a
capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or

DocID15965 Rev 14 453/908

RM0038 General-purpose timers (TIM9/10/11)

494

a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was
already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be
cleared by software by writing it to ‘0’ or by reading the captured data stored in the
TIMx_CCRx register. CCxOF is cleared when the user writes it to ‘0’.

The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises. To do this, use the following procedure:

1. Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to ‘01’ in the TIMx_CCMR1 register. As soon as CC1S becomes different from ‘00’,
the channel is configured in input mode and the TIMx_CCR1 register becomes read-
only.

2. Program the needed input filter duration with respect to the signal connected to the
timer (by programming the ICxF bits in the TIMx_CCMRx register if the input is one of
the TIx inputs). Let’s imagine that, when toggling, the input signal is not stable during at
must 5 internal clock cycles. We must program a filter duration longer than these 5
clock cycles. We can validate a transition on TI1 when 8 consecutive samples with the
new level have been detected (sampled at fDTS frequency). Then write IC1F bits to
‘0011’ in the TIMx_CCMR1 register.

3. Select the edge of the active transition on the TI1 channel by programming CC1P and
CC1NP bits to ‘00’ in the TIMx_CCER register (rising edge in this case).

4. Program the input prescaler. In our example, we wish the capture to be performed at
each valid transition, so the prescaler is disabled (write IC1PS bits to ‘00’ in the
TIMx_CCMR1 register).

5. Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER register.

6. If needed, enable the related interrupt request by setting the CC1IE bit in the
TIMx_DIER register.

When an input capture occurs:

• The TIMx_CCR1 register gets the value of the counter on the active transition.

• CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures
occurred whereas the flag was not cleared.

• An interrupt is generated depending on the CC1IE bit.

In order to handle the overcapture, it is recommended to read the data before the
overcapture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.

Note: IC interrupt requests can be generated by software by setting the corresponding CCxG bit in
the TIMx_EGR register.

General-purpose timers (TIM9/10/11) RM0038

454/908 DocID15965 Rev 14

18.3.6 PWM input mode (only for TIM9)

This mode is a particular case of input capture mode. The procedure is the same except:

• Two ICx signals are mapped on the same TIx input.

• These 2 ICx signals are active on edges with opposite polarity.

• One of the two TIxFP signals is selected as trigger input and the slave mode controller
is configured in reset mode.

For example, the user can measure the period (in TIMx_CCR1 register) and the duty cycle
(in TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure
(depending on CK_INT frequency and prescaler value):

1. Select the active input for TIMx_CCR1: write the CC1S bits to ‘01’ in the TIMx_CCMR1
register (TI1 selected).

2. Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): program the CC1P and CC1NP bits to ‘00’ (active on rising edge).

3. Select the active input for TIMx_CCR2: write the CC2S bits to ‘10’ in the TIMx_CCMR1
register (TI1 selected).

4. Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): program the
CC2P and CC2NP bits to ‘11’ (active on falling edge).

5. Select the valid trigger input: write the TS bits to ‘101’ in the TIMx_SMCR register
(TI1FP1 selected).

6. Configure the slave mode controller in reset mode: write the SMS bits to ‘100’ in the
TIMx_SMCR register.

7. Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIMx_CCER register.

Figure 147. PWM input mode timing

1. The PWM input mode can be used only with the TIMx_CH1/TIMx_CH2 signals due to the fact that only
TI1FP1 and TI2FP2 are connected to the slave mode controller.

DocID15965 Rev 14 455/908

RM0038 General-purpose timers (TIM9/10/11)

494

18.3.7 Forced output mode

In output mode (CCxS bits = ‘00’ in the TIMx_CCMRx register), each output compare signal
(OCxREF and then OCx) can be forced to active or inactive level directly by software,
independently of any comparison between the output compare register and the counter.

To force an output compare signal (OCXREF/OCx) to its active level, the user just needs to
write ‘101’ in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is
forced high (OCxREF is always active high) and OCx get opposite value to CCxP polarity
bit.

For example: CCxP=’0’ (OCx active high) => OCx is forced to high level.

The OCxREF signal can be forced low by writing the OCxM bits to ‘100’ in the
TIMx_CCMRx register.

Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still
performed and allows the flag to be set. Interrupt requests can be sent accordingly. This is
described in the output compare mode section below.

18.3.8 Output compare mode

This function is used to control an output waveform or indicating when a period of time has
elapsed.

When a match is found between the capture/compare register and the counter, the output
compare function:

1. Assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCXM=’000’), be set
active (OCxM=’001’), be set inactive (OCxM=’010’) or can toggle (OCxM=’011’) on
match.

2. Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).

3. Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the
TIMx_DIER register).

The TIMx_CCRx registers can be programmed with or without preload registers using the
OCxPE bit in the TIMx_CCMRx register.

In output compare mode, the update event UEV has no effect on OCxREF and OCx output.
The timing resolution is one count of the counter. Output compare mode can also be used to
output a single pulse (in One-pulse mode).

Procedure:

1. Select the counter clock (internal, external, prescaler).

2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers.

3. Set the CCxIE bit if an interrupt request is to be generated.

4. Select the output mode. For example:

– Write OCxM = ‘011’ to toggle OCx output pin when CNT matches CCRx

– Write OCxPE = ‘0’ to disable preload register

– Write CCxP = ‘0’ to select active high polarity

– Write CCxE = ‘1’ to enable the output

5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

General-purpose timers (TIM9/10/11) RM0038

456/908 DocID15965 Rev 14

The TIMx_CCRx register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OCxPE=’0’, else TIMx_CCRx
shadow register is updated only at the next update event UEV). An example is given in
Figure 148.

Figure 148. Output compare mode, toggle on OC1.

18.3.9 PWM mode

Pulse Width Modulation mode allows the user to generate a signal with a frequency
determined by the value of the TIMx_ARR register and a duty cycle determined by the value
of the TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing ‘110’ (PWM mode 1) or ‘111’ (PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. Enable the corresponding preload register by setting the OCxPE bit
in the TIMx_CCMRx register, and eventually the auto-reload preload register by setting the
ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, the user has to initialize all the registers by setting the
UG bit in the TIMx_EGR register.

The OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register.
It can be programmed as active high or active low. The OCx output is enabled by the CCxE
bit in the TIMx_CCER register. Refer to the TIMx_CCERx register description for more
details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CNT ≤ TIMx_CCRx.

However, to comply with the ETRF (OCREF can be cleared by an external event through
the ETR signal until the next PWM period), the OCREF signal is asserted only:

• When the result of the comparison changes, or

• When the output compare mode (OCxM bits in the TIMx_CCMRx register) switches
from the “frozen” configuration (no comparison, OCxM=000) to one of the PWM modes
(OCxM=110 or 111).

DocID15965 Rev 14 457/908

RM0038 General-purpose timers (TIM9/10/11)

494

This forces the PWM by software while the timer is running.

The timer is able to generate PWM in edge-aligned mode only since the counter is
upcounting.

PWM edge-aligned mode

In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is
high as long as TIMx_CNT < TIMx_CCRx else it becomes low. If the compare value in
TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at
‘1’. If the compare value is 0 then OCxRef is held at ‘0’. Figure 149 shows some edge-
aligned PWM waveforms in an example where TIMx_ARR=8.

Figure 149. Edge-aligned PWM waveforms (ARR=8)

18.3.10 One-pulse mode

One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the slave mode controller. Generating the
waveform can be done in output compare mode or PWM mode. Select One-pulse mode by
setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically at
the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be as follows:

CNT < CCRx≤ ARR (in particular, 0 < CCRx)

General-purpose timers (TIM9/10/11) RM0038

458/908 DocID15965 Rev 14

Figure 150. Example of one pulse mode.

For example the user may want to generate a positive pulse on OC1 with a length of tPULSE
and after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.

Use TI2FP2 as trigger 1:

1. Map TI2FP2 to TI2 by writing CC2S=’01’ in the TIMx_CCMR1 register.

2. TI2FP2 must detect a rising edge, write CC2P=’0’ and CC2NP = ‘0’ in the TIMx_CCER
register.

3. Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=’110’ in
the TIMx_SMCR register.

4. TI2FP2 is used to start the counter by writing SMS to ‘110’ in the TIMx_SMCR register
(trigger mode).

The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler).

• The tDELAY is defined by the value written in the TIMx_CCR1 register.

• The tPULSE is defined by the difference between the auto-reload value and the compare
value (TIMx_ARR - TIMx_CCR1).

• Let us say the user wants to build a waveform with a transition from ‘0’ to ‘1’ when a
compare match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the
auto-reload value. To do this enable PWM mode 2 by writing OC1M=’111’ in the
TIMx_CCMR1 register. The user can optionally enable the preload registers by writing
OC1PE=’1’ in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this
case the user has to write the compare value in the TIMx_CCR1 register, the auto-
reload value in the TIMx_ARR register, generate an update by setting the UG bit and
wait for external trigger event on TI2. CC1P is written to ‘0’ in this example.

The user only wants one pulse (Single mode), so write '1 in the OPM bit in the TIMx_CR1
register to stop the counter at the next update event (when the counter rolls over from the
auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0', so the
Repetitive Mode is selected.

DocID15965 Rev 14 459/908

RM0038 General-purpose timers (TIM9/10/11)

494

Particular case: OCx fast enable

In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tDELAY min we can get.

If the user wants to output a waveform with the minimum delay, set the OCxFE bit in the
TIMx_CCMRx register. Then OCxRef (and OCx) are forced in response to the stimulus,
without taking in account the comparison. Its new level is the same as if a compare match
had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode.

18.3.11 TIM9 external trigger synchronization

The TIM9 timer can be synchronized with an external trigger in several modes: Reset mode,
Gated mode and Trigger mode.

Slave mode: Reset mode

The counter and its prescaler can be reinitialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

In the following example, the upcounter is cleared in response to a rising edge on TI1 input:

1. Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=’0000’). The capture
prescaler is not used for triggering, so there’s no need to configure it. The CC1S bits
select the input capture source only, CC1S = ‘01’ in the TIMx_CCMR1 register.
Program CC1P and CC1NP to ‘00’ in TIMx_CCER register to validate the polarity (and
detect rising edges only).

2. Configure the timer in reset mode by writing SMS=’100’ in TIMx_SMCR register. Select
TI1 as the input source by writing TS=’101’ in TIMx_SMCR register.

3. Start the counter by writing CEN=’1’ in the TIMx_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request can be sent if
enabled (depending on the TIE bit in TIMx_DIER register).

The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

General-purpose timers (TIM9/10/11) RM0038

460/908 DocID15965 Rev 14

Figure 151. Control circuit in reset mode

Slave mode: Gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

1. Configure the channel 1 to detect low levels on TI1. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC1F=’0000’). The capture
prescaler is not used for triggering, so there’s no need to configure it. The CC1S bits
select the input capture source only, CC1S=’01’ in TIMx_CCMR1 register. Program
CC1P=’1’ and CC1NP= ‘0’ in TIMx_CCER register to validate the polarity (and detect
low level only).

2. Configure the timer in gated mode by writing SMS=’101’ in TIMx_SMCR register.
Select TI1 as the input source by writing TS=’101’ in TIMx_SMCR register.

3. Enable the counter by writing CEN=’1’ in the TIMx_CR1 register (in gated mode, the
counter doesn’t start if CEN=’0’, whatever is the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as
TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts
or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the
resynchronization circuit on TI1 input.

DocID15965 Rev 14 461/908

RM0038 General-purpose timers (TIM9/10/11)

494

Figure 152. Control circuit in gated mode

Slave mode: Trigger mode

The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

1. Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration
(in this example, we don’t need any filter, so we keep IC2F=’0000’). The capture
prescaler is not used for triggering, so there’s no need to configure it. The CC2S bits
are configured to select the input capture source only, CC2S=’01’ in TIMx_CCMR1
register. Program CC2P=’1’ and CC2NP=’0’ in TIMx_CCER register to validate the
polarity (and detect low level only).

2. Configure the timer in trigger mode by writing SMS=’110’ in TIMx_SMCR register.
Select TI2 as the input source by writing TS=’110’ in TIMx_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the
TIF flag is set.

The delay between the rising edge on TI2 and the actual start of the counter is due to the
resynchronization circuit on TI2 input.

Figure 153. Control circuit in trigger mode

General-purpose timers (TIM9/10/11) RM0038

462/908 DocID15965 Rev 14

18.3.12 Timer synchronization (TIM9)

The TIM timers are linked together internally for timer synchronization or chaining. Refer to
Section 17.3.15: Timer synchronization for details.

Note: The clock of the slave timer must be enabled prior to receive events from the master timer,
and must not be changed on-the-fly while triggers are received from the master timer.

18.3.13 Debug mode

When the microcontroller enters debug mode (Cortex®-M3 core halted), the TIMx counter
either continues to work normally or stops, depending on DBG_TIMx_STOP configuration
bit in DBG module. For more details, refer to Section 30.16.2: Debug support for timers,
watchdog and I2C.

18.3.14 Encoder interface mode (only for TIM9)

This section is only applicable for Cat.3, Cat.4, Cat.5 and Cat.6 devices.

Refer to Section 17.3.12: Encoder interface mode.

DocID15965 Rev 14 463/908

RM0038 General-purpose timers (TIM9/10/11)

494

18.4 TIM9 registers

Refer to Section: List of abbreviations for registers for a list of abbreviations used in register
descriptions.

The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read
accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits).

18.4.1 TIM9 control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CKD[1:0] ARPE

CMS[1:0]
DIR OPM URS UDIS CEN

rw rw rw rw rw rw rw rw

Bits 15:10 Reserved, must be kept at reset value.

Bits 9:8 CKD: Clock division

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and
sampling clock used by the digital filters (TIx),
00: tDTS = tCK_INT
01: tDTS = 2 × tCK_INT
10: tDTS = 4 × tCK_INT
11: Reserved

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered.
1: TIMx_ARR register is buffered.

Bits 6:5 CMS[1:0]: Center-aligned mode selection

00: Edge-aligned mode. The counter counts up or down depending on the direction bit
(DIR).
01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting down.
10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting up.
11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
both when the counter is counting up or down.

Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as
the counter is enabled (CEN=1)

Note: These bits are available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bit 4 DIR: Direction

0: Counter used as upcounter
1: Counter used as downcounter

Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder
mode.

Note: In Cat.1 and Cat.2 devices this bit is reserved and must be kept at reset value.

General-purpose timers (TIM9/10/11) RM0038

464/908 DocID15965 Rev 14

Bit 3 OPM: One-pulse mode

0: Counter is not stopped on the update event
1: Counter stops counting on the next update event (clearing the CEN bit).

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.
0: Any of the following events generates an update interrupt if enabled:

– Counter overflow

– Setting the UG bit
1: Only counter overflow generates an update interrupt if enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable update event (UEV) generation.
0: UEV enabled. An UEV is generated by one of the following events:

– Counter overflow

– Setting the UG bit
Buffered registers are then loaded with their preload values.
1: UEV disabled. No UEV is generated, shadow registers keep their value (ARR, PSC,
CCRx). The counter and the prescaler are reinitialized if the UG bit is set.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

CEN is cleared automatically in one-pulse mode, when an update event occurs.

DocID15965 Rev 14 465/908

RM0038 General-purpose timers (TIM9/10/11)

494

18.4.2 TIM9 control register 2 (TIMx_CR2)

Address offset: 0x04

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
MMS[2:0]

Reserved
rw rw rw

Bits 15:7 Reserved, must be kept at reset value.

Bits 6:4 MMS[2:0]: Master mode selection

These bits are used to select the information to be sent in Master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit in the TIMx_EGR register is used as the trigger output (TRGO). If
the reset is generated by the trigger input (slave mode controller configured in reset mode)
then the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter enable signal, CNT_EN, is used as the trigger output (TRGO). It
is useful to start several timers at the same time or to control a window in which a slave timer
is enabled. The Counter Enable signal is generated by a logic OR between the CEN control
bit and the trigger input when configured in Gated mode.
When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO,
except if the master/slave mode is selected (see the MSM bit description in the TIMx_SMCR
register).
010: Update - The update event is selected as the trigger output (TRGO). For instance a
master timer can be used as a prescaler for a slave timer.
011: Compare pulse - The trigger output sends a positive pulse when the CC1IF flag is to
be set (even if it was already high), as soon as a capture or a compare match occurs.
(TRGO).
100: Compare - OC1REF signal is used as the trigger output (TRGO).
101: Compare - OC2REF signal is used as the trigger output (TRGO).
110: Reserved
111: Reserved

Note: The clock of the slave timer and ADC must be enabled prior to receiving events from
the master timer, and must not be changed on-the-fly while triggers are received from
the master timer.

Bits 3:0 Reserved, must be kept at reset value.

General-purpose timers (TIM9/10/11) RM0038

466/908 DocID15965 Rev 14

18.4.3 TIM9 slave mode control register (TIMx_SMCR)

Address offset: 0x08

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ETP ECE ETPS[1:0] ETF[3:0] MSM TS[2:0]
Res.

SMS[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 ETP: External trigger polarity

This bit selects whether ETR or ETR is used for trigger operations
0: ETR is non-inverted, active at high level or rising edge
1: ETR is inverted, active at low level or falling edge

Bit 14 ECE: External clock enable

This bit enables External clock mode 2.
0: External clock mode 2 disabled
1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF
signal.
1: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI
connected to ETRF (SMS=111 and TS=111).
2: It is possible to simultaneously use external clock mode 2 with the following slave modes:
reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be connected to
ETRF in this case (TS bits must not be 111).
3: If external clock mode 1 and external clock mode 2 are enabled at the same time, the
external clock input is ETRF.

Bits 13:12 ETPS: External trigger prescaler

External trigger signal ETRP frequency must be at most 1/4 of CK_INT frequency. A
prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external
clocks.
00: Prescaler OFF
01: ETRP frequency divided by 2
10: ETRP frequency divided by 4
11: ETRP frequency divided by 8

DocID15965 Rev 14 467/908

RM0038 General-purpose timers (TIM9/10/11)

494

Bits 11:8 ETF[3:0]: External trigger filter

This bit-field then defines the frequency used to sample ETRP signal and the length of the
digital filter applied to ETRP. The digital filter is made of an event counter in which N
consecutive events are needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8

Bit 7 MSM: Master/Slave mode

0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect
synchronization between the current timer and its slaves (through TRGO). It is useful in
order to synchronize several timers on a single external event.

Bits 6:4 TS: Trigger selection

This bit field selects the trigger input to be used to synchronize the counter.
000: Internal Trigger 0 (ITR0)
001: Internal Trigger 1 (ITR1)
010: Internal Trigger 2 (ITR2)
011: Internal Trigger 3 (ITR3)
100: TI1 Edge Detector (TI1F_ED)
101: Filtered Timer Input 1 (TI1FP1)
110: Filtered Timer Input 2 (TI2FP2)
111: Reserved.
See Table 83: TIMx internal trigger connection on page 468 for more details on the meaning
of ITRx for each timer.

Note: These bits must be changed only when they are not used (e.g. when SMS=’000’) to
avoid wrong edge detections at the transition.

General-purpose timers (TIM9/10/11) RM0038

468/908 DocID15965 Rev 14

18.4.4 TIM9 Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

Bit 3 Reserved, must be kept at reset value.

Bits 2:0 SMS: Slave mode selection

When external signals are selected, the active edge of the trigger signal (TRGI) is linked to
the polarity selected on the external input (see Input control register and Control register
descriptions.
000: Slave mode disabled - if CEN = 1 then the prescaler is clocked directly by the internal
clock
001: Encoder mode 1 - Counter counts up/down on TI2FP1 edge depending on TI1FP2
level (mode available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only).
010: Encoder mode 2 - Counter counts up/down on TI1FP2 edge depending on TI2FP1
level (mode available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only).
011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges
depending on the level of the other input (mode available in Cat.3, Cat.4, Cat.5 and Cat.6
devices only).
100: Reset mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter
and generates an update of the registers
101: Gated mode - The counter clock is enabled when the trigger input (TRGI) is high. The
counter stops (but is not reset) as soon as the trigger becomes low. Counter starts and stops
are both controlled
110: Trigger mode - The counter starts on a rising edge of the trigger TRGI (but it is not
reset). Only the start of the counter is controlled
111: External clock mode 1 - Rising edges of the selected trigger (TRGI) clock the counter

Note: The Gated mode must not be used if TI1F_ED is selected as the trigger input
(TS=’100’). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the
Gated mode checks the level of the trigger signal.

Note: The clock of the slave timer must be enabled prior to receive events from the master
timer, and must not be changed on-the-fly while triggers are received from the master
timer.

Table 83. TIMx internal trigger connection

Slave TIM ITR0 (TS = 000) ITR1 (TS = 001) ITR2 (TS = 010) ITR3 (TS = 011)

TIM9 TIM2 TIM3 TIM10_OC TIM11_OC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TIE

Res
CC2IE CC1IE UIE

rw rw rw rw

Bits 15:7 Reserved, must be kept at reset value.

Bit 6 TIE: Trigger interrupt enable

0: Trigger interrupt disabled.
1: Trigger interrupt enabled.

Bit 5:3 Reserved, must be kept at reset value.

DocID15965 Rev 14 469/908

RM0038 General-purpose timers (TIM9/10/11)

494

Bit 2 CC2IE: Capture/Compare 2 interrupt enable

0: CC2 interrupt disabled.
1: CC2 interrupt enabled.

Bit 1 CC1IE: Capture/Compare 1 interrupt enable

0: CC1 interrupt disabled.
1: CC1 interrupt enabled.

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled.
1: Update interrupt enabled.

General-purpose timers (TIM9/10/11) RM0038

470/908 DocID15965 Rev 14

18.4.5 TIM9 status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC2OF CC1OF

Reserved
TIF

Reserved
CC2IF CC1IF UIF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 15:11 Reserved, must be kept at reset value.

Bit 10 CC2OF: Capture/compare 2 overcapture flag

refer to CC1OF description

Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to ‘0’.
0: No overcapture has been detected.
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was
already set

Bits 8:7 Reserved, must be kept at reset value.

Bit 6 TIF: Trigger interrupt flag

This flag is set by hardware on trigger event (active edge detected on TRGI input when the
slave mode controller is enabled in all modes but gated mode. It is set when the counter
starts or stops when gated mode is selected. It is cleared by software.
0: No trigger event occurred.
1: Trigger interrupt pending.

Bits 5:3 Reserved, must be kept at reset value.

DocID15965 Rev 14 471/908

RM0038 General-purpose timers (TIM9/10/11)

494

18.4.6 TIM event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

Bit 2 CC2IF: Capture/Compare 2 interrupt flag

refer to CC1IF description

Bit 1 CC1IF: Capture/compare 1 interrupt flag

If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the compare value. It is cleared by
software.
0: No match.
1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register.
When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF
bit goes high on the counter overflow.
If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the
TIMx_CCR1 register.
0: No input capture occurred.
1: The counter value has been captured in TIMx_CCR1 register (an edge has been detected
on IC1 which matches the selected polarity).

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow and if UDIS=’0’ in the TIMx_CR1 register.

– When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=’0’ and
UDIS=’0’ in the TIMx_CR1 register.

– When CNT is reinitialized by a trigger event (refer to the synchro control register
description), if URS=’0’ and UDIS=’0’ in the TIMx_CR1 register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TG

Reserved
CC2G CC1G UG

w w w w

Bits 15:7 Reserved, must be kept at reset value.

Bit 6 TG: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: The TIF flag is set in the TIMx_SR register. Related interrupt can occur if enabled

Bits 5:3 Reserved, must be kept at reset value.

General-purpose timers (TIM9/10/11) RM0038

472/908 DocID15965 Rev 14

Bit 2 CC2G: Capture/compare 2 generation

refer to CC1G description

Bit 1 CC1G: Capture/compare 1 generation

This bit is set by software to generate an event, it is automatically cleared by hardware.
0: No action
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
the CC1IF flag is set, the corresponding interrupt is sent if enabled.
If channel CC1 is configured as input:
The current counter value is captured in the TIMx_CCR1 register. The CC1IF flag is set, the
corresponding interrupt is sent if enabled. The CC1OF flag is set if the CC1IF flag was
already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: Re-initializes the counter and generates an update of the registers. The prescaler counter
is also cleared and the prescaler ratio is not affected. The counter is cleared.

DocID15965 Rev 14 473/908

RM0038 General-purpose timers (TIM9/10/11)

494

18.4.7 TIM capture/compare mode register 1 (TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits in this register have different functions in input and output modes. For a given bit, OCxx
describes its function when the channel is configured in output mode, ICxx describes its
function when the channel is configured in input mode. Take care that the same bit can have
different meanings for the input stage and the output stage.

Output compare mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC2CE OC2M[2:0] OC2PE OC2FE
CC2S[1:0]

OC1CE OC1M[2:0] OC1PE OC1FE
CC1S[1:0]

IC2F[3:0] IC2PSC[1:0] IC1F[3:0] IC1PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 OC2CE: Output compare 2 clear enable

Bits 14:12 OC2M[2:0]: Output compare 2 mode

Bit 11 OC2PE: Output compare 2 preload enable

Bit 10 OC2FE: Output compare 2 fast enable

Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection

This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode works only if an
internal trigger input is selected through the TS bit (TIMx_SMCR register

Note: The CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).

Bit 7 OC1CE: Output compare 1 clear enable

OC1CE: Output Compare 1 Clear Enable
0: OC1Ref is not affected by the ETRF input
1: OC1Ref is cleared as soon as a High level is detected on ETRF input

General-purpose timers (TIM9/10/11) RM0038

474/908 DocID15965 Rev 14

Bits 6:4 OC1M: Output compare 1 mode

These bits define the behavior of the output reference signal OC1REF from which OC1 and
OC1N are derived. OC1REF is active high whereas the active levels of OC1 and OC1N
depend on the CC1P and CC1NP bits, respectively.
000: Frozen - The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing
base).
001: Set channel 1 to active level on match. The OC1REF signal is forced high when the
TIMx_CNT counter matches the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. The OC1REF signal is forced low when the
TIMx_CNT counter matches the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1
100: Force inactive level - OC1REF is forced low
101: Force active level - OC1REF is forced high
110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1
else it is inactive. In downcounting, channel 1 is inactive (OC1REF=‘0) as long as
TIMx_CNT>TIMx_CCR1, else it is active (OC1REF=’1’)
111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1
else it is active. In downcounting, channel 1 is active as long as TIMx_CNT>TIMx_CCR1
else it is inactive.

Note: In PWM mode 1 or 2, the OCREF level changes only when the result of the
comparison changes or when the output compare mode switches from “frozen” mode
to “PWM” mode.

Bit 3 OC1PE: Output compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the
new value is taken into account immediately
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload
register. TIMx_CCR1 preload value is loaded into the active register at each update event

Note: The PWM mode can be used without validating the preload register only in one-pulse
mode (OPM bit set in the TIMx_CR1 register). Else the behavior is not guaranteed.

Bit 2 OC1FE: Output compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on the counter and CCR1 values even when the
trigger is ON. The minimum delay to activate the CC1 output when an edge occurs on the
trigger input is 5 clock cycles
1: An active edge on the trigger input acts like a compare match on the CC1 output. Then,
OC is set to the compare level independently of the result of the comparison. Delay to
sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OC1FE
acts only if the channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode works only if an
internal trigger input is selected through the TS bit (TIMx_SMCR register)

Note: The CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

DocID15965 Rev 14 475/908

RM0038 General-purpose timers (TIM9/10/11)

494

Input capture mode

Bits 15:12 IC2F: Input capture 2 filter

Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler

Bits 9:8 CC2S: Capture/compare 2 selection

This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode works only if an
internal trigger input is selected through the TS bit (TIMx_SMCR register)

Note: The CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).

Bits 7:4 IC1F: Input capture 1 filter

This bitfield defines the frequency used to sample the TI1 input and the length of the digital
filter applied to TI1. The digital filter is made of an event counter in which N consecutive
events are needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bitfield defines the ratio of the prescaler acting on the CC1 input (IC1).
The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

Bits 1:0 CC1S: Capture/Compare 1 selection

This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: The CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

General-purpose timers (TIM9/10/11) RM0038

476/908 DocID15965 Rev 14

18.4.8 TIM9 capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC2NP

Res.
CC2P CC2E CC1NP

Res.
CC1P CC1E

rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 CC2NP: Capture/Compare 2 output Polarity

refer to CC1NP description

Bits 6 Reserved, must be kept at reset value.

Bit 5 CC2P: Capture/Compare 2 output Polarity

refer to CC1P description

Bit 4 CC2E: Capture/Compare 2 output enable

refer to CC1E description

Bit 3 CC1NP: Capture/Compare 1 complementary output Polarity

CC1 channel configured as output: CC1NP must be kept cleared
CC1 channel configured as input: CC1NP is used in conjunction with CC1P to define
TI1FP1/TI2FP1 polarity (refer to CC1P description).

Bit 2 Reserved, must be kept at reset value.

Bit 1 CC1P: Capture/Compare 1 output Polarity.

CC1 channel configured as output:
0: OC1 active high.
1: OC1 active low.
CC1 channel configured as input:
CC1NP/CC1P bits select TI1FP1 and TI2FP1 polarity for trigger or capture operations.
00: noninverted/rising edge
Circuit is sensitive to TIxFP1 rising edge (capture, trigger in reset, external clock or trigger
mode), TIxFP1 is not inverted (trigger in gated mode, encoder mode).
01: inverted/falling edge
Circuit is sensitive to TIxFP1 falling edge (capture, trigger in reset, external clock or trigger
mode), TIxFP1 is inverted (trigger in gated mode, encoder mode).
10: reserved, do not use this configuration.

Note: 11: noninverted/both edges
Circuit is sensitive to both TIxFP1 rising and falling edges (capture, trigger in reset,
external clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode). This
configuration must not be used for encoder mode.

Bit 0 CC1E: Capture/Compare 1 output enable.

CC1 channel configured as output:
0: Off - OC1 is not active.
1: On - OC1 signal is output on the corresponding output pin.
CC1 channel configured as input:
This bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled.
1: Capture enabled.

DocID15965 Rev 14 477/908

RM0038 General-purpose timers (TIM9/10/11)

494

Note: The states of the external I/O pins connected to the standard OCx channels depend on the
state of the OCx channel and on the GPIO registers.

18.4.9 TIM9 counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

18.4.10 TIM9 prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

18.4.11 TIM9 auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0xFFFF

Table 84. Output control bit for standard OCx channels

CCxE bit OCx output state

0 Output disabled (OCx=’0’, OCx_EN=’0’)

1 OCx=OCxREF + Polarity, OCx_EN=’1’

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded into the active prescaler register at each update event.
PSC contains the value to be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register or through
trigger controller when configured in “reset mode”).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Auto-reload value

ARR is the value to be loaded into the actual auto-reload register.
Refer to the Section 18.3.1: Time-base unit for more details about ARR update and
behavior.
The counter is blocked while the auto-reload value is null.

General-purpose timers (TIM9/10/11) RM0038

478/908 DocID15965 Rev 14

18.4.12 TIM9 capture/compare register 1 (TIMx_CCR1)

Address offset: 0x34

Reset value: 0x0000

18.4.13 TIM9 capture/compare register 2 (TIMx_CCR2)

Address offset: 0x38

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR1[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR1[15:0]: Capture/Compare 1 value

If channel CC1 is configured as output:
CCR1 is the value to be loaded into the actual capture/compare 1 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register
(OC1PE bit). Else the preload value is copied into the active capture/compare 1 register
when an update event occurs.
The active capture/compare register contains the value to be compared to the TIMx_CNT
counter and signaled on the OC1 output.
If channel CC1is configured as input:
CCR1 is the counter value transferred by the last input capture 1 event (IC1).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR2[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR2[15:0]: Capture/Compare 2 value

If channel CC2 is configured as output:
CCR2 is the value to be loaded into the actual capture/compare 2 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register
(OC2PE bit). Else the preload value is copied into the active capture/compare 2 register
when an update event occurs.
The active capture/compare register contains the value to be compared to the TIMx_CNT
counter and signalled on the OC2 output.
If channel CC2 is configured as input:
CCR2 is the counter value transferred by the last input capture 2 event (IC2).

DocID15965 Rev 14 479/908

RM0038 General-purpose timers (TIM9/10/11)

494

18.4.14 TIM9 option register 1 (TIM9_OR)

Address offset: 0x50

Reset value: 0x0000

18.4.15 TIM9 register map

TIM9 registers are mapped as 16-bit addressable registers as described below:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

ITR1_R
MP

TI1_RMP[1:0]

rw rw

Bits 15:3 Reserved, must be kept at reset value.

Bit 2 ITR1_RMP Timer 9 ITR1 remap

Set and cleared by software.

0: TIM9 ITR1 input is connected to TIM3_TGO signal
1: TIM9 ITR1 input is connected to touch sensing I/O See Figure 31: Timer mode acquisition
logic on page 228
This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bits 1:0 TI1_RMP[1:0] Timer 9 input 1 remap

Set and cleared by software.

00: TIM9 Channel1 is connected to GPIO: Refer to Alternate Function mapping
01: LSE internal clock is connected to the TIM9_CH1 input for measurement purposes
10: TIM9 Channel1 is connected to GPIO
11: TIM9 Channel1 is connected to GPIO

Table 85. TIM9 register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

Reserved

CKD
[1:0]

A
R

P
E CMS

[1:0] D
IR

O
P

M

U
R

S

U
D

IS

C
E

N
Reset value 0 0 0 0 0 0 0 0 0 0

0x04
TIMx_CR2

Reserved
MMS[2:0]

Reserved

Reset value 0 0 0

0x08
TIMx_SMCR

Reserved E
T

P

E
C

E ETPS
[1:0]

ETF[3:0]

M
S

M TS[2:0]

R
e

se
rv

e
d

SMS[2:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
TIMx_DIER

Reserved T
IE

Reserved C
C

2
IE

C
C

1
IE

U
IE

Reset value 0 0 0 0

0x10
TIMx_SR

Reserved

C
C

2O
F

C
C

1O
F

R
es

er
ve

d

T
IF

Reserved C
C

2I
F

C
C

1I
F

U
IF

Reset value 0 0 0 0 0 0

0x14
TIMx_EGR

Reserved T
G

Reserved C
C

2
G

C
C

1
G

U
G

Reset value 0 0 0 0

General-purpose timers (TIM9/10/11) RM0038

480/908 DocID15965 Rev 14

Refer to Section: Memory map for the register boundary addresses.

0x18

TIMx_CCMR1
Output Compare

mode Reserved

OC2M
[2:0]

O
C

2
P

E

O
C

2F
E CC2S

[1:0]

O
C

1
C

E

OC1M
[2:0]

O
C

1
P

E

O
C

1F
E CC1

S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMx_CCMR1
Input Capture

mode Reserved
IC2F[3:0]

IC2
PSC
[1:0]

CC2S
[1:0]

IC1F[3:0]
IC1
PSC
[1:0]

CC1
S

[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C Reserved

0x20
TIMx_CCER

Reserved

C
C

2
N

P

R
e

se
rv

e
d

C
C

2
P

C
C

2
E

C
C

1
N

P

R
e

se
rv

e
d

C
C

1
P

C
C

1
E

Reset value 0 0 0 0 0 0

0x24
TIMx_CNT

Reserved
CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC

Reserved
PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR

Reserved
ARR[15:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0x30 Reserved

0x34
TIMx_CCR1

Reserved
CCR1[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x38
TIMx_CCR2

Reserved
CCR2[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x3C to
0x4C

Reserved

0x50
TIM9_OR

Reserved

IT
R

1_
R

M
P

T
I1

_
R

M
P

Reset value 0 0 0

Table 85. TIM9 register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

DocID15965 Rev 14 481/908

RM0038 General-purpose timers (TIM9/10/11)

494

18.5 TIM10/11 registers

The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read
accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits).

18.5.1 TIM10/11 control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CKD[1:0] ARPE

Reserved
OPM URS UDIS CEN

rw rw rw rw rw rw rw

Bits 15:10 Reserved, must be kept at reset value.

Bits 9:8 CKD: Clock division

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and
sampling clock used by the digital filters (ETR, TIx),
00: tDTS = tCK_INT
01: tDTS = 2 × tCK_INT
10: tDTS = 4 × tCK_INT
11: Reserved

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered
1: TIMx_ARR register is buffered

Bits 6:4 Reserved, must be kept at reset value.

Bit 3 OPM: One-pulse mode

0: Counter is not stopped on the update event
1: Counter stops counting on the next update event (clearing the CEN bit).

Bit 2 URS: Update request source

This bit is set and cleared by software to select the update interrupt (UEV) sources.
0: Any of the following events generate an UEV if enabled:

– Counter overflow

– Setting the UG bit
1: Only counter overflow generates an UEV if enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable update interrupt (UEV) event
generation.
0: UEV enabled. An UEV is generated by one of the following events:

– Counter overflow

– Setting the UG bit.
Buffered registers are then loaded with their preload values.
1: UEV disabled. No UEV is generated, shadow registers keep their value (ARR, PSC,
CCRx). The counter and the prescaler are reinitialized if the UG bit is set.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

General-purpose timers (TIM9/10/11) RM0038

482/908 DocID15965 Rev 14

18.5.2 TIM10/11 slave mode control register 1 (TIMx_SMCR)

Address offset: 0x08

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ETP ECE ETPS[1:0] ETF[3:0]
Reserved

rw rw rw rw rw rw rw rw

Bit 15 ETP: External trigger polarity

This bit selects whether ETR or ETR is used for trigger operations
0: ETR is non-inverted, active at high level or rising edge
1: ETR is inverted, active at low level or falling edge

Bit 14 ECE: External clock enable

This bit enables External clock mode 2.
0: External clock mode 2 disabled
1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF
signal.
1: Setting the ECE bit has the same effect as selecting external clock mode 1 with TRGI
connected to ETRF (SMS=111 and TS=111).
2: It is possible to simultaneously use external clock mode 2 with the following slave modes:
reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be connected to
ETRF in this case (TS bits must not be 111).
3: If external clock mode 1 and external clock mode 2 are enabled at the same time, the
external clock input is ETRF.

DocID15965 Rev 14 483/908

RM0038 General-purpose timers (TIM9/10/11)

494

Bits 13:12 ETPS: External trigger prescaler

External trigger signal ETRP frequency must be at most 1/4 of CK_INT frequency. A
prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external
clocks.
00: Prescaler OFF
01: ETRP frequency divided by 2
10: ETRP frequency divided by 4
11: ETRP frequency divided by 8

Bits 11:8 ETF[3:0]: External trigger filter

This bit-field then defines the frequency used to sample ETRP signal and the length of the
digital filter applied to ETRP. The digital filter is made of an event counter in which N
consecutive events are needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8

Bits 7:0 Reserved, must be kept at reset value.

General-purpose timers (TIM9/10/11) RM0038

484/908 DocID15965 Rev 14

18.5.3 TIM10/11 Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

18.5.4 TIM10/11 status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC1IE UIE

rw rw

Bits 15:2 Reserved, must be kept at reset value.

Bit 1 CC1IE: Capture/Compare 1 interrupt enable

0: CC1 interrupt disabled
1: CC1 interrupt enabled

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled
1: Update interrupt enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC1OF

Reserved
CC1IF UIF

rc_w0 rc_w0 rc_w0

Bits 15:10 Reserved, must be kept at reset value.

Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to ‘0’.
0: No overcapture has been detected.
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was
already set

DocID15965 Rev 14 485/908

RM0038 General-purpose timers (TIM9/10/11)

494

18.5.5 TIM10/11 event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

Bits 8:2 Reserved, must be kept at reset value.

Bit 1 CC1IF: Capture/compare 1 interrupt flag

If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the compare value. It is cleared by
software.
0: No match.
1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register.
When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit
goes high on the counter overflow.
If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the
TIMx_CCR1 register.
0: No input capture occurred.
1: The counter value has been captured in TIMx_CCR1 register (an edge has been detected
on IC1 which matches the selected polarity).

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow and if UDIS=’0’ in the TIMx_CR1 register.

– When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if
URS=’0’ and UDIS=’0’ in the TIMx_CR1 register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC1G UG

w w

Bits 15:2 Reserved, must be kept at reset value.

Bit 1 CC1G: Capture/compare 1 generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set,
the corresponding interrupt is sent if enabled. The CC1OF flag is set if the CC1IF flag was
already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: Re-initialize the counter and generates an update of the registers. Note that the prescaler
counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared.

General-purpose timers (TIM9/10/11) RM0038

486/908 DocID15965 Rev 14

18.5.6 TIM10/11 capture/compare mode register 1 (TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. So take care that the same bit can have a
different meaning for the input stage and for the output stage.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

OC1CE OC1M[2:0] OC1PE OC1FE
CC1S[1:0]

IC1F[3:0] IC1PSC[1:0]

rw rw rw rw rw rw rw rw

DocID15965 Rev 14 487/908

RM0038 General-purpose timers (TIM9/10/11)

494

Output compare mode

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 OC1CE: Output compare 1 clear enable

0: OC1REF is not affected by the ETRF input
1: OC1REF is cleared as soon as a high level is detected on the ETRF input

Bits 6:4 OC1M: Output compare 1 mode

These bits define the behavior of the output reference signal OC1REF from which OC1 is
derived. OC1REF is active high whereas OC1 active level depends on CC1P bit.
000: Frozen. The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs.
001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter
TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the
counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when TIMx_CNT = TIMx_CCR1.
100: Force inactive level - OC1REF is forced low.
101: Force active level - OC1REF is forced high.
110: PWM mode 1 - Channel 1 is active as long as TIMx_CNT < TIMx_CCR1 else inactive.
111: PWM mode 2 - Channel 1 is inactive as long as TIMx_CNT < TIMx_CCR1 else active.

Note: In PWM mode 1 or 2, the OCREF level changes when the result of the comparison
changes or when the output compare mode switches from frozen to PWM mode.

Bit 3 OC1PE: Output compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the
new value is taken in account immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload
register. TIMx_CCR1 preload value is loaded in the active register at each update event.

Note: The PWM mode can be used without validating the preload register only in one pulse
mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed.

Bit 2 OC1FE: Output compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is
ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is
5 clock cycles.
1: An active edge on the trigger input acts like a compare match on CC1 output. OC is then
set to the compare level independently of the result of the comparison. Delay to sample the
trigger input and to activate CC1 output is reduced to 3 clock cycles. OC1FE acts only if the
channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output.
01: CC1 channel is configured as input, IC1 is mapped on TI1.
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

General-purpose timers (TIM9/10/11) RM0038

488/908 DocID15965 Rev 14

Input capture mode

Bits 15:8 Reserved, must be kept at reset value.

Bits 7:4 IC1F: Input capture 1 filter

This bit-field defines the frequency used to sample TI1 input and the length of the digital filter
applied to TI1. The digital filter is made of an event counter in which N consecutive events
are needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).
The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: Reserved
11: Reserved

Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

DocID15965 Rev 14 489/908

RM0038 General-purpose timers (TIM9/10/11)

494

18.5.7 TIM10/11 capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

Note: The state of the external I/O pins connected to the standard OCx channels depends on the
OCx channel state and the GPIO registers.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CC1NP

Res.
CC1P CC1E

rw rw rw

Bits 15:4 Reserved, must be kept at reset value.

Bit 3 CC1NP: Capture/Compare 1 complementary output Polarity.

CC1 channel configured as output: CC1NP must be kept cleared.
CC1 channel configured as input: CC1NP bit is used in conjunction with CC1P to define
TI1FP1 polarity (refer to CC1P description).

Bit 2 Reserved, must be kept at reset value.

Bit 1 CC1P: Capture/Compare 1 output Polarity.

CC1 channel configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel configured as input:
The CC1P bit selects TI1FP1 and TI2FP1 polarity for trigger or capture operations.
00: noninverted/rising edge
Circuit is sensitive to TI1FP1 rising edge (capture mode), TI1FP1 is not inverted.
01: inverted/falling edge
Circuit is sensitive to TI1FP1 falling edge (capture mode), TI1FP1 is inverted.
10: reserved, do not use this configuration.
11: noninverted/both edges
Circuit is sensitive to both TI1FP1 rising and falling edges (capture mode), TI1FP1 is not
inverted.

Bit 0 CC1E: Capture/Compare 1 output enable.

CC1 channel configured as output:
0: Off - OC1 is not active
1: On - OC1 signal is output on the corresponding output pin
CC1 channel configured as input:
This bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled
1: Capture enabled

Table 86. Output control bit for standard OCx channels

CCxE bit OCx output state

0 Output Disabled (OCx=’0’, OCx_EN=’0’)

1 OCx=OCxREF + Polarity, OCx_EN=’1’

General-purpose timers (TIM9/10/11) RM0038

490/908 DocID15965 Rev 14

18.5.8 TIM10/11 counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

18.5.9 TIM10/11 prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

18.5.10 TIM10/11 auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0xFFFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register or through
trigger controller when configured in “reset mode”).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Auto-reload value
ARR is the value to be loaded in the actual auto-reload register.

Refer to Section 18.3.1: Time-base unit for more details about ARR update and behavior.

The counter is blocked while the auto-reload value is null.

DocID15965 Rev 14 491/908

RM0038 General-purpose timers (TIM9/10/11)

494

18.5.11 TIM10/11 capture/compare register 1 (TIMx_CCR1)

Address offset: 0x34

Reset value: 0x0000

18.5.12 TIM10 option register 1 (TIM10_OR)

Address offset: 0x50

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR1[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR1[15:0]: Capture/Compare 1 value

If channel CC1 is configured as output:
CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value).

It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit
OC1PE). Else the preload value is copied in the active capture/compare 1 register when an
update event occurs.

The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC1 output.

If channel CC1is configured as input:
CCR1 is the counter value transferred by the last input capture 1 event (IC1).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

T1_RM
P_RI

ETR_R
MP

TI1_RMP[1:0]

rw rw rw

Bits 15:4 Reserved, must be kept at reset value.

General-purpose timers (TIM9/10/11) RM0038

492/908 DocID15965 Rev 14

18.5.13 TIM11 option register 1 (TIM11_OR)

Address offset: 0x50

Reset value: 0x0000

Bit 3 TI1_RMP_RI: Timer10 Input 1 remap for Routing Interface (RI)
Set and cleared by software.
0: TIM10 Channel1 connection depends on TI1_RMP[1:0] bit values (see below)
1: TIM10 Channel1 is connected to RI (whatever the value on TI1_RMP bits).
This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bit 2 ETR_RMP: Timer10 ETR remap
Set and cleared by software.
0: TIM10 ETR input is connected to LSE clock
1: TIM10 ETR input is connected to TIM9_TGO
This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bits 1:0 TI1_RMP[1:0]: TIM10 Input 1 remapping capability
Set and cleared by software.

00: TIM10 Channel1 is connected to GPIO: Refer to Alternate Function mapping

01: LSI internal clock is connected to the TIM10_CH1 input for measurement purposes

10: LSE internal clock is connected to the TIM10_CH1 input for measurement purposes

11: RTC wakeup interrupt signal is connected to the TIM10_CH1 input for measurement
purposes

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

TI1_R
MP_RI

ETR_R
MP

TI1_RMP[1:0]

rw rw rw

Bits 15:4 Reserved, must be kept at reset value.

Bit 3 TI1_RMP_RI: Timer11 Input 1 remap for Routing Interface (RI)
Set and cleared by software.
0: TIM11 Channel1 connection depends on TI1_RMP[1:0] bit values (see below)
1: TIM11 Channel1 is connected to RI (whatever the value of the TI1_RMP bits).
This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bit 2 ETR_RMP: Timer11 ETR remap
Set and cleared by software.
0: TIM11 ETR input is connected to LSE clock
1: TIM11 ETR input is connected to TIM9_TGO
This bit is available in Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

Bits 1:0 TI1_RMP[1:0]: TIM11 Input 1 remapping capability
Set and cleared by software.
00: TIM11 Channel1 is connected to the GPIO (refer to the Alternate function mapping table
in the datasheets).
01: MSI internal clock is connected to the TIM11_CH1 input for measurement purposes
10: HSE_RTC clock (HSE divided by programmable prescaler) is connected to the
TIM11_CH1 input for measurement purposes
11: TIM11 Channel1 is connected to GPIO

DocID15965 Rev 14 493/908

RM0038 General-purpose timers (TIM9/10/11)

494

18.5.14 TIM10/11 register map

TIMx registers are mapped as 16-bit addressable registers as described in the tables below.
The reserved memory areas are highlighted in gray in the table.

Table 87. TIM10/11 register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

Reserved

CKD
[1:0]

A
R

P
E

Reserve
d O

P
M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0 0 0

0x08
TIMx_SMCR

Reserved E
T

P

E
C

E ETPS
[1:0]

ETF [3:0]
Reserved

Reset value 0 0 0 0 0 0 0 0

0x0C
TIMx_DIER

Reserved C
C

1I
E

U
IE

Reset value 0 0

0x10
TIMx_SR

Reserved

C
C

1O
F

Reserved C
C

1I
F

U
IF

Reset value 0 0 0

0x14
TIMx_EGR

Reserved C
C

1G

U
G

Reset value 0 0

0x18

TIMx_CCMR1
Output compare

mode Reserved

O
C

1
C

E

OC1M
[2:0]

O
C

1
P

E

O
C

1F
E CC1S

[1:0]

Reset value 0 0 0 0 0 0 0 0

TIMx_CCMR1
Input capture

mode Reserved
IC1F[3:0]

IC1
PSC
[1:0]

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0

0x1C Reserved

0x20
TIMx_CCER

Reserved

C
C

1
N

P

R
e

se
rv

e
d

C
C

1
P

C
C

1
E

Reset value 0 0 0

0x24
TIMx_CNT

Reserved
CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC

Reserved
PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR

Reserved
ARR[15:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0x30 Reserved

0x34
TIMx_CCR1

Reserved
CCR1[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

General-purpose timers (TIM9/10/11) RM0038

494/908 DocID15965 Rev 14

 Refer to Section: Memory map for the register boundary addresses.

0x38 to
0x4C

Reserved

0x50
TIMx_OR

Reserved

T
I1

_
R

M
P

_
R

I

E
T

R
_

R
M

P

T
I1

_
R

M
P

Reset value 0 0 0 0

Table 87. TIM10/11 register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

DocID15965 Rev 14 495/908

RM0038 Basic timers (TIM6 and TIM7)

506

19 Basic timers (TIM6 and TIM7)

19.1 TIM6&TIM7 introduction

The basic timers TIM6 and TIM7 consist of a 16-bit auto-reload counter driven by a
programmable prescaler.

They may be used as generic timers for time-base generation but they are also specifically
used to drive the digital-to-analog converter (DAC). In fact, the timers are internally
connected to the DAC and are able to drive it through their trigger outputs.

The timers are completely independent, and do not share any resources.

19.2 TIM6&TIM7 main features

Basic timer (TIM6&TIM7) features include:

• 16-bit auto-reload upcounter

• 16-bit programmable prescaler used to divide (also “on the fly”) the counter clock
frequency by any factor between 1 and 65536

• Synchronization circuit to trigger the DAC

• Interrupt/DMA generation on the update event: counter overflow

Figure 154. Basic timer block diagram

Basic timers (TIM6 and TIM7) RM0038

496/908 DocID15965 Rev 14

19.3 TIM6&TIM7 functional description

19.3.1 Time-base unit

The main block of the programmable timer is a 16-bit upcounter with its related auto-reload
register. The counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

The time-base unit includes:

• Counter Register (TIMx_CNT)

• Prescaler Register (TIMx_PSC)

• Auto-Reload Register (TIMx_ARR)

The auto-reload register is preloaded. The preload register is accessed each time an
attempt is made to write or read the auto-reload register. The contents of the preload
register are transferred into the shadow register permanently or at each update event UEV,
depending on the auto-reload preload enable bit (ARPE) in the TIMx_CR1 register. The
update event is sent when the counter reaches the overflow value and if the UDIS bit equals
0 in the TIMx_CR1 register. It can also be generated by software. The generation of the
update event is described in detail for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in the TIMx_CR1 register is set.

Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register).
It can be changed on the fly as the TIMx_PSC control register is buffered. The new
prescaler ratio is taken into account at the next update event.

Figure 155 and Figure 156 give some examples of the counter behavior when the prescaler
ratio is changed on the fly.

DocID15965 Rev 14 497/908

RM0038 Basic timers (TIM6 and TIM7)

506

Figure 155. Counter timing diagram with prescaler division change from 1 to 2

Figure 156. Counter timing diagram with prescaler division change from 1 to 4

Basic timers (TIM6 and TIM7) RM0038

498/908 DocID15965 Rev 14

19.3.2 Counting mode

The counter counts from 0 to the auto-reload value (contents of the TIMx_ARR register),
then restarts from 0 and generates a counter overflow event.

An update event can be generate at each counter overflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller).

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This avoids updating the shadow registers while writing new values into the preload
registers. In this way, no update event occurs until the UDIS bit has been written to 0,
however, the counter and the prescaler counter both restart from 0 (but the prescale rate
does not change). In addition, if the URS (update request selection) bit in the TIMx_CR1
register is set, setting the UG bit generates an update event UEV, but the UIF flag is not set
(so no interrupt or DMA request is sent).

When an update event occurs, all the registers are updated and the update flag (UIF bit in
the TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (contents of the
TIMx_PSC register)

• The auto-reload shadow register is updated with the preload value (TIMx_ARR)

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR = 0x36.

Figure 157. Counter timing diagram, internal clock divided by 1

DocID15965 Rev 14 499/908

RM0038 Basic timers (TIM6 and TIM7)

506

Figure 158. Counter timing diagram, internal clock divided by 2

Figure 159. Counter timing diagram, internal clock divided by 4

Figure 160. Counter timing diagram, internal clock divided by N

Basic timers (TIM6 and TIM7) RM0038

500/908 DocID15965 Rev 14

Figure 161. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not
preloaded)

Figure 162. Counter timing diagram, update event when ARPE=1 (TIMx_ARR
preloaded)

19.3.3 Clock source

The counter clock is provided by the Internal clock (CK_INT) source.

The CEN (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual
control bits and can be changed only by software (except for UG that remains cleared
automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal
clock CK_INT.

Figure 163 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.

DocID15965 Rev 14 501/908

RM0038 Basic timers (TIM6 and TIM7)

506

Figure 163. Control circuit in normal mode, internal clock divided by 1

19.3.4 Debug mode

When the microcontroller enters the debug mode (Cortex®-M3 core - halted), the TIMx
counter either continues to work normally or stops, depending on the DBG_TIMx_STOP
configuration bit in the DBG module. For more details, refer to Section 30.16.2: Debug
support for timers, watchdog and I2C.

19.4 TIM6&TIM7 registers

Refer to Section: List of abbreviations for registers for a list of abbreviations used in register
descriptions.

The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read
accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits).

19.4.1 TIM6&TIM7 control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0xFFFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
ARPE

Reserved
OPM URS UDIS CEN

rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered.
1: TIMx_ARR register is buffered.

Bits 6:4 Reserved, must be kept at reset value.

Basic timers (TIM6 and TIM7) RM0038

502/908 DocID15965 Rev 14

Bit 3 OPM: One-pulse mode

0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the CEN bit).

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.
0: Any of the following events generates an update interrupt or DMA request if enabled.
These events can be:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
1: Only counter overflow/underflow generates an update interrupt or DMA request if enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.
0: UEV enabled. The Update (UEV) event is generated by one of the following events:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
Buffered registers are then loaded with their preload values.
1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC). However the counter and the prescaler are reinitialized if the UG bit is set or if
a hardware reset is received from the slave mode controller.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

Note: Gated mode can work only if the CEN bit has been previously set by software. However
trigger mode can set the CEN bit automatically by hardware.

CEN is cleared automatically in one-pulse mode, when an update event occurs.

DocID15965 Rev 14 503/908

RM0038 Basic timers (TIM6 and TIM7)

506

19.4.2 TIM6&TIM7 control register 2 (TIMx_CR2)

Address offset: 0x04

Reset value: 0x0000

19.4.3 TIM6&TIM7 DMA/Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
MMS[2:0]

Reserved
rw rw rw

Bits 15:7 Reserved, must be kept at reset value.

Bits 6:4 MMS[2:0]: Master mode selection

These bits are used to select the information to be sent in master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is used as a trigger output (TRGO). If
reset is generated by the trigger input (slave mode controller configured in reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter enable signal, CNT_EN, is used as a trigger output (TRGO). It is
useful to start several timers at the same time or to control a window in which a slave timer
is enabled. The Counter Enable signal is generated by a logic OR between CEN control bit
and the trigger input when configured in gated mode.
When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO,
except if the master/slave mode is selected (see the MSM bit description in the TIMx_SMCR
register).
010: Update - The update event is selected as a trigger output (TRGO). For instance a
master timer can then be used as a prescaler for a slave timer.

Note: The clock of the slave timer and ADC must be enabled prior to receiving events from
the master timer, and must not be changed on-the-fly while triggers are received from
the master timer.

Bits 3:0 Reserved, must be kept at reset value.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
UDE

Reserved
UIE

rw rw

Bits 15:9 Reserved, must be kept at reset value.

Bit 8 UDE: Update DMA request enable

0: Update DMA request disabled.
1: Update DMA request enabled.

Bits 7:1 Reserved, must be kept at reset value.

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled.
1: Update interrupt enabled.

Basic timers (TIM6 and TIM7) RM0038

504/908 DocID15965 Rev 14

19.4.4 TIM6&TIM7 status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

19.4.5 TIM6&TIM7 event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

19.4.6 TIM6&TIM7 counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
UIF

rc_w0

Bits 15:1 Reserved, must be kept at reset value.

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow or underflow and if UDIS = 0 in the TIMx_CR1 register.

– When CNT is reinitialized by software using the UG bit in the TIMx_EGR register, if URS = 0
and UDIS = 0 in the TIMx_CR1 register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
UG

w

Bits 15:1 Reserved, must be kept at reset value.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action.
1: Re-initializes the timer counter and generates an update of the registers. Note that the
prescaler counter is cleared too (but the prescaler ratio is not affected).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

DocID15965 Rev 14 505/908

RM0038 Basic timers (TIM6 and TIM7)

506

19.4.7 TIM6&TIM7 prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

19.4.8 TIM6&TIM7 auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register or through
trigger controller when configured in “reset mode”).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Auto-reload value

ARR is the value to be loaded into the actual auto-reload register.
Refer to Section 19.3.1: Time-base unit for more details about ARR update and behavior.
The counter is blocked while the auto-reload value is null.

Basic timers (TIM6 and TIM7) RM0038

506/908 DocID15965 Rev 14

19.4.9 TIM6&TIM7 register map

TIMx registers are mapped as 16-bit addressable registers as described in the table below.
The reserved memory areas are highlighted in gray in the table.

Refer to Section: Memory map for the register boundary addresses.

Table 88. TIM6&TIM7 register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

Reserved A
R

P
E

R
es

er
ve

d

O
P

M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0

0x04
TIMx_CR2

Reserved
MMS[2:0]

R
e

se
rv

e
d

Reset value 0 0 0

0x08 Reserved

0x0C
TIMx_DIER

Reserved U
D

E

R
e

se
rv

e
d

U
IE

Reset value 0 0

0x10
TIMx_SR

Reserved U
IF

Reset value 0

0x14
TIMx_EGR

Reserved U
G

Reset value 0

0x18 Reserved

0x1C Reserved

0x20 Reserved

0x24
TIMx_CNT

Reserved
CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC

Reserved
PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR

Reserved
ARR[15:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DocID15965 Rev 14 507/908

RM0038 Real-time clock (RTC)

548

20 Real-time clock (RTC)

20.1 Introduction

The real-time clock (RTC) is an independent BCD timer/counter. The RTC provides a time-
of-day clock/calendar, two programmable alarm interrupts, and a periodic programmable
wakeup flag with interrupt capability. The RTC also includes an automatic wakeup unit to
manage low-power modes.

Two 32-bit registers contain the seconds, minutes, hours (12- or 24-hour format), day (day
of week), date (day of month), month, and year, expressed in binary coded decimal format
(BCD). The sub-seconds value is also available in binary format (in Cat.2, Cat.3, Cat.4,
Cat.5 and Cat.6 devices only).

Compensations for 28-, 29- (leap year), 30-, and 31-day months are performed
automatically. Daylight saving time compensation can also be performed.

Additional 32-bit registers contain the programmable alarm subseconds (in Cat.2, Cat.3,
Cat.4, Cat.5 and Cat.6 devices only), seconds, minutes, hours, day, and date.

A digital calibration feature is available to compensate for any deviation in crystal oscillator
accuracy.

After power-on reset, all RTC registers are protected against possible parasitic write
accesses.

As long as the supply voltage remains in the operating range, the RTC never stops,
regardless of the device status (Run mode, low-power mode or under reset).

Real-time clock (RTC) RM0038

508/908 DocID15965 Rev 14

20.2 RTC main features

The RTC unit main features are the following (see Figure 164: RTC block diagram (Cat.1
devices)):

• Calendar with subseconds(Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices only),
seconds, minutes, hours (12 or 24 format), day (day of week), date (day of month),
month, and year.

• Daylight saving compensation programmable by software.

• Two programmable alarms with interrupt function. The alarms can be triggered by any
combination of the calendar fields.

• Automatic wakeup unit generating a periodic flag that triggers an automatic wakeup
interrupt.

• Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.

• Accurate synchronization with an external clock using the subsecond shift feature (on
Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices only).

• Maskable interrupts/events:

– Alarm A

– Alarm B

– Wakeup interrupt

– Timestamp

– Tamper detection

• Digital calibration circuit (periodic counter correction)

– 5 ppm accuracy (on Cat.1 devices)

– 0.95 ppm accuracy (on Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices), obtained in
a calibration window of several seconds

• Timestamp function for event saving (1 event)

• Tamper detection:

– 1 tamper event on edge detection (in Cat.1 devices)

– 3 tamper events with configurable filter and internal pull-up (Cat.2, Cat.3, Cat.4,
Cat.5 and Cat.6 devices only).

– 5 backup registers (20 bytes) in value line, 20 backup registers (80 bytes) in Cat.1
and Cat.2 devices (except value line) and 32 registers (128 bytes) in Cat.3 (except
value line), Cat.4, Cat.5 and Cat.6 devices.

• Alternate function outputs: RTC_OUT which selects one of the following two outputs:

– RTC_CALIB: 512 Hz or 1 Hz (1 Hz is in Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6
devices only) clock output (with an LSE frequency of 32.768 kHz). This output is

DocID15965 Rev 14 509/908

RM0038 Real-time clock (RTC)

548

enabled by setting the COE bit in the RTC_CR register. It is routed to the device
RTC_AF1 function.

– RTC_ALARM: Alarm A. This output is selected by configuring the OSEL[1:0] bits
in the RTC_CR register. It is routed to the device RTC_AF1 function.

• RTC alternate function inputs:

– RTC_TS : timestamp event detection. It is routed to the device RTC_AF1 function.

– RTC_TAMP1: TAMPER1 event detection. It is routed to the device RTC_AF1
function.

– RTC_TAMP2: TAMPER2 event detection.

– RTC_TAMP3: TAMPER3 event detection.

– RTC_REFIN: reference clock input (usually the mains, 50 or 60 Hz).

Note: Refer to Section 7.4.1: GPIO port mode register (GPIOx_MODER) (x = A..H) for more
details on how to select RTC alternate functions (RTC_AF1).

Figure 164. RTC block diagram (Cat.1 devices)

Real-time clock (RTC) RM0038

510/908 DocID15965 Rev 14

Figure 165. RTC block diagram (Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices)

20.3 RTC functional description

20.3.1 Clock and prescalers

The RTC clock source (RTCCLK) is selected through the clock controller among the LSE
clock, the LSI oscillator clock, and the HSE clock. For more information on the RTC clock
source configuration, refer to Section 6: Reset and clock control (RCC).

A programmable prescaler stage generates a 1 Hz clock which is used to update the
calendar. To minimize power consumption, the prescaler is split into 2 programmable
prescalers (see Figure 164: RTC block diagram (Cat.1 devices)):

• A 7-bit asynchronous prescaler configured through the PREDIV_A bits of the
RTC_PRER register.

• The prescaler features 13 bits for Cat.1 devices, and 15 bits for Cat.2, Cat.3, Cat.4,
Cat.5 and Cat.6 devices.

Note: When both prescalers are used, it is recommended to configure the asynchronous prescaler
to a high value to minimize consumption.

The asynchronous prescaler division factor is set to 128, and the synchronous division
factor to 256, to obtain an internal clock frequency of 1 Hz (ck_spre) with an LSE frequency
of 32.768 kHz.

The minimum division factor is 2 in Cat.1 devices and 1 in Cat.2, Cat.3, Cat.4, Cat.5 and
Cat.6 devices.

DocID15965 Rev 14 511/908

RM0038 Real-time clock (RTC)

548

The maximum division factor is 220 in Cat.1 devices and 222 in Cat.2, Cat.3, Cat.4, Cat.5 and
Cat.6 devices.

This corresponds to a maximum input frequency of around 1 MHz for Cat.1 devices and
4 MHz for Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices.

fck_apre is given by the following formula:

The ck_apre clock is used to clock the binary RTC_SSR subseconds downcounter. When it
reaches 0, RTC_SSR is reloaded with the content of PREDIV_S. RTC_SSR is available in
in Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

fck_spre is given by the following formula:

The ck_spre clock can be used either to update the calendar or as timebase for the 16-bit
wakeup auto-reload timer. To obtain short timeout periods, the 16-bit wakeup auto-reload
timer can also run with the RTCCLK divided by the programmable 4-bit asynchronous
prescaler (see Section 20.3.4: Periodic auto-wakeup for details).

20.3.2 Real-time clock and calendar

The RTC calendar time and date registers are accessed through shadow registers which
are synchronized with PCLK1 (APB1 clock). In Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices,
they can also be accessed directly in order to avoid waiting for the synchronization duration.

• RTC_SSR for the subseconds (available on Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6
devices only)

• RTC_TR for the time

• RTC_DR for the date

Every two RTCCLK periods, the current calendar value is copied into the shadow registers,
and the RSF bit of RTC_ISR register is set (see Section 20.6.4). The copy is not performed
in Stop and Standby mode. When exiting these modes, the shadow registers are updated
after up to 2 RTCCLK periods.

When the application reads the calendar registers, it accesses the content of the shadow
registers. In Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices, it is possible to make a direct
access to the calendar registers by setting the BYPSHAD control bit in the RTC_CR
register. By default, this bit is cleared, and the user accesses the shadow registers.

When reading the RTC_SSR, RTC_TR or RTC_DR registers in BYPSHAD=0 mode, the
frequency of the APB clock (fAPB) must be at least 7 times the frequency of the RTC clock
(fRTCCLK).

The shadow registers are reset by system reset.

20.3.3 Programmable alarms

The RTC unit provides two programmable alarms, Alarm A and Alarm B.

fCK_APRE

fRTCCLK

PREDIV_A 1+
---------------------------------------=

fCK_SPRE

fRTCCLK

PREDIV_S 1+() PREDIV_A 1+()×
---=

Real-time clock (RTC) RM0038

512/908 DocID15965 Rev 14

The programmable alarm functions are enabled through the ALRAIE and ALRBIE bits in the
RTC_CR register. The ALRAF and ALRBF flags are set to 1 if the calendar
subseconds(Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices only), seconds, minutes, hours,
date or day match the values programmed in the alarm registers
RTC_ALRMASSR/RTC_ALRMAR and RTC_ALRMBSSR/RTC_ALRMBR, respectively.
Each calendar field can be independently selected through the MSKx bits of the
RTC_ALRMAR and RTC_ALRMBR registers, and through the MASKSSx bits of the
RTC_ALRMASSR and RTC_ALRMBSSR registers. The alarm interrupts are enabled
through the ALRAIE and ALRBIE bits in the RTC_CR register.

Alarm A and Alarm B (if enabled by bits OSEL[1:0] in RTC_CR register) can be routed to the
RTC_ALARM output. RTC_ALARM polarity can be configured through bit POL in the
RTC_CR register.

Caution: If the seconds field is selected (MSK0 bit reset in RTC_ALRMAR or RTC_ALRMBR), the
synchronous prescaler division factor set in the RTC_PRER register must be at least 3 to
ensure correct behavior.

20.3.4 Periodic auto-wakeup

The periodic wakeup flag is generated by a 16-bit programmable auto-reload down-counter.
The wakeup timer range can be extended to 17 bits.

The wakeup function is enabled through the WUTE bit in the RTC_CR register.

The wakeup timer clock input can be:

• RTC clock (RTCCLK) divided by 2, 4, 8, or 16.

When RTCCLK is LSE(32.768kHz), this allows configuring the wakeup interrupt period
from 122 µs to 32 s, with a resolution down to 61µs.

• ck_spre (usually 1 Hz internal clock)

When ck_spre frequency is 1Hz, this allows achieving a wakeup time from 1 s to
around 36 hours with one-second resolution. This large programmable time range is
divided in 2 parts:

– from 1s to 18 hours when WUCKSEL [2:1] = 10

– and from around 18h to 36h when WUCKSEL[2:1] = 11. In this last case 216 is
added to the 16-bit counter current value.When the initialization sequence is
complete (see Programming the wakeup timer on page 514), the timer starts
counting down.When the wakeup function is enabled, the down-counting remains
active in low-power modes. In addition, when it reaches 0, the WUTF flag is set in
the RTC_ISR register, and the wakeup counter is automatically reloaded with its
reload value (RTC_WUTR register value).

The WUTF flag must then be cleared by software.

When the periodic wakeup interrupt is enabled by setting the WUTIE bit in the RTC_CR2
register, it can exit the device from low-power modes.

The periodic wakeup flag can be routed to the RTC_ALARM output provided it has been
enabled through bits OSEL[1:0] of RTC_CR register. RTC_ALARM polarity can be
configured through the POL bit in the RTC_CR register.

System reset, as well as low-power modes (Sleep, Stop and Standby) have no influence on
the wakeup timer.

DocID15965 Rev 14 513/908

RM0038 Real-time clock (RTC)

548

20.3.5 RTC initialization and configuration

RTC register access

The RTC registers are 32-bit registers. The APB interface introduces 2 wait-states in RTC
register accesses except on read accesses to calendar shadow registers when
BYPSHAD=0.

RTC register write protection

After system reset, the RTC registers are protected against parasitic write access with the
DBP bit of the PWR power control register (PWR_CR). The DBP bit must be set to enable
RTC registers write access.

After power-on reset, all the RTC registers are write-protected. Writing to the RTC registers
is enabled by writing a key into the Write Protection register, RTC_WPR.

The following steps are required to unlock the write protection on all the RTC registers
except for RTC_ISR[13:8], RTC_TAFCR, and RTC_BKPxR.

1. Write ‘0xCA’ into the RTC_WPR register.

2. Write ‘0x53’ into the RTC_WPR register.

Writing a wrong key reactivates the write protection.

The protection mechanism is not affected by system reset.

Calendar initialization and configuration

To program the initial time and date calendar values, including the time format and the
prescaler configuration, the following sequence is required:

1. Set INIT bit to 1 in the RTC_ISR register to enter initialization mode. In this mode, the
calendar counter is stopped and its value can be updated.

2. Poll INITF bit of in the RTC_ISR register. The initialization phase mode is entered when
INITF is set to 1. It takes from 1 to 2 RTCCLK clock cycles (due to clock
synchronization).

3. To generate a 1 Hz clock for the calendar counter, program first the synchronous
prescaler factor in RTC_PRER register, and then program the asynchronous prescaler
factor. Even if only one of the two fields needs to be changed, 2 separate write
accesses must be performed to the RTC_PRER register.

4. Load the initial time and date values in the shadow registers (RTC_TR and RTC_DR),
and configure the time format (12 or 24 hours) through the FMT bit in the RTC_CR
register.

5. Exit the initialization mode by clearing the INIT bit. The actual calendar counter value is
then automatically loaded and the counting restarts after 4 RTCCLK clock cycles.

When the initialization sequence is complete, the calendar starts counting.

Note: After a system reset, the application can read the INITS flag in the RTC_ISR register to
check if the calendar has been initialized or not. If this flag equals 0, the calendar has not
been initialized since the year field is set at its power-on reset default value (0x00).

To read the calendar after initialization, the software must first check that the RSF flag is set
in the RTC_ISR register.

Real-time clock (RTC) RM0038

514/908 DocID15965 Rev 14

Daylight saving time

The daylight saving time management is performed through bits SUB1H, ADD1H, and BKP
of the RTC_CR register.

Using SUB1H or ADD1H, the software can subtract or add one hour to the calendar in one
single operation without going through the initialization procedure.

In addition, the software can use the BKP bit to memorize this operation.

Programming the alarm

A similar procedure must be followed to program or update the programmable alarms
(Alarm A or Alarm B):

1. Clear ALRAE or ALRBE in RTC_CR to disable Alarm A or Alarm B.

2. Poll ALRAWF or ALRBWF in RTC_ISR until it is set to make sure the access to alarm
registers is allowed. In Cat.1 devices, this takes 1 to 2 RTCCLK clock cycles (due to
clock synchronization). In Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices, ALRAWF and
ALRBWF are always set, so this step can be skipped.

3. Program the Alarm A or Alarm B registers (RTC_ALRMASSR/RTC_ALRMAR or
RTC_ALRMBSSR/RTC_ALRMBR).

4. Set ALRAE or ALRBE in the RTC_CR register to enable Alarm A or Alarm B again.

Note: Each change of the RTC_CR register is taken into account after 1 to 2 RTCCLK clock cycles
due to clock synchronization.

Programming the wakeup timer

The following sequence is required to configure or change the wakeup timer auto-reload
value (WUT[15:0] in RTC_WUTR):

1. Clear WUTE in RTC_CR to disable the wakeup timer.

2. Poll WUTWF until it is set in RTC_ISR to make sure the access to wakeup auto-reload
counter and to WUCKSEL[2:0] bits is allowed. It takes 1 to 2 RTCCLK clock cycles
(due to clock synchronization).

3. Program the wakeup auto-reload value WUT[15:0], and the wakeup clock selection
(WUCKSEL[2:0] bits in RTC_CR).Set WUTE in RTC_CR to enable the timer again.
The wakeup timer restarts down-counting. The WUTWF bit is cleared up to 2 RTCCLK
clocks cycles after WUTE is cleared, due to clock synchronization.

20.3.6 Reading the calendar

In Cat.1 devices, or when BYPSHAD control bit is cleared in the RTC_CR
register

To read the RTC calendar registers (RTC_SSR, RTC_TR and RTC_DR) properly, the APB1
clock frequency (fPCLK1) must be equal to or greater than seven times the fRTCCLK RTC
clock frequency. This ensures a secure behavior of the synchronization mechanism.

If the APB1 clock frequency is less than seven times the RTC clock frequency, the software
must read the calendar time and date registers twice. If the second read of the RTC_TR
gives the same result as the first read, this ensures that the data is correct. Otherwise a third
read access must be done. In any case the APB1 clock frequency must never be lower than
the RTC clock frequency.

DocID15965 Rev 14 515/908

RM0038 Real-time clock (RTC)

548

The RSF bit is set in RTC_ISR register each time the calendar registers are copied into the
RTC_SSR, RTC_TR and RTC_DR shadow registers. The copy is performed every two
RTCCLK cycles. To ensure consistency between the 3 values, reading either RTC_SSR or
RTC_TR locks the values in the higher-order calendar shadow registers until RTC_DR is
read. In case the software makes read accesses to the calendar in a time interval smaller
than 2 RTCCLK periods: RSF must be cleared by software after the first calendar read, and
then the software must wait until RSF is set before reading again the RTC_SSR, RTC_TR
and RTC_DR registers.

After waking up from low-power mode (Stop or Standby), RSF must be cleared by software.
The software must then wait until it is set again before reading the RTC_SSR, RTC_TR and
RTC_DR registers.

The RSF bit must be cleared after wakeup and not before entering low-power mode.

Note: After a system reset, the software must wait until RSF is set before reading the RTC_SSR,
RTC_TR and RTC_DR registers. Indeed, a system reset resets the shadow registers to
their default values.

After an initialization (refer to Calendar initialization and configuration on page 513): the
software must wait until RSF is set before reading the RTC_SSR, RTC_TR and RTC_DR
registers.

After synchronization (refer to Section 20.3.8: RTC synchronization (Cat.2, Cat.3, Cat.4,
Cat.5 and Cat.6 devices only)): the software must wait until RSF is set before reading the
RTC_SSR, RTC_TR and RTC_DR registers.

In Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices, when the BYPSHAD control bit
is set in the RTC_CR register (bypass shadow registers)

Reading the calendar registers gives the values from the calendar counters directly, thus
eliminating the need to wait for the RSF bit to be set. This is especially useful after exiting
from low-power modes (STOP or Standby), since the shadow registers are not updated
during these modes.

When the BYPSHAD bit is set to 1, the results of the different registers might not be
coherent with each other if an RTCCLK edge occurs between two read accesses to the
registers. Additionally, the value of one of the registers may be incorrect if an RTCCLK edge
occurs during the read operation. The software must read all the registers twice, and then
compare the results to confirm that the data is coherent and correct. Alternatively, the
software can just compare the two results of the least-significant calendar register.

Note: While BYPSHAD=1, instructions which read the calendar registers require one extra APB
cycle to complete.

20.3.7 Resetting the RTC

The calendar shadow registers (RTC_SSR, RTC_TR and RTC_DR) and some bits of the
RTC status register (RTC_ISR) are reset to their default values by all available system reset
sources.

On the contrary, the following registers are resetted to their default values by a power-on
reset and are not affected by a system reset: the RTC current calendar registers, the RTC
control register (RTC_CR), the prescaler register (RTC_PRER), the RTC calibration
registers (RTC_CALIBR or RTC_CALR), the RTC shift register (RTC_SHIFTR), the RTC
timestamp registers (RTC_TSSSR, RTC_TSTR and RTC_TSDR), the RTC tamper and
alternate function configuration register (RTC_TAFCR), the RTC backup registers

Real-time clock (RTC) RM0038

516/908 DocID15965 Rev 14

(RTC_BKPxR), the wakeup timer register (RTC_WUTR), the Alarm A and Alarm B registers
(RTC_ALRMASSR/RTC_ALRMAR and RTC_ALRMBSSR/RTC_ALRMBR).

In addition, when the RTC is clocked by the LSE, it goes on running under system reset if
the reset source is different from the power-on reset one. Refer to section RTC clock of the
Reset and clock controller for details about the list of the RTC clock sources that are not
affected by system reset.

When a power-on reset occurs, the RTC is stopped and all the RTC registers are set to their
reset values.

20.3.8 RTC synchronization (Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6
devices only)

The RTC can be synchronized to a remote clock with a high degree of precision. After
reading the sub-second field (RTC_SSR or RTC_TSSSR), a calculation can be made of the
precise offset between the times being maintained by the remote clock and the RTC. The
RTC can then be adjusted to eliminate this offset by “shifting” its clock by a fraction of a
second using RTC_SHIFTR.

RTC_SSR contains the value of the synchronous prescaler’s counter. This allows one to
calculate the exact time being maintained by the RTC down to a resolution of
1 / (PREDIV_S + 1) seconds. As a consequence, the resolution can be improved by
increasing the synchronous prescaler value (PREDIV_S[14:0]. The maximum resolution
allowed (30.52 μs with a 32768 Hz clock) is obtained with PREDIV_S set to 0x7FFF.

However, increasing PREDIV_S means that PREDIV_A must be decreased in order to
maintain the synchronous prescaler’s output at 1 Hz. In this way, the frequency of the
asynchronous prescaler’s output increases, which may increase the RTC dynamic
consumption.

The RTC can be finely adjusted using the RTC shift control register (RTC_SHIFTR). Writing
to RTC_SHIFTR can shift (either delay or advance) the clock by up to a second with a
resolution of 1 / (PREDIV_S + 1) seconds. The shift operation consists of adding the
SUBFS[14:0] value to the synchronous prescaler counter SS[15:0]: this will delay the clock.
If at the same time the ADD1S bit is set, this results in adding one second and at the same
time subtracting a fraction of second, so this will advance the clock.

Caution: Before initiating a shift operation, the user must check that SS[15] = 0 in order to ensure that
no overflow will occur.

As soon as a shift operation is initiated by a write to the RTC_SHIFTR register, the SHPF
flag is set by hardware to indicate that a shift operation is pending. This bit is cleared by
hardware as soon as the shift operation has completed.

Caution: This synchronization feature is not compatible with the reference clock detection feature:
firmware must not write to RTC_SHIFTR when REFCKON=1.

20.3.9 RTC reference clock detection

The RTC calendar update can be synchronized to a reference clock RTC_REFIN, usually
the mains (50 or 60 Hz). The RTC_REFIN reference clock should have a higher precision
than the 32.768 kHz LSE clock. When the RTC_REFIN detection is enabled (REFCKON bit
of RTC_CR set to 1), the calendar is still clocked by the LSE, and RTC_REFIN is used to
compensate for the imprecision of the calendar update frequency (1 Hz).

DocID15965 Rev 14 517/908

RM0038 Real-time clock (RTC)

548

Each 1 Hz clock edge is compared to the nearest reference clock edge (if one is found
within a given time window). In most cases, the two clock edges are properly aligned. When
the 1 Hz clock becomes misaligned due to the imprecision of the LSE clock, the RTC shifts
the 1 Hz clock a bit so that future 1 Hz clock edges are aligned. Thanks to this mechanism,
the calendar becomes as precise as the reference clock.

The RTC detects if the reference clock source is present by using the 256 Hz clock
(ck_apre) generated from the 32.768 kHz quartz. The detection is performed during a time
window around each of the calendar updates (every 1 s). The window equals 7 ck_apre
periods when detecting the first reference clock edge. A smaller window of 3 ck_apre
periods is used for subsequent calendar updates.

Each time the reference clock is detected in the window, the asynchronous prescaler which
outputs the ck_apre clock is forced to reload. This has no effect when the reference clock
and the 1 Hz clock are aligned because the prescaler is being reloaded at the same
moment. When the clocks are not aligned, the reload shifts future 1 Hz clock edges a little
for them to be aligned with the reference clock.

If the reference clock halts (no reference clock edge occurred during the 3 ck_apre window),
the calendar is updated continuously based solely on the LSE clock. The RTC then waits for
the reference clock using a large 7 ck_apre period detection window centered on the
ck_spre edge.

When the reference clock detection is enabled, PREDIV_A and PREDIV_S must be set to
their default values:

• PREDIV_A = 0x007F

• PREDIV_S = 0x00FF

Note: The reference clock detection is not available in Standby mode.

Caution: The reference clock detection feature cannot be used in conjunction with the coarse digital
calibration: RTC_CALIBR must be kept at 0x0000 0000 when REFCKON=1.

20.3.10 RTC coarse digital calibration

Two digital calibration methods are available: coarse and smooth calibration. To perform
coarse calibration refer to Section 20.6.7: RTC calibration register (RTC_CALIBR).

Smooth digital calibration is available on Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices only.
The two calibration methods are not intended to be used together, the application must
select one of the two methods. Coarse calibration is provided for compatibly reasons. To
perform smooth calibration refer to Section 20.3.11: RTC smooth digital calibration (Cat.2,
Cat.3, Cat.4, Cat.5 and Cat.6 devices only) and the Section 20.6.16: RTC calibration
register (RTC_CALR)

The coarse digital calibration can be used to compensate crystal inaccuracy by adding
(positive calibration) or masking (negative calibration) clock cycles at the output of the
asynchronous prescaler (ck_apre).

Positive and negative calibration are selected by setting the DCS bit in RTC_CALIBR
register to ‘0’ and ‘1’, respectively.

When positive calibration is enabled (DCS = ‘0’), 2 ck_apre cycles are added every minute
(around 15360 ck_apre cycles) for 2xDC minutes. This causes the calendar to be updated
sooner, thereby adjusting the effective RTC frequency to be a bit higher.

Real-time clock (RTC) RM0038

518/908 DocID15965 Rev 14

When negative calibration is enabled (DCS = ‘1’), 1 ck_apre cycle is removed every minute
(around 15360 ck_apre cycles) for 2xDC minutes. This causes the calendar to be updated
later, thereby adjusting the effective RTC frequency to be a bit lower.

DC is configured through bits DC[4:0] of RTC_CALIBR register. This number ranges from 0
to 31 corresponding to a time interval (2xDC) ranging from 0 to 62.

The coarse digital calibration can be configured only in initialization mode, and starts when
the INIT bit is cleared. The full calibration cycle lasts 64 minutes. The first 2xDC minutes of
the 64 -minute cycle are modified as just described.

Negative calibration can be performed with a resolution of about 2 ppm while positive
calibration can be performed with a resolution of about 4 ppm. The maximum calibration
ranges from −63 ppm to 126 ppm.

The calibration can be performed either on the LSE or on the HSE clock.

Caution: Digital calibration may not work correctly if PREDIV_A < 6.

Case of RTCCLK=32.768 kHz and PREDIV_A+1=128

The following description assumes that ck_apre frequency is 256 Hz obtained with an LSE
clock nominal frequency of 32.768 kHz, and PREDIV_A set to 127 (default value).

The ck_spre clock frequency is only modified during the first 2xDC minutes of the 64-minute
cycle. For example, when DC equals 1, only the first 2 minutes are modified. This means
that the first 2xDC minutes of each 64-minute cycle have, once per minute, one second
either shortened by 256 or lengthened by 128 RTCCLK cycles, given that each ck_apre
cycle represents 128 RTCCLK cycles (with PREDIV_A+1=128).

Therefore each calibration step has the effect of adding 512 or subtracting 256 oscillator
cycles for every 125829120 RTCCLK cycles (64min x 60 s/min x 32768 cycles/s). This is
equivalent to +4.069 ppm or-2.035 ppm per calibration step. As a result, the calibration
resolution is +10.5 or −5.27 seconds per month, and the total calibration ranges from +5.45
to − 2.72 minutes per month.

In order to measure the clock deviation, a 512 Hz clock is output for calibration.Refer to
Section 20.3.14: Calibration clock output.

20.3.11 RTC smooth digital calibration (Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6
devices only)

In Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices, the RTC frequency can be digitally
calibrated with a resolution of about 0.954 ppm with a range from -487.1 ppm to +488.5
ppm. The correction of the frequency is performed using series of small adjustments
(adding and/or subtracting individual RTCCLK pulses). These adjustments are fairly well
distributed so that the RTC is well calibrated even when observed over short durations of
time.

The smooth digital calibration is performed during a cycle of about 220 RTCCLK pulses, or
32 seconds when the input frequency is 32768 Hz.This cycle is maintained by a 20-bit
counter, cal_cnt[19:0], clocked by RTCCLK.

DocID15965 Rev 14 519/908

RM0038 Real-time clock (RTC)

548

The smooth calibration register (RTC_CALR) specifies the number of RTCCLK clock cycles
to be masked during the 32-second cycle:

• Setting the bit CALM[0] to 1 causes exactly one pulse to be masked during the 32-
second cycle.

• Setting CALM[1] to 1 causes two additional cycles to be masked

• Setting CALM[2] to 1 causes four additional cycles to be masked

• and so on up to CALM[8] set to 1 which causes 256 clocks to be masked.

Note: CALM[8:0] (RTC_CALRx) specifies the number of RTCCLK pulses to be masked during the
32-second cycle. Setting the bit CALM[0] to ‘1’ causes exactly one pulse to be masked
during the 32-second cycle at the moment when cal_cnt[19:0] is 0x80000; CALM[1]=1
causes two other cycles to be masked (when cal_cnt is 0x40000 and 0xC0000); CALM[2]=1
causes four other cycles to be masked (cal_cnt = 0x20000/0x60000/0xA0000/ 0xE0000);
and so on up to CALM[8]=1 which causes 256 clocks to be masked (cal_cnt = 0xXX800).

While CALM allows the RTC frequency to be reduced by up to 487.1 ppm with fine
resolution, the bit CALP can be used to increase the frequency by 488.5 ppm. Setting CALP
to ‘1’ effectively inserts an extra RTCCLK pulse every 211 RTCCLK cycles, which means
that 512 clocks are added during every 32-second cycle.

Using CALM together with CALP, an offset ranging from -511 to +512 RTCCLK cycles can
be added during the 32-second cycle, which translates to a calibration range of -487.1 ppm
to +488.5 ppm with a resolution of about 0.954 ppm.

The formula to calculate the effective calibrated frequency (FCAL) given the input frequency
(FRTCCLK) is as follows:

FCAL = FRTCCLK x [1 + (CALP x 512 - CALM) / (220 + CALM - CALP x 512)]

Calibration when PREDIV_A<3

The CALP bit can not be set to 1 when the asynchronous prescaler value (PREDIV_A bits in
RTC_PRER register) is less than 3. If CALP was already set to 1 and PREDIV_A bits are
set to a value less than 3, CALP is ignored and the calibration operates as if CALP was
equal to 0.

To perform a calibration with PREDIV_A less than 3, the synchronous prescaler value
(PREDIV_S) should be reduced so that each second is accelerated by 8 RTCCLK clock
cycles, which is equivalent to adding 256 clock cycles every 32 seconds. As a result,
between 255 and 256 clock pulses (corresponding to a calibration range from 243.3 to
244.1 ppm) can effectively be added during each 32-second cycle using only the CALM bits.

With a nominal RTCCLK frequency of 32768 Hz, when PREDIV_A equals 1 (division factor
of 2), PREDIV_S should be set to 16379 rather than 16383 (4 less). The only other
interesting case is when PREDIV_A equals 0, PREDIV_S should be set to 32759 rather
than 32767 (8 less).

If PREDIV_S is reduced in this way, the formula given the effective frequency of the

calibrated input clock is as follows:

FCAL = FRTCCLK x [1 + (256 - CALM) / (220 + CALM - 256)]

In this case, CALM[7:0] equals 0x100 (the midpoint of the CALM range) is the correct
setting if RTCCLK is exactly 32768.00 Hz.

Real-time clock (RTC) RM0038

520/908 DocID15965 Rev 14

Verifying the RTC calibration

RTC precision is performed by measuring the precise frequency of RTCCLK and calculating
the correct CALM value and CALP values. An optional 1 Hz output is provided on Cat.2,
Cat.3, Cat.4, Cat.5 and Cat.6 devices to allow applications to measure and verify the RTC
precision.

Measuring the precise frequency of the RTC over a limited interval can result in a
measurement error of up to 2 RTCCLK clock cycles over the measurement period,
depending on how the digital calibration cycle is aligned with the measurement period.

However, this measurement error can be eliminated if the measurement period is the same
length as the calibration cycle period. In this case, the only error observed is the error due to
the resolution of the digital calibration.

• By default, the calibration cycle period is 32 seconds.

Using this mode and measuring the accuracy of the 1 Hz output over exactly 32
seconds guarantees that the measure is within 0.477 ppm (0.5 RTCCLK cycles over 32
seconds, due to the limitation of the calibration resolution).

• CALW16 bit of the RTC_CALR register can be set to 1 to force a 16- second calibration
cycle period.

In this case, the RTC precision can be measured during 16 seconds with a maximum
error of 0.954 ppm (0.5 RTCCLK cycles over 16 seconds). However, since the
calibration resolution is reduced, the long term RTC precision is also reduced to 0.954
ppm: CALM[0] bit is stuck at 0 when CALW16 is set to 1.

• CALW8 bit of the RTC_CALR register can be set to 1 to force a 8- second calibration
cycle period.

In this case, the RTC precision can be measured during 8 seconds with a maximum
error of 1.907 ppm (0.5 RTCCLK cycles over 8s). The long term RTC precision is also
reduced to 1.907 ppm: CALM[1:0] bits are stuck at 00 when CALW8 is set to 1.

Re-calibration on-the-fly

The calibration register (RTC_CALR) can be updated on-the-fly while RTC_ISR/INITF=0, by
using the follow process:

1. Poll the RTC_ISR/RECALPF (re-calibration pending flag).

2. If it is set to 0, write a new value to RTC_CALR, if necessary. RECALPF is then
automatically set to 1

3. Within three ck_apre cycles after the write operation to RTC_CALR, the new calibration
settings take effect.

20.3.12 Timestamp function

Timestamp is enabled by setting the TSE bit of RTC_CR register to 1.

The calendar is saved in the timestamp registers (RTC_TSSSR, RTC_TSTR, RTC_TSDR)
when a timestamp event is detected on the pin to which the TIMESTAMP alternate function
is mapped. When a timestamp event occurs, the timestamp flag bit (TSF) in RTC_ISR
register is set.

By setting the TSIE bit in the RTC_CR register, an interrupt is generated when a timestamp
event occurs.

DocID15965 Rev 14 521/908

RM0038 Real-time clock (RTC)

548

If a new timestamp event is detected while the timestamp flag (TSF) is already set, the
timestamp overflow flag (TSOVF) flag is set and the timestamp registers (RTC_TSTR and
RTC_TSDR) maintain the results of the previous event.

Note: TSF is set 2 ck_apre cycles after the timestamp event occurs due to synchronization
process.

There is no delay in the setting of TSOVF. This means that if two timestamp events are
close together, TSOVF can be seen as '1' while TSF is still '0'. As a consequence, it is
recommended to poll TSOVF only after TSF has been set.

Caution: If a timestamp event occurs immediately after the TSF bit is supposed to be cleared, then
both TSF and TSOVF bits are set. To avoid masking a timestamp event occurring at the
same moment, the application must not write ‘0’ into TSF bit unless it has already read it to
‘1’.

Optionally, a tamper event can cause a timestamp to be recorded. See the description of the
TAMPTS control bit in Section 20.6.17: RTC tamper and alternate function configuration
register (RTC_TAFCR). If the timestamp event is on the same pin as a tamper event
configured in filtered mode (TAMPFLT set to a non-zero value), the timestamp on tamper
detection event mode must be selected by setting TAMPTS='1' in RTC_TAFCR register.

TIMESTAMP alternate function

The TIMESTAMP alternate function (RTC_TS) is mapped to RTC_AF1.

20.3.13 Tamper detection

One tamper detection input on edge detection is available on Cat.1 devices.

Three tamper detection inputs are available on Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices.
They can be configured either for edge detection, or for level detection with filtering.

RTC backup registers

The backup registers (RTC_BKPxR) are five 32-bit registers in value line devices for storing
20 bytes of user application data, twenty 32-bit registers in Cat.1 and Cat.2 devices (except
value line) for storing 80 bytes of user application data and thirty-two 32-bit registers in
Cat.3 (except value line), Cat.4, Cat.5 and Cat.6 devices for storing 128 bytes of user
application data. They are implemented in the VDD domain . They are not reset by system
reset or when the device wakes up from Standby mode. They are reset by a power-on reset.

The backup registers are reset when a tamper detection event occurs (see Section 20.6.20:
RTC backup registers (RTC_BKPxR) and Tamper detection initialization on page 521.

Tamper detection initialization

Each tamper detection input is associated with the TAMP1F/TAMP2F/ TAMP3F flags in the
RTC_ISR2 register. Each input can be enabled by setting the corresponding
TAMP1E/TAMP2E/TAMP3E bits to 1 in the RTC_TAFCR register.

A tamper detection event resets all backup registers (RTC_BKPxR).

By setting the TAMPIE bit in the RTC_TAFCR register, an interrupt is generated when a
tamper detection event occurs.

Real-time clock (RTC) RM0038

522/908 DocID15965 Rev 14

Timestamp on tamper event

With TAMPTS set to ‘1 (high devices only), any tamper event causes a timestamp to occur.
In this case, either the TSF bit or the TSOVF bit are set in RTC_ISR, in the same manner as
if a normal timestamp event occurs. The affected tamper flag register (TAMP1F, TAMP2F, or
TAMP3F) is set at the same time that TSF or TSOVF is set.

Edge detection on tamper inputs

If the TAMPFLT bits are “00”, the TAMPER pins generate tamper detection events
(RTC_TAMP[3:1]) when either a rising edge is observed or an falling edge is observed
depending on the corresponding TAMPxTRG bit. The internal pull-up resistors on the
TAMPER input are deactivated when edge detection is selected.

Caution: To avoid losing tamper detection events, the signal used for edge detection is logically
ANDed with TAMPxE in order to detect a tamper detection event in case it occurs before the
TAMPERx pin is enabled.

• When TAMPxTRG = 0: if the TAMPERx alternate function is already high before
tamper detection is enabled (TAMPxE bit set to 1), a tamper event is detected as soon
as TAMPERx is enabled, even if there was no rising edge on TAMPERx after TAMPxE
was set.

• When TAMPxTRG = 1: if the TAMPERx alternate function is already low before tamper
detection is enabled, a tamper event is detected as soon as TAMPERx is enabled
(even if there was no falling edge on TAMPERx after TAMPxE was set.

After a tamper event has been detected and cleared, the TAMPERx alternate function
should be disabled and then re-enabled (TAMPxE set to 1) before re-programming the
backup registers (RTC_BKPxR). This prevents the application from writing to the backup
registers while the TAMPERx value still indicates a tamper detection. This is equivalent to a
level detection on the TAMPERx alternate function.

Note: Tamper detection is still active when VDD power is switched off. To avoid unwanted resetting
of the backup registers, the pin to which the TAMPER alternate function is mapped should
be externally tied to the correct level.

Level detection with filtering on tamper inputs (Cat.2, Cat.3, Cat.4, Cat.5 and
Cat.6 devices only)

Level detection with filtering is performed by setting TAMPFLT to a non-zero value. A tamper
detection event is generated when either 2, 4, or 8 (depending on TAMPFLT) consecutive
samples are observed at the level designated by the TAMPxTRG bits
(TAMP1TRG/TAMP2TRG/TAMP3TRG).

The TAMPER inputs are pre-charged through the I/O internal pull-up resistance before its
state is sampled, unless disabled by setting TAMPPUDIS to 1,The duration of the precharge
is determined by the TAMPPRCH bits, allowing for larger capacitances on the tamper
inputs.

The trade-off between tamper detection latency and power consumption through the pull-up
can be optimized by using TAMPFREQ to determine the frequency of the sampling for level
detection.

Note: Refer to the datasheets for the electrical characteristics of the pull-up resistors.

DocID15965 Rev 14 523/908

RM0038 Real-time clock (RTC)

548

TAMPER alternate function detection

The TAMPER1 alternate function (RTC_TAMP1) is mapped to RTC_AF1. The TAMPER 2
and TAMPER 3 alternate functions are RTC_TAMP2 and RTC_TAMP3 respectively.

20.3.14 Calibration clock output

When the COE bit is set to 1 in the RTC_CR register, a reference clock is provided on the
RTC_CALIB device output. If the COSEL bit in the RTC_CR register is reset and
PREDIV_A = 0x7F, the RTC_CALIB frequency is fRTCCLK/64. This corresponds to a
calibration output at 512 Hz for an RTCCLK frequency at 32.768 kHz.

The RTC_CALIB output is not impacted by the calibration value programmed in
RTC_CALIBR register. The RTC_CALIB duty cycle is irregular: there is a light jitter on falling
edges. It is therefore recommended to use rising edges.

If COSEL is set (on Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices) and (PREDIV_S+1) is a
non-zero multiple of 256 (i.e: PREDIV_S[7:0] = 0xFF), the RTC_CALIB frequency is
fRTCCLK/(256 * (PREDIV_A+1)). This corresponds to a calibration output at 1 Hz for
prescaler default values (PREDIV_A = 0x7F, PREDIV_S = 0xFF), with an RTCCLK
frequency at 32.768 kHz. The 1 Hz output is affected when a shift operation is on going and
may toggle during the shift operation (SHPF=1).

Calibration alternate function output

When the COE bit in the RTC_CR register is set to 1, the calibration alternate function
(RTC_CALIB) is enabled on RTC_AF1.

Note: When RTC_CALIB or RTC_ALARM is selected, RTC_AF1 is automatically configured in
output alternate function.

20.3.15 Alarm output

Three functions can be selected on Alarm output: ALRAF, ALRBF and WUTF. These
functions reflect the contents of the corresponding flags in the RTC_ISR register.

The OSEL[1:0] control bits in the RTC_CR register are used to activate the alarm alternate
function output (RTC_ALARM) in RTC_AF1, and to select the function which is output on
RTC_ALARM.

The polarity of the output is determined by the POL control bit in RTC_CR so that the
opposite of the selected flag bit is output when POL is set to 1.

Alarm alternate function output

RTC_ALARM can be configured in output open drain or output push-pull using the control
bit ALARMOUTTYPE in the RTC_TAFCR register.

Note: The RTC_CALIB should be disabled (COE bit must be kept cleared).

When RTC_CALIB or RTC_ALARM is selected, RTC_AF1 is automatically configured in
output alternate function.

Real-time clock (RTC) RM0038

524/908 DocID15965 Rev 14

20.4 RTC and low-power modes

20.5 RTC interrupts

All RTC interrupts are connected to the EXTI controller.

To enable the RTC Alarm interrupt, the following sequence is required:

1. Configure and enable the EXTI Line 17 in interrupt mode and select the rising edge
sensitivity.

2. Configure and enable the RTC_Alarm IRQ channel in the NVIC.

3. Configure the RTC to generate RTC alarms (Alarm A or Alarm B).

To enable the RTC Wakeup interrupt, the following sequence is required:

1. Configure and enable the EXTI Line 20 in interrupt mode and select the rising edge
sensitivity.

2. Configure and enable the RTC_WKUP IRQ channel in the NVIC.

3. Configure the RTC to generate the RTC wakeup timer event.

To enable the RTC Tamper interrupt, the following sequence is required:

1. Configure and enable the EXTI Line 19 in interrupt mode and select the rising edge
sensitivity.

2. Configure and Enable the TAMP_STAMP IRQ channel in the NVIC.

3. Configure the RTC to detect the RTC tamper event.

To enable the RTC TimeStamp interrupt, the following sequence is required:

1. Configure and enable the EXTI Line 19 in interrupt mode and select the rising edge
sensitivity.

2. Configure and Enable the TAMP_STAMP IRQ channel in the NVIC.

3. Configure the RTC to detect the RTC timestamp event.

Table 89. Effect of low-power modes on RTC

Mode Description

Sleep
No effect
RTC interrupts cause the device to exit the Sleep mode.

Stop
The RTC remains active when the RTC clock source is LSE or LSI. RTC alarm, RTC
tamper event, RTC time stamp event, and RTC Wakeup cause the device to exit the Stop
mode.

Standby
The RTC remains active when the RTC clock source is LSE or LSI. RTC alarm, RTC
tamper event, RTC time stamp event, and RTC Wakeup cause the device to exit the
Standby mode.

DocID15965 Rev 14 525/908

RM0038 Real-time clock (RTC)

548

Table 90. Interrupt control bits

Interrupt event Event flag
Enable
control

bit

Exit the
Sleep
mode

Exit the
Stop
mode

Exit the
Standby

mode

Alarm A ALRAF ALRAIE yes yes(1)

1. Wakeup from STOP and Standby modes is possible only when the RTC clock source is LSE or LSI.

yes(1)

Alarm B ALRBF ALRBIE yes yes(1) yes(1)

Wakeup WUTF WUTIE yes yes(1) yes(1)

TimeStamp TSF TSIE yes yes(1) yes(1)

Tamper1 detection TAMP1F TAMPIE yes yes(1) yes(1)

Tamper2 detection(2)

2. If RTC_TAMPER2 pin is present (only on Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices). Refer to device
datasheet pinout.

TAMP2F TAMPIE yes yes(1) yes(1)

Tamper3 detection(3)

3. Only on Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices if RTC_TAMPER3 pin is present. Refer to device
datasheet pinout.

TAMP3F TAMPIE yes yes(1) yes(1)

Real-time clock (RTC) RM0038

526/908 DocID15965 Rev 14

20.6 RTC registers

Refer to Section: List of abbreviations for registers for a list of abbreviations used in register
descriptions.

The peripheral registers have to be accessed by words (32 bits).

20.6.1 RTC time register (RTC_TR)

The RTC_TR is the calendar time shadow register. This register must be written in
initialization mode only. Refer to Calendar initialization and configuration on page 513 and
Reading the calendar on page 514.

Address offset: 0x00

Power-on reset value: 0x0000 0000

System reset: 0x0000 0000 when BYPSHAD = 0. Not affected when BYPSHAD = 1.

Note: This register is write protected. The write access procedure is described in RTC register
write protection on page 513.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
PM HT[1:0] HU[3:0]

rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
MNT[2:0] MNU[3:0]

Res.
ST[2:0] SU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31-24 Reserved

Bit 23 Reserved, must be kept at reset value.

Bit 22 PM: AM/PM notation

0: AM or 24-hour format
1: PM

Bits 21:20 HT[1:0]: Hour tens in BCD format

Bits 19:16 HU[3:0]: Hour units in BCD format

Bit 15 Reserved, must be kept at reset value.

Bits 14:12 MNT[2:0]: Minute tens in BCD format

Bit 11:8 MNU[3:0]: Minute units in BCD format

Bit 7 Reserved, must be kept at reset value.

Bits 6:4 ST[2:0]: Second tens in BCD format

Bits 3:0 SU[3:0]: Second units in BCD format

DocID15965 Rev 14 527/908

RM0038 Real-time clock (RTC)

548

20.6.2 RTC date register (RTC_DR)

The RTC_DR is the calendar date shadow register. This register must be written in
initialization mode only. Refer to Calendar initialization and configuration on page 513 and
Reading the calendar on page 514.

Address offset: 0x04

Power-on reset value: 0x0000 2101

System reset: 0x0000 2101 when BYPSHAD = 0. Not affected when BYPSHAD = 1.

Note: This register is write protected. The write access procedure is described in RTC register
write protection on page 513.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
YT[3:0] YU[3:0]

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WDU[2:0] MT MU[3:0]
Reserved

DT[1:0] DU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31-24 Reserved

Bits 23:20 YT[3:0]: Year tens in BCD format

Bits 19:16 YU[3:0]: Year units in BCD format

Bits 15:13 WDU[2:0]: Week day units

000: forbidden
001: Monday
...
111: Sunday

Bit 12 MT: Month tens in BCD format

Bits 11:8 MU: Month units in BCD format

Bits 7:6 Reserved, must be kept at reset value.

Bits 5:4 DT[1:0]: Date tens in BCD format

Bits 3:0 DU[3:0]: Date units in BCD format

Real-time clock (RTC) RM0038

528/908 DocID15965 Rev 14

20.6.3 RTC control register (RTC_CR)

Address offset: 0x08

Power-on reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
COE OSEL[1:0] POL COSEL BKP SUB1H ADD1H

rw rw rw rw rw rw w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TSIE WUTIE ALRBIE ALRAIE TSE WUTE ALRBE ALRAE DCE FMT
BYPS
HAD

REFCKON TSEDGE WUCKSEL[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, must be kept at reset value.

Bit 23 COE: Calibration output enable

This bit enables the RTC_CALIB output
0: Calibration output disabled
1: Calibration output enabled

Bits 22:21 OSEL[1:0]: Output selection

These bits are used to select the flag to be routed to RTC_ALARM output
00: Output disabled
01: Alarm A output enabled
10: Alarm B output enabled
11: Wakeup output enabled

Bit 20 POL: Output polarity

This bit is used to configure the polarity of RTC_ALARM output
0: The pin is high when ALRAF/ALRBF/WUTF is asserted (depending on OSEL[1:0])
1: The pin is low when ALRAF/ALRBF/WUTF is asserted (depending on OSEL[1:0]).

Bit 19 COSEL: Calibration output selection

This bit is available in Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices only.
When COE=1, this bit selects which signal is output on RTC_CALIB.
0: Calibration output is 512 Hz
1: Calibration output is 1 Hz
These frequencies are valid for RTCCLK at 32.768 kHz and prescalers at their default
values (PREDIV_A=127 and PREDIV_S=255). Refer to Section 20.3.14: Calibration clock
output

Bit 18 BKP: Backup

This bit can be written by the user to memorize whether the daylight saving time change has
been performed or not.

Bit 17 SUB1H: Subtract 1 hour (winter time change)

When this bit is set outside initialization mode, 1 hour is subtracted to the calendar time if the
current hour is not 0. This bit is always read as 0.
Setting this bit has no effect when current hour is 0.
0: No effect
1: Subtracts 1 hour to the current time. This can be used for winter time change.

DocID15965 Rev 14 529/908

RM0038 Real-time clock (RTC)

548

Bit 16 ADD1H: Add 1 hour (summer time change)

When this bit is set outside initialization mode, 1 hour is added to the calendar time. This bit
is always read as 0.
0: No effect
1: Adds 1 hour to the current time. This can be used for summer time change

Bit 15 TSIE: Timestamp interrupt enable

0: Timestamp Interrupt disable
1: Timestamp Interrupt enable

Bit 14 WUTIE: Wakeup timer interrupt enable

0: Wakeup timer interrupt disabled
1: Wakeup timer interrupt enabled

Bit 13 ALRBIE: Alarm B interrupt enable

0: Alarm B Interrupt disable
1: Alarm B Interrupt enable

Bit 12 ALRAIE: Alarm A interrupt enable

0: Alarm A interrupt disabled
1: Alarm A interrupt enabled

Bit 11 TSE: Time stamp enable

0: Time stamp disable
1: Time stamp enable

Bit 10 WUTE: Wakeup timer enable

0: Wakeup timer disabled
1: Wakeup timer enabled

Bit 9 ALRBE: Alarm B enable

0: Alarm B disabled
1: Alarm B enabled

Bit 8 ALRAE: Alarm A enable

0: Alarm A disabled
1: Alarm A enabled

Bit 7 DCE: Coarse digital calibration enable

0: Digital calibration disabled
1: Digital calibration enabled
PREDIV_A must be 6 or greater

Bit 6 FMT: Hour format

0: 24 hour/day format
1: AM/PM hour format

Bit 5 BYPSHAD: Bypass the shadow registers

This bit is available on Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices only.

0: Calendar values (when reading from RTC_SSR, RTC_TR, and RTC_DR) are taken from
the shadow registers, which are updated once every two RTCCLK cycles.
1: Calendar values (when reading from RTC_SSR, RTC_TR, and RTC_DR) are taken
directly from the calendar counters.

Note: If the frequency of the APB1 clock is less than seven times the frequency of RTCCLK,
BYPSHAD must be set to ‘1’.

Real-time clock (RTC) RM0038

530/908 DocID15965 Rev 14

Note: WUT = Wakeup unit counter value. WUT = (0x0000 to 0xFFFF) + 0x10000 added when
WUCKSEL[2:1 = 11].

Bits 7, 6 and 4 of this register can be written in initialization mode only (RTC_ISR/INITF = 1).

Bits 2 to 0 of this register can be written only when RTC_CR WUTE bit = 0 and RTC_ISR
WUTWF bit = 1.

It is recommended not to change the hour during the calendar hour increment as it could
mask the incrementation of the calendar hour.

ADD1H and SUB1H changes are effective in the next second.

To avoid spuriously setting of TSF, TSE must be reset when TSEDGE is changed.

This register is write protected. The write access procedure is described in RTC register
write protection on page 513.

20.6.4 RTC initialization and status register (RTC_ISR)

Address offset: 0x0C

Power-on reset value: 0x0000 0007

System reset value: Not affected except INIT, INITF and RSF which are cleared to 0.

Bit 4 REFCKON: Reference clock detection enable (50 or 60 Hz)

0: Reference clock detection disabled
1: Reference clock detection enabled

Note: PREDIV_S must be 0x00FF.

Bit 3 TSEDGE: Timestamp event active edge

0: TIMESTAMP rising edge generates a timestamp event
1: TIMESTAMP falling edge generates a timestamp event
TSE must be reset when TSEDGE is changed to avoid unwanted TSF setting.

Bits 2:0 WUCKSEL[2:0]: Wakeup clock selection

000: RTC/16 clock is selected
001: RTC/8 clock is selected
010: RTC/4 clock is selected
011: RTC/2 clock is selected
10x: ck_spre (usually 1 Hz) clock is selected
11x: ck_spre (usually 1 Hz) clock is selected and 216 is added to the WUT counter value
(see note below)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

RECAL
PF

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TAMP
3F

TAMP
2F

TAMP
1F

TSOVF TSF WUTF ALRBF ALRAF INIT INITF RSF INITS SHPF
WUT
WF

ALRB
WF

ALRA
WF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rw r rc_w0 r r r r r

DocID15965 Rev 14 531/908

RM0038 Real-time clock (RTC)

548

Bits 31:17 Reserved

Bit 16 RECALPF: Recalibration pending Flag

The RECALPF status flag is automatically set to ‘1’ when software writes to the RTC_CALR
register, indicating that the RTC_CALR register is blocked. When the new calibration
settings are taken into account, this bit returns to ‘0’. Refer to Section : Re-calibration on-the-
fly.

Bit 15 TAMP3F: TAMPER3 detection flag

This flag is set by hardware when a tamper detection event is detected on tamper input 3.

It is cleared by software writing 0.

Bit 14 TAMP2F: TAMPER2 detection flag

This flag is set by hardware when a tamper detection event is detected on tamper input 2.
It is cleared by software writing 0.

Bit 13 TAMP1F: Tamper detection flag

This flag is set by hardware when a tamper detection event is detected.
It is cleared by software writing 0.

Bit 12 TSOVF: Timestamp overflow flag

This flag is set by hardware when a timestamp event occurs while TSF is already set.
This flag is cleared by software by writing 0. It is recommended to check and then clear
TSOVF only after clearing the TSF bit. Otherwise, an overflow might not be noticed if a
timestamp event occurs immediately before the TSF bit is cleared.

Bit 11 TSF: Timestamp flag

This flag is set by hardware when a timestamp event occurs.
This flag is cleared by software by writing 0.

Bit 10 WUTF: Wakeup timer flag

This flag is set by hardware when the wakeup auto-reload counter reaches 0.
This flag is cleared by software by writing 0.
This flag must be cleared by software at least 1.5 RTCCLK periods before WUTF is set to 1
again.

Bit 9 ALRBF: Alarm B flag

This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the
Alarm B register (RTC_ALRMBR).
This flag is cleared by software by writing 0.

Bit 8 ALRAF: Alarm A flag

This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the
Alarm A register (RTC_ALRMAR).
This flag is cleared by software by writing 0.

Bit 7 INIT: Initialization mode

0: Free running mode
1: Initialization mode used to program time and date register (RTC_TR and RTC_DR), and
prescaler register (RTC_PRER). Counters are stopped and start counting from the new
value when INIT is reset.

Bit 6 INITF: Initialization flag

When this bit is set to 1, the RTC is in initialization state, and the time, date and prescaler
registers can be updated.
0: Calendar registers update is not allowed
1: Calendar registers update is allowed.

Real-time clock (RTC) RM0038

532/908 DocID15965 Rev 14

Note: The ALRAF, ALRBF, WUTF and TSF bits are cleared 2 APB clock cycles after programming
them to 0.

This register is write protected (except for RTC_ISR[13:8] bits). The write access procedure
is described in RTC register write protection on page 513.

Bit 5 RSF: Registers synchronization flag

This bit is set by hardware each time the calendar registers are copied into the shadow
registers (RTC_SSRx, RTC_TRx and RTC_DRx). This bit is cleared by hardware in
initialization mode, while a shift operation is pending (SHPF=1), or when in bypass shadow
register mode (BYPSHAD=1). This bit can also be cleared by software.
0: Calendar shadow registers not yet synchronized
1: Calendar shadow registers synchronized

Bit 4 INITS: Initialization status flag

This bit is set by hardware when the calendar year field is different from 0 (power-on reset
value state).
0: Calendar has not been initialized
1: Calendar has been initialized

Bit 3 SHPF: Shift operation pending

0: No shift operation is pending
1: A shift operation is pending
This flag is set by hardware as soon as a shift operation is initiated by a write to the
RTC_SHIFTR. It is cleared by hardware when the corresponding shift operation has been
executed. Writing to SHPF has no effect.

Bit 3 Reserved, must be kept at reset value.

Bit 2 WUTWF: Wakeup timer write flag

This bit is set by hardware up to 2 RTCCLK cycles after the WUTE bit has been set to 0 in
RTC_CR, and is cleared up to 2 RTCCLK cycles after the WUTE bit has been set to 1. The
wakeup timer values can be changed when WUTE bit is cleared and WUTWF is set.
0: Wakeup timer configuration update not allowed
1: Wakeup timer configuration update allowed

Bit 1 ALRBWF: Alarm B write flag

This bit is set by hardware when Alarm B values can be changed, after the ALRBIE bit has
been set to 0 in RTC_CR.
It is cleared by hardware in initialization mode.
0: Alarm B update not allowed
1: Alarm B update allowed.

Bit 0 ALRAWF: Alarm A write flag

This bit is set by hardware when Alarm A values can be changed, after the ALRAE bit has
been set to 0 in RTC_CR.
It is cleared by hardware in initialization mode.
0: Alarm A update not allowed
1: Alarm A update allowed

DocID15965 Rev 14 533/908

RM0038 Real-time clock (RTC)

548

20.6.5 RTC prescaler register (RTC_PRER)

Address offset: 0x10

Power-on reset value: 0x007F 00FF

System reset: not affected

Note: This register must be written in initialization mode only. The initialization must be performed
in two separate write accesses. Refer to Calendar initialization and configuration on
page 513

This register is write protected. The write access procedure is described in RTC register
write protection on page 513.

20.6.6 RTC wakeup timer register (RTC_WUTR)

Address offset: 0x14

Power-on reset value: 0x0000 FFFF

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
PREDIV_A[6:0]

rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
PREDIV_S[14:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved

Bit 23 Reserved, must be kept at reset value.

Bits 22:16 PREDIV_A[6:0]: Asynchronous prescaler factor

This is the asynchronous division factor:
ck_apre frequency = RTCCLK frequency/(PREDIV_A+1)

Bit 15 Reserved, must be kept at reset value.

Bits 14:0 PREDIV_S[14:0]: Synchronous prescaler factor

This is the synchronous division factor:
ck_spre frequency = ck_apre frequency/(PREDIV_S+1)

Note: PREDIV[14:13] are reserved in Cat.1 devices.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WUT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Real-time clock (RTC) RM0038

534/908 DocID15965 Rev 14

Note: This register can be written only when WUTWF is set to 1 in RTC_ISR.

This register is write protected. The write access procedure is described in RTC register
write protection on page 513.

20.6.7 RTC calibration register (RTC_CALIBR)

Address offset: 0x18

Power-on reset value: 0x0000 0000

System reset: not affected

Bits 31:16 Reserved

Bits 15:0 WUT[15:0]: Wakeup auto-reload value bits

When the wakeup timer is enabled (WUTE set to 1), the WUTF flag is set every (WUT[15:0]
+ 1) ck_wut cycles. The ck_wut period is selected through WUCKSEL[2:0] bits of the
RTC_CR register
When WUCKSEL[2] = 1, the wakeup timer becomes 17-bits and WUCKSEL[1] effectively
becomes WUT[16] the most-significant bit to be reloaded into the timer.

Note: The first assertion of WUTF occurs (WUT+1) ck_wut cycles after WUTE is set. Setting
WUT[15:0] to 0x0000 with WUCKSEL[2:0] =011 (RTCCLK/2) is forbidden.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DCS

Reserved
DC[4:0]

rw rw rw rw rw rw

Bits 31:8 Reserved

Bit 7 DCS: Digital calibration sign

0: Positive calibration: calendar update frequency is increased
1: Negative calibration: calendar update frequency is decreased

Bits 6:5 Reserved, must be kept at reset value.

Bits 4:0 DC[4:0]: Digital calibration

DCS = 0 (positive calibration)
00000: + 0 ppm
00001: + 4 ppm (rounded value)
00010: + 8 ppm (rounded value)
..
11111: + 126 ppm (rounded value)
DCS = 1 (negative calibration)
00000: − 0 ppm
00001: − 2 ppm (rounded value)
00010: − 4 ppm (rounded value)
..
11111: − 63 ppm (rounded value)
Refer to Case of RTCCLK=32.768 kHz and PREDIV_A+1=128 on page 518 for the exact
step value.

DocID15965 Rev 14 535/908

RM0038 Real-time clock (RTC)

548

Note: This register can be written in initialization mode only (RTC_ISR/INITF = ‘1’).

This register is write protected. The write access procedure is described in RTC register
write protection on page 513.

20.6.8 RTC alarm A register (RTC_ALRMAR)

Address offset: 0x1C

Power-on reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MSK4 WDSEL DT[1:0] DU[3:0] MSK3 PM HT[1:0] HU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSK2 MNT[2:0] MNU[3:0] MSK1 ST[2:0] SU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31 MSK4: Alarm A date mask

0: Alarm A set if the date/day match
1: Date/day don’t care in Alarm A comparison

Bit 30 WDSEL: Week day selection

0: DU[3:0] represents the date units
1: DU[3:0] represents the week day. DT[1:0] is don’t care.

Bits 29:28 DT[1:0]: Date tens in BCD format.

Bits 27:24 DU[3:0]: Date units or day in BCD format.

Bit 23 MSK3: Alarm A hours mask

0: Alarm A set if the hours match
1: Hours don’t care in Alarm A comparison

Bit 22 PM: AM/PM notation

0: AM or 24-hour format
1: PM

Bits 21:20 HT[1:0]: Hour tens in BCD format.

Bits 19:16 HU[3:0]: Hour units in BCD format.

Bit 15 MSK2: Alarm A minutes mask

0: Alarm A set if the minutes match
1: Minutes don’t care in Alarm A comparison

Bits 14:12 MNT[2:0]: Minute tens in BCD format.

Bits 11:8 MNU[3:0]: Minute units in BCD format.

Bit 7 MSK1: Alarm A seconds mask

0: Alarm A set if the seconds match
1: Seconds don’t care in Alarm A comparison

Bits 6:4 ST[2:0]: Second tens in BCD format.

Bits 3:0 SU[3:0]: Second units in BCD format.

Real-time clock (RTC) RM0038

536/908 DocID15965 Rev 14

Note: This register can be written only when ALRAWF is set to 1 in RTC_ISR, or in initialization
mode.

This register is write protected. The write access procedure is described in RTC register
write protection on page 513.

20.6.9 RTC alarm B register (RTC_ALRMBR)

Address offset: 0x20

Power-on reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MSK4 WDSEL DT[1:0] DU[3:0] MSK3 PM HT[1:0] HU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSK2 MNT[2:0] MNU[3:0] MSK1 ST[2:0] SU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31 MSK4: Alarm B date mask

0: Alarm B set if the date and day match
1: Date and day don’t care in Alarm B comparison

Bit 30 WDSEL: Week day selection

0: DU[3:0] represents the date units
1: DU[3:0] represents the week day. DT[1:0] is don’t care.

Bits 29:28 DT[1:0]: Date tens in BCD format

Bits 27:24 DU[3:0]: Date units or day in BCD format

Bit 23 MSK3: Alarm B hours mask

0: Alarm B set if the hours match
1: Hours don’t care in Alarm B comparison

Bit 22 PM: AM/PM notation

0: AM or 24-hour format
1: PM

Bits 21:20 HT[1:0]: Hour tens in BCD format

Bits 19:16 HU[3:0]: Hour units in BCD format

Bit 15 MSK2: Alarm B minutes mask

0: Alarm B set if the minutes match
1: Minutes don’t care in Alarm B comparison

Bits 14:12 MNT[2:0]: Minute tens in BCD format

Bits 11:8 MNU[3:0]: Minute units in BCD format

Bit 7 MSK1: Alarm B seconds mask

0: Alarm B set if the seconds match
1: Seconds don’t care in Alarm B comparison

Bits 6:4 ST[2:0]: Second tens in BCD format

Bits 3:0 SU[3:0]: Second units in BCD format

DocID15965 Rev 14 537/908

RM0038 Real-time clock (RTC)

548

Note: This register can be written only when ALRBWF is set to 1 in RTC_ISR, or in initialization
mode.

This register is write protected. The write access procedure is described in RTC register
write protection on page 513.

20.6.10 RTC write protection register (RTC_WPR)

Address offset: 0x24

Power-on reset value: 0x0000 0000

20.6.11 RTC sub second register (RTC_SSR)

The RTC_SSR register is available only on Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices.

Address offset: 0x28

Power-on reset value: 0x0000 0000

System reset: 0x0000 0000 when BYPSHAD = 0. Not affected when BYPSHAD = 1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
KEY

w w w w w w w w

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 KEY: Write protection key

This byte is written by software.
Reading this byte always returns 0x00.
Refer to RTC register write protection for a description of how to unlock RTC register write
protection.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SS[15:0]

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved

Bits 15:0 SS: Sub second value

SS[15:0] is the value in the synchronous prescaler’s counter. The fraction of a second is
given by the formula below:
Second fraction = (PREDIV_S - SS) / (PREDIV_S + 1)

Note: SS can be larger than PREDIV_S only after a shift operation. In that case, the correct
time/date is one second less than as indicated by RTC_TR/RTC_DR.

Real-time clock (RTC) RM0038

538/908 DocID15965 Rev 14

20.6.12 RTC shift control register (RTC_SHIFTR)

The RTC_SHIFTR register is available only in Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices.

Address offset: 0x2C

Power-on reset value: 0x0000 0000

System reset: not affected

Note: This register is write protected. The write access procedure is described in RTC register
write protection on page 513

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADD1S Reserved

w r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. SUBFS[14:0]

r w w w w w w w w w w w w w w w

Bit 31 ADD1S: Add one second

0: No effect
1: Add one second to the clock/calendar
This bit is write only and is always read as zero. Writing to this bit has no effect when a shift
operation is pending (when SHPF=1, in RTC_ISR).
This function is intended to be used with SUBFS (see description below) in order to
effectively add a fraction of a second to the clock in an atomic operation.

Bits 30:15 Reserved

Bits 14:0 SUBFS: Subtract a fraction of a second

These bits are write only and is always read as zero. Writing to this bit has no effect when a
shift operation is pending (when SHPF=1, in RTC_ISR).
The value which is written to SUBFS is added to the synchronous prescaler’s counter. Since
this counter counts down, this operation effectively subtracts from (delays) the clock by:
Delay (seconds) = SUBFS / (PREDIV_S + 1)
A fraction of a second can effectively be added to the clock (advancing the clock) when the
ADD1S function is used in conjunction with SUBFS, effectively advancing the clock by:
Advance (seconds) = (1 - (SUBFS / (PREDIV_S + 1))) .

Note: Writing to SUBFS causes RSF to be cleared. Software can then wait until RSF=1 to be
sure that the shadow registers have been updated with the shifted time.

Refer to Section 20.3.8: RTC synchronization (Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices
only).

DocID15965 Rev 14 539/908

RM0038 Real-time clock (RTC)

548

20.6.13 RTC time stamp time register (RTC_TSTR)

Address offset: 0x30

Power-on reset value: 0x0000 0000

System reset: not affected

Note: The content of this register is valid only when TSF is set to 1 in RTC_ISR. It is cleared when
TSF bit is reset.

20.6.14 RTC time stamp date register (RTC_TSDR)

Address offset: 0x34

Power-on reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
 PM HT[1:0] HU[3:0]

r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
MNT[2:0] MNU[3:0]

Res.
ST[2:0] SU[3:0]

r r r r r r r r r r r r r r

Bits 31:23 Reserved, must be kept at reset value.

Bit 22 PM: AM/PM notation

0: AM or 24-hour format
1: PM

Bits 21:20 HT[1:0]: Hour tens in BCD format.

Bits 19:16 HU[3:0]: Hour units in BCD format.

Bit 15 Reserved, must be kept at reset value.

Bits 14:12 MNT[2:0]: Minute tens in BCD format.

Bits 11:8 MNU[3:0]: Minute units in BCD format.

Bit 7 Reserved, must be kept at reset value.

Bits 6:4 ST[2:0]: Second tens in BCD format.

Bits 3:0 SU[3:0]: Second units in BCD format.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WDU[1:0] MT MU[3:0]
Reserved

DT[1:0] DU[3:0]

r r r r r r r r r r r r r r

Real-time clock (RTC) RM0038

540/908 DocID15965 Rev 14

Note: The content of this register is valid only when TSF is set to 1 in RTC_ISR. It is cleared when
TSF bit is reset.

20.6.15 RTC timestamp sub second register (RTC_TSSSR)

The RTC_TSSSR register is available only on Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices.

Address offset: 0x38

Power-on reset value: 0x0000 0000

System reset: not affected

Note: The content of this register is valid only when RTC_ISR/TSF is set. It is cleared when the
RTC_ISR/TSF bit is reset.

20.6.16 RTC calibration register (RTC_CALR)

The RTC_CALR register is available only on Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices.

Address offset: 0x3C

Power-on reset value: 0x0000 0000

System reset: not affected

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:13 WDU[1:0]: Week day units

Bit 12 MT: Month tens in BCD format

Bits 11:8 MU[3:0]: Month units in BCD format

Bits 7:6 Reserved, must be kept at reset value.

Bits 5:4 DT[1:0]: Date tens in BCD format

Bit 3:0 DU[3:0]: Date units in BCD format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SS[15:0]

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved

Bits 15:0 SS: Sub second value

SS[15:0] is the value of the synchronous prescaler’s counter when the timestamp event
occurred.

DocID15965 Rev 14 541/908

RM0038 Real-time clock (RTC)

548

Note: This register is write protected. The write access procedure is described in RTC register
write protection on page 513

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CALP CALW8 CALW16 Reserved CALM[8:0]

rw rw rw r r r r rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved

Bit 15 CALP: Increase frequency of RTC by 488.5 ppm

0: No RTCCLK pulses are added.
1: One RTCCLK pulse is effectively inserted every 211 pulses (frequency increased by
488.5 ppm).
This feature is intended to be used in conjunction with CALM, which lowers the frequency of
the calendar with a fine resolution. if the input frequency is 32768 Hz, the number of
RTCCLK pulses added during a 32-second window is calculated as follows: (512 * CALP) -
CALM.

Refer to Section 20.3.11: RTC smooth digital calibration (Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6
devices only).

Bit 14 CALW8: Use an 8-second calibration cycle period

When CALW8 is set to ‘1’, the 8-second calibration cycle period is selected.
CALM[1:0] are stuck at “00” when CALW8=’1’.
Refer to Section 20.3.11: RTC smooth digital calibration (Cat.2, Cat.3, Cat.4, Cat.5 and
Cat.6 devices only).

Bit 13 CALW16: Use a 16-second calibration cycle period

When CALW16 is set to ‘1’, the 16-second calibration cycle period is selected. This bit must
not be set to ‘1’ if CALW8=1.

Note: CALM[0] is stuck at ‘0’ when CALW16=’1’.

Refer to Section 20.3.11: RTC smooth digital calibration (Cat.2, Cat.3, Cat.4, Cat.5 and
Cat.6 devices only).

Bits 12:9 Reserved

Bits 8:0 CALM[8:0]: Calibration minus

The frequency of the calendar is reduced by masking CALM out of 220 RTCCLK pulses (32
seconds if the input frequency is 32768 Hz). This decreases the frequency of the calendar
with a resolution of 0.9537 ppm.
To increase the frequency of the calendar, this feature should be used in conjunction with
CALP.
See Section 20.3.11: RTC smooth digital calibration (Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6
devices only) on page 518.

Real-time clock (RTC) RM0038

542/908 DocID15965 Rev 14

20.6.17 RTC tamper and alternate function configuration register
(RTC_TAFCR)

Address offset: 0x40

Power-on reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

ALARMOUT
TYPE Reserved

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TAMP-
PUDIS

TAMP-
PRCH[1:0]

TAMPFLT[1:0] TAMPFREQ[2:0]
TAMP

TS
TAMP
3TRG

TAMP
3E

TAMP
2TRG

TAMP
2E

TAMPIE
TAMP
1TRG

TAMP
1E

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:19 Reserved. Always read as 0.

Bit 18 ALARMOUTTYPE: RTC_ALARM output type

0: ALARM_AF0 is an open-drain output
1: ALARM_AF0 is a push-pull output

Bit 17:16 Reserved. Always read as 0.

Bit 15 TAMPPUDIS: TAMPER pull-up disable

This bit determines if each of the tamper pins are pre-charged before each sample.
0: Precharge tamper pins before sampling (enable internal pull-up)

1: Disable precharge of tamper pins

Note: This bit is available in Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices only

Bits 14:13 TAMPPRCH[1:0]: Tamper precharge duration

These bit determines the duration of time during which the pull-up/is activated before each
sample. TAMPPRCH is valid for each of the tamper inputs.
0x0: 1 RTCCLK cycle
0x1: 2 RTCCLK cycles
0x2: 4 RTCCLK cycles
0x3: 8 RTCCLK cycles

Note: This bits is available in Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices only

Bits 12:11 TAMPFLT[1:0]: Tamper filter count

These bits determines the number of consecutive samples at the specified level
(TAMP*TRG) necessary to activate a Tamper event. TAMPFLT is valid for each of the tamper
inputs.
0x0: Tamper is activated on edge of tamper input transitions to the active level (no internal
pull-up on tamper input).
0x1: Tamper is activated after 2 consecutive samples at the active level.
0x2: Tamper is activated after 4 consecutive samples at the active level.
0x3: Tamper is activated after 8 consecutive samples at the active level.

Note: This bit is available in Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices only

DocID15965 Rev 14 543/908

RM0038 Real-time clock (RTC)

548

Bits 10:8 TAMPFREQ[2:0]: Tamper sampling frequency

Determines the frequency at which each of the tamper inputs are sampled.
0x0: RTCCLK / 32768 (1 Hz when RTCCLK = 32768 Hz)
0x1: RTCCLK / 16384 (2 Hz when RTCCLK = 32768 Hz)
0x2: RTCCLK / 8192 (4 Hz when RTCCLK = 32768 Hz)
0x3: RTCCLK / 4096 (8 Hz when RTCCLK = 32768 Hz)
0x4: RTCCLK / 2048 (16 Hz when RTCCLK = 32768 Hz)
0x5: RTCCLK / 1024 (32 Hz when RTCCLK = 32768 Hz)
0x6: RTCCLK / 512 (64 Hz when RTCCLK = 32768 Hz)
0x7: RTCCLK / 256 (128 Hz when RTCCLK = 32768 Hz)

Note: These bits are available in Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices only

Bit 7 TAMPTS: Activate timestamp on tamper detection event

0: Tamper detection event does not cause a timestamp to be saved
1: Save timestamp on tamper detection event
TAMPTS is valid even if TSE=0 in the RTC_CR register.

Note: This bit is available in Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices only

Bit 6 TAMP3TRG: Active level for tamper 2

if TAMPFLT != 00 (Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 device only):

0: TAMPER3 staying low triggers a tamper detection event.
1: TAMPER3 staying high triggers a tamper detection event.

if TAMPFLT = 00:

0: TAMPER3 rising edge triggers a tamper detection event.
1: TAMPER3 falling edge triggers a tamper detection event.

Bit 5 TAMP3E: Tamper 3 detection enable

0: Tamper 3 detection disabled
1: Tamper 3 detection enabled

Bit 4 TAMP2TRG: Active level for tamper 2

if TAMPFLT != 00 (Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 device only):
0: TAMPER2 staying low triggers a tamper detection event.
1: TAMPER2 staying high triggers a tamper detection event.
if TAMPFLT = 00:
0: TAMPER2 rising edge triggers a tamper detection event.
1: TAMPER2 falling edge triggers a tamper detection event.

Note: This bit is available in Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices only

Bit 3 TAMP2E: Tamper 2 detection enable

0: Tamper 2 detection disabled

1: Tamper 2 detection enabled

Note: This bit is available in Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices only

Bit 2 TAMPIE: Tamper interrupt enable

0: Tamper interrupt disabled
1: Tamper interrupt enabled

Real-time clock (RTC) RM0038

544/908 DocID15965 Rev 14

20.6.18 RTC alarm A sub second register (RTC_ALRMASSR)

The RTC_ALRMASSR register is available in Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices
only.

Address offset: 0x44

Power-on reset value: 0x0000 0000

System reset: not affected

Bit 1 TAMP1TRG: Active level for tamper 1

if TAMPFLT != 00 (Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 device only)
0: TAMPER1 staying low triggers a tamper detection event.
1: TAMPER1 staying high triggers a tamper detection event.
if TAMPFLT = 00:
0: TAMPER1 rising edge triggers a tamper detection event.
1: TAMPER1 falling edge triggers a tamper detection event.

Caution: When TAMPFLT = 0, TAMPxE must be reset when TAMPxTRG is changed to avoid
spuriously setting TAMPxF.

Bit 0 TAMP1E: Tamper 1 detection enable

0: Tamper 1 detection disabled
1: Tamper 1 detection enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved MASKSS[3:0] Reserved

r r r r rw rw rw rw r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved SS[14:0]

r rw rw rw rw rw rw rw rw rw rw rw rw w rw rw

Bits 31:28 Reserved

Bits 27:24 MASKSS[3:0]: Mask the most-significant bits starting at this bit

0: No comparison on sub seconds for Alarm A. The alarm is set when the seconds unit is
incremented (assuming that the rest of the fields match).
1: SS[14:1] are don’t care in Alarm A comparison. Only SS[0] is compared.
2: SS[14:2] are don’t care in Alarm A comparison. Only SS[1:0] are compared.
3: SS[14:3] are don’t care in Alarm A comparison. Only SS[2:0] are compared.
...
12: SS[14:12] are don’t care in Alarm A comparison. SS[11:0] are compared.
13: SS[14:13] are don’t care in Alarm A comparison. SS[12:0] are compared.
14: SS[14] is don’t care in Alarm A comparison. SS[13:0] are compared.
15: All 15 SS bits are compared and must match to activate alarm.
The overflow bits of the synchronous counter (bits 15) is never compared. This bit can be
different from 0 only after a shift operation.

Bits 23:15 Reserved

Bits 14:0 SS[14:0]: Sub seconds value

This value is compared with the contents of the synchronous prescaler’s counter to
determine if Alarm A is to be activated. Only bits 0 up MASKSS-1 are compared.

DocID15965 Rev 14 545/908

RM0038 Real-time clock (RTC)

548

Note: This register can be written only when ALRAE is reset in RTC_CR register, or in initialization
mode.

This register is write protected. The write access procedure is described in RTC register
write protection on page 513

20.6.19 RTC alarm B sub second register (RTC_ALRMBSSR)

The RTC_ALRMBSSR register is available only in Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6
devices.

Address offset: 0x48

Power-on reset value: 0x0000 0000

System reset: not affected

Note: This register can be written only when ALRBIE is reset in RTC_CR register, or in
initialization mode.

This register is write protected.The write access procedure is described in Section : RTC
register write protection

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved MASKSS[3:0] Reserved

r r r r rw rw rw rw r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved SS[14:0]

r rw rw rw rw rw rw rw rw rw rw rw rw w rw rw

Bits 31:28 Reserved

Bits 27:24 MASKSS[3:0]: Mask the most-significant bits starting at this bit

0x0: No comparison on sub seconds for Alarm B. The alarm is set when the seconds unit is
incremented (assuming that the rest of the fields match).
0x1: SS[14:1] are don’t care in Alarm B comparison. Only SS[0] is compared.
0x2: SS[14:2] are don’t care in Alarm B comparison. Only SS[1:0] are compared.
0x3: SS[14:3] are don’t care in Alarm B comparison. Only SS[2:0] are compared.
...
0xC: SS[14:12] are don’t care in Alarm B comparison. SS[11:0] are compared.
0xD: SS[14:13] are don’t care in Alarm B comparison. SS[12:0] are compared.
0xE: SS[14] is don’t care in Alarm B comparison. SS[13:0] are compared.
0xF: All 15 SS bits are compared and must match to activate alarm.
The overflow bits of the synchronous counter (bits 15) is never compared. This bit can be
different from 0 only after a shift operation.

Bits 23:15 Reserved

Bits 14:0 SS[14:0]: Sub seconds value

This value is compared with the contents of the synchronous prescaler’s counter to
determine if Alarm B is to be activated. Only bits 0 up to MASKSS-1 are compared.

Real-time clock (RTC) RM0038

546/908 DocID15965 Rev 14

20.6.20 RTC backup registers (RTC_BKPxR)

Address offset: 0x50 to 0x60 (value line devices)

Address offset: 0x50 to 0x9C (Cat.1 and Cat.2 devices)

Address offset: 0x50 to 0xCC (Cat.3, Cat.4, Cat.5 and Cat.6 devices)

Power-on reset value: 0x0000 0000

System reset: not affected

20.6.21 RTC register map

The reserved memory areas are highlighted in gray in the table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BKP[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BKP[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw w rw rw

Bits 31:0 BKP[31:0]

The application can write or read data to and from these registers. They are not powered-on
when VDD is switched off. They are not reset by System reset and their contents remain
valid when the device operates in low-power mode. This register is reset on a tamper
detection event, as long as TAMPxF=1, or when the Flash readout protection is disabled.

Table 91. RTC register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
RTC_TR

Reserved P
M

HT
[1:0]

HU[3:0]

R
e

se
rv

e
d

MNT[2:0] MNU[3:0]

R
e

se
rv

e
d

ST[2:0] SU[3:0]

Reset value 0

0x04
RTC_DR

Reserved
YT[3:0] YU[3:0] WDU[2:0]

M
T MU[3:0]

R
e

se
rv

e
d DT

[1:0]
DU[3:0]

Reset value 0 0 1 0 0 0 0 1 0 0 0 0 0 1

0x08
RTC_CR

Reserved C
O

E OSEL
[1:0] P

O
L

C
O

S
E

L

B
K

P

S
U

B
1

H

A
D

D
1

H

T
S

IE

W
U

T
IE

A
L

R
B

IE

A
L

R
A

IE

T
S

E

W
U

T
E

A
LR

B
E

A
LR

A
E

D
C

E

F
M

T

B
Y

P
S

H
A

D

R
E

F
C

K
O

N

T
S

E
D

G
E

WCKSEL
[2:0]

Reset value 0

0x0C
RTC_ISR

Reserved

TA
M

P
3F

TA
M

P
2F

TA
M

P
1F

T
S

O
V

F

T
S

F

W
U

T
F

A
L

R
B

F

A
L

R
A

F

IN
IT

IN
IT

F

R
S

F

IN
IT

S

S
H

P
F

W
U

T
W

F

A
L

R
B

W
F

A
L

R
A

W
F

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0x10
RTC_PRER

Reserved
PREDIV_A[6:0]

R
es

er
ve

d

PREDIV_S[14:0]

Reset value 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0x14
RTC_WUTR

Reserved
WUT[15:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

DocID15965 Rev 14 547/908

RM0038 Real-time clock (RTC)

548

0x18
RTC_CALIBR

Reserved D
C

S

R
e

se
rv

ed DC[4:0]

Reset value 0 0 0 0 0 0

0x1C
RTC_ALRMAR

M
S

K
4

W
D

S
E

L
DT

[1:0]
DU[3:0]

M
S

K
3

P
M

HT
[1:0]

HU[3:0]

M
S

K
2

MNT[2:0] MNU[3:0]

M
S

K
1

ST[2:0] SU[3:0]

Reset value 0

0x20
RTC_ALRMBR

M
S

K
4

W
D

S
E

L

DT
[1:0]

DU[3:0]

M
S

K
3

P
M

HT
[1:0]

HU[3:0]

M
S

K
2

MNT[2:0] MNU[3:0]

M
S

K
2

ST[2:0] SU[3:0]

Reset value 0

0x24
RTC_WPR

Reserved
KEY[7:0]

Reset value 0 0 0 0 0 0 0 0

0x28
RTC_SSR

Reserved
SS[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
RTC_SHIFTR

A
D

D
1

S

Reserved
SUBFS[14:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x30
RTC_TSTR

Reserved P
M

H
T

[1
:0

]

HU[3:0]

R
e

se
rv

e
d

M
N

T
[2

:0
]

MNU[3:0]

R
e

se
rv

e
d

ST[2:0] SU[3:0]

Reset value 0

0x34
RTC_TSDR

Reserved
WDU[2:0]

M
T MU[3:0]

R
e

se
rv

e
d DT

[1:0]
DU[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x38
RTC_TSSSR

Reserved
SS[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x3C
RTC_ CALR

Reserved C
A

LP

C
A

LW
8

C
A

LW
1

6

R
e

se
rv

ed CALM[8:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x40
RTC_TAFCR

Reserved

A
L

A
R

M
O

U
T

T
Y

P
E

R
e

se
rv

e
d

TA
M

P
P

U
D

IS

TA
M

P
P

R
C

H
[1

:0
]

TA
M

P
F

LT
[1

:0
]

TA
M

P
F

R
E

Q
[2

:0
]

TA
M

P
T

S

TA
M

P
3

T
R

G

TA
M

P
3

E

TA
M

P
2

T
R

G

TA
M

P
2

E

TA
M

P
IE

TA
M

P
1E

T
R

G

TA
M

P
1

E

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x44

RTC_
ALRMASSR Reserved

MASKSS[3:0]
Reserved

SS[14:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x48

RTC_
ALRMBSSR Reserved

MASKSS[3:0]
Reserved

SS[14:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 91. RTC register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Real-time clock (RTC) RM0038

548/908 DocID15965 Rev 14

Refer to Section: Memory map for the register boundary addresses.

0x50
to 0xCC

RTC_BKP0R BKP[31:0]

Reset value 0

to
RTC_BKP31R

BKP[31:0]

Reset value 0

Table 91. RTC register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

DocID15965 Rev 14 549/908

RM0038 Independent watchdog (IWDG)

553

21 Independent watchdog (IWDG)

21.1 IWDG introduction

The devices have two embedded watchdog peripherals which offer a combination of high
safety level, timing accuracy and flexibility of use. Both watchdog peripherals (Independent
and Window) serve to detect and resolve malfunctions due to software failure, and to trigger
system reset or an interrupt (window watchdog only) when the counter reaches a given
timeout value.

The independent watchdog (IWDG) is clocked by its own dedicated low-speed clock (LSI)
and thus stays active even if the main clock fails. The window watchdog (WWDG) clock is
prescaled from the APB1 clock and has a configurable time-window that can be
programmed to detect abnormally late or early application behavior.

The IWDG is best suited to applications which require the watchdog to run as a totally
independent process outside the main application, but have lower timing accuracy
constraints. The WWDG is best suited to applications which require the watchdog to react
within an accurate timing window. For further information on the window watchdog, refer to
Section 22 on page 554.

21.2 IWDG main features

• Free-running downcounter

• clocked from an independent RC oscillator (can operate in Standby and Stop modes)

• Reset (if watchdog activated) when the downcounter value of 0x000 is reached

21.3 IWDG functional description

Figure 166 shows the functional blocks of the independent watchdog module.

When the independent watchdog is started by writing the value 0xCCCC in the Key register
(IWDG_KR), the counter starts counting down from the reset value of 0xFFF. When it
reaches the end of count value (0x000) a reset signal is generated (IWDG reset).

Whenever the key value 0xAAAA is written in the IWDG_KR register, the IWDG_RLR value
is reloaded in the counter and the watchdog reset is prevented.

21.3.1 Hardware watchdog

If the “Hardware watchdog” feature is enabled through the device option bits, the watchdog
is automatically enabled at power-on, and will generate a reset unless the Key register is
written by the software before the counter reaches end of count.

21.3.2 Register access protection

Write access to the IWDG_PR and IWDG_RLR registers is protected. To modify them, first
write the code 0x5555 in the IWDG_KR register. A write access to this register with a
different value will break the sequence and register access will be protected again. This
implies that it is the case of the reload operation (writing 0xAAAA).

Independent watchdog (IWDG) RM0038

550/908 DocID15965 Rev 14

A status register is available to indicate that an update of the prescaler or the down-counter
reload value is on going.

21.3.3 Debug mode

When the microcontroller enters debug mode (Cortex®-M3 core halted), the IWDG counter
either continues to work normally or stops, depending on DBG_IWDG_STOP configuration
bit in DBG module. For more details, refer to Section 30.16.2: Debug support for timers,
watchdog and I2C.

Figure 166. Independent watchdog block diagram

Note: The watchdog function is implemented in the VDD voltage domain that is still functional in
Stop and Standby modes.

Table 92. Min/max IWDG timeout period at 37 kHz (LSI)(1)

1. These timings are given for a 37 kHz clock but the microcontroller internal RC frequency can vary. refer to
the LSI oscillator characteristics table in the device datasheet for maximum and minimum values.

Prescaler divider PR[2:0] bits
Min timeout (ms) RL[11:0]=

0x000
Max timeout (ms) RL[11:0]=

0xFFF

/4 0 0.108 442.81

/8 1 0.216 885.621

/16 2 0.432 1771.243

/32 3 0.864 3542.486

/64 4 1.729 7084.972

/128 5 3.459 14169.945

/256 6 6.918 28339.891

DocID15965 Rev 14 551/908

RM0038 Independent watchdog (IWDG)

553

21.4 IWDG registers

Refer to Section: List of abbreviations for registers for a list of abbreviations used in register
descriptions.

The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits).

21.4.1 Key register (IWDG_KR)

Address offset: 0x00

Reset value: 0x0000 0000 (reset by Standby mode)

21.4.2 Prescaler register (IWDG_PR)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
KEY[15:0]

w w w w w w w w w w w w w w w w

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 KEY[15:0]: Key value (write only, read 0000h)

These bits must be written by software at regular intervals with the key value AAAAh,
otherwise the watchdog generates a reset when the counter reaches 0.
Writing the key value 5555h to enable access to the IWDG_PR and IWDG_RLR registers
(see Section 21.3.2)
Writing the key value CCCCh starts the watchdog (except if the hardware watchdog option is
selected)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
PR[2:0]

rw rw rw

Bits 31:3 Reserved, must be kept at reset value.

Bits 2:0 PR[2:0]: Prescaler divider

These bits are write access protected seeSection 21.3.2. They are written by software to
select the prescaler divider feeding the counter clock. PVU bit of IWDG_SR must be reset in
order to be able to change the prescaler divider.
000: divider /4
001: divider /8
010: divider /16
011: divider /32
100: divider /64
101: divider /128
110: divider /256
111: divider /256

Note: Reading this register returns the prescaler value from the VDD voltage domain. This
value may not be up to date/valid if a write operation to this register is ongoing. For this
reason the value read from this register is valid only when the PVU bit in the IWDG_SR
register is reset.

Independent watchdog (IWDG) RM0038

552/908 DocID15965 Rev 14

21.4.3 Reload register (IWDG_RLR)

Address offset: 0x08

Reset value: 0x0000 0FFF (reset by Standby mode)

21.4.4 Status register (IWDG_SR)

Address offset: 0x0C

Reset value: 0x0000 0000 (not reset by Standby mode)

Note: If several reload values or prescaler values are used by application, it is mandatory to wait
until RVU bit is reset before changing the reload value and to wait until PVU bit is reset
before changing the prescaler value. However, after updating the prescaler and/or the
reload value it is not necessary to wait until RVU or PVU is reset before continuing code
execution (even in case of low-power mode entry, the write operation is taken into account
and will complete)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RL[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value.

Bits11:0 RL[11:0]: Watchdog counter reload value

These bits are write access protected see Section 21.3.2. They are written by software to
define the value to be loaded in the watchdog counter each time the value AAAAh is written
in the IWDG_KR register. The watchdog counter counts down from this value. The timeout
period is a function of this value and the clock prescaler. Refer to Table 92.
The RVU bit in the IWDG_SR register must be reset in order to be able to change the reload
value.

Note: Reading this register returns the reload value from the VDD voltage domain. This value
may not be up to date/valid if a write operation to this register is ongoing on this
register. For this reason the value read from this register is valid only when the RVU bit
in the IWDG_SR register is reset.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RVU PVU

r r

Bits 31:2 Reserved, must be kept at reset value.

Bit 1 RVU: Watchdog counter reload value update

This bit is set by hardware to indicate that an update of the reload value is ongoing. It is reset
by hardware when the reload value update operation is completed in the VDD voltage domain
(takes up to 5 RC 40 kHz cycles).
Reload value can be updated only when RVU bit is reset.

Bit 0 PVU: Watchdog prescaler value update

This bit is set by hardware to indicate that an update of the prescaler value is ongoing. It is
reset by hardware when the prescaler update operation is completed in the VDD voltage
domain (takes up to 5 RC 40 kHz cycles).
Prescaler value can be updated only when PVU bit is reset.

DocID15965 Rev 14 553/908

RM0038 Independent watchdog (IWDG)

553

21.4.5 IWDG register map

The following table gives the IWDG register map and reset values. The reserved memory
areas are highlighted in gray in the table.

Refer to Section: Memory map for the register boundary addresses.

Table 93. IWDG register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
IWDG_KR

Reserved
KEY[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
IWDG_PR

Reserved
PR[2:0]

Reset value 0 0 0

0x08
IWDG_RLR

Reserved
RL[11:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1

0x0C
IWDG_SR

Reserved R
V

U

P
V

U

Reset value 0 0

Window watchdog (WWDG) RM0038

554/908 DocID15965 Rev 14

22 Window watchdog (WWDG)

22.1 WWDG introduction

The window watchdog is used to detect the occurrence of a software fault, usually
generated by external interference or by unforeseen logical conditions, which causes the
application program to abandon its normal sequence. The watchdog circuit generates an
MCU reset on expiry of a programmed time period, unless the program refreshes the
contents of the downcounter before the T6 bit becomes cleared. An MCU reset is also
generated if the 7-bit downcounter value (in the control register) is refreshed before the
downcounter has reached the window register value. This implies that the counter must be
refreshed in a limited window.

22.2 WWDG main features

• Programmable free-running downcounter

• Conditional reset

– Reset (if watchdog activated) when the downcounter value becomes less than
0x40

– Reset (if watchdog activated) if the downcounter is reloaded outside the window
(see Figure 168)

• Early wakeup interrupt (EWI): triggered (if enabled and the watchdog activated) when
the downcounter is equal to 0x40.

22.3 WWDG functional description

If the watchdog is activated (the WDGA bit is set in the WWDG_CR register) and when the
7-bit downcounter (T[6:0] bits) rolls over from 0x40 to 0x3F (T6 becomes cleared), it initiates
a reset. If the software reloads the counter while the counter is greater than the value stored
in the window register, then a reset is generated.

DocID15965 Rev 14 555/908

RM0038 Window watchdog (WWDG)

560

Figure 167. Watchdog block diagram

The application program must write in the WWDG_CR register at regular intervals during
normal operation to prevent an MCU reset. This operation must occur only when the counter
value is lower than the window register value. The value to be stored in the WWDG_CR
register must be between 0xFF and 0xC0.

Enabling the watchdog

The watchdog is always disabled after a reset. It is enabled by setting the WDGA bit in the
WWDG_CR register, then it cannot be disabled again except by a reset.

Controlling the downcounter

This downcounter is free-running, counting down even if the watchdog is disabled. When
the watchdog is enabled, the T6 bit must be set to prevent generating an immediate reset.

The T[5:0] bits contain the number of increments which represents the time delay before the
watchdog produces a reset. The timing varies between a minimum and a maximum value
due to the unknown status of the prescaler when writing to the WWDG_CR register (see
Figure 168). The Configuration register (WWDG_CFR) contains the high limit of the window:
To prevent a reset, the downcounter must be reloaded when its value is lower than the
window register value and greater than 0x3F. Figure 168 describes the window watchdog
process.

Note: The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is
cleared).

Advanced watchdog interrupt feature

The Early Wakeup Interrupt (EWI) can be used if specific safety operations or data logging
must be performed before the actual reset is generated. The EWI interrupt is enabled by
setting the EWI bit in the WWDG_CFR register. When the downcounter reaches the value
0x40, an EWI interrupt is generated and the corresponding interrupt service routine (ISR)
can be used to trigger specific actions (such as communications or data logging), before
resetting the device.

Window watchdog (WWDG) RM0038

556/908 DocID15965 Rev 14

In some applications, the EWI interrupt can be used to manage a software system check
and/or system recovery/graceful degradation, without generating a WWDG reset. In this
case, the corresponding interrupt service routine (ISR) should reload the WWDG counter to
avoid the WWDG reset, then trigger the required actions.

The EWI interrupt is cleared by writing '0' to the EWIF bit in the WWDG_SR register.

Note: When the EWI interrupt cannot be served, e.g. due to a system lock in a higher priority task,
the WWDG reset will eventually be generated.

22.4 How to program the watchdog timeout

Warning: When writing to the WWDG_CR register, always write 1 in the
T6 bit to avoid generating an immediate reset.

Figure 168. Window watchdog timing diagram

The formula to calculate the WWDG timeout value is given by:

where:

tWWDG: WWDG timeout

tPCLK1: APB1 clock period measured in ms

4096: value corresponding to internal divider

tWWDG tPCLK1 4096× 2
WDGTB[1:0]× T[5:0] 1+()×= ms()

DocID15965 Rev 14 557/908

RM0038 Window watchdog (WWDG)

560

As an example, let us assume APB1 frequency is equal to 32 MHz, WDGTB[1:0] is set to 3
and T[5:0] is set to 63:

Refer to Table 94 for the minimum and maximum values of the tWWDG.

22.5 Debug mode

When the microcontroller enters debug mode (Cortex®-M3 core halted), the WWDG
counter either continues to work normally or stops, depending on DBG_WWDG_STOP
configuration bit in DBG module. For more details, refer to Section 30.16.2: Debug support
for timers, watchdog and I2C.

Table 94. Minimum and maximum timeout values @32 MHz (fPCLK1)

Prescaler WDGTB Min timeout value Max timeout value

1 0 128 µs 8.19 ms

2 1 256 µs 16.38 ms

4 2 512 µs 32.67 ms

8 3 1024 µs 65.54 ms

tWWDG 1 32000⁄ 4096× 2
3× 63 1+()× 65.536ms= =

Window watchdog (WWDG) RM0038

558/908 DocID15965 Rev 14

22.6 WWDG registers

Refer to Section: List of abbreviations for registers for a list of abbreviations used in register
descriptions.

The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits).

22.6.1 Control register (WWDG_CR)

Address offset: 0x00

Reset value: 0x0000 007F

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
WDGA T[6:0]

rs rw

Bits 31:8 Reserved, must be kept at reset value.

Bit 7 WDGA: Activation bit

This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the
watchdog can generate a reset.
0: Watchdog disabled
1: Watchdog enabled

Bits 6:0 T[6:0]: 7-bit counter (MSB to LSB)

These bits contain the value of the watchdog counter. It is decremented every (4096 x
2WDGTB[1:0]) PCLK1 cycles. A reset is produced when it rolls over from 0x40 to 0x3F (T6
becomes cleared).

DocID15965 Rev 14 559/908

RM0038 Window watchdog (WWDG)

560

22.6.2 Configuration register (WWDG_CFR)

Address offset: 0x04

Reset value: 0x0000 007F

22.6.3 Status register (WWDG_SR)

Address offset: 0x08
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
EWI WDGTB[1:0] W[6:0]

rs rw rw

Bit 31:10 Reserved, must be kept at reset value.

Bit 9 EWI: Early wakeup interrupt

When set, an interrupt occurs whenever the counter reaches the value 0x40. This interrupt is
only cleared by hardware after a reset.

Bits 8:7 WDGTB[1:0]: Timer base

The time base of the prescaler can be modified as follows:
00: CK Counter Clock (PCLK1 div 4096) div 1
01: CK Counter Clock (PCLK1 div 4096) div 2
10: CK Counter Clock (PCLK1 div 4096) div 4
11: CK Counter Clock (PCLK1 div 4096) div 8

Bits 6:0 W[6:0]: 7-bit window value

These bits contain the window value to be compared to the downcounter.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
EWIF

rc_w0

Bits 31:1 Reserved, must be kept at reset value.

Bit 0 EWIF: Early wakeup interrupt flag

This bit is set by hardware when the counter has reached the value 0x40. It must be cleared
by software by writing ‘0’. A write of ‘1’ has no effect. This bit is also set if the interrupt is not
enabled.

Window watchdog (WWDG) RM0038

560/908 DocID15965 Rev 14

22.6.4 WWDG register map

The following table gives the WWDG register map and reset values. The reserved memory
areas are highlighted in gray in the table.

Refer to Section: Memory map for the register boundary addresses.

Table 95. WWDG register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
WWDG_CR

Reserved

W
D

G
A

T[6:0]

Reset value 0 1 1 1 1 1 1 1

0x04
WWDG_CFR

Reserved E
W

I

W
D

G
T

B
1

W
D

G
T

B
0

W[6:0]

Reset value 0 0 0 1 1 1 1 1 1 1

0x08
WWDG_SR

Reserved E
W

IF

Reset value 0

DocID15965 Rev 14 561/908

RM0038 Advanced encryption standard hardware accelerator (AES)

586

23 Advanced encryption standard hardware accelerator
(AES)

This section applies to STM32L162xx devices only.

23.1 Introduction

The AES hardware accelerator can be used to both encipher and decipher data using AES
algorithm. It is a fully compliant implementation of the following standard:

• The advanced encryption standard (AES) as defined by Federal Information
Processing Standards Publication (FIPS PUB 197, 2001 November 26)

The accelerator encrypts and decrypts 128-bit blocks using 128-bit key length. It can also
perform key derivation. The encryption or decryption key is stored in an internal register in
order to minimize write operations by the CPU or DMA when processing several data blocks
using the same key.

By default, Electronic codebook mode (ECB) is selected. Cipher block chaining (CBC) or
Counter (CTR) mode) chaining algorithms are also supported by the hardware.

The AES supports DMA transfer for incoming and for outcoming data (2 DMA channels
required).

23.2 AES main features

• Encryption/Decryption using AES Rijndael Block Cipher algorithm

• NIST FIPS 197 compliant implementation of AES encryption/decryption algorithm

• Internal 128-bit register for storing the encryption or derivation key (4x 32-bit registers)

• Electronic codebook (ECB), Cipher block chaining (CBC), and Counter mode (CTR)
supported

• Key scheduler

• Key derivation for decryption

• 128-bit data block processing

• 128-bit key length

• 213 clock cycles to encrypt or decrypt one 128-bit block (including the input and output
phases)

• 1x32-bit INPUT buffer and 1x32-bit OUTPUT buffer.

• Register access supporting 32-bit data width only.

• One 128-bit Register for the initialization vector when AES is configured in CBC mode
or for the 32-bit counter initialization when CTR mode is selected.

• Automatic data flow control with support of direct memory access (DMA) using 2
channels, one for incoming data, and one for outcoming data.

Advanced encryption standard hardware accelerator (AES) RM0038

562/908 DocID15965 Rev 14

23.3 AES functional description

Figure 169 shows the block diagram of the AES accelerator.

Figure 169. Block diagram

The AES accelerator processes data blocks of 128-bits (4 words) using a key with a length
of 128 bits, and an initialization vector when CBC or CTR chaining mode is selected.

It provides 4 operating modes:

• Mode 1: Encryption using the encryption key stored in the AES_KEYRx registers.

• Mode 2: Key Derivation stored internally in the AES_KEYRx registers at the end of the
key derivation processed from the encryption key stored in this register before enabling
the AES. This mode is independent from the AES chaining mode selection.

• Mode 3: Decryption using a given (pre-computed) decryption key stored in the
AES_KEYRx registers.

• Mode 4: Key Derivation + Decryption using an encryption key stored in the
AES_KEYRx registers (not used when the AES is configured in Counter mode for
perform a chaining algorithm).

The operating mode is selected by programming bits MODE[1:0] into the AES_CR register.
The mode must be changed only when the AES is disabled (bit EN=0 in the AES_CR
register). The KEY registers (AES_KEYRx) must be stored before enabling the AES.

To select which one of the ECB, CBC or CTR mode is going to be used for the cryptographic
solution, it is mandatory to write the bit CHMOD[1:0] of the AES_CR register and the
AES_IVR register (only used for the CBC and CTR chaining modes) when the AES is
disabled (bit EN =0 in the AES_CR register).

Once enabled (bit EN=1), the AES is in the input phase, waiting for the software to write the
input data words into the AES_DINR (4 words) for the modes 1, 3 or 4. The data
corresponds either to the plaintext message or the cipher message. A wait cycle is
automatically inserted between two consecutive writes to the AES_DINR register in order to
send, interleaved with the data, the key to the AES processor.

For mode 2, the key derivation processing is started immediately after the EN bit in the
AES_CR register is set. It requires that the AES_KEYRx registers are loaded with the
encrypted KEY before enabling the AES. At the end of the Key derivation processing (CCF
flag is set), the derivative key is available in the AES_KEYRx registers and the AES is

DocID15965 Rev 14 563/908

RM0038 Advanced encryption standard hardware accelerator (AES)

586

disabled by hardware. In this mode, the AES_KEYRx registers must not be read when AES
is enabled and until the CCF flag is set to 1 by hardware.

The status flag CCF (Computation Complete Flag) in the AES_SR register is set once the
computation phase is complete. An interrupt can be generated if bit CCFIE=1 in the
AES_CR register. The software can then read back the data from the AES_DOUTR register
(for modes 1, 3, 4) or from the AES_KEYRx registers (if mode 2 is selected).

The flag CCF has no meaning when DMAOUTEN = 1 in the AES_CR register, because the
reading the AES_DOUTR register is managed by DMA automatically without any software
action at the end of the computation phase.

The operation ends with the output phase, during which the software reads successively the
4 output data words from the AES_DOUTR register in mode 1, 3 or 4. In mode 2 (key
derivation mode), the data is automatically stored in the AES_KEYRx registers and the AES
is disabled by hardware. Then, software can select mode 3 (decryption mode) before it
enables the AES to start the decryption using this derivative key.

During the input and output phases, the software must read or write the data bytes
successively (except in mode 2) but the AES is tolerant of any delays occurring between
each read or write operation (example: if servicing another interrupt at this time).

The RDERR and WRERR flags in the AES_SR register are set when an unexpected read or
write operation is detected. An interrupt can be generated if the ERRIE bit is set in the
AES_CR register. AES is not disabled after an error detection and continues processing as
normal.

It is also possible to use the general purpose DMA to write the input words and to read the
output words (refer to Figure 184 and Figure 185).

The AES can be re-initialized at any moment by resetting the EN bit in the AES_CR register.
Then the AES can be re-started from the beginning by setting EN=1, waiting for the first
input data byte to be written (except in mode 2 where Key derivation processing starts as
soon as the EN bit is set, starting from the value stored in the AES_KEYRx registers).

23.4 Encryption and derivation keys

The AES_KEYRx registers are used to store the encryption or decryption keys. These four
registers are organized in little-endian configuration: Register AES_KEYR0 has to be
loaded with the 32-bit LSB of the key. Consequently, AES_KEYR3 has to be loaded with the
32-bit MSB of the 128-bit key.

The key for encryption or decryption must be stored in these registers when the AES is
disabled (EN = 0 into the AES_CR register). Their endianess are fixed.

In mode 2 (key derivation), the AES_KEYRx needs to be loaded with the encryption key.
Then, the AES has to be enabled. At the end of the computation phase, the derivation key is
stored automatically in the AES_KEYRx registers, overwriting the previous encryption key.
The AES is disabled by hardware when the derivation key is available. If the software needs
to switch the AES to mode 3 (decryption mode), there is no need to write the AES_KEYRx
registers if their content corresponds to the derivation key (previously computed by mode 2).

In mode 4 (key derivation + decryption), the AES_KEYRx registers contain only the
encryption key. The derivation key is calculated internally without any write to these
registers.

Advanced encryption standard hardware accelerator (AES) RM0038

564/908 DocID15965 Rev 14

23.5 AES chaining algorithms

Three algorithms are supported by the AES hardware and can be selected through the
CHMOD[1:0] bits in the AES_CR register when the AES is disabled (bit EN = 0):

• Electronic CodeBook (ECB)

• Cipher Block Chaining (CBC)

• Counter Mode (CTR)

23.5.1 Electronic CodeBook (ECB)

This is the default mode. This mode doesn’t use the AES_IVR register. There are no
chaining operations. The message is divided into blocks and each block is encrypted
separately.
Figure 170 and Figure 171 describe the principle of the Electronic Codebook algorithm for
encryption and decryption respectively.

Figure 170. ECB encryption mode

DocID15965 Rev 14 565/908

RM0038 Advanced encryption standard hardware accelerator (AES)

586

Figure 171. ECB decryption mode

23.5.2 Cipher block chaining (CBC)

In cipher-block chaining (CBC) mode, each block of plain text is XORed with the previous
cipher text block before being encrypted. To make each message unique, an initialization
vector (AES_IVRx) is used during the first block processing.

The initialization vector is XORed after the swapping management block in during
encryption mode and before it in decryption mode (refer to Figure 172 and Figure 173).

Advanced encryption standard hardware accelerator (AES) RM0038

566/908 DocID15965 Rev 14

Figure 172. CBC mode encryption

Figure 173. CBC mode decryption

Note: When the AES is enabled, reading the AES_IVR returns the value 0x00000000.

DocID15965 Rev 14 567/908

RM0038 Advanced encryption standard hardware accelerator (AES)

586

Suspended mode for a given message

It is possible to suspend a message if another message with a higher priority needs to be
processed. At the end of sending of this highest priority message, the suspended message
may be resumed in both encryption or decryption mode. This feature is available only when
the data transfer is done by CPU accesses to the AES_DOUTR and AES_DINR registers. It
is advised to not use it when the DMA controller is managing the data transfer.

For correct operation, the message must be suspended at the end of processing a block
(after the fourth read of the AES_DOUTR register and before the next AES_DINR write
access corresponding to the input of the next block to be processed).

The AES should be disabled writing bit EN = 0 in the AES_CR register. The software has to
read the AES_IVRx which contains the latest value to be used for the chaining XOR
operation before message interruption. This value has to be stored for reuse by writing the
AES_IVRx registers as soon as the interrupted message has to be resumed (when AES is
disabled). It should be noted that this does not break the chaining operation and the
message processing can be resumed as soon as the AES is enabled again to send the next
128-bit data block.

This behavior is valid whatever the AES configuration (encryption or decryption mode).

Figure 174 gives an example of a message 1 which is suspended in order to send a higher
priority message 2, shorter than message 1. At the end of the 128-bit block processing, AES
is disabled. The AES_IVR register is read back to store the value to be retrieved later on
when the message is resumed, in order not to break the chaining operation. Then, the AES
is configured to send message 2 and it is enabled to start processing. At the end of
message 2 processing, AES has to be disabled again and the AES_IVRx registers have to
be loaded with the value previously stored when the message 1 was interrupted. Then
software has to restart from the input value corresponding to block 4 as soon as AES is
enabled to resume message 1.

Advanced encryption standard hardware accelerator (AES) RM0038

568/908 DocID15965 Rev 14

Figure 174. Example of suspend mode management

DocID15965 Rev 14 569/908

RM0038 Advanced encryption standard hardware accelerator (AES)

586

23.5.3 Counter Mode (CTR)

In counter mode, a 32-bit counter is used in addition to a nonce value for the XOR operation
with the cipher text or plain text (refer to Figure 175 and Figure 176).

Figure 175. CTR mode encryption

Figure 176. CTR mode decryption

Advanced encryption standard hardware accelerator (AES) RM0038

570/908 DocID15965 Rev 14

The nonce value and 32-bit counter are accessible through the AES_IVRx register and
organized like below in Figure 177:

Figure 177. 32-bit counter + nonce organization

In Counter Mode, the counter is incremented from the initialized value for each block to be
processed in order to guarantee a unique sequence which is not repeated for a long time. It
is a 32-bit counter, meaning that the nonce message is kept to the initialized value stored
when the AES was disabled. Only the 32-bit LSB of the 128-bit initialization vector register
represents the counter. In contrast to CBC mode (which uses the AES_IVRx registers only
once when processing the first data block), in Counter mode, the AES_IVRx registers are
used for processing each data block.

In counter mode, key derivation+decryption mode is not applicable.

Note: The AES_IVRx register has be written only when the AES is disabled (bit EN = 0) to
guarantee good AES behavior.

Reading it while AES is enabled returns the value 0x00000000.

Reading it while the AES is disabled returns the latest counter value (useful for managing
suspend mode).

In CTR mode, key derivation + decryption serves no purpose. Consequently it is forbidden
to set MODE[1:0] = 11 in the AES_CR register and any attempt to set this configuration is
forced to MODE[1:0] = 10 (which corresponds to CTR mode decryption). This uses the
encryption block of the AES processor to decipher the message as shown in Figure 176).

Suspend mode in CTR mode

Like for the CBC mode, it is possible to interrupt a message, sending a higher priority
message and resume the message which was interrupted. Refer to the Figure 174 and
Chapter 23.5.2 for more details about the suspend mode capability.

23.6 Data type

Data are entered in the AES processor 32 bits at a time (words), by writing them in the
AES_DINR register. AES handles 128-bit data blocks. The AES_DINR or AES_DOUTR
registers must be read or written four times to handle one 128-bit data block with the MSB
first.

The system memory organization is little-endian: whatever the data type (bit, byte, 16-bit
half-word, 32-bit word) used, the less-significant data occupies the lowest address location.

Thus, there must be a bit, byte, or half-word swapping operation to be performed on data to
be written in the AES_DINR from system memory before entering the AES processor, and
the same swapping must be performed for AES data to be read from the AES_DOUTR
register to the system memory, depending on to the kind of data to be encrypted or
decrypted.

DocID15965 Rev 14 571/908

RM0038 Advanced encryption standard hardware accelerator (AES)

586

The DATATYPE bits in the AES_CR register offer different swap modes to be applied to the
AES_DINR register before sending it to the AES processor and to be applied on the
AES_DOUTR register on the data coming out from the processor (refer to Figure 178).

Note: The swapping operation concerns only the AES_DOUTR and AES_DINR registers. The
AES_KEYRx and AES_IVRx registers are not sensitive to the swap mode selected. They
have a fixed little-endian configuration (refer to Section 23.4 and Section 23.12).

Advanced encryption standard hardware accelerator (AES) RM0038

572/908 DocID15965 Rev 14

Figure 178. 128-bit block construction according to the data type

DocID15965 Rev 14 573/908

RM0038 Advanced encryption standard hardware accelerator (AES)

586

Figure 179. 128-bit block construction according to the data type (continued)

23.7 Operating modes

23.7.1 Mode 1: encryption

1. Disable the AES by resetting bit the EN bit in the AES_CR register.

2. Configure the Mode 1 by programming MODE[1:0]=00 in the AES_CR register and
select which type of chaining mode needs to be performed by programming the
CHMOD[1:0] bits.

3. Write the AES_KEYRx registers (128-bit encryption key) and the AES_IVRx registers if
CTR or CBC mode is selected. For EBC mode, the AES_IVRx register is not used.

4. Enable the AES by setting the EN bit in the AES_CR register.

5. Write the AES_DINR register 4 times to input the plain text (MSB first) as shown in
Figure 180: Mode 1: encryption on page 573.

6. Wait until the CCF flag is set in the AES_SR register.

7. Reads the AES_DOUTR register 4 times to get the cipher text (MSB first) as shown in
Figure 180: Mode 1: encryption on page 573.

8. Repeat steps 5,6,7 to process all the blocks with the same encryption key.

Figure 180. Mode 1: encryption

Advanced encryption standard hardware accelerator (AES) RM0038

574/908 DocID15965 Rev 14

23.7.2 Mode 2: key derivation

1. Disable the AES by resetting the EN bit in the AES_CR register.

2. Configure Mode 2 by programming MODE[1:0]=01 in the AES_CR register. Note that
the CHMOD[1:0] bits are not significant in this case because this key derivation mode
is independent from the chaining algorithm selected.

3. Write the AES_KEYRx registers with the encryption key to obtain the derivative key. A
write to the AES_IVRx has no effect.

4. Enable the AES by setting the EN bit in the AES_CR register.

5. Wait until the CCF flag is set in the AES_SR register.

6. The derivation key is put automatically into the AES_KEYRx registers. Read the
AES_KEYRx register to obtain the decryption key if needed. The AES is disabled by
hardware. To restart a derivation key calculation, repeat steps 3, 4, 5 and 6.

Figure 181. Mode 2: key derivation

23.7.3 Mode 3: decryption

1. Disable the AES by resetting the EN bit in the AES_CR register.

2. Configure Mode 3 by programming MODE[1:0] =10 in the AES_CR register and select
which type of chaining mode needs to be performed by programming the CHMOD[1:0]
bits.

3. Write the AES_KEYRx registers with the decryption key (this step can be bypassed if
the derivation key is already stored in the AES_KEYRx registers using mode 2: key
derivation). Write the AES_IVRx registers if CTR or CBC mode is selected. For EBC
mode, the AES_IVRx registers are not used.

4. Enable the AES by setting the EN bit in the AES_CR register.

5. Write the AES_DINR register 4 times to input the cipher text (MSB first) as shown in
Figure 182: Mode 3: decryption on page 575.

6. Wait until the CCF flag is set in the AES_SR register.

7. Read the AES_DOUTR register 4 times to get the plain text (MSB first) as shown in
Figure 182: Mode 3: decryption on page 575.

8. Repeat steps 5, 6, 7 to process all the blocks using the same derivation key stored in
the AES_KEYRx registers.

DocID15965 Rev 14 575/908

RM0038 Advanced encryption standard hardware accelerator (AES)

586

Figure 182. Mode 3: decryption

23.7.4 Mode 4: key derivation and decryption

1. Disable the AES by resetting the EN bit in the AES_CR register.

2. Configure Mode 4 by programming MODE[1:0]=11 in the AES_CR register. This mode
is forbidden when AES is configured in CTR mode. It will be forced to CTR decryption
mode if the software writes MODE[1:0] = 11 and CHMOD[1:0] = 10.

3. Write the AES_KEYRx register with the encryption key. Write the AES_IVRx register if
the CBC mode is selected.

4. Enable the AES by setting the EN bit in the AES_CR register.

5. Write the AES_DINR register 4 times to input the cipher text (MSB first) as shown in
Figure 183: Mode 4: key derivation and decryption on page 575.

6. Wait until the CCF flag is set in the AES_SR register.

7. Read the AES_DOUTR register 4 times to get the plain text (MSB first) as shown in
Figure 183: Mode 4: key derivation and decryption on page 575.

8. Repeat steps 5, 6, 7 to process all the blocks with the same encryption key

Note: The AES_KEYRx registers contain the encryption key during all phases of the processing,
No derivation key is stored in these registers. The derivation key starting from the encryption
key is stored internally in the AES without storing a copy in the AES_KEYRx registers.

Figure 183. Mode 4: key derivation and decryption

23.8 AES DMA interface

The AES accelerator provides an interface to connect to the DMA controller.

The DMA must be configured to transfer words.

Advanced encryption standard hardware accelerator (AES) RM0038

576/908 DocID15965 Rev 14

The AES can be associated with two distinct DMA request channels:

• A DMA request channel for the inputs: When the DMAINEN bit is set in the AES_CR
register, the AES initiates a DMA request (AES_IN) during the INPUT phase each time
it requires a word to be written to the AES_DINR register. The DMA channel must be
configured in memory-to-peripheral mode with 32-bit data size.

• A DMA request channel for the outputs: When the DMAOUTEN bit is enabled, the AES
initiates a DMA request (AES_OUT) during the OUTPUT phase each time it requires a
word to be read from the AES_DOUTR register. The DMA channel must be configured
in peripheral-to-memory mode with a data size equal to 32-bit.

Four DMA requests are asserted for each phase, these are described in Figure 184 and
Figure 185.

DMA requests are generated until the AES is disabled. So, after the data output phase at
the end of processing a 128-bit data block, the AES switches automatically to a new data
input phase for the next data block if any.

Note: For mode 2 (key derivation), access to the AES_KEYRx registers can be done by software
using the CPU. No DMA channel is provided for this purpose. Consequently, the DMAINEN
bit and DMAOUTEN bits in the AES_CR register have no effect during this mode.

The CCF flag is not relevant when DMAOUTEN = 1 and software does not need to read it in
this case. This bit may stay high and has to be cleared by software if the application needs
to disable the AES to cancel the DMA management and use CPU access for the data input
or data output phase.

Figure 184. DMA requests and data transfers during Input phase (AES_IN)

Figure 185. DMA requests during Output phase (AES_OUT)

DocID15965 Rev 14 577/908

RM0038 Advanced encryption standard hardware accelerator (AES)

586

23.9 Error flags

The RDERR flag in the AES_SR register is set when an unexpected read operation is
detected during the computation phase or during the input phase.

The WRERR flag in the AES_SR register is set when an unexpected write operation is
detected during the output phase or during the computation phase.

The flags may be cleared setting the respective bit in the AES_CR register (CCFC bit to
clear the CCF flag, ERRC bit to clear the WERR and RDERR flags).

An interrupt can be generated when one of the error flags is set if the ERRIE bit in the
AES_CR register has been previously set.

If an error is detected, AES is not disabled by hardware and continues processing as
normal.

23.10 Processing time

The table summarizes the time required to process a 128-bit block for each mode of
operation.

23.11 AES interrupts

Table 96. Processing time (in clock cycle)

Mode of operation Input phase
Computation

phase
Output
phase

Total

Mode 1: Encryption 8 202 4 214

Mode 2: Key derivation - 80 - 80

Mode 3: Decryption 8 202 4 214

Mode 4: Key derivation + decryption 8 276 4 288

Table 97. AES interrupt requests

Interrupt event Event flag
Enable

control bit
Exit from

Wait

AES computation completed flag CCF CCFIE yes

AES read error flag RDERR ERRIE yes

AES write error flag WRERR ERRIE yes

Advanced encryption standard hardware accelerator (AES) RM0038

578/908 DocID15965 Rev 14

23.12 AES registers

23.12.1 AES control register (AES_CR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DMAO
UTEN

DMAI
NEN

ERRIE CCFIE ERRC CCFC CHMOD[1:0] MODE[1:0] DATATYPE[1:0] EN

r r r rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31:13 Reserved, read as 0

Bit 12 DMAOUTEN: Enable DMA management of data output phase

0: DMA (during data output phase) disabled
1: DMA (during data output phase) enabled
If the DMAOUTEN bit is set, DMA requests are generated for the output data phase in mode 1, 3 or
4. This bit has no effect in mode 2 (Key derivation).

Bit 11 DMAINEN: Enable DMA management of data input phase

0: DMA (during data input phase) disabled
1: DMA (during data input phase) enabled
If the DMAINEN bit is set, DMA requests are generated for the data input phase in mode 1, 3 or 4.
This bit has no action in mode 2 (Key Derivation).

Bit 10 ERRIE: Error interrupt enable

An interrupt is generated if at least one of the both flags RDERR or WRERR is set.
0: Error interrupt disabled
1: Error interrupt enabled

Bit 9 CCFIE: CCF flag interrupt enable

An interrupt is generated if the CCF flag is set.
0: CCF interrupt disabled
1: CCF interrupt enabled

Bit 8 ERRC: Error clear

Writing 1 to this bit clears the RDERR and WRERR flags.
This bit is always read low.

Bit 7 CCFC: Computation Complete Flag Clear

Writing 1 to this bit clears the CCF flag.
This bit is always read low.

DocID15965 Rev 14 579/908

RM0038 Advanced encryption standard hardware accelerator (AES)

586

Bits 6:5 CHMOD[1:0]: AES chaining mode

00: Electronic codebook (EBC)
01: Cipher-Block Chaining (CBC)
10: Counter Mode (CTR)
11: Reserved.
The AES chaining mode must only be changed while the AES is disabled. Writing these bits while
the AES is enabled is forbidden to avoid unpredictable AES behavior.

Bits 4:3 MODE[1:0]: AES operating mode

00: Mode 1: Encryption
01: Mode 2: Key derivation
10: Mode 3: Decryption
11: Mode 4: Key derivation + decryption
The operation mode must only be changed if the AES is disabled. Writing these bits while the AES is
enabled is forbidden to avoid unpredictable AES behavior.
Mode 4 is forbidden if CTR mode is selected. It will be forced to Mode 3 if the software,
nevertheless, attempts to set mode 4 for this CTR mode configuration.

Bits 2:1 DATATYPE[1:0]: Data type selection (for data in and data out to/from the cryptographic block)

00: 32-bit data. No swapping.
01: 16-bit data or half-word. In the word, each half-word is swapped. For example, if one of the four
32-bit data written in the AES_DINR register is 0x764356AB, the value given to the cryptographic
block is 0x56AB7643
10: 8-bit data or bytes. In the word, all the bytes are swapped. For example, if one of the four 32-bit
data written in the AES_DINR register is 0x764356AB, the value given to the cryptographic block is
0xAB564376.
11: Bit data. In the word all the bits are swapped. For example, if one of the four 32-bit data written in
the AES_DINR register is 0x764356AB, the value given to the cryptographic block is 0xD56AC26E
The Datatype selection must be changed if the AES is disabled. Writing these bits while the AES is
enabled is forbidden to avoid unpredictable AES behavior.

Bits 0 EN: AES enable

0: AES disable

1: AES enable

The AES can be re-initialized at any moment by resetting this bit: the AES is then ready to start
processing a new block when EN is set.

This bit is cleared by hardware when the AES computation is finished in mode 2 (Key derivation)

Advanced encryption standard hardware accelerator (AES) RM0038

580/908 DocID15965 Rev 14

23.12.2 AES status register (AES_SR)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved WRERR RDERR CCF

r r r r r r r r r r r r r r r r

Bits 31:3 Reserved, read as 0

Bit 2 WRERR: Write error flag

This bit is set by hardware when an unexpected write operation to the AES_DINR register is
detected (during computation or data output phase). An interrupt is generated if the ERRIE bit has
been previously set in the AES_CR register. This flag has no impact on the AES which continues
running if even if WERR is set.
It is cleared by software by setting the ERRC bit in the AES_CR register.
0: No write error detected
1: Write error detected

Bit 1 RDERR: Read error flag

This bit is set by hardware when an unexpected read operation from the AES_DOUTR register is
detected (during computation or data input phase). An interrupt is generated if the ERRIE bit has
been previously set in the AES_CR register.This flag has no impact on the AES which continues
running if even if RDERR is set.
It is cleared by software by setting the ERRC bit i in the AES_CR register.
0: No read error detected
1: Read error detected

Bit 0 CCF: Computation complete flag

This bit is set by hardware when the computation is complete. An interrupt is generated if the CCFIE
bit has been previously set in the AES_CR register.
It is cleared by software by setting the CCFC bit in the AES_CR register.
0: Computation complete
1: Computation is not complete

Note: This bit is significant only when DMAOUTEN = 0. It may stay high when DMA_EN = 1.

DocID15965 Rev 14 581/908

RM0038 Advanced encryption standard hardware accelerator (AES)

586

23.12.3 AES data input register (AES_DINR)

Address offset: 0x08

Reset value: 0x0000 0000

23.12.4 AES data output register (AES_DOUTR)

Address offset: 0x0C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DINR[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DINR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 DINR[31:0]: Data Input Register.

This register must be written 4 times during the input phase:

– In Mode 1 (Encryption), 4 words must be written which represent the plain text from MSB to LSB.

– In Mode 2 (Key Derivation), This register is not used because this mode concerns only derivative
key calculation starting from the AES_KEYRx register.

– In Mode 3 (Decryption) and 4 (Key Derivation+Decryption), 4 words must be written which represent
the cipher text MSB to LSB.

Note: This register must be accessed with 32-bit data width.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DOUTR[31:16]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DOUTR[15:0]

r r r r r r r r r r r r r r r r

Bits 31:0 DOUTR[31:0]: Data output register

This register is read only.
Once the CCF flag (Computation Complete Flag) is set, reading this data register 4 times gives
access to the 128-bit output results:
- In Mode 1 (Encryption), the 4 words read represent the cipher text from MSB to LSB.
- In Mode 2 (Key Derivation), there is no need to read this register because the derivative key is
located in the AES_KEYRx registers.
- In Mode 3 (Decryption) and Mode 4 (Key Derivation+Decryption), the 4 words read represent the
plain text from MSB to LSB.

Note: This register must be accessed with 32-bit data width.

Advanced encryption standard hardware accelerator (AES) RM0038

582/908 DocID15965 Rev 14

23.12.5 AES key register 0(AES_KEYR0) (LSB: key [31:0])

Address offset: 0x10

Reset value: 0x0000 0000

23.12.6 AES key register 1 (AES_KEYR1) (Key[63:32])

Address offset: 0x14

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

KEYR0[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KEYR0[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 KEYR0[31:0]: Data Output Register (LSB key [31:0])

This register must be written before the EN bit in the AES_CR register is set:
In Mode 1 (Encryption), mode 2 (Key Derivation) and mode 4 (Key Derivation + Decryption), the
value to be written represents the encryption key from LSB, meaning Key [31:0].
In Mode 3 (Decryption), the value to be written represents the decryption key from LSB, meaning
Key [31:0]. When the register is written with the encryption key in this decryption mode, reading it
before the AES is enabled will return the encryption value. Reading it after CCF flag is set will return
the derivation key.
Reading this register while AES is enabled return an unpredictable value.

Note: This register does not contain the derivation key in mode 4 (derivation key + decryption). It
always contains the encryption key value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

KEYR1[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KEYR1[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 KEYR1[31:0]: AES key register (key [63:32])

Refer to the description of AES_KEYR0.

DocID15965 Rev 14 583/908

RM0038 Advanced encryption standard hardware accelerator (AES)

586

23.12.7 AES key register 2 (AES_KEYR2) (Key [95:64])

Address offset: 0x18

Reset value: 0x0000 0000

23.12.8 AES key register 3 (AES_KEYR3) (MSB: key[127:96])

Address offset: 0x1C

Reset value: 0x0000 0000

23.12.9 AES initialization vector register 0 (AES_IVR0) (LSB: IVR[31:0])

Address offset: 0x20

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

KEYR2[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KEYR2[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 KEYR2[31:0]: AES key register (key [95:64])

Refer to the description of AES_KEYR0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

KEYR3[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KEYR3[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 KEYR3[31:0]: AES key register (MSB key [127:96])

Refer to the description of AES_KEYR0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IVR0[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IVR0[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Advanced encryption standard hardware accelerator (AES) RM0038

584/908 DocID15965 Rev 14

23.12.10 AES initialization vector register 1 (AES_IVR1) (IVR[63:32])

Address offset: 0x24

Reset value: 0x0000 0000

Bits 31:0 IVR0[31:0]: initialization vector register (LSB IVR [31:0])

This register must be written before the EN bit in the AES_CR register is set:
The register value has no meaning if:
- The EBC mode (Electronic codebook) is selected.
- The CTR or CBC mode is selected in addition with the Key derivation.
In CTR mode (Counter mode), this register contains the 32-bit counter value.
Reading this register while AES is enabled will return the value 0x00000000.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IVR1[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IVR1[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 IVR1[31:0]: Initialization Vector Register (IVR [63:32])

This register must be written before the EN bit in the AES_CR register is set:
The register value has no meaning if:
- The EBC mode (Electronic codebook) is selected.
- The CTR or CBC mode is selected in addition with the Key derivation or key
derivation+decryption mode.
In CTR mode (Counter mode), this register contains the nonce value.
Reading this register while AES is enabled will return the value 0x00000000.

DocID15965 Rev 14 585/908

RM0038 Advanced encryption standard hardware accelerator (AES)

586

23.12.11 AES initialization vector register 2 (AES_IVR2) (IVR[95:64])

Address offset: 0x28

Reset value: 0x0000 0000

23.12.12 AES initialization vector register 3 (AES_IVR3) (MSB: IVR[127:96])

Address offset: 0x2C

Reset value: 0x0000 0000

23.12.13 AES register map

The reserved memory areas are highlighted in gray in the table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IVR2[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IVR2[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 IVR2[31:0]: Initialization Vector Register (IVR [95:64])

This register must be written before the EN bit in the AES_CR register is set:
The register value has no meaning if:
- The EBC mode (Electronic codebook) is selected.
- The CTR or CBC mode is selected in addition with the Key derivation or key derivation+decryption
mode.
In CTR mode (Counter mode), this register contains the nonce value.
Reading this register while AES is enabled will return the value 0x00000000.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

IVR3[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IVR3[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 IVR3[31:0]: Initialization Vector Register (MSB IVR [127:96])

This register must be written before the EN bit in the AES_CR register is set:
The register value has no meaning if:
- The EBC mode (Electronic codebook) is selected.
- The CTR or CBC mode is selected in addition with the Key derivation or key derivation+decryption
mode.
In CTR mode (Counter mode), this register contains the nonce value.
Reading this register while AES is enabled will return the value 0x00000000.

Advanced encryption standard hardware accelerator (AES) RM0038

586/908 DocID15965 Rev 14

Refer to Table 5 on page 47 for the register boundary addresses.

Table 98. AES register map

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0000
AES_CR Reserved

D
M

A
O

U
T

E
N

D
M

A
IN

E
N

E
R

R
IE

C
C

F
IE

E
R

R
C

C
C

F
C

C
H

M
O

D
[1

:0
]

M
O

D
E

[1
:0

]

D
A

TA
T

Y
P

E
[1

:0
]

E
N

Reset value 0

0x0004
AES_SR Reserved

W
R

E
R

R

R
D

E
R

R

C
C

F

Reset value 0

0x0008
AES_DINR AES_DINR[31:0]

Reset value 0

0x000C
AES_DOUTR AES_DOUTR[31:0]

Reset value 0

0x0010
AES_KEYR0 AES_KEYR0[31:0]

Reset value 0

0x0014
AES_KEYR1 AES_KEYR1[31:0]

Reset value 0

0x0018
AES_KEYR2 AES_KEYR2[31:0]

Reset value 0

0x001C
AES_KEYR3 AES_KEYR3[31:0]

Reset value 0

0x0020
AES_IVR0 AES_IVR0[31:0]

Reset value 0

0x0024
AES_IVR1 AES_IVR1[31:0]

Reset value 0

0x0028
AES_IVR2 AES_IVR2[31:0]

Reset value 0

0x002C
AES_IVR3 AES_IVR3[31:0]

Reset value 0

DocID15965 Rev 14 587/908

RM0038 Universal serial bus full-speed device interface (USB)

618

24 Universal serial bus full-speed device interface (USB)

24.1 USB introduction

The USB peripheral implements an interface between a full-speed USB 2.0 bus and the
APB1 bus.

USB suspend/resume are supported which allows to stop the device clocks for low-power
consumption.

24.2 USB main features

• USB specification version 2.0 full-speed compliant

• Configurable number of endpoints from 1 to 8

• Cyclic redundancy check (CRC) generation/checking, Non-return-to-zero Inverted
(NRZI) encoding/decoding and bit-stuffing

• Isochronous transfers support

• Double-buffered bulk/isochronous endpoint support

• USB Suspend/Resume operations

• Frame locked clock pulse generation

• USB internal connect/disconnect feature (controlled by system configuration register)
with an internal pull-up resistor on the USB data+ (DP) line.

24.3 USB functional description

Figure 186 shows the block diagram of the USB peripheral.

Universal serial bus full-speed device interface (USB) RM0038

588/908 DocID15965 Rev 14

Figure 186. USB peripheral block diagram

The USB peripheral provides an USB compliant connection between the host PC and the
function implemented by the microcontroller. Data transfer between the host PC and the
system memory occurs through a dedicated packet buffer memory accessed directly by the
USB peripheral. The size of this dedicated buffer memory must be according to the number
of endpoints used and the maximum packet size. This dedicated memory is sized to 512
bytes and up to 16 mono-directional or 8 bidirectional endpoints can be used.The USB
peripheral interfaces with the USB host, detecting token packets, handling data
transmission/reception, and processing handshake packets as required by the USB
standard. Transaction formatting is performed by the hardware, including CRC generation
and checking.

DocID15965 Rev 14 589/908

RM0038 Universal serial bus full-speed device interface (USB)

618

Each endpoint is associated with a buffer description block indicating where the endpoint
related memory area is located, how large it is or how many bytes must be transmitted.
When a token for a valid function/endpoint pair is recognized by the USB peripheral, the
related data transfer (if required and if the endpoint is configured) takes place. The data
buffered by the USB peripheral is loaded in an internal 16 bit register and memory access to
the dedicated buffer is performed. When all the data has been transferred, if needed, the
proper handshake packet over the USB is generated or expected according to the direction
of the transfer.

At the end of the transaction, an endpoint-specific interrupt is generated, reading status
registers and/or using different interrupt response routines. The microcontroller can
determine:

• Which endpoint has to be served

• Which type of transaction took place, if errors occurred (bit stuffing, format, CRC,
protocol, missing ACK, over/underrun, etc.)

Special support is offered to Isochronous transfers and high throughput bulk transfers,
implementing a double buffer usage, which allows to always have an available buffer for the
USB peripheral while the microcontroller uses the other one.

The unit can be placed in low-power mode (SUSPEND mode), by writing in the control
register, whenever required. At this time, all static power dissipation is avoided, and the USB
clock can be slowed down or stopped. The detection of activity at the USB inputs, while in
low-power mode, wakes the device up asynchronously. A special interrupt source can be
connected directly to a wakeup line to allow the system to immediately restart the normal
clock generation and/or support direct clock start/stop.

24.3.1 Description of USB blocks

The USB peripheral implements all the features related to USB interfacing, which include
the following blocks:

• Serial Interface Engine (SIE): The functions of this block include: synchronization
pattern recognition, bit-stuffing, CRC generation and checking, PID
verification/generation, and handshake evaluation. It must interface with the USB
transceivers and uses the virtual buffers provided by the packet buffer interface for
local data storage,. This unit also generates signals according to USB peripheral
events, such as Start of Frame (SOF), USB_Reset, Data errors etc. and to Endpoint
related events like end of transmission or correct reception of a packet; these signals
are then used to generate interrupts.

• Timer: This block generates a start-of-frame locked clock pulse and detects a global
suspend (from the host) when no traffic has been received for 3 ms.

• Packet Buffer Interface: This block manages the local memory implementing a set of
buffers in a flexible way, both for transmission and reception. It can choose the proper
buffer according to requests coming from the SIE and locate them in the memory
addresses pointed by the Endpoint registers. It increments the address after each
exchanged word until the end of packet, keeping track of the number of exchanged
bytes and preventing the buffer to overrun the maximum capacity.

• Endpoint-Related Registers: Each endpoint has an associated register containing the
endpoint type and its current status. For mono-directional/single-buffer endpoints, a
single register can be used to implement two distinct endpoints. The number of
registers is 8, allowing up to 16 mono-directional/single-buffer or up to 7 double-buffer

Universal serial bus full-speed device interface (USB) RM0038

590/908 DocID15965 Rev 14

endpoints* in any combination. For example the USB peripheral can be programmed to
have 4 double buffer endpoints and 8 single-buffer/mono-directional endpoints.

• Control Registers: These are the registers containing information about the status of
the whole USB peripheral and used to force some USB events, such as resume and
power-down.

• Interrupt Registers: These contain the Interrupt masks and a record of the events. They
can be used to inquire an interrupt reason, the interrupt status or to clear the status of a
pending interrupt.

Note: * Endpoint 0 is always used for control transfer in single-buffer mode.

The USB peripheral is connected to the APB1 bus through an APB1 interface, containing
the following blocks:

• Packet Memory: This is the local memory that physically contains the Packet Buffers. It
can be used by the Packet Buffer interface, which creates the data structure and can
be accessed directly by the application software. The size of the Packet Memory is 512
bytes, structured as 256 words by 16 bits.

• Arbiter: This block accepts memory requests coming from the APB1 bus and from the
USB interface. It resolves the conflicts by giving priority to APB1 accesses, while
always reserving half of the memory bandwidth to complete all USB transfers. This
time-duplex scheme implements a virtual dual-port SRAM that allows memory access,
while an USB transaction is happening. Multiword APB1 transfers of any length are
also allowed by this scheme.

• Register Mapper: This block collects the various byte-wide and bit-wide registers of the
USB peripheral in a structured 16-bit wide word set addressed by the APB1.

• APB1 Wrapper: This provides an interface to the APB1 for the memory and register. It
also maps the whole USB peripheral in the APB1 address space.

• Interrupt Mapper: This block is used to select how the possible USB events can
generate interrupts and map them to three different lines of the NVIC:

– USB low-priority interrupt (Channel 20): Triggered by all USB events (Correct
transfer, USB reset, etc.). The firmware has to check the interrupt source before
serving the interrupt.

– USB high-priority interrupt (Channel 19): Triggered only by a correct transfer event
for isochronous and double-buffer bulk transfer to reach the highest possible
transfer rate.

– USB wakeup interrupt (Channel 42): Triggered by the wakeup event from the USB
Suspend mode.

24.4 Programming considerations

In the following sections, the expected interactions between the USB peripheral and the
application program are described, in order to ease application software development.

24.4.1 Generic USB device programming

This part describes the main tasks required of the application software in order to obtain
USB compliant behavior. The actions related to the most general USB events are taken into
account and paragraphs are dedicated to the special cases of double-buffered endpoints
and Isochronous transfers. Apart from system reset, action is always initiated by the USB
peripheral, driven by one of the USB events described below.

DocID15965 Rev 14 591/908

RM0038 Universal serial bus full-speed device interface (USB)

618

24.4.2 System and power-on reset

Upon system and power-on reset, the first operation the application software should perform
is to provide all required clock signals to the USB peripheral and subsequently de-assert its
reset signal so to be able to access its registers. The whole initialization sequence is
hereafter described.

An internal pull-up resistor is connected to Data+ (DP) line and controlled by software using
the USB_PU bit in the SYSCFG_PMC register of the SYSCFG module (refer to Section 8:
System configuration controller (SYSCFG) and routing interface (RI). When the USB_PU bit
is reset, no pull-up is connected to the DP line and the device cannot be detected on the
USB bus (if no external pull-up is connected). When the USB_PU bit is set, the internal pull-
up is connected and the device can be detected on the USB bus.

As a first step application software needs to activate register macrocell clock and de-assert
macrocell specific reset signal using related control bits provided by device clock
management logic.

After that, the analog part of the device related to the USB transceiver must be switched on
using the PDWN bit in CNTR register, which requires a special handling. This bit is intended
to switch on the internal voltage references that supply the port transceiver. This circuit has
a defined startup time (tSTARTUP specified in the datasheet) during which the behavior of the
USB transceiver is not defined. It is thus necessary to wait this time, after setting the PDWN
bit in the CNTR register, before removing the reset condition on the USB part (by clearing
the FRES bit in the CNTR register). Clearing the ISTR register then removes any spurious
pending interrupt before any other macrocell operation is enabled.

At system reset, the microcontroller must initialize all required registers and the packet
buffer description table, to make the USB peripheral able to properly generate interrupts and
data transfers. All registers not specific to any endpoint must be initialized according to the
needs of application software (choice of enabled interrupts, chosen address of packet
buffers, etc.). Then the process continues as for the USB reset case (see further
paragraph).

USB reset (RESET interrupt)

When this event occurs, the USB peripheral is put in the same conditions it is left by the
system reset after the initialization described in the previous paragraph: communication is
disabled in all endpoint registers (the USB peripheral will not respond to any packet). As a
response to the USB reset event, the USB function must be enabled, having as USB
address 0, implementing only the default control endpoint (endpoint address is 0 too). This
is accomplished by setting the Enable Function (EF) bit of the USB_DADDR register and
initializing the EP0R register and its related packet buffers accordingly. During USB
enumeration process, the host assigns a unique address to this device, which must be
written in the ADD[6:0] bits of the USB_DADDR register, and configures any other
necessary endpoint.

When a RESET interrupt is received, the application software is responsible to enable again
the default endpoint of USB function 0 within 10mS from the end of reset sequence which
triggered the interrupt.

Structure and usage of packet buffers

Each bidirectional endpoint may receive or transmit data from/to the host. The received data
is stored in a dedicated memory buffer reserved for that endpoint, while another memory
buffer contains the data to be transmitted by the endpoint. Access to this memory is

Universal serial bus full-speed device interface (USB) RM0038

592/908 DocID15965 Rev 14

performed by the packet buffer interface block, which delivers a memory access request
and waits for its acknowledgement. Since the packet buffer memory has to be accessed by
the microcontroller also, an arbitration logic takes care of the access conflicts, using half
APB1 cycle for microcontroller access and the remaining half for the USB peripheral
access. In this way, both the agents can operate as if the packet memory is a dual-port
SRAM, without being aware of any conflict even when the microcontroller is performing
back-to-back accesses. The USB peripheral logic uses a dedicated clock. The frequency of
this dedicated clock is fixed by the requirements of the USB standard at 48 MHz, and this
can be different from the clock used for the interface to the APB1 bus. Different clock
configurations are possible where the APB1 clock frequency can be higher or lower than the
USB peripheral one.

Note: Due to USB data rate and packet memory interface requirements, the APB1 clock must
have a minimum frequency of 10 MHz to avoid data overrun/underrun problems.

Each endpoint is associated with two packet buffers (usually one for transmission and the
other one for reception). Buffers can be placed anywhere inside the packet memory
because their location and size is specified in a buffer description table, which is also
located in the packet memory at the address indicated by the USB_BTABLE register. Each
table entry is associated to an endpoint register and it is composed of four 16-bit words so
that table start address must always be aligned to an 8-byte boundary (the lowest three bits
of USB_BTABLE register are always “000”). Buffer descriptor table entries are described in
the Section 24.5.3: Buffer descriptor table. If an endpoint is unidirectional and it is neither an
Isochronous nor a double-buffered bulk, only one packet buffer is required (the one related
to the supported transfer direction). Other table locations related to unsupported transfer
directions or unused endpoints, are available to the user. Isochronous and double-buffered
bulk endpoints have special handling of packet buffers (Refer to Section 24.4.4:
Isochronous transfers and Section 24.4.3: Double-buffered endpoints respectively). The
relationship between buffer description table entries and packet buffer areas is depicted in
Figure 187.

DocID15965 Rev 14 593/908

RM0038 Universal serial bus full-speed device interface (USB)

618

Figure 187. Packet buffer areas with examples of buffer description table locations

Each packet buffer is used either during reception or transmission starting from the bottom.
The USB peripheral will never change the contents of memory locations adjacent to the
allocated memory buffers; if a packet bigger than the allocated buffer length is received
(buffer overrun condition) the data will be copied to the memory only up to the last available
location.

Endpoint initialization

The first step to initialize an endpoint is to write appropriate values to the
ADDRn_TX/ADDRn_RX registers so that the USB peripheral finds the data to be
transmitted already available and the data to be received can be buffered. The EP_TYPE
bits in the USB_EPnR register must be set according to the endpoint type, eventually using
the EP_KIND bit to enable any special required feature. On the transmit side, the endpoint
must be enabled using the STAT_TX bits in the USB_EPnR register and COUNTn_TX must
be initialized. For reception, STAT_RX bits must be set to enable reception and
COUNTn_RX must be written with the allocated buffer size using the BL_SIZE and
NUM_BLOCK fields. Unidirectional endpoints, except Isochronous and double-buffered bulk
endpoints, need to initialize only bits and registers related to the supported direction. Once

Universal serial bus full-speed device interface (USB) RM0038

594/908 DocID15965 Rev 14

the transmission and/or reception are enabled, register USB_EPnR and locations
ADDRn_TX/ADDRn_RX, COUNTn_TX/COUNTn_RX (respectively), should not be modified
by the application software, as the hardware can change their value on the fly. When the
data transfer operation is completed, notified by a CTR interrupt event, they can be
accessed again to re-enable a new operation.

IN packets (data transmission)

When receiving an IN token packet, if the received address matches a configured and valid
endpoint one, the USB peripheral accesses the contents of ADDRn_TX and COUNTn_TX
locations inside buffer descriptor table entry related to the addressed endpoint. The content
of these locations is stored in its internal 16 bit registers ADDR and COUNT (not accessible
by software). The packet memory is accessed again to read the first word to be transmitted
(Refer to Structure and usage of packet buffers on page 591) and starts sending a DATA0 or
DATA1 PID according to USB_EPnR bit DTOG_TX. When the PID is completed, the first
byte from the word, read from buffer memory, is loaded into the output shift register to be
transmitted on the USB bus. After the last data byte is transmitted, the computed CRC is
sent. If the addressed endpoint is not valid, a NAK or STALL handshake packet is sent
instead of the data packet, according to STAT_TX bits in the USB_EPnR register.

The ADDR internal register is used as a pointer to the current buffer memory location while
COUNT is used to count the number of remaining bytes to be transmitted. Each word read
from the packet buffer memory is transmitted over the USB bus starting from the least
significant byte. Transmission buffer memory is read starting from the address pointed by
ADDRn_TX for COUNTn_TX/2 words. If a transmitted packet is composed of an odd
number of bytes, only the lower half of the last word accessed will be used.

On receiving the ACK receipt by the host, the USB_EPnR register is updated in the
following way: DTOG_TX bit is toggled, the endpoint is made invalid by setting
STAT_TX=10 (NAK) and bit CTR_TX is set. The application software must first identify the
endpoint, which is requesting microcontroller attention by examining the EP_ID and DIR bits
in the USB_ISTR register. Servicing of the CTR_TX event starts clearing the interrupt bit;
the application software then prepares another buffer full of data to be sent, updates the
COUNTn_TX table location with the number of byte to be transmitted during the next
transfer, and finally sets STAT_TX to ‘11 (VALID) to re-enable transmissions. While the
STAT_TX bits are equal to ‘10 (NAK), any IN request addressed to that endpoint is NAKed,
indicating a flow control condition: the USB host will retry the transaction until it succeeds. It
is mandatory to execute the sequence of operations in the above mentioned order to avoid
losing the notification of a second IN transaction addressed to the same endpoint
immediately following the one which triggered the CTR interrupt.

OUT and SETUP packets (data reception)

These two tokens are handled by the USB peripheral more or less in the same way; the
differences in the handling of SETUP packets are detailed in the following paragraph about
control transfers. When receiving an OUT/SETUP PID, if the address matches a valid
endpoint, the USB peripheral accesses the contents of the ADDRn_RX and COUNTn_RX
locations inside the buffer descriptor table entry related to the addressed endpoint. The
content of the ADDRn_RX is stored directly in its internal register ADDR. While COUNT is
now reset and the values of BL_SIZE and NUM_BLOCK bit fields, which are read within
COUNTn_RX content are used to initialize BUF_COUNT, an internal 16 bit counter, which is
used to check the buffer overrun condition (all these internal registers are not accessible by
software). Data bytes subsequently received by the USB peripheral are packed in words
(the first byte received is stored as least significant byte) and then transferred to the packet

DocID15965 Rev 14 595/908

RM0038 Universal serial bus full-speed device interface (USB)

618

buffer starting from the address contained in the internal ADDR register while BUF_COUNT
is decremented and COUNT is incremented at each byte transfer. When the end of DATA
packet is detected, the correctness of the received CRC is tested and only if no errors
occurred during the reception, an ACK handshake packet is sent back to the transmitting
host.

In case of wrong CRC or other kinds of errors (bit-stuff violations, frame errors, etc.), data
bytes are still copied in the packet memory buffer, at least until the error detection point, but
ACK packet is not sent and the ERR bit in USB_ISTR register is set. However, there is
usually no software action required in this case: the USB peripheral recovers from reception
errors and remains ready for the next transaction to come. If the addressed endpoint is not
valid, a NAK or STALL handshake packet is sent instead of the ACK, according to bits
STAT_RX in the USB_EPnR register and no data is written in the reception memory buffers.

Reception memory buffer locations are written starting from the address contained in the
ADDRn_RX for a number of bytes corresponding to the received data packet length, CRC
included (i.e. data payload length + 2), or up to the last allocated memory location, as
defined by BL_SIZE and NUM_BLOCK, whichever comes first. In this way, the USB
peripheral never writes beyond the end of the allocated reception memory buffer area. If the
length of the data packet payload (actual number of bytes used by the application) is greater
than the allocated buffer, the USB peripheral detects a buffer overrun condition. in this case,
a STALL handshake is sent instead of the usual ACK to notify the problem to the host, no
interrupt is generated and the transaction is considered failed.

When the transaction is completed correctly, by sending the ACK handshake packet, the
internal COUNT register is copied back in the COUNTn_RX location inside the buffer
description table entry, leaving unaffected BL_SIZE and NUM_BLOCK fields, which
normally do not require to be re-written, and the USB_EPnR register is updated in the
following way: DTOG_RX bit is toggled, the endpoint is made invalid by setting STAT_RX =
‘10 (NAK) and bit CTR_RX is set. If the transaction has failed due to errors or buffer overrun
condition, none of the previously listed actions take place. The application software must
first identify the endpoint, which is requesting microcontroller attention by examining the
EP_ID and DIR bits in the USB_ISTR register. The CTR_RX event is serviced by first
determining the transaction type (SETUP bit in the USB_EPnR register); the application
software must clear the interrupt flag bit and get the number of received bytes reading the
COUNTn_RX location inside the buffer description table entry related to the endpoint being
processed. After the received data is processed, the application software should set the
STAT_RX bits to ‘11 (Valid) in the USB_EPnR, enabling further transactions. While the
STAT_RX bits are equal to ‘10 (NAK), any OUT request addressed to that endpoint is
NAKed, indicating a flow control condition: the USB host will retry the transaction until it
succeeds. It is mandatory to execute the sequence of operations in the above mentioned
order to avoid losing the notification of a second OUT transaction addressed to the same
endpoint following immediately the one which triggered the CTR interrupt.

Control transfers

Control transfers are made of a SETUP transaction, followed by zero or more data stages,
all of the same direction, followed by a status stage (a zero-byte transfer in the opposite
direction). SETUP transactions are handled by control endpoints only and are very similar to
OUT ones (data reception) except that the values of DTOG_TX and DTOG_RX bits of the
addressed endpoint registers are set to 1 and 0 respectively, to initialize the control transfer,
and both STAT_TX and STAT_RX are set to ‘10 (NAK) to let software decide if subsequent
transactions must be IN or OUT depending on the SETUP contents. A control endpoint must
check SETUP bit in the USB_EPnR register at each CTR_RX event to distinguish normal

Universal serial bus full-speed device interface (USB) RM0038

596/908 DocID15965 Rev 14

OUT transactions from SETUP ones. A USB device can determine the number and
direction of data stages by interpreting the data transferred in the SETUP stage, and is
required to STALL the transaction in the case of errors. To do so, at all data stages before
the last, the unused direction should be set to STALL, so that, if the host reverses the
transfer direction too soon, it gets a STALL as a status stage.

While enabling the last data stage, the opposite direction should be set to NAK, so that, if
the host reverses the transfer direction (to perform the status stage) immediately, it is kept
waiting for the completion of the control operation. If the control operation completes
successfully, the software will change NAK to VALID, otherwise to STALL. At the same time,
if the status stage will be an OUT, the STATUS_OUT (EP_KIND in the USB_EPnR register)
bit should be set, so that an error is generated if a status transaction is performed with not-
zero data. When the status transaction is serviced, the application clears the STATUS_OUT
bit and sets STAT_RX to VALID (to accept a new command) and STAT_TX to NAK (to delay
a possible status stage immediately following the next setup).

Since the USB specification states that a SETUP packet cannot be answered with a
handshake different from ACK, eventually aborting a previously issued command to start
the new one, the USB logic doesn’t allow a control endpoint to answer with a NAK or STALL
packet to a SETUP token received from the host.

When the STAT_RX bits are set to ‘01 (STALL) or ‘10 (NAK) and a SETUP token is
received, the USB accepts the data, performing the required data transfers and sends back
an ACK handshake. If that endpoint has a previously issued CTR_RX request not yet
acknowledged by the application (i.e. CTR_RX bit is still set from a previously completed
reception), the USB discards the SETUP transaction and does not answer with any
handshake packet regardless of its state, simulating a reception error and forcing the host to
send the SETUP token again. This is done to avoid losing the notification of a SETUP
transaction addressed to the same endpoint immediately following the transaction, which
triggered the CTR_RX interrupt.

24.4.3 Double-buffered endpoints

All different endpoint types defined by the USB standard represent different traffic models,
and describe the typical requirements of different kind of data transfer operations. When
large portions of data are to be transferred between the host PC and the USB function, the
bulk endpoint type is the most suited model. This is because the host schedules bulk
transactions so as to fill all the available bandwidth in the frame, maximizing the actual
transfer rate as long as the USB function is ready to handle a bulk transaction addressed to
it. If the USB function is still busy with the previous transaction when the next one arrives, it
will answer with a NAK handshake and the host PC will issue the same transaction again
until the USB function is ready to handle it, reducing the actual transfer rate due to the
bandwidth occupied by re-transmissions. For this reason, a dedicated feature called
‘double-buffering’ can be used with bulk endpoints.

When ‘double-buffering’ is activated, data toggle sequencing is used to select, which buffer
is to be used by the USB peripheral to perform the required data transfers, using both
‘transmission’ and ‘reception’ packet memory areas to manage buffer swapping on each
successful transaction in order to always have a complete buffer to be used by the
application, while the USB peripheral fills the other one. For example, during an OUT
transaction directed to a ‘reception’ double-buffered bulk endpoint, while one buffer is being
filled with new data coming from the USB host, the other one is available for the
microcontroller software usage (the same would happen with a ‘transmission’ double-
buffered bulk endpoint and an IN transaction).

DocID15965 Rev 14 597/908

RM0038 Universal serial bus full-speed device interface (USB)

618

Since the swapped buffer management requires the usage of all 4 buffer description table
locations hosting the address pointer and the length of the allocated memory buffers, the
USB_EPnR registers used to implement double-buffered bulk endpoints are forced to be
used as unidirectional ones. Therefore, only one STAT bit pair must be set at a value
different from ‘00 (Disabled): STAT_RX if the double-buffered bulk endpoint is enabled for
reception, STAT_TX if the double-buffered bulk endpoint is enabled for transmission. In
case it is required to have double-buffered bulk endpoints enabled both for reception and
transmission, two USB_EPnR registers must be used.

To exploit the double-buffering feature and reach the highest possible transfer rate, the
endpoint flow control structure, described in previous chapters, has to be modified, in order
to switch the endpoint status to NAK only when a buffer conflict occurs between the USB
peripheral and application software, instead of doing it at the end of each successful
transaction. The memory buffer which is currently being used by the USB peripheral is
defined by the DTOG bit related to the endpoint direction: DTOG_RX (bit 14 of USB_EPnR
register) for ‘reception’ double-buffered bulk endpoints or DTOG_TX (bit 6 of USB_EPnR
register) for ‘transmission’ double-buffered bulk endpoints. To implement the new flow
control scheme, the USB peripheral should know which packet buffer is currently in use by
the application software, so to be aware of any conflict. Since in the USB_EPnR register,
there are two DTOG bits but only one is used by USB peripheral for data and buffer
sequencing (due to the unidirectional constraint required by double-buffering feature) the
other one can be used by the application software to show which buffer it is currently using.
This new buffer flag is called SW_BUF. In the following table the correspondence between
USB_EPnR register bits and DTOG/SW_BUF definition is explained, for the cases of
‘transmission’ and ‘reception’ double-buffered bulk endpoints.

The memory buffer which is currently being used by the USB peripheral is defined by DTOG
buffer flag, while the buffer currently in use by application software is identified by SW_BUF
buffer flag. The relationship between the buffer flag value and the used packet buffer is the
same in both cases, and it is listed in the following table.

Table 99. Double-buffering buffer flag definition

Buffer flag ‘Transmission’ endpoint ‘Reception’ endpoint

DTOG DTOG_TX (USB_EPnRbit 6) DTOG_RX (USB_EPnRbit 14)

SW_BUF USB_EPnR bit 14 USB_EPnR bit 6

Universal serial bus full-speed device interface (USB) RM0038

598/908 DocID15965 Rev 14

Double-buffering feature for a bulk endpoint is activated by:

• Writing EP_TYPE bit field at ‘00 in its USB_EPnR register, to define the endpoint as a
bulk, and

• Setting EP_KIND bit at ‘1 (DBL_BUF), in the same register.

The application software is responsible for DTOG and SW_BUF bits initialization according
to the first buffer to be used; this has to be done considering the special toggle-only property
that these two bits have. The end of the first transaction occurring after having set
DBL_BUF, triggers the special flow control of double-buffered bulk endpoints, which is used
for all other transactions addressed to this endpoint until DBL_BUF remain set. At the end of
each transaction the CTR_RX or CTR_TX bit of the addressed endpoint USB_EPnR
register is set, depending on the enabled direction. At the same time, the affected DTOG bit
in the USB_EPnR register is hardware toggled making the USB peripheral buffer swapping
completely software independent. Unlike common transactions, and the first one after
DBL_BUF setting, STAT bit pair is not affected by the transaction termination and its value
remains ‘11 (Valid). However, as the token packet of a new transaction is received, the
actual endpoint status will be masked as ‘10 (NAK) when a buffer conflict between the USB
peripheral and the application software is detected (this condition is identified by DTOG and
SW_BUF having the same value, see Table 100 on page 598). The application software
responds to the CTR event notification by clearing the interrupt flag and starting any
required handling of the completed transaction. When the application packet buffer usage is
over, the software toggles the SW_BUF bit, writing ‘1 to it, to notify the USB peripheral about
the availability of that buffer. In this way, the number of NAKed transactions is limited only by
the application elaboration time of a transaction data: if the elaboration time is shorter than
the time required to complete a transaction on the USB bus, no re-transmissions due to flow
control will take place and the actual transfer rate will be limited only by the host PC.

Table 100. Bulk double-buffering memory buffers usage

Endpoint
Type

DTOG SW_BUF
Packet buffer used by USB

Peripheral
Packet buffer used by
Application Software

IN

0 1
ADDRn_TX_0 / COUNTn_TX_0

Buffer description table locations.

ADDRn_TX_1 / COUNTn_TX_1

Buffer description table locations.

1 0
ADDRn_TX_1 / COUNTn_TX_1

Buffer description table locations

ADDRn_TX_0 / COUNTn_TX_0

Buffer description table locations.

0 0 None (1)

1. Endpoint in NAK Status.

ADDRn_TX_0 / COUNTn_TX_0

Buffer description table locations.

1 1 None (1) ADDRn_TX_0 / COUNTn_TX_0

Buffer description table locations.

OUT

0 1
ADDRn_RX_0 / COUNTn_RX_0

Buffer description table locations.

ADDRn_RX_1 / COUNTn_RX_1

Buffer description table locations.

1 0
ADDRn_RX_1 / COUNTn_RX_1

Buffer description table locations.

ADDRn_RX_0 / COUNTn_RX_0

Buffer description table locations.

0 0 None (1) ADDRn_RX_0 / COUNTn_RX_0

Buffer description table locations.

1 1 None (1) ADDRn_RX_1 / COUNTn_RX_1

Buffer description table locations.

DocID15965 Rev 14 599/908

RM0038 Universal serial bus full-speed device interface (USB)

618

The application software can always override the special flow control implemented for
double-buffered bulk endpoints, writing an explicit status different from ‘11 (Valid) into the
STAT bit pair of the related USB_EPnR register. In this case, the USB peripheral will always
use the programmed endpoint status, regardless of the buffer usage condition.

24.4.4 Isochronous transfers

The USB standard supports full speed peripherals requiring a fixed and accurate data
production/consume frequency, defining this kind of traffic as ‘Isochronous’. Typical
examples of this data are: audio samples, compressed video streams, and in general any
sort of sampled data having strict requirements for the accuracy of delivered frequency.
When an endpoint is defined to be ‘isochronous’ during the enumeration phase, the host
allocates in the frame the required bandwidth and delivers exactly one IN or OUT packet
each frame, depending on endpoint direction. To limit the bandwidth requirements, no re-
transmission of failed transactions is possible for Isochronous traffic; this leads to the fact
that an isochronous transaction does not have a handshake phase and no ACK packet is
expected or sent after the data packet. For the same reason, Isochronous transfers do not
support data toggle sequencing and always use DATA0 PID to start any data packet.

The Isochronous behavior for an endpoint is selected by setting the EP_TYPE bits at ‘10 in
its USB_EPnR register; since there is no handshake phase the only legal values for the
STAT_RX/STAT_TX bit pairs are ‘00 (Disabled) and ‘11 (Valid), any other value will produce
results not compliant to USB standard. Isochronous endpoints implement double-buffering
to ease application software development, using both ‘transmission’ and ‘reception’ packet
memory areas to manage buffer swapping on each successful transaction in order to have
always a complete buffer to be used by the application, while the USB peripheral fills the
other.

The memory buffer which is currently used by the USB peripheral is defined by the DTOG
bit related to the endpoint direction (DTOG_RX for ‘reception’ isochronous endpoints,
DTOG_TX for ‘transmission’ isochronous endpoints, both in the related USB_EPnR
register) according to Table 101.

Table 101. Isochronous memory buffers usage

Endpoint
Type

DTOG bit
value

Packet buffer used by the
USB peripheral

Packet buffer used by the
application software

IN

0
ADDRn_TX_0 / COUNTn_TX_0
buffer description table
locations.

ADDRn_TX_1 / COUNTn_TX_1
buffer description table
locations.

1
ADDRn_TX_1 / COUNTn_TX_1
buffer description table
locations.

ADDRn_TX_0 / COUNTn_TX_0
buffer description table
locations.

OUT

0
ADDRn_RX_0 / COUNTn_RX_0
buffer description table
locations.

ADDRn_RX_1 / COUNTn_RX_1
buffer description table
locations.

1
ADDRn_RX_1 / COUNTn_RX_1
buffer description table
locations.

ADDRn_RX_0 / COUNTn_RX_0
buffer description table
locations.

Universal serial bus full-speed device interface (USB) RM0038

600/908 DocID15965 Rev 14

As it happens with double-buffered bulk endpoints, the USB_EPnR registers used to
implement Isochronous endpoints are forced to be used as unidirectional ones. In case it is
required to have Isochronous endpoints enabled both for reception and transmission, two
USB_EPnR registers must be used.

The application software is responsible for the DTOG bit initialization according to the first
buffer to be used; this has to be done considering the special toggle-only property that these
two bits have. At the end of each transaction, the CTR_RX or CTR_TX bit of the addressed
endpoint USB_EPnR register is set, depending on the enabled direction. At the same time,
the affected DTOG bit in the USB_EPnR register is hardware toggled making buffer
swapping completely software independent. STAT bit pair is not affected by transaction
completion; since no flow control is possible for Isochronous transfers due to the lack of
handshake phase, the endpoint remains always ‘11 (Valid). CRC errors or buffer-overrun
conditions occurring during Isochronous OUT transfers are anyway considered as correct
transactions and they always trigger an CTR_RX event. However, CRC errors will anyway
set the ERR bit in the USB_ISTR register to notify the software of the possible data
corruption.

24.4.5 Suspend/Resume events

The USB standard defines a special peripheral state, called SUSPEND, in which the
average current drawn from the USB bus must not be greater than 2.5 mA. This
requirement is of fundamental importance for bus-powered devices, while self-powered
devices are not required to comply to this strict power consumption constraint. In suspend
mode, the host PC sends the notification to not send any traffic on the USB bus for more
than 3mS: since a SOF packet must be sent every mS during normal operations, the USB
peripheral detects the lack of 3 consecutive SOF packets as a suspend request from the
host PC and set the SUSP bit to ‘1 in USB_ISTR register, causing an interrupt if enabled.
Once the device is suspended, its normal operation can be restored by a so called
RESUME sequence, which can be started from the host PC or directly from the peripheral
itself, but it is always terminated by the host PC. The suspended USB peripheral must be
anyway able to detect a RESET sequence, reacting to this event as a normal USB reset
event.

The actual procedure used to suspend the USB peripheral is device dependent since
according to the device composition, different actions may be required to reduce the total
consumption.

A brief description of a typical suspend procedure is provided below, focused on the USB-
related aspects of the application software routine responding to the SUSP notification of
the USB peripheral:

1. Set the FSUSP bit in the USB_CNTR register to 1. This action activates the suspend
mode within the USB peripheral. As soon as the suspend mode is activated, the check
on SOF reception is disabled to avoid any further SUSP interrupts being issued while
the USB is suspended.

2. Remove or reduce any static power consumption in blocks different from the USB
peripheral.

3. Set LP_MODE bit in USB_CNTR register to 1 to remove static power consumption in
the analog USB transceivers but keeping them able to detect resume activity.

4. Optionally turn off external oscillator and device PLL to stop any activity inside the
device.

DocID15965 Rev 14 601/908

RM0038 Universal serial bus full-speed device interface (USB)

618

When an USB event occurs while the device is in SUSPEND mode, the RESUME
procedure must be invoked to restore nominal clocks and regain normal USB behavior.
Particular care must be taken to insure that this process does not take more than 10mS
when the wakening event is an USB reset sequence (See “Universal Serial Bus
Specification” for more details). The start of a resume or reset sequence, while the USB
peripheral is suspended, clears the LP_MODE bit in USB_CNTR register asynchronously.
Even if this event can trigger an WKUP interrupt if enabled, the use of an interrupt response
routine must be carefully evaluated because of the long latency due to system clock restart;
to have the shorter latency before re-activating the nominal clock it is suggested to put the
resume procedure just after the end of the suspend one, so its code is immediately
executed as soon as the system clock restarts. To prevent ESD discharges or any other kind
of noise from waking-up the system (the exit from suspend mode is an asynchronous
event), a suitable analog filter on data line status is activated during suspend; the filter width
is about 70ns.

The following is a list of actions a resume procedure should address:

1. Optionally turn on external oscillator and/or device PLL.

2. Clear FSUSP bit of USB_CNTR register.

3. If the resume triggering event has to be identified, bits RXDP and RXDM in the
USB_FNR register can be used according to Table 102, which also lists the intended
software action in all the cases. If required, the end of resume or reset sequence can
be detected monitoring the status of the above mentioned bits by checking when they
reach the “10” configuration, which represent the Idle bus state; moreover at the end of
a reset sequence the RESET bit in USB_ISTR register is set to 1, issuing an interrupt if
enabled, which should be handled as usual.

A device may require to exit from suspend mode as an answer to particular events not
directly related to the USB protocol (e.g. a mouse movement wakes up the whole system).
In this case, the resume sequence can be started by setting the RESUME bit in the
USB_CNTR register to ‘1 and resetting it to 0 after an interval between 1 mS and 15 mS
(this interval can be timed using ESOF interrupts, occurring with a 1mS period when the
system clock is running at nominal frequency). Once the RESUME bit is clear, the resume
sequence will be completed by the host PC and its end can be monitored again using the
RXDP and RXDM bits in the USB_FNR register.

Note: The RESUME bit must be anyway used only after the USB peripheral has been put in
suspend mode, setting the FSUSP bit in USB_CNTR register to 1.

Table 102. Resume event detection

[RXDP,RXDM] status Wakeup event Required resume software action

“00” Root reset None

“10” None (noise on bus) Go back in Suspend mode

“01” Root resume None

“11” Not allowed (noise on bus) Go back in Suspend mode

Universal serial bus full-speed device interface (USB) RM0038

602/908 DocID15965 Rev 14

24.5 USB registers

The USB peripheral registers can be divided into the following groups:

• Common Registers: Interrupt and Control registers

• Endpoint Registers: Endpoint configuration and status

• Buffer Descriptor Table: Location of packet memory used to locate data buffers

All register addresses are expressed as offsets with respect to the USB peripheral registers
base address 0x4000 5C00, except the buffer descriptor table locations, which starts at the
address specified by the USB_BTABLE register. Due to the common limitation of APB1
bridges on word addressability, all register addresses are aligned to 32-bit word boundaries
although they are 16-bit wide. The same address alignment is used to access packet buffer
memory locations, which are located starting from 0x4000 6000.

Refer to Section 1.1 on page 38 for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit).

24.5.1 Common registers

These registers affect the general behavior of the USB peripheral defining operating mode,
interrupt handling, device address and giving access to the current frame number updated
by the host PC.

USB control register (USB_CNTR)

Address offset: 0x40

Reset value: 0x0003

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTRM PMAOVRM ERRM WKUPM SUSPM RESETM SOFM ESOFM
Reserved

RESUME FSUSP LP_MODE PDWN FRES

rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 CTRM: Correct transfer interrupt mask

0: Correct Transfer (CTR) Interrupt disabled.
1: CTR Interrupt enabled, an interrupt request is generated when the corresponding bit in the
USB_ISTR register is set.

Bit 14 PMAOVRM: Packet memory area over / underrun interrupt mask

0: PMAOVR Interrupt disabled.
1: PMAOVR Interrupt enabled, an interrupt request is generated when the corresponding bit
in the USB_ISTR register is set.

Bit 13 ERRM: Error interrupt mask

0: ERR Interrupt disabled.
1: ERR Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

Bit 12 WKUPM: Wakeup interrupt mask

0: WKUP Interrupt disabled.
1: WKUP Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

DocID15965 Rev 14 603/908

RM0038 Universal serial bus full-speed device interface (USB)

618

Bit 11 SUSPM: Suspend mode interrupt mask

0: Suspend Mode Request (SUSP) Interrupt disabled.
1: SUSP Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

Bit 10 RESETM: USB reset interrupt mask

0: RESET Interrupt disabled.
1: RESET Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

Bit 9 SOFM: Start of frame interrupt mask

0: SOF Interrupt disabled.
1: SOF Interrupt enabled, an interrupt request is generated when the corresponding bit in the
USB_ISTR register is set.

Bit 8 ESOFM: Expected start of frame interrupt mask

0: Expected Start of Frame (ESOF) Interrupt disabled.
1: ESOF Interrupt enabled, an interrupt request is generated when the corresponding bit in
the USB_ISTR register is set.

Bits 7:5 Reserved.

Bit 4 RESUME: Resume request

The microcontroller can set this bit to send a Resume signal to the host. It must be activated,
according to USB specifications, for no less than 1 mS and no more than 15 mS after which
the Host PC is ready to drive the resume sequence up to its end.

Bit 3 FSUSP: Force suspend

Software must set this bit when the SUSP interrupt is received, which is issued when no
traffic is received by the USB peripheral for 3 mS.
0: No effect.
1: Enter suspend mode. Clocks and static power dissipation in the analog transceiver are left
unaffected. If suspend power consumption is a requirement (bus-powered device), the
application software should set the LP_MODE bit after FSUSP as explained below.

Bit 2 LP_MODE: Low-power mode

This mode is used when the suspend-mode power constraints require that all static power
dissipation is avoided, except the one required to supply the external pull-up resistor. This
condition should be entered when the application is ready to stop all system clocks, or
reduce their frequency in order to meet the power consumption requirements of the USB
suspend condition. The USB activity during the suspend mode (WKUP event)
asynchronously resets this bit (it can also be reset by software).
0: No Low-power mode.
1: Enter Low-power mode.

Bit 1 PDWN: Power down

This bit is used to completely switch off all USB-related analog parts if it is required to
completely disable the USB peripheral for any reason. When this bit is set, the USB
peripheral is disconnected from the transceivers and it cannot be used.
0: Exit Power Down.
1: Enter Power down mode.

Bit 0 FRES: Force USB Reset

0: Clear USB reset.
1: Force a reset of the USB peripheral, exactly like a RESET signalling on the USB. The
USB peripheral is held in RESET state until software clears this bit. A “USB-RESET”
interrupt is generated, if enabled.

Universal serial bus full-speed device interface (USB) RM0038

604/908 DocID15965 Rev 14

USB interrupt status register (USB_ISTR)

Address offset: 0x44

Reset value: 0x0000 0000

This register contains the status of all the interrupt sources allowing application software to
determine, which events caused an interrupt request.

The upper part of this register contains single bits, each of them representing a specific
event. These bits are set by the hardware when the related event occurs; if the
corresponding bit in the USB_CNTR register is set, a generic interrupt request is generated.
The interrupt routine, examining each bit, will perform all necessary actions, and finally it will
clear the serviced bits. If any of them is not cleared, the interrupt is considered to be still
pending, and the interrupt line will be kept high again. If several bits are set simultaneously,
only a single interrupt will be generated.

Endpoint transaction completion can be handled in a different way to reduce interrupt
response latency. The CTR bit is set by the hardware as soon as an endpoint successfully
completes a transaction, generating a generic interrupt request if the corresponding bit in
USB_CNTR is set. An endpoint dedicated interrupt condition is activated independently
from the CTRM bit in the USB_CNTR register. Both interrupt conditions remain active until
software clears the pending bit in the corresponding USB_EPnR register (the CTR bit is
actually a read only bit). For endpoint-related interrupts, the software can use the Direction
of Transaction (DIR) and EP_ID read-only bits to identify, which endpoint made the last
interrupt request and called the corresponding interrupt service routine.

The user can choose the relative priority of simultaneously pending USB_ISTR events by
specifying the order in which software checks USB_ISTR bits in an interrupt service routine.
Only the bits related to events, which are serviced, are cleared. At the end of the service
routine, another interrupt will be requested, to service the remaining conditions.

To avoid spurious clearing of some bits, it is recommended to clear them with a load
instruction where all bits which must not be altered are written with 1, and all bits to be
cleared are written with ‘0 (these bits can only be cleared by software). Read-modify-write
cycles should be avoided because between the read and the write operations another bit
could be set by the hardware and the next write will clear it before the microprocessor has
the time to serve the event.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTR
PMA
OVR

ERR WKUP SUSP RESET SOF ESOF
Reserved

DIR EP_ID[3:0]

r rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 r r r r r

DocID15965 Rev 14 605/908

RM0038 Universal serial bus full-speed device interface (USB)

618

The following describes each bit in detail:

Bit 15 CTR: Correct transfer

This bit is set by the hardware to indicate that an endpoint has successfully completed a
transaction; using DIR and EP_ID bits software can determine which endpoint requested the
interrupt. This bit is read-only.

Bit 14 PMAOVR: Packet memory area over / underrun

This bit is set if the microcontroller has not been able to respond in time to an USB memory
request. The USB peripheral handles this event in the following way: During reception an
ACK handshake packet is not sent, during transmission a bit-stuff error is forced on the
transmitted stream; in both cases the host will retry the transaction. The PMAOVR interrupt
should never occur during normal operations. Since the failed transaction is retried by the
host, the application software has the chance to speed-up device operations during this
interrupt handling, to be ready for the next transaction retry; however this does not happen
during Isochronous transfers (no isochronous transaction is anyway retried) leading to a loss
of data in this case. This bit is read/write but only ‘0 can be written and writing ‘1 has no
effect.

Bit 13 ERR: Error

This flag is set whenever one of the errors listed below has occurred:
NANS: No ANSwer. The timeout for a host response has expired.
CRC: Cyclic Redundancy Check error. One of the received CRCs, either in the token or in
the data, was wrong.
BST: Bit Stuffing error. A bit stuffing error was detected anywhere in the PID, data, and/or
CRC.
FVIO: Framing format Violation. A non-standard frame was received (EOP not in the right
place, wrong token sequence, etc.).
The USB software can usually ignore errors, since the USB peripheral and the PC host
manage retransmission in case of errors in a fully transparent way. This interrupt can be
useful during the software development phase, or to monitor the quality of transmission over
the USB bus, to flag possible problems to the user (e.g. loose connector, too noisy
environment, broken conductor in the USB cable and so on). This bit is read/write but only ‘0
can be written and writing ‘1 has no effect.

Bit 12 WKUP: Wakeup

This bit is set to 1 by the hardware when, during suspend mode, activity is detected that
wakes up the USB peripheral. This event asynchronously clears the LP_MODE bit in the
CTLR register and activates the USB_WAKEUP line, which can be used to notify the rest of
the device (e.g. wakeup unit) about the start of the resume process. This bit is read/write but
only ‘0 can be written and writing ‘1 has no effect.

Bit 11 SUSP: Suspend mode request

This bit is set by the hardware when no traffic has been received for 3mS, indicating a
suspend mode request from the USB bus. The suspend condition check is enabled
immediately after any USB reset and it is disabled by the hardware when the suspend mode
is active (FSUSP=1) until the end of resume sequence. This bit is read/write but only ‘0 can
be written and writing ‘1 has no effect.

Universal serial bus full-speed device interface (USB) RM0038

606/908 DocID15965 Rev 14

Bit 10 RESET: USB reset request

Set when the USB peripheral detects an active USB RESET signal at its inputs. The USB
peripheral, in response to a RESET, just resets its internal protocol state machine, generating
an interrupt if RESETM enable bit in the USB_CNTR register is set. Reception and
transmission are disabled until the RESET bit is cleared. All configuration registers do not
reset: the microcontroller must explicitly clear these registers (this is to ensure that the
RESET interrupt can be safely delivered, and any transaction immediately followed by a
RESET can be completed). The function address and endpoint registers are reset by an USB
reset event.
This bit is read/write but only ‘0 can be written and writing ‘1 has no effect.

Bit 9 SOF: Start of frame

This bit signals the beginning of a new USB frame and it is set when a SOF packet arrives
through the USB bus. The interrupt service routine may monitor the SOF events to have a
1 mS synchronization event to the USB host and to safely read the USB_FNR register which
is updated at the SOF packet reception (this could be useful for isochronous applications).
This bit is read/write but only ‘0 can be written and writing ‘1 has no effect.

Bit 8 ESOF: Expected start of frame

This bit is set by the hardware when an SOF packet is expected but not received. The host
sends an SOF packet each mS, but if the hub does not receive it properly, the Suspend
Timer issues this interrupt. If three consecutive ESOF interrupts are generated (i.e. three
SOF packets are lost) without any traffic occurring in between, a SUSP interrupt is
generated. This bit is set even when the missing SOF packets occur while the Suspend
Timer is not yet locked. This bit is read/write but only ‘0 can be written and writing ‘1 has no
effect.

Bits 7:5 Reserved.

Bit 4 DIR: Direction of transaction

This bit is written by the hardware according to the direction of the successful transaction,
which generated the interrupt request.
If DIR bit=0, CTR_TX bit is set in the USB_EPnR register related to the interrupting endpoint.
The interrupting transaction is of IN type (data transmitted by the USB peripheral to the host
PC).
If DIR bit=1, CTR_RX bit or both CTR_TX/CTR_RX are set in the USB_EPnR register
related to the interrupting endpoint. The interrupting transaction is of OUT type (data
received by the USB peripheral from the host PC) or two pending transactions are waiting to
be processed.
This information can be used by the application software to access the USB_EPnR bits
related to the triggering transaction since it represents the direction having the interrupt
pending. This bit is read-only.

Bits 3:0 EP_ID[3:0]: Endpoint Identifier

These bits are written by the hardware according to the endpoint number, which generated
the interrupt request. If several endpoint transactions are pending, the hardware writes the
endpoint identifier related to the endpoint having the highest priority defined in the following
way: Two endpoint sets are defined, in order of priority: Isochronous and double-buffered
bulk endpoints are considered first and then the other endpoints are examined. If more than
one endpoint from the same set is requesting an interrupt, the EP_ID bits in USB_ISTR
register are assigned according to the lowest requesting endpoint register, EP0R having the
highest priority followed by EP1R and so on. The application software can assign a register
to each endpoint according to this priority scheme, so as to order the concurring endpoint
requests in a suitable way. These bits are read only.

DocID15965 Rev 14 607/908

RM0038 Universal serial bus full-speed device interface (USB)

618

USB frame number register (USB_FNR)

Address offset: 0x48

Reset value: 0x0XXX where X is undefined

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RXDP RXDM LCK LSOF[1:0] FN[10:0]

r r r r r r r r r r r r r r r r

Bit 15 RXDP: Receive data + line status

This bit can be used to observe the status of received data plus upstream port data line. It
can be used during end-of-suspend routines to help determining the wakeup event.

Bit 14 RXDM: Receive data - line status

This bit can be used to observe the status of received data minus upstream port data line. It
can be used during end-of-suspend routines to help determining the wakeup event.

Bit 13 LCK: Locked

This bit is set by the hardware when at least two consecutive SOF packets have been
received after the end of an USB reset condition or after the end of an USB resume
sequence. Once locked, the frame timer remains in this state until an USB reset or USB
suspend event occurs.

Bits 12:11 LSOF[1:0]: Lost SOF

These bits are written by the hardware when an ESOF interrupt is generated, counting the
number of consecutive SOF packets lost. At the reception of an SOF packet, these bits are
cleared.

Bits 10:0 FN[10:0]: Frame number

This bit field contains the 11-bits frame number contained in the last received SOF packet.
The frame number is incremented for every frame sent by the host and it is useful for
Isochronous transfers. This bit field is updated on the generation of an SOF interrupt.

Universal serial bus full-speed device interface (USB) RM0038

608/908 DocID15965 Rev 14

USB device address (USB_DADDR)

Address offset: 0x4C

Reset value: 0x0000

Buffer table address (USB_BTABLE)

Address offset: 0x50

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
EF ADD6 ADD5 ADD4 ADD3 ADD2 ADD1 ADD0

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved

Bit 7 EF: Enable function

This bit is set by the software to enable the USB device. The address of this device is
contained in the following ADD[6:0] bits. If this bit is at ‘0 no transactions are handled,
irrespective of the settings of USB_EPnR registers.

Bits 6:0 ADD[6:0]: Device address

These bits contain the USB function address assigned by the host PC during the
enumeration process. Both this field and the Endpoint Address (EA) field in the associated
USB_EPnR register must match with the information contained in a USB token in order to
handle a transaction to the required endpoint.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BTABLE[15:3]
Reserved

rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:3 BTABLE[15:3]: Buffer table

These bits contain the start address of the buffer allocation table inside the dedicated packet
memory. This table describes each endpoint buffer location and size and it must be aligned
to an 8 byte boundary (the 3 least significant bits are always ‘0). At the beginning of every
transaction addressed to this device, the USP peripheral reads the element of this table
related to the addressed endpoint, to get its buffer start location and the buffer size (Refer to
Structure and usage of packet buffers on page 591).

Bits 2:0 Reserved, forced by hardware to 0.

DocID15965 Rev 14 609/908

RM0038 Universal serial bus full-speed device interface (USB)

618

24.5.2 Endpoint-specific registers

The number of these registers varies according to the number of endpoints that the USB
peripheral is designed to handle. The USB peripheral supports up to 8 bidirectional
endpoints. Each USB device must support a control endpoint whose address (EA bits) must
be set to 0. The USB peripheral behaves in an undefined way if multiple endpoints are
enabled having the same endpoint number value. For each endpoint, an USB_EPnR
register is available to store the endpoint specific information.

USB endpoint n register (USB_EPnR), n=[0..7]

Address offset: 0x00 to 0x1C

Reset value: 0x0000

They are also reset when an USB reset is received from the USB bus or forced through bit
FRES in the CTLR register, except the CTR_RX and CTR_TX bits, which are kept
unchanged to avoid missing a correct packet notification immediately followed by an USB
reset event. Each endpoint has its USB_EPnR register where n is the endpoint identifier.

Read-modify-write cycles on these registers should be avoided because between the read
and the write operations some bits could be set by the hardware and the next write would
modify them before the CPU has the time to detect the change. For this purpose, all bits
affected by this problem have an ‘invariant’ value that must be used whenever their
modification is not required. It is recommended to modify these registers with a load
instruction where all the bits, which can be modified only by the hardware, are written with
their ‘invariant’ value.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CTR_
RX

DTOG_
RX

STAT_RX[1:0] SETUP
EP

TYPE[1:0]
EP_
KIND

CTR_
TX

DTOG_
TX

STAT_TX[1:0] EA[3:0]

rc_w0 t t t r rw rw rw rc_w0 t t t rw rw rw rw

Universal serial bus full-speed device interface (USB) RM0038

610/908 DocID15965 Rev 14

Bit 15 CTR_RX: Correct Transfer for reception

This bit is set by the hardware when an OUT/SETUP transaction is successfully completed
on this endpoint; the software can only clear this bit. If the CTRM bit in USB_CNTR register
is set accordingly, a generic interrupt condition is generated together with the endpoint
related interrupt condition, which is always activated. The type of occurred transaction, OUT
or SETUP, can be determined from the SETUP bit described below.
A transaction ended with a NAK or STALL handshake does not set this bit, since no data is
actually transferred, as in the case of protocol errors or data toggle mismatches.
This bit is read/write but only ‘0 can be written, writing 1 has no effect.

Bit 14 DTOG_RX: Data Toggle, for reception transfers

If the endpoint is not Isochronous, this bit contains the expected value of the data toggle bit
(0=DATA0, 1=DATA1) for the next data packet to be received. Hardware toggles this bit,
when the ACK handshake is sent to the USB host, following a data packet reception having
a matching data PID value; if the endpoint is defined as a control one, hardware clears this
bit at the reception of a SETUP PID addressed to this endpoint.
If the endpoint is using the double-buffering feature this bit is used to support packet buffer
swapping too (Refer to Section 24.4.3: Double-buffered endpoints).
If the endpoint is Isochronous, this bit is used only to support packet buffer swapping since
no data toggling is used for this sort of endpoints and only DATA0 packet are transmitted
(Refer to Section 24.4.4: Isochronous transfers). Hardware toggles this bit just after the end
of data packet reception, since no handshake is used for isochronous transfers.
This bit can also be toggled by the software to initialize its value (mandatory when the
endpoint is not a control one) or to force specific data toggle/packet buffer usage. When the
application software writes ‘0, the value of DTOG_RX remains unchanged, while writing ‘1
makes the bit value toggle. This bit is read/write but it can be only toggled by writing 1.

Bits 13:12 STAT_RX [1:0]: Status bits, for reception transfers

These bits contain information about the endpoint status, which are listed in Table 103:
Reception status encoding on page 612.These bits can be toggled by software to initialize
their value. When the application software writes ‘0, the value remains unchanged, while
writing ‘1 makes the bit value toggle. Hardware sets the STAT_RX bits to NAK when a
correct transfer has occurred (CTR_RX=1) corresponding to a OUT or SETUP (control only)
transaction addressed to this endpoint, so the software has the time to elaborate the
received data before it acknowledge a new transaction
Double-buffered bulk endpoints implement a special transaction flow control, which control
the status based upon buffer availability condition (Refer to Section 24.4.3: Double-buffered
endpoints).
If the endpoint is defined as Isochronous, its status can be only “VALID” or “DISABLED”, so
that the hardware cannot change the status of the endpoint after a successful transaction. If
the software sets the STAT_RX bits to ‘STALL’ or ‘NAK’ for an Isochronous endpoint, the
USB peripheral behavior is not defined. These bits are read/write but they can be only
toggled by writing ‘1.

Bit 11 SETUP: Setup transaction completed

This bit is read-only and it is set by the hardware when the last completed transaction is a
SETUP. This bit changes its value only for control endpoints. It must be examined, in the
case of a successful receive transaction (CTR_RX event), to determine the type of
transaction occurred. To protect the interrupt service routine from the changes in SETUP
bits due to next incoming tokens, this bit is kept frozen while CTR_RX bit is at 1; its state
changes when CTR_RX is at 0. This bit is read-only.

DocID15965 Rev 14 611/908

RM0038 Universal serial bus full-speed device interface (USB)

618

Bits 10:9 EP_TYPE[1:0]: Endpoint type

These bits configure the behavior of this endpoint as described in Table 104: Endpoint type
encoding on page 612. Endpoint 0 must always be a control endpoint and each USB
function must have at least one control endpoint which has address 0, but there may be
other control endpoints if required. Only control endpoints handle SETUP transactions,
which are ignored by endpoints of other kinds. SETUP transactions cannot be answered
with NAK or STALL. If a control endpoint is defined as NAK, the USB peripheral will not
answer, simulating a receive error, in the receive direction when a SETUP transaction is
received. If the control endpoint is defined as STALL in the receive direction, then the
SETUP packet will be accepted anyway, transferring data and issuing the CTR interrupt.
The reception of OUT transactions is handled in the normal way, even if the endpoint is a
control one.
Bulk and interrupt endpoints have very similar behavior and they differ only in the special
feature available using the EP_KIND configuration bit.
The usage of Isochronous endpoints is explained in Section 24.4.4: Isochronous transfers

Bit 8 EP_KIND: Endpoint kind

The meaning of this bit depends on the endpoint type configured by the EP_TYPE bits.
Table 105 summarizes the different meanings.
DBL_BUF: This bit is set by the software to enable the double-buffering feature for this bulk
endpoint. The usage of double-buffered bulk endpoints is explained in Section 24.4.3:
Double-buffered endpoints.
STATUS_OUT: This bit is set by the software to indicate that a status out transaction is
expected: in this case all OUT transactions containing more than zero data bytes are
answered ‘STALL’ instead of ‘ACK’. This bit may be used to improve the robustness of the
application to protocol errors during control transfers and its usage is intended for control
endpoints only. When STATUS_OUT is reset, OUT transactions can have any number of
bytes, as required.

Bit 7 CTR_TX: Correct Transfer for transmission

This bit is set by the hardware when an IN transaction is successfully completed on this
endpoint; the software can only clear this bit. If the CTRM bit in the USB_CNTR register is
set accordingly, a generic interrupt condition is generated together with the endpoint related
interrupt condition, which is always activated.
A transaction ended with a NAK or STALL handshake does not set this bit, since no data is
actually transferred, as in the case of protocol errors or data toggle mismatches.
This bit is read/write but only ‘0 can be written.

Universal serial bus full-speed device interface (USB) RM0038

612/908 DocID15965 Rev 14

Bit 6 DTOG_TX: Data Toggle, for transmission transfers

If the endpoint is non-isochronous, this bit contains the required value of the data toggle bit
(0=DATA0, 1=DATA1) for the next data packet to be transmitted. Hardware toggles this bit
when the ACK handshake is received from the USB host, following a data packet
transmission. If the endpoint is defined as a control one, hardware sets this bit to 1 at the
reception of a SETUP PID addressed to this endpoint.
If the endpoint is using the double buffer feature, this bit is used to support packet buffer
swapping too (Refer to Section 24.4.3: Double-buffered endpoints)
If the endpoint is Isochronous, this bit is used to support packet buffer swapping since no
data toggling is used for this sort of endpoints and only DATA0 packet are transmitted (Refer
to Section 24.4.4: Isochronous transfers). Hardware toggles this bit just after the end of data
packet transmission, since no handshake is used for Isochronous transfers.
This bit can also be toggled by the software to initialize its value (mandatory when the
endpoint is not a control one) or to force a specific data toggle/packet buffer usage. When
the application software writes ‘0, the value of DTOG_TX remains unchanged, while writing
‘1 makes the bit value toggle. This bit is read/write but it can only be toggled by writing 1.

Bits 5:4 STAT_TX [1:0]: Status bits, for transmission transfers

These bits contain the information about the endpoint status, listed in Table 106. These bits
can be toggled by the software to initialize their value. When the application software writes
‘0, the value remains unchanged, while writing ‘1 makes the bit value toggle. Hardware sets
the STAT_TX bits to NAK, when a correct transfer has occurred (CTR_TX=1) corresponding
to a IN or SETUP (control only) transaction addressed to this endpoint. It then waits for the
software to prepare the next set of data to be transmitted.
Double-buffered bulk endpoints implement a special transaction flow control, which controls
the status based on buffer availability condition (Refer to Section 24.4.3: Double-buffered
endpoints).
If the endpoint is defined as Isochronous, its status can only be “VALID” or “DISABLED”.
Therefore, the hardware cannot change the status of the endpoint after a successful
transaction. If the software sets the STAT_TX bits to ‘STALL’ or ‘NAK’ for an Isochronous
endpoint, the USB peripheral behavior is not defined. These bits are read/write but they can
be only toggled by writing ‘1.

Bits 3:0 EA[3:0]: Endpoint address

Software must write in this field the 4-bit address used to identify the transactions directed to
this endpoint. A value must be written before enabling the corresponding endpoint.

Table 103. Reception status encoding

STAT_RX[1:0] Meaning

00 DISABLED: all reception requests addressed to this endpoint are ignored.

01
STALL: the endpoint is stalled and all reception requests result in a STALL
handshake.

10 NAK: the endpoint is naked and all reception requests result in a NAK handshake.

11 VALID: this endpoint is enabled for reception.

Table 104. Endpoint type encoding

EP_TYPE[1:0] Meaning

00 BULK

01 CONTROL

DocID15965 Rev 14 613/908

RM0038 Universal serial bus full-speed device interface (USB)

618

10 ISO

11 INTERRUPT

Table 105. Endpoint kind meaning

EP_TYPE[1:0] EP_KIND Meaning

00 BULK DBL_BUF

01 CONTROL STATUS_OUT

10 ISO Not used

11 INTERRUPT Not used

Table 106. Transmission status encoding

STAT_TX[1:0] Meaning

00 DISABLED: all transmission requests addressed to this endpoint are ignored.

01
STALL: the endpoint is stalled and all transmission requests result in a STALL
handshake.

10
NAK: the endpoint is naked and all transmission requests result in a NAK
handshake.

11 VALID: this endpoint is enabled for transmission.

Table 104. Endpoint type encoding (continued)

EP_TYPE[1:0] Meaning

Universal serial bus full-speed device interface (USB) RM0038

614/908 DocID15965 Rev 14

24.5.3 Buffer descriptor table

Although the buffer descriptor table is located inside the packet buffer memory, its entries
can be considered as additional registers used to configure the location and size of the
packet buffers used to exchange data between the USB macro cell and the STM32L1xxxx.
Due to the common APB bridge limitation on word addressability, all packet memory
locations are accessed by the APB using 32-bit aligned addresses, instead of the actual
memory location addresses utilized by the USB peripheral for the USB_BTABLE register
and buffer description table locations.

In the following pages two location addresses are reported: the one to be used by
application software while accessing the packet memory, and the local one relative to USB
Peripheral access. To obtain the correct STM32L1xxxx memory address value to be used in
the application software while accessing the packet memory, the actual memory location
address must be multiplied by two. The first packet memory location is located at
0x4000 6000. The buffer descriptor table entry associated with the USB_EPnR registers is
described below.

A thorough explanation of packet buffers and the buffer descriptor table usage can be found
in Structure and usage of packet buffers on page 591.

Transmission buffer address n (USB_ADDRn_TX)

Address offset: [USB_BTABLE] + n*16

USB local address: [USB_BTABLE] + n*8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDRn_TX[15:1] -

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw -

Bits 15:1 ADDRn_TX[15:1]: Transmission buffer address

These bits point to the starting address of the packet buffer containing data to be transmitted
by the endpoint associated with the USB_EPnR register at the next IN token addressed to it.

Bit 0 Must always be written as ‘0 since packet memory is word-wide and all packet buffers must be
word-aligned.

DocID15965 Rev 14 615/908

RM0038 Universal serial bus full-speed device interface (USB)

618

Transmission byte count n (USB_COUNTn_TX)

Address offset: [USB_BTABLE] + n*16 + 4

USB local Address: [USB_BTABLE] + n*8 + 2

Note: Double-buffered and Isochronous IN Endpoints have two USB_COUNTn_TX registers:
named USB_COUNTn_TX_1 and USB_COUNTn_TX_0 with the following content.

Reception buffer address n (USB_ADDRn_RX)

Address offset: [USB_BTABLE] + n*16 + 8

USB local Address: [USB_BTABLE] + n*8 + 4

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
COUNTn_TX[9:0]

rw rw rw rw rw rw rw rw rw rw

Bits 15:10 These bits are not used since packet size is limited by USB specifications to 1023 bytes. Their
value is not considered by the USB peripheral.

Bits 9:0 COUNTn_TX[9:0]: Transmission byte count

These bits contain the number of bytes to be transmitted by the endpoint associated with the
USB_EPnR register at the next IN token addressed to it.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
COUNTn_TX_1[9:0]

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
COUNTn_TX_0[9:0]

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADDRn_RX[15:1] -

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw -

Bits 15:1 ADDRn_RX[15:1]: Reception buffer address

These bits point to the starting address of the packet buffer, which will contain the data
received by the endpoint associated with the USB_EPnR register at the next OUT/SETUP
token addressed to it.

Bit 0 This bit must always be written as ‘0 since packet memory is word-wide and all packet buffers
must be word-aligned.

Universal serial bus full-speed device interface (USB) RM0038

616/908 DocID15965 Rev 14

Reception byte count n (USB_COUNTn_RX)

Address offset: [USB_BTABLE] + n*16 + 12

USB local Address: [USB_BTABLE] + n*8 + 6

This table location is used to store two different values, both required during packet
reception. The most significant bits contains the definition of allocated buffer size, to allow
buffer overflow detection, while the least significant part of this location is written back by the
USB peripheral at the end of reception to give the actual number of received bytes. Due to
the restrictions on the number of available bits, buffer size is represented using the number
of allocated memory blocks, where block size can be selected to choose the trade-off
between fine-granularity/small-buffer and coarse-granularity/large-buffer. The size of
allocated buffer is a part of the endpoint descriptor and it is normally defined during the
enumeration process according to its maxPacketSize parameter value (See “Universal
Serial Bus Specification”).

Note: Double-buffered and Isochronous IN Endpoints have two USB_COUNTn_TX registers:
named USB_COUNTn_TX_1 and USB_COUNTn_TX_0 with the following content.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BLSIZE NUM_BLOCK[4:0] COUNTn_RX[9:0]

rw rw rw rw rw rw r r r r r r r r r r

Bit 15 BL_SIZE: BLock size

This bit selects the size of memory block used to define the allocated buffer area.

– If BL_SIZE=0, the memory block is 2 byte large, which is the minimum block allowed in a
word-wide memory. With this block size the allocated buffer size ranges from 2 to 62 bytes.

– If BL_SIZE=1, the memory block is 32 byte large, which allows to reach the maximum
packet length defined by USB specifications. With this block size the allocated buffer size
ranges from 32 to 1024 bytes, which is the longest packet size allowed by USB standard
specifications.

Bits 14:10 NUM_BLOCK[4:0]: Number of blocks

These bits define the number of memory blocks allocated to this packet buffer. The actual
amount of allocated memory depends on the BL_SIZE value as illustrated in Table 107.

Bits 9:0 COUNTn_RX[9:0]: Reception byte count

These bits contain the number of bytes received by the endpoint associated with the
USB_EPnR register during the last OUT/SETUP transaction addressed to it.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BLSIZE
_1

NUM_BLOCK_1[4:0] COUNTn_RX_1[9:0]

rw rw rw rw rw rw r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BLSIZE
_0

NUM_BLOCK_0[4:0] COUNTn_RX_0[9:0]

rw rw rw rw rw rw r r r r r r r r r r

DocID15965 Rev 14 617/908

RM0038 Universal serial bus full-speed device interface (USB)

618

24.5.4 USB register map

The table below provides the USB register map and reset values. The reserved memory
areas are highlighted in gray in the table.

Table 107. Definition of allocated buffer memory

Value of
NUM_BLOCK[4:0]

Memory allocated
when BL_SIZE=0

Memory allocated
when BL_SIZE=1

0 (‘00000) Not allowed 32 bytes

1 (‘00001) 2 bytes 64 bytes

2 (‘00010) 4 bytes 96 bytes

3 (‘00011) 6 bytes 128 bytes

...

15 (‘01111) 30 bytes 512 bytes

16 (‘10000) 32 bytes N/A

17 (‘10001) 34 bytes N/A

18 (‘10010) 36 bytes N/A

...

30 (‘11110) 60 bytes N/A

31 (‘11111) 62 bytes N/A

Table 108. USB register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0x00

USB_EP0R
Reserved

C
T

R
_

R
X

D
T

O
G

_
R

X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
T

O
G

_
T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
USB_EP1R

Reserved

C
T

R
_

R
X

D
T

O
G

_R
X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_
K

IN
D

C
T

R
_T

X

D
T

O
G

_
T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x08
USB_EP2R

Reserved

C
T

R
_

R
X

D
T

O
G

_
R

X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_
K

IN
D

C
T

R
_

T
X

D
T

O
G

_
T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
USB_EP3R

Reserved

C
T

R
_R

X

D
T

O
G

_
R

X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_
K

IN
D

C
T

R
_T

X

D
T

O
G

_T
X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Universal serial bus full-speed device interface (USB) RM0038

618/908 DocID15965 Rev 14

Refer to Table 5 on page 47 for the register boundary addresses.

0x10
USB_EP4R

Reserved

C
T

R
_

R
X

D
T

O
G

_
R

X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_
K

IN
D

C
T

R
_

T
X

D
T

O
G

_
T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14
USB_EP5R

Reserved

C
T

R
_R

X

D
T

O
G

_
R

X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_
K

IN
D

C
T

R
_T

X

D
T

O
G

_T
X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
USB_EP6R

Reserved

C
T

R
_

R
X

D
T

O
G

_
R

X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_K
IN

D

C
T

R
_T

X

D
T

O
G

_
T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
USB_EP7R

Reserved

C
T

R
_

R
X

D
T

O
G

_R
X

STAT_
RX

[1:0] S
E

T
U

P EP
TYPE
[1:0]

E
P

_
K

IN
D

C
T

R
_T

X

D
T

O
G

_
T

X

STAT_
TX

[1:0]
EA[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20-
0x3F

Reserved

0x40
 USB_CNTR

Reserved C
T

R
M

P
M

A
O

V
R

M

E
R

R
M

W
K

U
P

M

S
U

S
P

M

R
E

S
E

T
M

S
O

F
M

E
S

O
F

M

Reserved

R
E

S
U

M
E

F
S

U
S

P

L
P

M
O

D
E

P
D

W
N

F
R

E
S

Reset value 0 0 0 0 0 0 0 0 0 0 0 1 1

0x44
 USB_ISTR

Reserved C
T

R

P
M

A
O

V
R

E
R

R

W
K

U
P

S
U

S
P

R
E

S
E

T

S
O

F

E
S

O
F

Reserved D
IR EP_ID[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0

0x48
 USB_FNR

Reserved R
X

D
P

R
X

D
M

L
C

K LSOF
[1:0]

FN[10:0]

Reset value 0 0 0 0 0 x x x x x x x x x x x

0x4C

USB_DADD

R Reserved
EF ADD[6:0]

Reset value 0 0 0 0 0 0 0 0

0x50

USB_BTAB
LE Reserved

BTABLE[15:3]
Reserved

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 108. USB register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

DocID15965 Rev 14 619/908

RM0038 Flexible static memory controller (FSMC)

660

25 Flexible static memory controller (FSMC)

This section applies to Cat.4 devices only. See device datasheet for FSMC availability.

25.1 FSMC main features

The FSMC block is able to interface with synchronous and asynchronous memories. Its
main purpose is to:

• Translate the AHB transactions into the appropriate external device protocol

• Meet the access timing requirements of the external devices

All external memories share the addresses, data and control signals with the controller.
Each external device is accessed by means of a unique chip select. The FSMC performs
only one access at a time to an external device.

The FSMC has the following main features:

• Interfaces with static memory-mapped devices including:

– Static random access memory (SRAM)

– NOR Flash memory/OneNAND Flash memory

– PSRAM (4 memory banks)

• Supports burst mode access to synchronous devices (NOR Flash and PSRAM)

• 8- or 16-bit wide databus

• Independent chip select control for each memory bank

• Independent configuration for each memory bank

• Programmable timings to support a wide range of devices, in particular:

– Programmable wait states (up to 15)

– Programmable bus turnaround cycles (up to 15)

– Programmable output enable and write enable delays (up to 15)

– Independent read and write timings and protocol, so as to support the widest
variety of memories and timings

• Write enable and byte lane select outputs for use with PSRAM and SRAM devices

• Translation of 32-bit wide AHB transactions into consecutive 16-bit or 8-bit accesses to
external 16-bit or 8-bit devices

• A Write FIFO, 2-word long , each word is 32 bits wide, only stores data and not the
address. Therefore, this FIFO only buffers AHB write burst transactions. This makes it
possible to write to slow memories and free the AHB quickly for other operations. Only
one burst at a time is buffered: if a new AHB burst or single transaction occurs while an
operation is in progress, the FIFO is drained. The FSMC will insert wait states until the
current memory access is complete.

• External asynchronous wait control

The FSMC registers that define the external device type and associated characteristics are
usually set at boot time and do not change until the next reset or power-up. However, it is
possible to change the settings at any time.

Flexible static memory controller (FSMC) RM0038

620/908 DocID15965 Rev 14

25.2 Block diagram

The FSMC consists of four main blocks:

• The AHB interface (including the FSMC configuration registers)

• The NOR Flash/PSRAM controller

• The external device interface

The block diagram is shown in Figure 188.

Figure 188. FSMC block diagram

25.3 AHB interface

The AHB slave interface enables internal CPUs and other bus master peripherals to access
the external static memories.

AHB transactions are translated into the external device protocol. In particular, if the
selected external memory is 16 or 8 bits wide, 32-bit wide transactions on the AHB are split
into consecutive 16- or 8-bit accesses. The FSMC Chip Select (FSMC_NEx) does not
toggle between consecutive accesses except when performing accesses in mode D with the
extended mode enabled.

The FSMC generates an AHB error in the following conditions:

• When reading or writing to an FSMC bank which is not enabled

• When reading or writing to the NOR Flash bank while the FACCEN bit is reset in the
FSMC_BCRx register.

The effect of this AHB error depends on the AHB master which has attempted the R/W
access:

• If it is the Cortex®-M3 CPU, a hard fault interrupt is generated

• If is a DMA, a DMA transfer error is generated and the corresponding DMA channel is
automatically disabled.

DocID15965 Rev 14 621/908

RM0038 Flexible static memory controller (FSMC)

660

The AHB clock (HCLK) is the reference clock for the FSMC.

25.3.1 Supported memories and transactions

General transaction rules

The requested AHB transaction data size can be 8-, 16- or 32-bit wide whereas the
accessed external device has a fixed data width. This may lead to inconsistent transfers.

Therefore, some simple transaction rules must be followed:

• AHB transaction size and memory data size are equal
There is no issue in this case.

• AHB transaction size is greater than the memory size
In this case, the FSMC splits the AHB transaction into smaller consecutive memory
accesses in order to meet the external data width.

• AHB transaction size is smaller than the memory size
Asynchronous transfers may or not be consistent depending on the type of external
device.

– Asynchronous accesses to devices that have the byte select feature (SRAM,
ROM, PSRAM).

a) FSMC allows write transactions accessing the right data through its byte lanes
NBL[1:0]

b) Read transactions are allowed. All memory bytes are read and the useless
ones are discarded. The NBL[1:0] are kept low during read transactions.

– Asynchronous accesses to devices that do not have the byte select feature (NOR
).
This situation occurs when a byte access is requested to a 16-bit wide Flash
memory. Clearly, the device cannot be accessed in byte mode (only 16-bit words
can be read from/written to the Flash memory) therefore:

a) Write transactions are not allowed

b) Read transactions are allowed. All memory bytes are read and the useless ones
are discarded. The NBL[1:0] are set to 0 during read transactions.

Configuration registers

The FSMC can be configured using a register set. See Section 25.5.6, for a detailed
description of the NOR Flash/PSRAM control registers.

25.4 External device address mapping

From the FSMC point of view, the external memory is composed of a single fixed size bank
of 256 Mbytes (Refer to Figure 189):

• Bank 1 used to address up to 4 NOR Flash or PSRAM memory devices. This bank is
split into 4 NOR/PSRAM subbanks with 4 dedicated Chip Selects, as follows:

– Bank 1 - NOR/PSRAM 1

– Bank 1 - NOR/PSRAM 2

– Bank 1 - NOR/PSRAM 3

– Bank 1 - NOR/PSRAM 4

Flexible static memory controller (FSMC) RM0038

622/908 DocID15965 Rev 14

For each bank the type of memory to be used is user-defined in the Configuration register.

Figure 189. FSMC memory banks

25.4.1 NOR/PSRAM address mapping

HADDR[27:26] bits are used to select one of the four memory banks as shown in Table 109.

HADDR[25:0] contain the external memory address. Since HADDR is a byte address
whereas the memory is addressed in words, the address actually issued to the memory
varies according to the memory data width, as shown in the following table.

Wrap support for NOR Flash/PSRAM

Wrap burst mode for synchronous memories is not supported. The memories must be
configured in linear burst mode of undefined length.

Table 109. NOR/PSRAM bank selection

HADDR[27:26](1)

1. HADDR are internal AHB address lines that are translated to external memory.

Selected bank

00 Bank 1 - NOR/PSRAM 1

01 Bank 1 - NOR/PSRAM 2

10 Bank 1 - NOR/PSRAM 3

11 Bank 1 - NOR/PSRAM 4

Table 110. External memory address

Memory width(1)

1. In case of a 16-bit external memory width, the FSMC will internally use HADDR[25:1] to generate the
address for external memory FSMC_A[24:0].
Whatever the external memory width (16-bit or 8-bit), FSMC_A[0] should be connected to external memory
address A[0].

Data address issued to the memory Maximum memory capacity (bits)

8-bit HADDR[25:0] 64 Mbyte x 8 = 512 Mbit

16-bit HADDR[25:1] >> 1 64 Mbyte/2 x 16 = 512 Mbit

DocID15965 Rev 14 623/908

RM0038 Flexible static memory controller (FSMC)

660

25.5 NOR Flash/PSRAM controller

The FSMC generates the appropriate signal timings to drive the following types of
memories:

• Asynchronous SRAM and ROM

– 8-bit

– 16-bit

– 32-bit

• PSRAM (Cellular RAM)

– Asynchronous mode

– Burst mode for synchronous accesses

• NOR Flash

– Asynchronous mode

– Burst mode for synchronous accesses

– Multiplexed or nonmultiplexed

The FSMC outputs a unique chip select signal NE[4:1] per bank. All the other signals
(addresses, data and control) are shared.

For synchronous accesses, the FSMC issues the clock (CLK) to the selected external
device only during the read/write transactions. This clock is a submultiple of the HCLK clock.
The size of each bank is fixed and equal to 64 Mbytes.

Each bank is configured by means of dedicated registers (see Section 25.5.6).

The programmable memory parameters include access timings (see Table 111) and support
for wait management (for PSRAM and NOR Flash accessed in burst mode).

Table 111. Programmable NOR/PSRAM access parameters

Parameter Function Access mode Unit Min. Max.

Address
setup

Duration of the address
setup phase

Asynchronous
AHB clock cycle
(HCLK)

0 15

Address hold
Duration of the address hold
phase

Asynchronous,
muxed I/Os

AHB clock cycle
(HCLK)

1 15

Data setup
Duration of the data setup
phase

Asynchronous
AHB clock cycle
(HCLK)

1 256

Bus turn
Duration of the bus
turnaround phase

Asynchronous and
synchronous
read/write

AHB clock cycle
(HCLK)

0 15

Clock divide
ratio

Number of AHB clock cycles
(HCLK) to build one memory
clock cycle (CLK)

Synchronous
AHB clock cycle
(HCLK)

2 16

Data latency
Number of clock cycles to
issue to the memory before
the first data of the burst

Synchronous
Memory clock
cycle (CLK)

2 17

Flexible static memory controller (FSMC) RM0038

624/908 DocID15965 Rev 14

25.5.1 External memory interface signals

Table 112, Table 113 and Table 114 list the signals that are typically used to interface NOR
Flash, SRAM and PSRAM.

Note: Prefix “N”. specifies the associated signal as active low.

NOR Flash, nonmultiplexed I/Os

NOR Flash memories are addressed in 16-bit words. The maximum capacity is 512 Mbit (26
address lines).

NOR Flash, multiplexed I/Os

NOR-Flash memories are addressed in 16-bit words. The maximum capacity is 512 Mbit
(26 address lines).

Table 112. Nonmultiplexed I/O NOR Flash

FSMC signal name I/O Function

CLK O Clock (for synchronous access)

A[25:0] O Address bus

D[15:0] I/O Bidirectional data bus

NE[x] O Chip select, x = 1..4

NOE O Output enable

NWE O Write enable

NL(=NADV) O
Latch enable (this signal is called address
valid, NADV, by some NOR Flash devices)

NWAIT I NOR Flash wait input signal to the FSMC

Table 113. Multiplexed I/O NOR Flash

FSMC signal name I/O Function

CLK O Clock (for synchronous access)

A[25:16] O Address bus

AD[15:0] I/O 16-bit multiplexed, bidirectional address/data bus

NE[x] O Chip select, x = 1..4

NOE O Output enable

NWE O Write enable

NL(=NADV) O
Latch enable (this signal is called address valid, NADV, by some NOR
Flash devices)

NWAIT I NOR Flash wait input signal to the FSMC

DocID15965 Rev 14 625/908

RM0038 Flexible static memory controller (FSMC)

660

PSRAM/SRAM, nonmultiplexed I/Os

PSRAM memories are addressed in 16-bit words. The maximum capacity is 512 Mbit (26
address lines).

PSRAM, multiplexed I/Os

PSRAM memories are addressed in 16-bit words. The maximum capacity is 512 Mbit (26
address lines).

25.5.2 Supported memories and transactions

Table 116 below displays an example of the supported devices, access modes and
transactions when the memory data bus is 16-bit for NOR, PSRAM and SRAM.
Transactions not allowed (or not supported) by the FSMC in this example appear in gray.

Table 114. Nonmultiplexed I/Os PSRAM/SRAM

FSMC signal name I/O Function

CLK O Clock (only for PSRAM synchronous access)

A[25:0] O Address bus

D[15:0] I/O Data bidirectional bus

NE[x] O Chip select, x = 1..4 (called NCE by PSRAM (Cellular RAM i.e. CRAM))

NOE O Output enable

NWE O Write enable

NL(= NADV) O Address valid only for PSRAM input (memory signal name: NADV)

NWAIT I PSRAM wait input signal to the FSMC

NBL[1] O Upper byte enable (memory signal name: NUB)

NBL[0] O Lowed byte enable (memory signal name: NLB)

Table 115. Multiplexed I/O PSRAM

FSMC signal name I/O Function

CLK O Clock (for synchronous access)

A[25:16] O Address bus

AD[15:0] I/O 16-bit multiplexed, bidirectional address/data bus

NE[x] O Chip select, x = 1..4 (called NCE by PSRAM (Cellular RAM i.e. CRAM))

NOE O Output enable

NWE O Write enable

NL(= NADV) O Address valid PSRAM input (memory signal name: NADV)

NWAIT I PSRAM wait input signal to the FSMC

NBL[1] O Upper byte enable (memory signal name: NUB)

NBL[0] O Lowed byte enable (memory signal name: NLB)

Flexible static memory controller (FSMC) RM0038

626/908 DocID15965 Rev 14

Table 116. NOR Flash/PSRAM controller: example of supported memories
and transactions

Device Mode R/W
AHB
data
size

Memory
data size

Allowed/
not

allowed
Comments

NOR Flash
(muxed I/Os

and nonmuxed
I/Os)

Asynchronous R 8 16 Y

Asynchronous W 8 16 N

Asynchronous R 16 16 Y

Asynchronous W 16 16 Y

Asynchronous R 32 16 Y Split into 2 FSMC accesses

Asynchronous W 32 16 Y Split into 2 FSMC accesses

Asynchronous
page

R - 16 N Mode is not supported

Synchronous R 8 16 N

Synchronous R 16 16 Y

Synchronous R 32 16 Y

PSRAM
(multiplexed
I/Os and
nonmultiplexed
I/Os)

Asynchronous R 8 16 Y

Asynchronous W 8 16 Y Use of byte lanes NBL[1:0]

Asynchronous R 16 16 Y

Asynchronous W 16 16 Y

Asynchronous R 32 16 Y Split into 2 FSMC accesses

Asynchronous W 32 16 Y Split into 2 FSMC accesses

Asynchronous
page

R - 16 N Mode is not supported

Synchronous R 8 16 N

Synchronous R 16 16 Y

Synchronous R 32 16 Y

Synchronous W 8 16 Y Use of byte lanes NBL[1:0]

Synchronous W 16/32 16 Y

SRAM and
ROM

Asynchronous R 8 / 16 16 Y

Asynchronous W 8 / 16 16 Y Use of byte lanes NBL[1:0]

Asynchronous R 32 16 Y Split into 2 FSMC accesses

Asynchronous W 32 16 Y
Split into 2 FSMC
accesses.

Use of byte lanes NBL[1:0]

DocID15965 Rev 14 627/908

RM0038 Flexible static memory controller (FSMC)

660

25.5.3 General timing rules

Signals synchronization

• All controller output signals change on the rising edge of the internal clock (HCLK)

• In synchronous mode (read or write), all output signals change on the rising edge of
HCLK. Whatever the CLKDIV value, all outputs change as follows:

– NOEL/NWEL/ NEL/NADVL/ NADVH /NBLL/ Address valid outputs change on the
falling edge of FSMC_CLK clock.

– NOEH/ NWEH / NEH/ NOEH/NBLH/ Address invalid outputs change on the rising
edge of FSMC_CLK clock.

25.5.4 NOR Flash/PSRAM controller asynchronous transactions

Asynchronous static memories (NOR Flash memory, PSRAM, SRAM)

• Signals are synchronized by the internal clock HCLK. This clock is not issued to the
memory

• The FSMC always samples the data before de-asserting the NOE signals. This
guarantees that the memory data-hold timing constraint is met (chip enable high to
data transition, usually 0 ns min.)

• If the extended mode is enabled (EXTMOD bit is set in the FSMC_BCRx register), up
to four extended modes (A, B, C and D) are available. It is possible to mix A, B, C and
D modes for read and write operations. For example, read operation can be performed
in mode A and write in mode B.

• If the extended mode is disabled (EXTMOD bit is reset in the FSMC_BCRx register),
the FSMC can operate in Mode1 or Mode2 as follows:

– Mode 1 is the default mode when SRAM/PSRAM memory type is selected
(MTYP[0:1] = 0x0 or 0x01 in the FSMC_BCRx register)

– Mode 2 is the default mode when NOR memory type is selected (MTYP[0:1] =
0x10 in the FSMC_BCRx register).

Mode 1 - SRAM/PSRAM (CRAM)

The next figures show the read and write transactions for the supported modes followed by
the required configuration of FSMC _BCRx, and FSMC_BTRx/FSMC_BWTRx registers.

Flexible static memory controller (FSMC) RM0038

628/908 DocID15965 Rev 14

Figure 190. Mode1 read accesses

1. NBL[1:0] are driven low during read access.

Figure 191. Mode1 write accesses

The one HCLK cycle at the end of the write transaction helps guarantee the address and
data hold time after the NWE rising edge. Due to the presence of this one HCLK cycle, the
DATAST value must be greater than zero (DATAST > 0).

DocID15965 Rev 14 629/908

RM0038 Flexible static memory controller (FSMC)

660

Table 117. FSMC_BCRx bit fields

Bit
number

Bit name Value to set

31-20 Reserved 0x000

19 CBURSTRW 0x0 (no effect on asynchronous mode)

18:16 CPSIZE 0x0 (no effect on asynchronous mode)

15 ASYNCWAIT
Set to 1 if the memory supports this feature. Otherwise keep at
0.

14 EXTMOD 0x0

13 WAITEN 0x0 (no effect on asynchronous mode)

12 WREN As needed

11 WAITCFG Don’t care

10 WRAPMOD 0x0

9 WAITPOL Meaningful only if bit 15 is 1

8 BURSTEN 0x0

7 Reserved 0x1

6 FACCEN Don’t care

5-4 MWID As needed

3-2 MTYP[0:1] As needed, exclude 0x2 (NOR Flash)

1 MUXE 0x0

0 MBKEN 0x1

Table 118. FSMC_BTRx bit fields

Bit
number

Bit name Value to set

31:30 Reserved 0x0

29-28 ACCMOD Don’t care

27-24 DATLAT Don’t care

23-20 CLKDIV Don’t care

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST
Duration of the second access phase (DATAST+1 HCLK cycles for
write accesses, DATAST HCLK cycles for read accesses).

7-4 ADDHLD Don’t care

3-0 ADDSET[3:0]
Duration of the first access phase (ADDSET HCLK cycles).

Minimum value for ADDSET is 0.

Flexible static memory controller (FSMC) RM0038

630/908 DocID15965 Rev 14

Mode A - SRAM/PSRAM (CRAM) OE toggling

Figure 192. ModeA read accesses

1. NBL[1:0] are driven low during read access.

Figure 193. ModeA write accesses

DocID15965 Rev 14 631/908

RM0038 Flexible static memory controller (FSMC)

660

The differences compared with mode1 are the toggling of NOE and the independent read
and write timings.

Table 119. FSMC_BCRx bit fields

Bit
number

Bit name Value to set

31-20 Reserved 0x000

19 CBURSTRW 0x0 (no effect on asynchronous mode)

18:16 CPSIZE 0x0 (no effect on asynchronous mode)

15 ASYNCWAIT
Set to 1 if the memory supports this feature. Otherwise keep at
0.

14 EXTMOD 0x1

13 WAITEN 0x0 (no effect on asynchronous mode)

12 WREN As needed

11 WAITCFG Don’t care

10 WRAPMOD 0x0

9 WAITPOL Meaningful only if bit 15 is 1

8 BURSTEN 0x0

7 Reserved 0x1

6 FACCEN Don’t care

5-4 MWID As needed

3-2 MTYP[0:1] As needed, exclude 0x2 (NOR Flash)

1 MUXEN 0x0

0 MBKEN 0x1

Table 120. FSMC_BTRx bit fields

Bit
number

Bit name Value to set

31:30 Reserved 0x0

29-28 ACCMOD 0x0

27-24 DATLAT Don’t care

23-20 CLKDIV Don’t care

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST
Duration of the second access phase (DATAST HCLK cycles) for
read accesses.

7-4 ADDHLD Don’t care

3-0 ADDSET[3:0]
Duration of the first access phase (ADDSET HCLK cycles) for read
accesses.

Minimum value for ADDSET is 0.

Flexible static memory controller (FSMC) RM0038

632/908 DocID15965 Rev 14

Mode 2/B - NOR Flash

Figure 194. Mode2 and mode B read accesses

Table 121. FSMC_BWTRx bit fields

Bit
number

Bit name Value to set

31:30 Reserved 0x0

29-28 ACCMOD 0x0

27-24 DATLAT Don’t care

23-20 CLKDIV Don’t care

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST
Duration of the second access phase (DATAST+1 HCLK cycles for
write accesses,

7-4 ADDHLD Don’t care

3-0 ADDSET[3:0]
Duration of the first access phase (ADDSET HCLK cycles) for write
accesses.

Minimum value for ADDSET is 0.

DocID15965 Rev 14 633/908

RM0038 Flexible static memory controller (FSMC)

660

Figure 195. Mode2 write accesses

Figure 196. Mode B write accesses

The differences with mode1 are the toggling of NWE and the independent read and write
timings when extended mode is set (Mode B).

Flexible static memory controller (FSMC) RM0038

634/908 DocID15965 Rev 14

Table 122. FSMC_BCRx bit fields

Bit
number

Bit name Value to set

31-20 Reserved 0x000

19 CBURSTRW 0x0 (no effect on asynchronous mode)

18:16 Reserved 0x0 (no effect on asynchronous mode)

15 ASYNCWAIT
Set to 1 if the memory supports this feature. Otherwise keep at
0.

14 EXTMOD 0x1 for mode B, 0x0 for mode 2

13 WAITEN 0x0 (no effect on asynchronous mode)

12 WREN As needed

11 WAITCFG Don’t care

10 WRAPMOD 0x0

9 WAITPOL Meaningful only if bit 15 is 1

8 BURSTEN 0x0

7 Reserved 0x1

6 FACCEN 0x1

5-4 MWID As needed

3-2 MTYP[0:1] 0x2 (NOR Flash memory)

1 MUXEN 0x0

0 MBKEN 0x1

Table 123. FSMC_BTRx bit fields

Bit
number

Bit name Value to set

31:30 Reserved 0x0

29-28 ACCMOD 0x1

27-24 DATLAT Don’t care

23-20 CLKDIV Don’t care

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST
Duration of the second access phase (DATAST HCLK cycles) for
read accesses.

7-4 ADDHLD Don’t care

3-0 ADDSET[3:0]
Duration of the first access phase (ADDSET HCLK cycles) for read
accesses.

Minimum value for ADDSET is 0.

DocID15965 Rev 14 635/908

RM0038 Flexible static memory controller (FSMC)

660

Note: The FSMC_BWTRx register is valid only if extended mode is set (mode B), otherwise all its
content is don’t care.

Mode C - NOR Flash - OE toggling

Figure 197. Mode C read accesses

Table 124. FSMC_BWTRx bit fields

Bit
number

Bit name Value to set

31:30 Reserved 0x0

29-28 ACCMOD 0x1

27-24 DATLAT Don’t care

23-20 CLKDIV Don’t care

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST
Duration of the second access phase (DATAST+1 HCLK cycles for
write accesses,

7-4 ADDHLD Don’t care

3-0 ADDSET[3:0]
Duration of the first access phase (ADDSET HCLK cycles) for write
accesses.

Minimum value for ADDSET is 0.

Flexible static memory controller (FSMC) RM0038

636/908 DocID15965 Rev 14

Figure 198. Mode C write accesses

The differences compared with mode1 are the toggling of NOE and the independent read
and write timings.

Table 125. FSMC_BCRx bit fields

Bit No. Bit name Value to set

31-20 Reserved 0x000

19 CBURSTRW 0x0 (no effect on asynchronous mode)

18:16 CPSIZE 0x0 (no effect on asynchronous mode)

15 ASYNCWAIT
Set to 1 if the memory supports this feature. Otherwise keep
at 0.

14 EXTMOD 0x1

13 WAITEN 0x0 (no effect on asynchronous mode)

12 WREN As needed

11 WAITCFG Don’t care

10 WRAPMOD 0x0

9 WAITPOL Meaningful only if bit 15 is 1

8 BURSTEN 0x0

7 Reserved 0x1

6 FACCEN 0x1

5-4 MWID As needed

3-2 MTYP[0:1] 0x2 (NOR Flash memory)

DocID15965 Rev 14 637/908

RM0038 Flexible static memory controller (FSMC)

660

1 MUXEN 0x0

0 MBKEN 0x1

Table 126. FSMC_BTRx bit fields

Bit
number

Bit name Value to set

31:30 Reserved 0x0

29-28 ACCMOD 0x2

27-24 DATLAT 0x0

23-20 CLKDIV 0x0

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST
Duration of the second access phase (DATAST HCLK cycles) for
read accesses.

7-4 ADDHLD Don’t care

3-0 ADDSET[3:0]
Duration of the first access phase (ADDSET HCLK cycles) for read
accesses.

Minimum value for ADDSET is 0.

Table 127. FSMC_BWTRx bit fields

Bit
number

Bit name Value to set

31:30 Reserved 0x0

29-28 ACCMOD 0x2

27-24 DATLAT Don’t care

23-20 CLKDIV Don’t care

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST
Duration of the second access phase (DATAST+1 HCLK cycles for
write accesses,

7-4 ADDHLD Don’t care

3-0 ADDSET[3:0]
Duration of the first access phase (ADDSET HCLK cycles) for write
accesses.

Minimum value for ADDSET is 0.

Table 125. FSMC_BCRx bit fields (continued)

Bit No. Bit name Value to set

Flexible static memory controller (FSMC) RM0038

638/908 DocID15965 Rev 14

Mode D - asynchronous access with extended address

Figure 199. Mode D read accesses

Figure 200. Mode D write accesses

DocID15965 Rev 14 639/908

RM0038 Flexible static memory controller (FSMC)

660

The differences with mode1 are the toggling of NOE that goes on toggling after NADV
changes and the independent read and write timings.

Table 128. FSMC_BCRx bit fields

Bit No. Bit name Value to set

31-20 Reserved 0x000

19 CBURSTRW 0x0 (no effect on asynchronous mode)

18:16 CPSIZE 0x0 (no effect on asynchronous mode)

15 ASYNCWAIT
Set to 1 if the memory supports this feature. Otherwise keep
at 0.

14 EXTMOD 0x1

13 WAITEN 0x0 (no effect on asynchronous mode)

12 WREN As needed

11 WAITCFG Don’t care

10 WRAPMOD 0x0

9 WAITPOL Meaningful only if bit 15 is 1

8 BURSTEN 0x0

7 Reserved 0x1

6 FACCEN Set according to memory support

5-4 MWID As needed

3-2 MTYP[0:1] As needed

1 MUXEN 0x0

0 MBKEN 0x1

Table 129. FSMC_BTRx bit fields

Bit No. Bit name Value to set

31:30 Reserved 0x0

29-28 ACCMOD 0x3

27-24 DATLAT Don’t care

23-20 CLKDIV Don’t care

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST
Duration of the second access phase (DATAST HCLK cycles) for
read accesses.

7-4 ADDHLD
Duration of the middle phase of the read access (ADDHLD HCLK
cycles)

3-0 ADDSET[3:0]
Duration of the first access phase (ADDSET HCLK cycles) for read
accesses. Minimum value for ADDSET is 1.

Flexible static memory controller (FSMC) RM0038

640/908 DocID15965 Rev 14

Muxed mode - multiplexed asynchronous access to NOR Flash memory

Figure 201. Multiplexed read accesses

Table 130. FSMC_BWTRx bit fields

Bit No. Bit name Value to set

31:30 Reserved 0x0

29-28 ACCMOD 0x3

27-24 DATLAT 0x0

23-20 CLKDIV 0x0

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST Duration of the second access phase

7-4 ADDHLD
Duration of the middle phase of the write access (ADDHLD HCLK
cycles)

3-0 ADDSET[3:0] Duration of the first access phase . Minimum value for ADDSET is 1.

DocID15965 Rev 14 641/908

RM0038 Flexible static memory controller (FSMC)

660

Figure 202. Multiplexed write accesses

The difference with mode D is the drive of the lower address byte(s) on the databus.

Table 131. FSMC_BCRx bit fields

Bit No. Bit name Value to set

31-21 Reserved 0x000

19 CBURSTRW 0x0 (no effect on asynchronous mode)

18:16 CPSIZE 0x0 (no effect on asynchronous mode)

15 ASYNCWAIT
Set to 1 if the memory supports this feature. Otherwise keep at
0.

14 EXTMOD 0x0

13 WAITEN 0x0 (no effect on asynchronous mode)

12 WREN As needed

11 WAITCFG Don’t care

10 WRAPMOD 0x0

9 WAITPOL Meaningful only if bit 15 is 1

8 BURSTEN 0x0

7 Reserved 0x1

6 FACCEN 0x1

5-4 MWID As needed

3-2 MTYP[0:1] 0x2 (NOR Flash memory)

Flexible static memory controller (FSMC) RM0038

642/908 DocID15965 Rev 14

WAIT management in asynchronous accesses

If the asynchronous memory asserts a WAIT signal to indicate that it is not yet ready to
accept or to provide data, the ASYNCWAIT bit has to be set in FSMC_BCRx register.

If the WAIT signal is active (high or low depending on the WAITPOL bit), the second access
phase (Data setup phase) programmed by the DATAST bits, is extended until WAIT
becomes inactive. Unlike the data setup phase, the first access phases (Address setup and
Address hold phases), programmed by the ADDSET[3:0] and ADDHLD bits, are not WAIT
sensitive and so they are not prolonged.

The data setup phase (DATAST in the FSMC_BTRx register) must be programmed so that
WAIT can be detected 4 HCLK cycles before the end of memory transaction. The following
cases must be considered:

1 MUXEN 0x1

0 MBKEN 0x1

Table 132. FSMC_BTRx bit fields

Bit No. Bit name Value to set

31:30 Reserved 0x0

29-28 ACCMOD 0x0

27-24 DATLAT Don’t care

23-20 CLKDIV Don’t care

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST
Duration of the second access phase (DATAST HCLK cycles for
read accesses and DATAST+1 HCLK cycles for write accesses).

7-4 ADDHLD Duration of the middle phase of the access (ADDHLD HCLK cycles).

3-0 ADDSET[3:0]
Duration of the first access phase (ADDSET HCLK cycles).
Minimum value for ADDSET is 1.

Table 131. FSMC_BCRx bit fields (continued)

Bit No. Bit name Value to set

DocID15965 Rev 14 643/908

RM0038 Flexible static memory controller (FSMC)

660

1. DATAST in FSMC_BTRx register) Memory asserts the WAIT signal aligned to
NOE/NWE which toggles:

2. Memory asserts the WAIT signal aligned to NEx (or NOE/NWE not toggling):

if

then

otherwise

where max_wait_assertion_time is the maximum time taken by the memory to assert
the WAIT signal once NEx/NOE/NWE is low.

Figure 203 and Figure 204 show the number of HCLK clock cycles that are added to the
memory access after WAIT is released by the asynchronous memory (independently of the
above cases).

Figure 203. Asynchronous wait during a read access

1. NWAIT polarity depends on WAITPOL bit setting in FSMC_BCRx register.

DATAST 4 HCLK×() max_wait_assertion_time+≥

max_wait_assertion_time address_phase hold_phase+>

DATAST 4 HCLK×() max_wait_assertion_time address_phase– hold_phase–()+≥

DATAST 4 HCLK×≥

Flexible static memory controller (FSMC) RM0038

644/908 DocID15965 Rev 14

Figure 204. Asynchronous wait during a write access

1. NWAIT polarity depends on WAITPOL bit setting in FSMC_BCRx register.

DocID15965 Rev 14 645/908

RM0038 Flexible static memory controller (FSMC)

660

25.5.5 Synchronous transactions

The memory clock, CLK, is a submultiple of HCLK according to the value of parameter
CLKDIV.

NOR Flash memories specify a minimum time from NADV assertion to CLK high. To meet
this constraint, the FSMC does not issue the clock to the memory during the first internal
clock cycle of the synchronous access (before NADV assertion). This guarantees that the
rising edge of the memory clock occurs in the middle of the NADV low pulse.

Data latency versus NOR Flash latency

The data latency is the number of cycles to wait before sampling the data. The DATLAT
value must be consistent with the latency value specified in the NOR Flash configuration
register. The FSMC does not include the clock cycle when NADV is low in the data latency
count.

Caution: Some NOR Flash memories include the NADV Low cycle in the data latency count, so the
exact relation between the NOR Flash latency and the FMSC DATLAT parameter can be
either of:

• NOR Flash latency = (DATLAT + 2) CLK clock cycles

• NOR Flash latency = (DATLAT + 3) CLK clock cycles

Some recent memories assert NWAIT during the latency phase. In such cases DATLAT can
be set to its minimum value. As a result, the FSMC samples the data and waits long enough
to evaluate if the data are valid. Thus the FSMC detects when the memory exits latency and
real data are taken.

Other memories do not assert NWAIT during latency. In this case the latency must be set
correctly for both the FSMC and the memory, otherwise invalid data are mistaken for good
data, or valid data are lost in the initial phase of the memory access.

Single-burst transfer

When the selected bank is configured in burst mode for synchronous accesses, if for
example an AHB single-burst transaction is requested on 16-bit memories, the FSMC
performs a burst transaction of length 1 (if the AHB transfer is 16-bit), or length 2 (if the AHB
transfer is 32-bit) and de-assert the chip select signal when the last data is strobed.

Clearly, such a transfer is not the most efficient in terms of cycles (compared to an
asynchronous read). Nevertheless, a random asynchronous access would first require to re-
program the memory access mode, which would altogether last longer.

Cross boundary page for Cellular RAM 1.5

Cellular RAM 1.5 does not allow burst access to cross the page boundary. The FSMC
controller allows to split automatically the burst access when the memory page size is
reached by configuring the CPSIZE bits in the FSMC_BCR1 register following the memory
page size.

Wait management

For synchronous NOR Flash memories, NWAIT is evaluated after the programmed latency
period, (DATLAT+2) CLK clock cycles.

Flexible static memory controller (FSMC) RM0038

646/908 DocID15965 Rev 14

If NWAIT is sensed active (low level when WAITPOL = 0, high level when WAITPOL = 1),
wait states are inserted until NWAIT is sensed inactive (high level when WAITPOL = 0, low
level when WAITPOL = 1).

When NWAIT is inactive, the data is considered valid either immediately (bit WAITCFG = 1)
or on the next clock edge (bit WAITCFG = 0).

During wait-state insertion via the NWAIT signal, the controller continues to send clock
pulses to the memory, keeping the chip select and output enable signals valid, and does not
consider the data valid.

There are two timing configurations for the NOR Flash NWAIT signal in burst mode:

• Flash memory asserts the NWAIT signal one data cycle before the wait state (default
after reset)

• Flash memory asserts the NWAIT signal during the wait state

These two NOR Flash wait state configurations are supported by the FSMC, individually for
each chip select, thanks to the WAITCFG bit in the FSMC_BCRx registers (x = 0..3).

Figure 205. Wait configurations

DocID15965 Rev 14 647/908

RM0038 Flexible static memory controller (FSMC)

660

Figure 206. Synchronous multiplexed read mode - NOR, PSRAM (CRAM)

1. Byte lane outputs BL are not shown; for NOR access, they are held high, and, for PSRAM (CRAM) access,
they are held low.

2. NWAIT polarity is set to 0.

Table 133. FSMC_BCRx bit fields

Bit No. Bit name Value to set

31-20 Reserved 0x000

19 CBURSTRW No effect on synchronous read

18-16 CPSIZE As needed (0x1 for CRAM 1.5)

15 ASCYCWAIT 0x0

14 EXTMOD 0x0

13 WAITEN Set to 1 if the memory supports this feature, otherwise keep at 0.

12 WREN no effect on synchronous read

11 WAITCFG to be set according to memory

10 WRAPMOD 0x0

9 WAITPOL to be set according to memory

8 BURSTEN 0x1

7 Reserved 0x1

6 FACCEN Set according to memory support (NOR Flash memory)

5-4 MWID As needed

Flexible static memory controller (FSMC) RM0038

648/908 DocID15965 Rev 14

3-2 MTYP[0:1] 0x1 or 0x2

1 MUXEN As needed

0 MBKEN 0x1

Table 134. FSMC_BTRx bit fields

Bit No. Bit name Value to set

31:30 Reserved 0x0

29:28 ACCMOD 0x0

27-24 DATLAT Data latency

23-20 CLKDIV

0x0 to get CLK = HCLK (not supported)

0x1 to get CLK = 2 × HCLK

..

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST Don’t care

7-4 ADDHLD Don’t care

3-0 ADDSET[3:0] Don’t care

Table 133. FSMC_BCRx bit fields (continued)

Bit No. Bit name Value to set

DocID15965 Rev 14 649/908

RM0038 Flexible static memory controller (FSMC)

660

Figure 207. Synchronous multiplexed write mode - PSRAM (CRAM)

1. Memory must issue NWAIT signal one cycle in advance, accordingly WAITCFG must be programmed to 0.

2. NWAIT polarity is set to 0.

3. Byte Lane (NBL) outputs are not shown, they are held low while NEx is active.

Table 135. FSMC_BCRx bit fields

Bit No. Bit name Value to set

31-20 Reserved 0x000

19 CBURSTRW 0x1

18-16 CPSIZE As needed (0x1 for CRAM 1.5)

15 ASCYCWAIT 0x0

14 EXTMOD 0x0

13 WAITEN Set to 1 if the memory supports this feature, otherwise keep at 0.

12 WREN 0x1

11 WAITCFG 0x0

10 WRAPMOD 0x0

Flexible static memory controller (FSMC) RM0038

650/908 DocID15965 Rev 14

9 WAITPOL to be set according to memory

8 BURSTEN no effect on synchronous write

7 Reserved 0x1

6 FACCEN Set according to memory support

5-4 MWID As needed

3-2 MTYP[0:1] 0x1

1 MUXEN As needed

0 MBKEN 0x1

Table 136. FSMC_BTRx bit fields

Bit No. Bit name Value to set

31:30 Reserved 0x0

29:28 ACCMOD 0x0

27-24 DATLAT Data latency

23-20 CLKDIV
0x0 to get CLK = HCLK (not supported)

0x1 to get CLK = 2 × HCLK

19-16 BUSTURN Time between NEx high to NEx low (BUSTURN HCLK)

15-8 DATAST Don’t care

7-4 ADDHLD Don’t care

3-0 ADDSET[3:0] Don’t care

Table 135. FSMC_BCRx bit fields (continued)

Bit No. Bit name Value to set

DocID15965 Rev 14 651/908

RM0038 Flexible static memory controller (FSMC)

660

25.5.6 NOR/PSRAM control registers

The NOR/PSRAM control registers have to be accessed by words (32 bits).

SRAM/NOR-Flash chip-select control registers 1..4 (FSMC_BCR1..4)

Address offset: 0xA000 0000 + 8 * (x – 1), x = 1...4

Reset value: 0x0000 30DB for Bank1 and 0x0000 30D2 for Bank 2 to 4

This register contains the control information of each memory bank, used for SRAMs,
PSRAM and NOR Flash memories.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

C
B

U
R

S
T

R
W

CPSIZE[2:0]

A
S

C
Y

C
W

A
IT

E
X

T
M

O
D

W
A

IT
E

N

W
R

E
N

W
A

IT
C

F
G

W
R

A
P

M
O

D

W
A

IT
P

O
L

B
U

R
S

T
E

N

R
e

se
rv

ed

F
A

C
C

E
N

M
W

ID
[1

:0
]

M
T

Y
P

[1
:0

]

M
U

X
E

N

M
B

K
E

N

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31: 20 Reserved, must be kept at reset value.

Bit 19 CBURSTRW: Write burst enable.

For Cellular RAM (PSRAM) memories, this bit enables the synchronous burst protocol
during write operations. The enable bit for synchronous read accesses is the BURSTEN
bit in the FSMC_BCRx register.

0: Write operations are always performed in asynchronous mode
1: Write operations are performed in synchronous mode.

Bits 18: 16 CPSIZE[2:0]: CRAM page size.
These are used for Cellular RAM 1.5 which does not allow burst access to cross the
address boundaries between pages. When these bits are configured, the FSMC
controller splits automatically the burst access when the memory page size is reached
(refer to memory datasheet for page size).

000: No burst split when crossing page boundary (default after reset)
001: 128 bytes
010: 256 bytes
011: 512 bytes
100: 1024 bytes
Others: reserved.

Bit 15 ASYNCWAIT: Wait signal during asynchronous transfers

This bit enables/disables the FSMC to use the wait signal even during an asynchronous
protocol.

0: NWAIT signal is not taken into account when running an asynchronous protocol
(default after reset)
1: NWAIT signal is taken into account when running an asynchronous protocol

Flexible static memory controller (FSMC) RM0038

652/908 DocID15965 Rev 14

Bit 14 EXTMOD: Extended mode enable.

This bit enables the FSMC to program the write timings for non-multiplexed
asynchronous accesses inside the FSMC_BWTR register, thus resulting in different
timings for read and write operations.

0: values inside FSMC_BWTR register are not taken into account (default after reset)
1: values inside FSMC_BWTR register are taken into account

Note: When the extended mode is disabled, the FSMC can operate in Mode1 or Mode2
as follows:

– Mode 1 is the default mode when the SRAM/PSRAM memory type is selected
(MTYP [0:1]=0x0 or 0x01)

– Mode 2 is the default mode when the NOR memory type is selected
(MTYP [0:1]= 0x10).

Bit 13 WAITEN: Wait enable bit.

This bit enables/disables wait-state insertion via the NWAIT signal when accessing the
Flash memory in synchronous mode.

0: NWAIT signal is disabled (its level not taken into account, no wait state inserted after
the programmed Flash latency period)
1: NWAIT signal is enabled (its level is taken into account after the programmed Flash
latency period to insert wait states if asserted) (default after reset)

Bit 12 WREN: Write enable bit.

This bit indicates whether write operations are enabled/disabled in the bank by the
FSMC:

0: Write operations are disabled in the bank by the FSMC, an AHB error is reported,
1: Write operations are enabled for the bank by the FSMC (default after reset).

Bit 11 WAITCFG: Wait timing configuration.

The NWAIT signal indicates whether the data from the memory are valid or if a wait state
must be inserted when accessing the Flash memory in synchronous mode. This
configuration bit determines if NWAIT is asserted by the memory one clock cycle before
the wait state or during the wait state:

0: NWAIT signal is active one data cycle before wait state (default after reset),
1: NWAIT signal is active during wait state (not used for PRAM).

Bit 10 WRAPMOD: Wrapped burst mode support.

Defines whether the controller will or not split an AHB burst wrap access into two linear
accesses. Valid only when accessing memories in burst mode

0: Direct wrapped burst is not enabled (default after reset),
1: Direct wrapped burst is enabled.

Note: This bit has no effect as the CPU and DMA cannot generate wrapping burst
transfers.

Bit 9 WAITPOL: Wait signal polarity bit.

Defines the polarity of the wait signal from memory. Valid only when accessing the
memory in burst mode:

0: NWAIT active low (default after reset),
1: NWAIT active high.

Bit 8 BURSTEN: Burst enable bit.

This bit enables/disables synchronous accesses during read operations. It is valid only
for synchronous memories operating in burst mode:

0: Burst mode disabled (default after reset). Read accesses are performed in
asynchronous mode.
1: Burst mode enable. Read accesses are performed in synchronous mode.

DocID15965 Rev 14 653/908

RM0038 Flexible static memory controller (FSMC)

660

Bit 7 Reserved, must be kept at reset value.

Bit 6 FACCEN: Flash access enable

Enables NOR Flash memory access operations.

0: Corresponding NOR Flash memory access is disabled
1: Corresponding NOR Flash memory access is enabled (default after reset)

Bits 5:4 MWID[1:0]: Memory databus width.

Defines the external memory device width, valid for all type of memories.

00: 8 bits,
01: 16 bits (default after reset),
10: reserved, do not use,
11: reserved, do not use.

Bits 3:2 MTYP[1:0]: Memory type.

Defines the type of external memory attached to the corresponding memory bank:

00: SRAM (default after reset for Bank 2...4)
01: PSRAM (CRAM)
10: NOR Flash/OneNAND Flash (default after reset for Bank 1)
11: reserved

Bit 1 MUXEN: Address/data multiplexing enable bit.

When this bit is set, the address and data values are multiplexed on the databus, valid
only with NOR and PSRAM memories:

0: Address/Data nonmultiplexed
1: Address/Data multiplexed on databus (default after reset)

Bit 0 MBKEN: Memory bank enable bit.

Enables the memory bank. After reset Bank1 is enabled, all others are disabled.
Accessing a disabled bank causes an ERROR on AHB bus.

0: Corresponding memory bank is disabled
1: Corresponding memory bank is enabled

Flexible static memory controller (FSMC) RM0038

654/908 DocID15965 Rev 14

SRAM/NOR-Flash chip-select timing registers 1..4 (FSMC_BTR1..4)

Address offset: 0xA000 0000 + 0x04 + 8 * (x – 1), x = 1..4

Reset value: 0x0FFF FFFF

FSMC_BTRx bits are written by software to add a delay at the end of a read /write
transaction. This delay allows matching the minimum time between consecutive
transactions (tEHEL from NEx high to FSMC_NEx low) and the maximum time required by
the memory to free the data bus after a read access (tEHQZ).

This register contains the control information of each memory bank, used for SRAMs,
PSRAM and NOR Flash memories.If the EXTMOD bit is set in the FSMC_BCRx register,
then this register is partitioned for write and read access, that is, 2 registers are available:
one to configure read accesses (this register) and one to configure write accesses
(FSMC_BWTRx registers).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
e

se
rv

e
d

A
C

C
M

O
D

[1
:0

]

D
A

T
L

A
T

[3
:0

]

C
L

K
D

IV
[3

:0
]

B
U

S
T

U
R

N
[3

:0
]

D
A

TA
S

T
[7

:0
]

A
D

D
H

L
D

[3
:0

]

A
D

D
S

E
T

[3
:0

]

rw rw

Bits 31:30 Reserved, must be kept at reset value.

Bits 29:28 ACCMOD[1:0]: Access mode

Specifies the asynchronous access modes as shown in the timing diagrams. These bits are
taken into account only when the EXTMOD bit in the FSMC_BCRx register is 1.

00: access mode A
01: access mode B
10: access mode C
11: access mode D

Bits 27:24 DATLAT[3:0]: Data latency for synchronous NOR Flash memory (see note below bit
description table)

For synchronous NOR Flash memory with burst mode enabled, defines the number of
memory clock cycles (+2) to issue to the memory before reading/writing the first data.
This timing parameter is not expressed in HCLK periods, but in FSMC_CLK periods. In case
of PSRAM (CRAM), this field must be set to 0. In asynchronous NOR Flash or SRAM or
PSRAM , this value is don't care.
0000: Data latency of 2 CLK clock cycles for first burst access
1111: Data latency of 17 CLK clock cycles for first burst access (default value after reset)

Bits 23:20 CLKDIV[3:0]: Clock divide ratio (for FSMC_CLK signal)

Defines the period of FSMC_CLK clock output signal, expressed in number of HCLK cycles:

0000: Reserved
0001: FSMC_CLK period = 2 × HCLK periods
0010: FSMC_CLK period = 3 × HCLK periods
1111: FSMC_CLK period = 16 × HCLK periods (default value after reset)

In asynchronous NOR Flash, SRAM or PSRAM accesses, this value is don’t care.

DocID15965 Rev 14 655/908

RM0038 Flexible static memory controller (FSMC)

660

Bits 19:16 BUSTURN[3:0]: Bus turnaround phase duration

These bits are written by software to add a delay at the end of a write-to-read (and read-to
write) transaction. The programmed bus turnaround delay is inserted between an
asynchronous read (muxed or D mode) or a write transaction and any other
asynchronous/synchronous read or write to/from a static bank (for a read operation, the bank
can be the same or a different one; for a write operation, the bank can be different except in r
muxed or D mode).
In some cases, the bus turnaround delay is fixed, whatever the programmed BUSTURN
values:

– No bus turnaround delay is inserted between two consecutive asynchronous write transfers
to the same static memory bank except in muxed and D mode.

– A bus turnaround delay of 1 FSMC clock cycle is inserted between:

– Two consecutive asynchronous read transfers to the same static memory bank
except for muxed and D modes.

– An asynchronous read to an asynchronous or synchronous write to any static bank
or dynamic bank except for muxed and D modes.

– An asynchronous (modes 1, 2, A, B or C) read and a read operation from another
static bank.

– A bus turnaround delay of 2 FSMC clock cycles is inserted between:

– Two consecutive synchronous write accesses (in burst or single mode) to the same
bank

– A synchronous write (burst or single) access and an asynchronous write or read
transfer to or from static memory bank (the bank can be the same or different in case
of a read operation).

– Two consecutive synchronous read accesses (in burst or single mode) followed by a
any synchronous/asynchronous read or write from/to another static memory bank.

– A bus turnaround delay of 3 FSMC clock cycles is inserted between:

– Two consecutive synchronous write operations (in burst or single mode) to different
static banks.

– A synchronous write access (in burst or single mode) and a synchronous read
access from the same or to a different bank.

0000: BUSTURN phase duration = 0 HCLK clock cycle added
...
1111: BUSTURN phase duration = 15 × HCLK clock cycles (default value after reset)

Flexible static memory controller (FSMC) RM0038

656/908 DocID15965 Rev 14

Note: PSRAMs (CRAMs) have a variable latency due to internal refresh. Therefore these
memories issue the NWAIT signal during the whole latency phase to prolong the latency as
needed.
With PSRAMs (CRAMs) the DATLAT field must be set to 0, so that the FSMC exits its
latency phase soon and starts sampling NWAIT from memory, then starts to read or write
when the memory is ready.
This method can be used also with the latest generation of synchronous Flash memories
that issue the NWAIT signal, unlike older Flash memories (check the datasheet of the
specific Flash memory being used).

Bits 15:8 DATAST[7:0]: Data-phase duration

These bits are written by software to define the duration of the data phase (refer to Figure 190
to Figure 202), used in asynchronous accesses:

0000 0000: Reserved
0000 0001: DATAST phase duration = 1 × HCLK clock cycles
0000 0010: DATAST phase duration = 2 × HCLK clock cycles
...
1111 1111: DATAST phase duration = 255 × HCLK clock cycles (default value after reset)

For each memory type and access mode data-phase duration, refer to the respective figure
(Figure 190 to Figure 202).

Example: Mode1, write access, DATAST=1: Data-phase duration= DATAST+1 = 2 HCLK clock
cycles.

Note: In synchronous accesses, this value is don't care.

Bits 7:4 ADDHLD[3:0]: Address-hold phase duration

These bits are written by software to define the duration of the address hold phase (refer to
Figure 199 to Figure 202), used in mode D and multiplexed accesses:

0000: Reserved
0001: ADDHLD phase duration =1 × HCLK clock cycle
0010: ADDHLD phase duration = 2 × HCLK clock cycle
...
1111: ADDHLD phase duration = 15 × HCLK clock cycles (default value after reset)

For each access mode address-hold phase duration, refer to the respective figure (Figure 199
to Figure 202).

Note: In synchronous accesses, this value is not used, the address hold phase is always 1
memory clock period duration.

Bits 3:0 ADDSET[3:0]: Address setup phase duration

These bits are written by software to define the duration of the address setup phase (refer to
Figure 190 to Figure 202), used in SRAMs, ROMs and asynchronous NOR Flash and PSRAM
accesses:

0000: ADDSET phase duration = 0 × HCLK clock cycle
...
1111: ADDSET phase duration = 15 × HCLK clock cycles (default value after reset)

For each access mode address setup phase duration, refer to the respective figure (refer to
Figure 190 to Figure 202).

Note: In synchronous NOR Flash and PSRAM accesses, this value is don’t care.

DocID15965 Rev 14 657/908

RM0038 Flexible static memory controller (FSMC)

660

SRAM/NOR-Flash write timing registers 1..4 (FSMC_BWTR1..4)

Address offset: 0xA000 0000 + 0x104 + 8 * (x – 1), x = 1...4

Reset value: 0x0FFF FFFF

This register contains the control information of each memory bank, used for SRAMs,
PSRAMs and NOR Flash memories. This register is active for write asynchronous access
only when the EXTMOD bit is set in the FSMC_BCRx register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.

ACCM
OD[2:0] Reserved

BUSTURN[3:0] DATAST[7:0] ADDHLD[3:0] ADDSET[3:0]

rw rw

Bits 31:30 Reserved, must be kept at reset value.

Bits 29:28 ACCMOD[2:0]: Access mode.

Specifies the asynchronous access modes as shown in the next timing diagrams.These bits are
taken into account only when the EXTMOD bit in the FSMC_BCRx register is 1.

00: access mode A
01: access mode B
10: access mode C
11: access mode D

Bits 27:20 Reserved, must be kept at reset value.

Bits 19:16 BUSTURN[3:0]: Bus turnaround phase duration

The programmed bus turnaround delay is inserted between a an asynchronous write transfer and
any other asynchronous/synchronous read or write transfer to/from a static bank (for a read
operation, the bank can be the same or a different one; for a write operation, the bank can be
different except in r muxed or D mode).

In some cases, the bus turnaround delay is fixed, whatever the programmed BUSTURN values:

– No bus turnaround delay is inserted between two consecutive asynchronous write transfers to the
same static memory bank except in muxed and D mode.

– A bus turnaround delay of 2 FSMC clock cycles is inserted between:

– Two consecutive synchronous write accesses (in burst or single mode) to the same bank.

– A synchronous write transfer (in burst or single mode) and an asynchronous write or read
transfer to/from static a memory bank.

– A bus turnaround delay of 3 FSMC clock cycles is inserted between:

– Two consecutive synchronous write accesses (in burst or single mode) to different static
banks.

– A synchronous write transfer (in burst or single mode) and a synchronous read from the
same or from a different bank.

0000: BUSTURN phase duration = 0 HCLK clock cycle added
...
1111: BUSTURN phase duration = 15 HCLK clock cycles added (default value after reset)

Flexible static memory controller (FSMC) RM0038

658/908 DocID15965 Rev 14

Bits 15:8 DATAST[7:0]: Data-phase duration.

These bits are written by software to define the duration of the data phase (refer to Figure 190 to
Figure 202), used in asynchronous SRAM, PSRAM and NOR Flash memory accesses:

0000 0000: Reserved
0000 0001: DATAST phase duration = 1 × HCLK clock cycles
0000 0010: DATAST phase duration = 2 × HCLK clock cycles
...
1111 1111: DATAST phase duration = 255 × HCLK clock cycles (default value after reset)

Note: In synchronous accesses, this value is don't care.

Bits 7:4 ADDHLD[3:0]: Address-hold phase duration.

These bits are written by software to define the duration of the address hold phase (refer to
Figure 199 to Figure 202), used in asynchronous multiplexed accesses:

0000: Reserved
0001: ADDHLD phase duration = 1 × HCLK clock cycle
0010: ADDHLD phase duration = 2 × HCLK clock cycle
...
1111: ADDHLD phase duration = 15 × HCLK clock cycles (default value after reset)

Note: In synchronous NOR Flash accesses, this value is not used, the address hold phase is always
1 Flash clock period duration.

Bits 3:0 ADDSET[3:0]: Address setup phase duration.

These bits are written by software to define the duration of the address setup phase in HCLK cycles
(refer to Figure 199 to Figure 202), used in asynchronous accessed:

0000: ADDSET phase duration = 0 × HCLK clock cycle
...
1111: ADDSET phase duration = 15 × HCLK clock cycles (default value after reset)

Note: In synchronous NOR Flash and PSRAM accesses, this value is don’t care.

DocID15965 Rev 14 659/908

RM0038 Flexible static memory controller (FSMC)

660

25.5.7 FSMC register map

The following table summarizes the FSMC registers. The reserved memory areas are
highlighted in gray in the table.

Table 137. FSMC register map

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

 0000 FSMC_BCR1 Reserved

C
B

U
R

S
T

R
W

C
P

S
IZ

E
[2

:0
]

A
S

Y
N

C
W

A
IT

E
X

T
M

O
D

W
A

IT
E

N

W
R

E
N

W
A

IT
C

F
G

W
R

A
P

M
O

D

W
A

IT
P

O
L

B
U

R
S

T
E

N

R
e

se
rv

e
d

F
A

C
C

E
N

M
W

ID
[1

:0
]

M
T

Y
P

[0
:1

]

M
U

X
E

N

M
B

K
E

N

0008 FSMC_BCR2 Reserved

C
B

U
R

S
T

R
W

C
P

S
IZ

E
[2

:0
]

A
S

Y
N

C
W

A
IT

E
X

T
M

O
D

W
A

IT
E

N

W
R

E
N

W
A

IT
C

F
G

W
R

A
P

M
O

D

W
A

IT
P

O
L

B
U

R
S

T
E

N

R
e

se
rv

e
d

F
A

C
C

E
N

M
W

ID
[1

:0
]

M
T

Y
P

[0
:1

]

M
U

X
E

N

M
B

K
E

N

0010 FSMC_BCR3 Reserved

C
B

U
R

S
T

R
W

C
P

S
IZ

E
[2

:0
]

A
S

Y
N

C
W

A
IT

E
X

T
M

O
D

W
A

IT
E

N

W
R

E
N

W
A

IT
C

F
G

W
R

A
P

M
O

D

W
A

IT
P

O
L

B
U

R
S

T
E

N

R
e

se
rv

e
d

F
A

C
C

E
N

M
W

ID
[1

:0
]

M
T

Y
P

[0
:1

]

M
U

X
E

N

M
B

K
E

N

0018 FSMC_BCR4 Reserved

C
B

U
R

S
T

R
W

C
P

S
IZ

E
[2

:0
]

A
S

Y
N

C
W

A
IT

E
X

T
M

O
D

W
A

IT
E

N

W
R

E
N

W
A

IT
C

F
G

W
R

A
P

M
O

D

W
A

IT
P

O
L

B
U

R
S

T
E

N

R
e

se
rv

ed

F
A

C
C

E
N

M
W

ID
[1

:0
]

M
T

Y
P

[0
:1

]

M
U

X
E

N

M
B

K
E

N

0004 FSMC_BTR1 Res.

A
C

C
M

O
D

[1
:0

]

D
A

T
L

A
T

[3
:0

]

C
L

K
D

IV
[3

:0
]

B
U

S
T

U
R

N
[3

:0
]

D
A

TA
S

T
[7

:0
]

A
D

D
H

L
D

[3
:0

]

ADDSET[3:0]

000C FSMC_BTR2 Res.

A
C

C
M

O
D

[1
:0

]

D
A

T
L

A
T

[3
:0

]

C
L

K
D

IV
[3

:0
]

B
U

S
T

U
R

N
[3

:0
]

D
A

TA
S

T
[7

:0
]

A
D

D
H

L
D

[3
:0

]

ADDSET[3:0]

0014 FSMC_BTR3 Res.

A
C

C
M

O
D

[1
:0

]

D
A

T
L

A
T

[3
:0

]

C
L

K
D

IV
[3

:0
]

B
U

S
T

U
R

N
[3

:0
]

D
A

TA
S

T
[7

:0
]

A
D

D
H

L
D

[3
:0

]

ADDSET[3:0]

001C FSMC_BTR4 Res.

A
C

C
M

O
D

[1
:0

]

D
A

T
L

A
T

[3
:0

]

C
L

K
D

IV
[3

:0
]

B
U

S
T

U
R

N
[3

:0
]

D
A

TA
S

T
[7

:0
]

A
D

D
H

L
D

[3
:0

]

ADDSET[3:0]

 0104
FSMC_BWTR

1
Res.

ACC
MOD
[1:0]

Res.

B
U

S
T

U
R

N
[3

:0
]

D
A

TA
S

T
[7

:0
]

A
D

D
H

L
D

[3
:0

]

A
D

D
S

E
T

[3
:0

]

 010C
FSMC_BWTR

2
Res.

ACC
MOD
[1:0]

Res.

B
U

S
T

U
R

N
[3

:0
]

D
A

TA
S

T
[7

:0
]

A
D

D
H

L
D

[3
:0

]

A
D

D
S

E
T

[3
:0

]

Flexible static memory controller (FSMC) RM0038

660/908 DocID15965 Rev 14

Refer to Section: Memory map Table 5 on page 47for the register boundary addresses.

0114
FSMC_BWTR

3
Res.

ACC
MOD
[1:0]

Res.

B
U

S
T

U
R

N
[3

:0
]

D
A

TA
S

T
[7

:0
]

A
D

D
H

LD
[3

:0
]

A
D

D
S

E
T

[3
:0

]

011C
FSMC_BWTR

4
Res.

ACC
MOD
[1:0]

Res.

B
U

S
T

U
R

N
[3

:0
]

D
A

TA
S

T
[7

:0
]

A
D

D
H

LD
[3

:0
]

A
D

D
S

E
T

[3
:0

]

Table 137. FSMC register map (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

DocID15965 Rev 14 661/908

RM0038 Inter-integrated circuit (I2C) interface

693

26 Inter-integrated circuit (I2C) interface

26.1 I2C introduction

I2C (inter-integrated circuit) bus Interface serves as an interface between the microcontroller
and the serial I2C bus. It provides multimaster capability, and controls all I2C bus-specific
sequencing, protocol, arbitration and timing. It supports the standard mode (Sm, up to 100
kHz) and Fm mode (Fm, up to 400 kHz).

It may be used for a variety of purposes, including CRC generation and verification, SMBus
(system management bus) and PMBus (power management bus).

Depending on specific device implementation DMA capability can be available for reduced
CPU overload.

26.2 I2C main features

• Parallel-bus/I2C protocol converter

• Multimaster capability: the same interface can act as Master or Slave

• I2C Master features:

– Clock generation

– Start and Stop generation

• I2C Slave features:

– Programmable I2C Address detection

– Dual Addressing Capability to acknowledge 2 slave addresses

– Stop bit detection

• Generation and detection of 7-bit/10-bit addressing and General Call

• Supports different communication speeds:

– Standard Speed (up to 100 kHz)

– Fast Speed (up to 400 kHz)

• Analog noise filter

• Status flags:

– Transmitter/Receiver mode flag

– End-of-Byte transmission flag

– I2C busy flag

• Error flags:

– Arbitration lost condition for master mode

– Acknowledgment failure after address/ data transmission

– Detection of misplaced start or stop condition

– Overrun/Underrun if clock stretching is disabled

• 2 Interrupt vectors:

– 1 Interrupt for successful address/ data communication

– 1 Interrupt for error condition

• Optional clock stretching

Inter-integrated circuit (I2C) interface RM0038

662/908 DocID15965 Rev 14

• 1-byte buffer with DMA capability

• Configurable PEC (packet error checking) generation or verification:

– PEC value can be transmitted as last byte in Tx mode

– PEC error checking for last received byte

• SMBus 2.0 Compatibility:

– 25 ms clock low timeout delay

– 10 ms master cumulative clock low extend time

– 25 ms slave cumulative clock low extend time

– Hardware PEC generation/verification with ACK control

– Address Resolution Protocol (ARP) supported

• PMBus Compatibility

Note: Some of the above features may not be available in certain products. The user should refer
to the product data sheet, to identify the specific features supported by the I2C interface
implementation.

26.3 I2C functional description

In addition to receiving and transmitting data, this interface converts it from serial to parallel
format and vice versa. The interrupts are enabled or disabled by software. The interface is
connected to the I2C bus by a data pin (SDA) and by a clock pin (SCL). It can be connected
with a standard (up to 100 kHz) or fast (up to 400 kHz) I2C bus.

26.3.1 Mode selection

The interface can operate in one of the four following modes:

• Slave transmitter

• Slave receiver

• Master transmitter

• Master receiver

By default, it operates in slave mode. The interface automatically switches from slave to
master, after it generates a START condition and from master to slave, if an arbitration loss
or a Stop generation occurs, allowing multimaster capability.

Communication flow

In Master mode, the I2C interface initiates a data transfer and generates the clock signal. A
serial data transfer always begins with a start condition and ends with a stop condition. Both
start and stop conditions are generated in master mode by software.

In Slave mode, the interface is capable of recognizing its own addresses (7 or 10-bit), and
the General Call address. The General Call address detection may be enabled or disabled
by software.

Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the
start condition contain the address (one in 7-bit mode, two in 10-bit mode). The address is
always transmitted in Master mode.

A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must
send an acknowledge bit to the transmitter. Refer to Figure 208.

DocID15965 Rev 14 663/908

RM0038 Inter-integrated circuit (I2C) interface

693

Figure 208. I2C bus protocol

Acknowledge may be enabled or disabled by software. The I2C interface addresses (dual
addressing 7-bit/ 10-bit and/or general call address) can be selected by software.

The block diagram of the I2C interface is shown in Figure 209.

Inter-integrated circuit (I2C) interface RM0038

664/908 DocID15965 Rev 14

Figure 209. I2C block diagram

1. SMBA is an optional signal in SMBus mode. This signal is not applicable if SMBus is disabled.

26.3.2 I2C slave mode

By default the I2C interface operates in Slave mode. To switch from default Slave mode to
Master mode a Start condition generation is needed.

The peripheral input clock must be programmed in the I2C_CR2 register in order to
generate correct timings. The peripheral input clock frequency must be at least:

• 2 MHz in Sm mode

• 4 MHz in Fm mode

Note: Voltage scaling range 3 is not allowed in Fm mode, refer to Section 5.1.5: Dynamic voltage
scaling management on page 100 for more details.

As soon as a start condition is detected, the address is received from the SDA line and sent
to the shift register. Then it is compared with the address of the interface (OAR1) and with
OAR2 (if ENDUAL=1) or the General Call address (if ENGC = 1).

DocID15965 Rev 14 665/908

RM0038 Inter-integrated circuit (I2C) interface

693

Note: In 10-bit addressing mode, the comparison includes the header sequence (11110xx0),
where xx denotes the two most significant bits of the address.

Header or address not matched: the interface ignores it and waits for another Start
condition.

Header matched (10-bit mode only): the interface generates an acknowledge pulse if the
ACK bit is set and waits for the 8-bit slave address.

Address matched: the interface generates in sequence:

• An acknowledge pulse if the ACK bit is set

• The ADDR bit is set by hardware and an interrupt is generated if the ITEVFEN bit is
set.

• If ENDUAL=1, the software has to read the DUALF bit to check which slave address
has been acknowledged.

In 10-bit mode, after receiving the address sequence the slave is always in Receiver mode.
It will enter Transmitter mode on receiving a repeated Start condition followed by the header
sequence with matching address bits and the least significant bit set (11110xx1).

The TRA bit indicates whether the slave is in Receiver or Transmitter mode.

Slave transmitter

Following the address reception and after clearing ADDR, the slave sends bytes from the
DR register to the SDA line via the internal shift register.

The slave stretches SCL low until ADDR is cleared and DR filled with the data to be sent
(see Figure 210 Transfer sequencing EV1 EV3).

When the acknowledge pulse is received:

• The TxE bit is set by hardware with an interrupt if the ITEVFEN and the ITBUFEN bits
are set.

If TxE is set and some data were not written in the I2C_DR register before the end of the
next data transmission, the BTF bit is set and the interface waits until BTF is cleared by a
read to I2C_SR1 followed by a write to the I2C_DR register, stretching SCL low.

Inter-integrated circuit (I2C) interface RM0038

666/908 DocID15965 Rev 14

Figure 210. Transfer sequence diagram for slave transmitter

1. The EV1 and EV3_1 events stretch SCL low until the end of the corresponding software sequence.

2. The EV3 event stretches SCL low if the software sequence is not completed before the end of the next byte
transmission

Slave receiver

Following the address reception and after clearing ADDR, the slave receives bytes from the
SDA line into the DR register via the internal shift register. After each byte the interface
generates in sequence:

• An acknowledge pulse if the ACK bit is set

• The RxNE bit is set by hardware and an interrupt is generated if the ITEVFEN and
ITBUFEN bit is set.

If RxNE is set and the data in the DR register is not read before the end of the next data
reception, the BTF bit is set and the interface waits until BTF is cleared by a read from the
I2C_DR register, stretching SCL low (see Figure 211 Transfer sequencing).

DocID15965 Rev 14 667/908

RM0038 Inter-integrated circuit (I2C) interface

693

Figure 211. Transfer sequence diagram for slave receiver

1. The EV1 event stretches SCL low until the end of the corresponding software sequence.

2. The EV2 event stretches SCL low if the software sequence is not completed before the end of the next byte
reception.

3. After checking the SR1 register content, the user should perform the complete clearing sequence for each
flag found set.
Thus, for ADDR and STOPF flags, the following sequence is required inside the I2C interrupt routine:
READ SR1
if (ADDR == 1) {READ SR1; READ SR2}
if (STOPF == 1) {READ SR1; WRITE CR1}
The purpose is to make sure that both ADDR and STOPF flags are cleared if both are found set.

Closing slave communication

After the last data byte is transferred a Stop Condition is generated by the master. The
interface detects this condition and sets:

• The STOPF bit and generates an interrupt if the ITEVFEN bit is set.

The STOPF bit is cleared by a read of the SR1 register followed by a write to the CR1
register (see Figure 211: Transfer sequence diagram for slave receiver EV4).

26.3.3 I2C master mode

In Master mode, the I2C interface initiates a data transfer and generates the clock signal. A
serial data transfer always begins with a Start condition and ends with a Stop condition.
Master mode is selected as soon as the Start condition is generated on the bus with a
START bit.

The following is the required sequence in master mode.

• Program the peripheral input clock in I2C_CR2 Register in order to generate correct
timings

• Configure the clock control registers

• Configure the rise time register

• Program the I2C_CR1 register to enable the peripheral

• Set the START bit in the I2C_CR1 register to generate a Start condition

Inter-integrated circuit (I2C) interface RM0038

668/908 DocID15965 Rev 14

The peripheral input clock frequency must be at least:

• 2 MHz in Sm mode

• 4 MHz in Fm mode

Note: Voltage scaling range 3 is not allowed in Fm mode, refer to Section 5.1.5: Dynamic voltage
scaling management on page 100 for more details.

SCL master clock generation

The CCR bits are used to generate the high and low level of the SCL clock, starting from the
generation of the rising and falling edge (respectively). As a slave may stretch the SCL line,
the peripheral checks the SCL input from the bus at the end of the time programmed in
TRISE bits after rising edge generation.

• If the SCL line is low, it means that a slave is stretching the bus, and the high level
counter stops until the SCL line is detected high. This allows to guarantee the minimum
HIGH period of the SCL clock parameter.

• If the SCL line is high, the high level counter keeps on counting.

Indeed, the feedback loop from the SCL rising edge generation by the peripheral to the SCL
rising edge detection by the peripheral takes time even if no slave stretches the clock. This
loopback duration is linked to the SCL rising time (impacting SCL VIH input detection), plus
delay due to the noise filter present on the SCL input path, plus delay due to internal SCL
input synchronization with APB clock. The maximum time used by the feedback loop is
programmed in the TRISE bits, so that the SCL frequency remains stable whatever the SCL
rising time.

Start condition

Setting the START bit causes the interface to generate a Start condition and to switch to
Master mode (MSL bit set) when the BUSY bit is cleared.

Note: In master mode, setting the START bit causes the interface to generate a ReStart condition
at the end of the current byte transfer.

Once the Start condition is sent:

• The SB bit is set by hardware and an interrupt is generated if the ITEVFEN bit is set.

Then the master waits for a read of the SR1 register followed by a write in the DR register
with the Slave address (see Figure 212 and Figure 213 Transfer sequencing EV5).

DocID15965 Rev 14 669/908

RM0038 Inter-integrated circuit (I2C) interface

693

Slave address transmission

Then the slave address is sent to the SDA line via the internal shift register.

• In 10-bit addressing mode, sending the header sequence causes the following event:

– The ADD10 bit is set by hardware and an interrupt is generated if the ITEVFEN bit
is set.

Then the master waits for a read of the SR1 register followed by a write in the DR
register with the second address byte (see Figure 212 and Figure 213 Transfer
sequencing).

– The ADDR bit is set by hardware and an interrupt is generated if the ITEVFEN bit
is set.

Then the master waits for a read of the SR1 register followed by a read of the SR2
register (see Figure 212 and Figure 213 Transfer sequencing).

• In 7-bit addressing mode, one address byte is sent.

As soon as the address byte is sent,

– The ADDR bit is set by hardware and an interrupt is generated if the ITEVFEN bit
is set.

Then the master waits for a read of the SR1 register followed by a read of the SR2
register (see Figure 212 and Figure 213 Transfer sequencing).

The master can decide to enter Transmitter or Receiver mode depending on the LSB of the
slave address sent.

• In 7-bit addressing mode,

– To enter Transmitter mode, a master sends the slave address with LSB reset.

– To enter Receiver mode, a master sends the slave address with LSB set.

• In 10-bit addressing mode,

– To enter Transmitter mode, a master sends the header (11110xx0) and then the
slave address, (where xx denotes the two most significant bits of the address).

– To enter Receiver mode, a master sends the header (11110xx0) and then the
slave address. Then it should send a repeated Start condition followed by the
header (11110xx1), (where xx denotes the two most significant bits of the
address).

The TRA bit indicates whether the master is in Receiver or Transmitter mode.

Master transmitter

Following the address transmission and after clearing ADDR, the master sends bytes from
the DR register to the SDA line via the internal shift register.

The master waits until the first data byte is written into I2C_DR (see Figure 212 Transfer
sequencing EV8_1).

When the acknowledge pulse is received, the TxE bit is set by hardware and an interrupt is
generated if the ITEVFEN and ITBUFEN bits are set.

If TxE is set and a data byte was not written in the DR register before the end of the last data
transmission, BTF is set and the interface waits until BTF is cleared by a write to I2C_DR,
stretching SCL low.

Closing the communication

Inter-integrated circuit (I2C) interface RM0038

670/908 DocID15965 Rev 14

After the last byte is written to the DR register, the STOP bit is set by software to generate a
Stop condition (see Figure 212 Transfer sequencing EV8_2). The interface automatically
goes back to slave mode (MSL bit cleared).

Note: Stop condition should be programmed during EV8_2 event, when either TxE or BTF is set.

Figure 212. Transfer sequence diagram for master transmitter

1. The EV5, EV6, EV9, EV8_1 and EV8_2 events stretch SCL low until the end of the corresponding software sequence.

2. The EV8 event stretches SCL low if the software sequence is not complete before the end of the next byte transmission.

DocID15965 Rev 14 671/908

RM0038 Inter-integrated circuit (I2C) interface

693

Master receiver

Following the address transmission and after clearing ADDR, the I2C interface enters
Master Receiver mode. In this mode the interface receives bytes from the SDA line into the
DR register via the internal shift register. After each byte the interface generates in
sequence:

1. An acknowledge pulse if the ACK bit is set

2. The RxNE bit is set and an interrupt is generated if the ITEVFEN and ITBUFEN bits are
set (see Figure 213 Transfer sequencing EV7).

If the RxNE bit is set and the data in the DR register is not read before the end of the last
data reception, the BTF bit is set by hardware and the interface waits until BTF is cleared by
a read in the DR register, stretching SCL low.

Closing the communication

The master sends a NACK for the last byte received from the slave. After receiving this
NACK, the slave releases the control of the SCL and SDA lines. Then the master can send
a Stop/Restart condition.

1. To generate the nonacknowledge pulse after the last received data byte, the ACK bit
must be cleared just after reading the second last data byte (after second last RxNE
event).

2. In order to generate the Stop/Restart condition, software must set the STOP/START bit
after reading the second last data byte (after the second last RxNE event).

3. In case a single byte has to be received, the Acknowledge disable is made during EV6
(before ADDR flag is cleared) and the STOP condition generation is made after EV6.

After the Stop condition generation, the interface goes automatically back to slave mode
(MSL bit cleared).

Inter-integrated circuit (I2C) interface RM0038

672/908 DocID15965 Rev 14

Figure 213. Transfer sequence diagram for master receiver

1. If a single byte is received, it is NA.

2. The EV5, EV6 and EV9 events stretch SCL low until the end of the corresponding software sequence.

3. The EV7 event stretches SCL low if the software sequence is not completed before the end of the next byte
reception.

4. The EV7_1 software sequence must be completed before the ACK pulse of the current byte transfer.

 The procedures described below are recommended if the EV7-1 software sequence is not
completed before the ACK pulse of the current byte transfer.

These procedures must be followed to make sure:

• The ACK bit is set low on time before the end of the last data reception

• The STOP bit is set high after the last data reception without reception of
supplementary data.

For 2-byte reception:

• Wait until ADDR = 1 (SCL stretched low until the ADDR flag is cleared)

• Set ACK low, set POS high

• Clear ADDR flag

• Wait until BTF = 1 (Data 1 in DR, Data2 in shift register, SCL stretched low until a data
1 is read)

• Set STOP high

• Read data 1 and 2

DocID15965 Rev 14 673/908

RM0038 Inter-integrated circuit (I2C) interface

693

For N >2 -byte reception, from N-2 data reception

• Wait until BTF = 1 (data N-2 in DR, data N-1 in shift register, SCL stretched low until
data N-2 is read)

• Set ACK low

• Read data N-2

• Wait until BTF = 1 (data N-1 in DR, data N in shift register, SCL stretched low until a
data N-1 is read)

• Set STOP high

• Read data N-1 and N

26.3.4 Error conditions

The following are the error conditions which may cause communication to fail.

Bus error (BERR)

This error occurs when the I2C interface detects an external Stop or Start condition during
an address or a data transfer. In this case:

• the BERR bit is set and an interrupt is generated if the ITERREN bit is set

• in Slave mode: data are discarded and the lines are released by hardware:

– in case of a misplaced Start, the slave considers it is a restart and waits for an
address, or a Stop condition

– in case of a misplaced Stop, the slave behaves like for a Stop condition and the
lines are released by hardware

• In Master mode: the lines are not released and the state of the current transmission is
not affected. It is up to the software to abort or not the current transmission

Acknowledge failure (AF)

This error occurs when the interface detects a nonacknowledge bit. In this case:

• the AF bit is set and an interrupt is generated if the ITERREN bit is set

• a transmitter which receives a NACK must reset the communication:

– If Slave: lines are released by hardware

– If Master: a Stop or repeated Start condition must be generated by software

Arbitration lost (ARLO)

This error occurs when the I2C interface detects an arbitration lost condition. In this case,

• the ARLO bit is set by hardware (and an interrupt is generated if the ITERREN bit is
set)

• the I2C Interface goes automatically back to slave mode (the MSL bit is cleared). When
the I2C loses the arbitration, it is not able to acknowledge its slave address in the same
transfer, but it can acknowledge it after a repeated Start from the winning master.

• lines are released by hardware

Inter-integrated circuit (I2C) interface RM0038

674/908 DocID15965 Rev 14

Overrun/underrun error (OVR)

An overrun error can occur in slave mode when clock stretching is disabled and the I2C
interface is receiving data. The interface has received a byte (RxNE=1) and the data in DR
has not been read, before the next byte is received by the interface. In this case,

• The last received byte is lost.

• In case of Overrun error, software should clear the RxNE bit and the transmitter should
re-transmit the last received byte.

Underrun error can occur in slave mode when clock stretching is disabled and the I2C
interface is transmitting data. The interface has not updated the DR with the next byte
(TxE=1), before the clock comes for the next byte. In this case,

• The same byte in the DR register will be sent again

• The user should make sure that data received on the receiver side during an underrun
error are discarded and that the next bytes are written within the clock low time
specified in the I2C bus standard.

For the first byte to be transmitted, the DR must be written after ADDR is cleared and before
the first SCL rising edge. If not possible, the receiver must discard the first data.

26.3.5 SDA/SCL line control

• If clock stretching is enabled:

– Transmitter mode: If TxE=1 and BTF=1: the interface holds the clock line low
before transmission to wait for the microcontroller to write the byte in the Data
Register (both buffer and shift register are empty).

– Receiver mode: If RxNE=1 and BTF=1: the interface holds the clock line low after
reception to wait for the microcontroller to read the byte in the Data Register (both
buffer and shift register are full).

• If clock stretching is disabled in Slave mode:

– Overrun Error in case of RxNE=1 and no read of DR has been done before the
next byte is received. The last received byte is lost.

– Underrun Error in case TxE=1 and no write into DR has been done before the next
byte must be transmitted. The same byte will be sent again.

– Write Collision not managed.

26.3.6 SMBus

Introduction

The System Management Bus (SMBus) is a two-wire interface through which various
devices can communicate with each other and with the rest of the system. It is based on I2C
principles of operation. SMBus provides a control bus for system and power management
related tasks. A system may use SMBus to pass messages to and from devices instead of
toggling individual control lines.

The System Management Bus Specification refers to three types of devices. A slave is a
device that is receiving or responding to a command. A master is a device that issues
commands, generates the clocks, and terminates the transfer. A host is a specialized
master that provides the main interface to the system's CPU. A host must be a master-slave
and must support the SMBus host notify protocol. Only one host is allowed in a system.

DocID15965 Rev 14 675/908

RM0038 Inter-integrated circuit (I2C) interface

693

Similarities between SMBus and I2C

• 2 wire bus protocol (1 Clk, 1 Data) + SMBus Alert line optional

• Master-slave communication, Master provides clock

• Multi master capability

• SMBus data format similar to I2C 7-bit addressing format (Figure 208).

Differences between SMBus and I2C

The following table describes the differences between SMBus and I2C.

SMBus application usage

With System Management Bus, a device can provide manufacturer information, tell the
system what its model/part number is, save its state for a suspend event, report different
types of errors, accept control parameters, and return its status. SMBus provides a control
bus for system and power management related tasks.

Device identification

Any device that exists on the System Management Bus as a slave has a unique address
called the Slave Address. For the list of reserved slave addresses, refer to the SMBus
specification version. 2.0 (http://smbus.org/).

Bus protocols

The SMBus specification supports up to 9 bus protocols. For more details of these protocols
and SMBus address types, refer to SMBus specification version. 2.0 (http://smbus.org/).
These protocols should be implemented by the user software.

Table 138. SMBus vs. I2C

SMBus I2C

Max. speed 100 kHz Max. speed 400 kHz

Min. clock speed 10 kHz No minimum clock speed

35 ms clock low timeout No timeout

Logic levels are fixed Logic levels are VDD dependent

Different address types (reserved, dynamic etc.) 7-bit, 10-bit and general call slave address types

Different bus protocols (quick command, process
call etc.)

No bus protocols

Inter-integrated circuit (I2C) interface RM0038

676/908 DocID15965 Rev 14

Address resolution protocol (ARP)

SMBus slave address conflicts can be resolved by dynamically assigning a new unique
address to each slave device. The Address Resolution Protocol (ARP) has the following
attributes:

• Address assignment uses the standard SMBus physical layer arbitration mechanism

• Assigned addresses remain constant while device power is applied; address retention
through device power loss is also allowed

• No additional SMBus packet overhead is incurred after address assignment. (i.e.
subsequent accesses to assigned slave addresses have the same overhead as
accesses to fixed address devices.)

• Any SMBus master can enumerate the bus

Unique device identifier (UDID)

In order to provide a mechanism to isolate each device for the purpose of address
assignment, each device must implement a unique device identifier (UDID).

For the details on 128 bit UDID and more information on ARP, refer to SMBus specification
version 2.0 (http://smbus.org/).

SMBus alert mode

SMBus Alert is an optional signal with an interrupt line for devices that want to trade their
ability to master for a pin. SMBA is a wired-AND signal just as the SCL and SDA signals are.
SMBA is used in conjunction with the SMBus General Call Address. Messages invoked with
the SMBus are 2 bytes long.

A slave-only device can signal the host through SMBA that it wants to talk by setting ALERT
bit in I2C_CR1 register. The host processes the interrupt and simultaneously accesses all
SMBA devices through the Alert Response Address (known as ARA having a value 0001
100X). Only the device(s) which pulled SMBA low will acknowledge the Alert Response
Address. This status is identified using SMBALERT Status flag in I2C_SR1 register. The
host performs a modified Receive Byte operation. The 7 bit device address provided by the
slave transmit device is placed in the 7 most significant bits of the byte. The eighth bit can
be a zero or one.

If more than one device pulls SMBA low, the highest priority (lowest address) device will win
communication rights via standard arbitration during the slave address transfer. After
acknowledging the slave address the device must disengage its SMBA pull-down. If the
host still sees SMBA low when the message transfer is complete, it knows to read the ARA
again.
A host which does not implement the SMBA signal may periodically access the ARA.

For more details on SMBus Alert mode, refer to SMBus specification version 2.0
(http://smbus.org/).

Timeout error

There are differences in the timing specifications between I2C and SMBus.
SMBus defines a clock low timeout, TIMEOUT of 35 ms. Also SMBus specifies TLOW:
SEXT as the cumulative clock low extend time for a slave device. SMBus specifies TLOW:
MEXT as the cumulative clock low extend time for a master device. For more details on
these timeouts, refer to SMBus specification version 2.0 (http://smbus.org/).

The status flag Timeout or Tlow Error in I2C_SR1 shows the status of this feature.

DocID15965 Rev 14 677/908

RM0038 Inter-integrated circuit (I2C) interface

693

How to use the interface in SMBus mode

To switch from I2C mode to SMBus mode, the following sequence should be performed.

• Set the SMBus bit in the I2C_CR1 register

• Configure the SMBTYPE and ENARP bits in the I2C_CR1 register as required for the
application

If you want to configure the device as a master, follow the Start condition generation
procedure in Section 26.3.3: I2C master mode. Otherwise, follow the sequence in
Section 26.3.2: I2C slave mode.

The application has to control the various SMBus protocols by software.

• SMB Device Default Address acknowledged if ENARP=1 and SMBTYPE=0

• SMB Host Header acknowledged if ENARP=1 and SMBTYPE=1

• SMB Alert Response Address acknowledged if SMBALERT=1

26.3.7 DMA requests

DMA requests (when enabled) are generated only for data transfer. DMA requests are
generated by Data Register becoming empty in transmission and Data Register becoming
full in reception. The DMA must be initialized and enabled before the I2C data transfer. The
DMAEN bit must be set in the I2C_CR2 register before the ADDR event. In master mode or
in slave mode when clock stretching is enabled, the DMAEN bit can also be set during the
ADDR event, before clearing the ADDR flag. The DMA request must be served before the
end of the current byte transfer. When the number of data transfers which has been
programmed for the corresponding DMA stream is reached, the DMA controller sends an
End of Transfer EOT signal to the I2C interface and generates a Transfer Complete interrupt
if enabled:

• Master transmitter: In the interrupt routine after the EOT interrupt, disable DMA
requests then wait for a BTF event before programming the Stop condition.

• Master receiver

– When the number of bytes to be received is equal to or greater than two, the DMA
controller sends a hardware signal, EOT_1, corresponding to the last but one data
byte (number_of_bytes – 1). If, in the I2C_CR2 register, the LAST bit is set, I2C
automatically sends a NACK after the next byte following EOT_1. The user can
generate a Stop condition in the DMA Transfer Complete interrupt routine if
enabled.

– When a single byte must be received: the NACK must be programmed during EV6
event, i.e. program ACK=0 when ADDR=1, before clearing ADDR flag. Then the
user can program the STOP condition either after clearing ADDR flag, or in the
DMA Transfer Complete interrupt routine.

Transmission using DMA

DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2
register. Data will be loaded from a Memory area configured using the DMA peripheral (refer
to the DMA specification) to the I2C_DR register whenever the TxE bit is set. To map a DMA
stream x for I2C transmission (where x is the stream number), perform the following
sequence:

Inter-integrated circuit (I2C) interface RM0038

678/908 DocID15965 Rev 14

1. Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved
to this address from the memory after each TxE event.

2. Set the memory address in the DMA_SxMA0R register (and in DMA_SxMA1R register
in the case of a bouble buffer mode). The data will be loaded into I2C_DR from this
memory after each TxE event.

3. Configure the total number of bytes to be transferred in the DMA_SxNDTR register.
After each TxE event, this value will be decremented.

4. Configure the DMA stream priority using the PL[0:1] bits in the DMA_SxCR register

5. Set the DIR bit in the DMA_SxCR register and configure interrupts after half transfer or
full transfer depending on application requirements.

6. Activate the stream by setting the EN bit in the DMA_SxCR register.

When the number of data transfers which has been programmed in the DMA Controller
registers is reached, the DMA controller sends an End of Transfer EOT/ EOT_1 signal to the
I2C interface and the DMA generates an interrupt, if enabled, on the DMA stream interrupt
vector.

Note: Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for transmission.

Reception using DMA

DMA mode can be enabled for reception by setting the DMAEN bit in the I2C_CR2 register.
Data will be loaded from the I2C_DR register to a Memory area configured using the DMA
peripheral (refer to the DMA specification) whenever a data byte is received. To map a DMA
stream x for I2C reception (where x is the stream number), perform the following sequence:

1. Set the I2C_DR register address in DMA_SxPAR register. The data will be moved from
this address to the memory after each RxNE event.

2. Set the memory address in the DMA_SxMA0R register (and in DMA_SxMA1R register
in the case of a bouble buffer mode). The data will be loaded from the I2C_DR register
to this memory area after each RxNE event.

3. Configure the total number of bytes to be transferred in the DMA_SxNDTR register.
After each RxNE event, this value will be decremented.

4. Configure the stream priority using the PL[0:1] bits in the DMA_SxCR register

5. Reset the DIR bit and configure interrupts in the DMA_SxCR register after half transfer
or full transfer depending on application requirements.

6. Activate the stream by setting the EN bit in the DMA_SxCR register.

When the number of data transfers which has been programmed in the DMA Controller
registers is reached, the DMA controller sends an End of Transfer EOT/ EOT_1 signal to the
I2C interface and DMA generates an interrupt, if enabled, on the DMA stream interrupt
vector.

Note: Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for reception.

DocID15965 Rev 14 679/908

RM0038 Inter-integrated circuit (I2C) interface

693

26.3.8 Packet error checking

A PEC calculator has been implemented to improve the reliability of communication. The
PEC is calculated by using the C(x) = x8 + x2 + x + 1 CRC-8 polynomial serially on each bit.

• PEC calculation is enabled by setting the ENPEC bit in the I2C_CR1 register. PEC is a
CRC-8 calculated on all message bytes including addresses and R/W bits.

– In transmission: set the PEC transfer bit in the I2C_CR1 register after the TxE
event corresponding to the last byte. The PEC will be transferred after the last
transmitted byte.

– In reception: set the PEC bit in the I2C_CR1 register after the RxNE event
corresponding to the last byte so that the receiver sends a NACK if the next
received byte is not equal to the internally calculated PEC. In case of Master-
Receiver, a NACK must follow the PEC whatever the check result. The PEC must
be set before the ACK of the CRC reception in slave mode. It must be set when
the ACK is set low in master mode.

• A PECERR error flag/interrupt is also available in the I2C_SR1 register.

• If DMA and PEC calculation are both enabled:-

– In transmission: when the I2C interface receives an EOT signal from the DMA
controller, it automatically sends a PEC after the last byte.

– In reception: when the I2C interface receives an EOT_1 signal from the DMA
controller, it will automatically consider the next byte as a PEC and will check it. A
DMA request is generated after PEC reception.

• To allow intermediate PEC transfers, a control bit is available in the I2C_CR2 register
(LAST bit) to determine if it is really the last DMA transfer or not. If it is the last DMA
request for a master receiver, a NACK is automatically sent after the last received byte.

• PEC calculation is corrupted by an arbitration loss.

26.4 I2C interrupts

The table below gives the list of I2C interrupt requests.

Table 139. I2C Interrupt requests

Interrupt event Event flag Enable control bit

Start bit sent (Master) SB

ITEVFEN

Address sent (Master) or Address matched (Slave) ADDR

10-bit header sent (Master) ADD10

Stop received (Slave) STOPF

Data byte transfer finished BTF

Receive buffer not empty RxNE
ITEVFEN and ITBUFEN

Transmit buffer empty TxE

Inter-integrated circuit (I2C) interface RM0038

680/908 DocID15965 Rev 14

Note: SB, ADDR, ADD10, STOPF, BTF, RxNE and TxE are logically ORed on the same interrupt
channel.

BERR, ARLO, AF, OVR, PECERR, TIMEOUT and SMBALERT are logically ORed on the
same interrupt channel.

Figure 214. I2C interrupt mapping diagram

Bus error BERR

ITERREN

Arbitration loss (Master) ARLO

Acknowledge failure AF

Overrun/Underrun OVR

PEC error PECERR

Timeout/Tlow error TIMEOUT

SMBus Alert SMBALERT

Table 139. I2C Interrupt requests (continued)

Interrupt event Event flag Enable control bit

ADDR

SB

ADD10

RxNE

TxE

BTF

it_event

ARLO

BERR

AF

OVR

PECERR

TIMEOUT

SMBALERT

ITERREN

it_error

ITEVFEN

ITBUFEN

STOPF

MS42082V1

DocID15965 Rev 14 681/908

RM0038 Inter-integrated circuit (I2C) interface

693

26.5 I2C debug mode

When the microcontroller enters the debug mode (Cortex®-M3 core halted), the SMBUS
timeout either continues to work normally or stops, depending on the
DBG_I2Cx_SMBUS_TIMEOUT configuration bits in the DBG module. For more details,
refer to Section 30.16.2: Debug support for timers, watchdog and I2C on page 877.

26.6 I2C registers

Refer to Section: List of abbreviations for registers for a list of abbreviations used in register
descriptions.

The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits).

26.6.1 I2C Control register 1 (I2C_CR1)

Address offset: 0x00
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SWRST
Res.

ALERT PEC POS ACK STOP START
NO

STRETCH
ENGC ENPEC ENARP

SMB
TYPE Res.

SMBU
S

PE

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 SWRST: Software reset

When set, the I2C is under reset state. Before resetting this bit, make sure the I2C lines are
released and the bus is free.
0: I2C Peripheral not under reset
1: I2C Peripheral under reset state

Note: This bit can be used to reinitialize the peripheral after an error or a locked state. As an
example, if the BUSY bit is set and remains locked due to a glitch on the bus, the
SWRST bit can be used to exit from this state.

Bit 14 Reserved, must be kept at reset value

Bit 13 ALERT: SMBus alert

This bit is set and cleared by software, and cleared by hardware when PE=0.
0: Releases SMBA pin high. Alert Response Address Header followed by NACK.
1: Drives SMBA pin low. Alert Response Address Header followed by ACK.

Bit 12 PEC: Packet error checking

This bit is set and cleared by software, and cleared by hardware when PEC is transferred or
by a START or Stop condition or when PE=0.
0: No PEC transfer
1: PEC transfer (in Tx or Rx mode)

Note: PEC calculation is corrupted by an arbitration loss.

Inter-integrated circuit (I2C) interface RM0038

682/908 DocID15965 Rev 14

Bit 11 POS: Acknowledge/PEC Position (for data reception)

This bit is set and cleared by software and cleared by hardware when PE=0.
0: ACK bit controls the (N)ACK of the current byte being received in the shift register. The
PEC bit indicates that current byte in shift register is a PEC.
1: ACK bit controls the (N)ACK of the next byte which will be received in the shift register.
The PEC bit indicates that the next byte in the shift register is a PEC

Note: The POS bit must be used only in 2-byte reception configuration in master mode. It
must be configured before data reception starts, as described in the 2-byte reception
procedure recommended in Section : Master receiver on page 671.

Bit 10 ACK: Acknowledge enable

This bit is set and cleared by software and cleared by hardware when PE=0.
0: No acknowledge returned
1: Acknowledge returned after a byte is received (matched address or data)

Bit 9 STOP: Stop generation

The bit is set and cleared by software, cleared by hardware when a Stop condition is
detected, set by hardware when a timeout error is detected.
In Master Mode:
0: No Stop generation.
1: Stop generation after the current byte transfer or after the current Start condition is sent.
In Slave mode:
0: No Stop generation.
1: Release the SCL and SDA lines after the current byte transfer.

Bit 8 START: Start generation

This bit is set and cleared by software and cleared by hardware when start is sent or PE=0.
In Master Mode:
0: No Start generation
1: Repeated start generation
In Slave mode:
0: No Start generation
1: Start generation when the bus is free

Bit 7 NOSTRETCH: Clock stretching disable (Slave mode)

This bit is used to disable clock stretching in slave mode when ADDR or BTF flag is set, until
it is reset by software.
0: Clock stretching enabled
1: Clock stretching disabled

Bit 6 ENGC: General call enable

0: General call disabled. Address 00h is NACKed.
1: General call enabled. Address 00h is ACKed.

Bit 5 ENPEC: PEC enable

0: PEC calculation disabled
1: PEC calculation enabled

Bit 4 ENARP: ARP enable

0: ARP disable
1: ARP enable
SMBus Device default address recognized if SMBTYPE=0
SMBus Host address recognized if SMBTYPE=1

Bit 3 SMBTYPE: SMBus type

0: SMBus Device
1: SMBus Host

DocID15965 Rev 14 683/908

RM0038 Inter-integrated circuit (I2C) interface

693

Note: When the STOP, START or PEC bit is set, the software must not perform any write access
to I2C_CR1 before this bit is cleared by hardware. Otherwise there is a risk of setting a
second STOP, START or PEC request.

26.6.2 I2C Control register 2 (I2C_CR2)

Address offset: 0x04
Reset value: 0x0000

Bit 2 Reserved, must be kept at reset value

Bit 1 SMBUS: SMBus mode

0: I2C mode
1: SMBus mode

Bit 0 PE: Peripheral enable

0: Peripheral disable
1: Peripheral enable

Note: If this bit is reset while a communication is on going, the peripheral is disabled at the
end of the current communication, when back to IDLE state.
All bit resets due to PE=0 occur at the end of the communication.

In master mode, this bit must not be reset before the end of the communication.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
LAST

DMA
EN

ITBUF
EN

ITEVTE
N

ITERR
EN Reserved

FREQ[5:0]

rw rw rw rw rw rw rw rw rw rw rw

Bits 15:13 Reserved, must be kept at reset value

Bit 12 LAST: DMA last transfer

0: Next DMA EOT is not the last transfer
1: Next DMA EOT is the last transfer

Note: This bit is used in master receiver mode to permit the generation of a NACK on the last
received data.

Bit 11 DMAEN: DMA requests enable

0: DMA requests disabled
1: DMA request enabled when TxE=1 or RxNE =1

Bit 10 ITBUFEN: Buffer interrupt enable

0: TxE = 1 or RxNE = 1 does not generate any interrupt.
1: TxE = 1 or RxNE = 1 generates Event Interrupt (whatever the state of DMAEN)

Inter-integrated circuit (I2C) interface RM0038

684/908 DocID15965 Rev 14

Bit 9 ITEVTEN: Event interrupt enable

0: Event interrupt disabled
1: Event interrupt enabled
This interrupt is generated when:

– SB = 1 (Master)

– ADDR = 1 (Master/Slave)

– ADD10= 1 (Master)

– STOPF = 1 (Slave)

– BTF = 1 with no TxE or RxNE event

– TxE event to 1 if ITBUFEN = 1

– RxNE event to 1if ITBUFEN = 1

ITERREN: Error interrupt enable

0: Error interrupt disabled
1: Error interrupt enabled
This interrupt is generated when:

– BERR = 1

– ARLO = 1

– AF = 1

– OVR = 1

– PECERR = 1

– TIMEOUT = 1

– SMBALERT = 1

Bits 7:6 Reserved, must be kept at reset value

Bits 5:0 FREQ[5:0]: Peripheral clock frequency

The FREQ bits must be configured with the APB clock frequency value (I2C peripheral
connected to APB). The FREQ field is used by the peripheral to generate data setup and
hold times compliant with the I2C specifications. The minimum allowed frequency is 2 MHz,
the maximum frequency is limited by the maximum APB1 frequency and cannot exceed
50 MHz (peripheral intrinsic maximum limit).
0b000000: Not allowed
0b000001: Not allowed
0b000010: 2 MHz
...
0b110010: 50 MHz
Higher than 0b100100: Not allowed

DocID15965 Rev 14 685/908

RM0038 Inter-integrated circuit (I2C) interface

693

26.6.3 I2C Own address register 1 (I2C_OAR1)

Address offset: 0x08
Reset value: 0x0000

26.6.4 I2C Own address register 2 (I2C_OAR2)

Address offset: 0x0C
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD
MODE Reserved

ADD[9:8] ADD[7:1] ADD0

rw rw rw rw rw rw rw rw rw rw rw

Bit 15 ADDMODE Addressing mode (slave mode)

0: 7-bit slave address (10-bit address not acknowledged)
1: 10-bit slave address (7-bit address not acknowledged)

Bit 14 Should always be kept at 1 by software.

Bits 13:10 Reserved, must be kept at reset value

Bits 9:8 ADD[9:8]: Interface address

7-bit addressing mode: don’t care
10-bit addressing mode: bits9:8 of address

Bits 7:1 ADD[7:1]: Interface address

bits 7:1 of address

Bit 0 ADD0: Interface address

7-bit addressing mode: don’t care
10-bit addressing mode: bit 0 of address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
ADD2[7:1] ENDUAL

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value

Bits 7:1 ADD2[7:1]: Interface address

bits 7:1 of address in dual addressing mode

Bit 0 ENDUAL: Dual addressing mode enable

0: Only OAR1 is recognized in 7-bit addressing mode
1: Both OAR1 and OAR2 are recognized in 7-bit addressing mode

Inter-integrated circuit (I2C) interface RM0038

686/908 DocID15965 Rev 14

26.6.5 I2C Data register (I2C_DR)

Address offset: 0x10
Reset value: 0x0000

26.6.6 I2C Status register 1 (I2C_SR1)

Address offset: 0x14
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DR[7:0]

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value

Bits 7:0 DR[7:0] 8-bit data register

Byte received or to be transmitted to the bus.

– Transmitter mode: Byte transmission starts automatically when a byte is written in the DR
register. A continuous transmit stream can be maintained if the next data to be transmitted is
put in DR once the transmission is started (TxE=1)

– Receiver mode: Received byte is copied into DR (RxNE=1). A continuous transmit stream
can be maintained if DR is read before the next data byte is received (RxNE=1).

Note: In slave mode, the address is not copied into DR.

Write collision is not managed (DR can be written if TxE=0).

If an ARLO event occurs on ACK pulse, the received byte is not copied into DR
and so cannot be read.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SMB
ALERT

TIME
OUT Res.

PEC
ERR

OVR AF ARLO BERR TxE RxNE
Res.

STOPF ADD10 BTF ADDR SB

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 r r r r r r r

DocID15965 Rev 14 687/908

RM0038 Inter-integrated circuit (I2C) interface

693

Bit 15 SMBALERT: SMBus alert

In SMBus host mode:
0: no SMBALERT
1: SMBALERT event occurred on pin
In SMBus slave mode:
0: no SMBALERT response address header
1: SMBALERT response address header to SMBALERT LOW received

– Cleared by software writing 0, or by hardware when PE=0.

Bit 14 TIMEOUT: Timeout or Tlow error

0: No timeout error
1: SCL remained LOW for 25 ms (Timeout)
or
Master cumulative clock low extend time more than 10 ms (Tlow:mext)
or
Slave cumulative clock low extend time more than 25 ms (Tlow:sext)

– When set in slave mode: slave resets the communication and lines are released by
hardware

– When set in master mode: Stop condition sent by hardware

– Cleared by software writing 0, or by hardware when PE=0.

Note: This functionality is available only in SMBus mode.

Bit 13 Reserved, must be kept at reset value

Bit 12 PECERR: PEC Error in reception

0: no PEC error: receiver returns ACK after PEC reception (if ACK=1)
1: PEC error: receiver returns NACK after PEC reception (whatever ACK)

– Cleared by software writing 0, or by hardware when PE=0.

– Note: When the received CRC is wrong, PECERR is not set in slave mode if the PEC control
bit is not set before the end of the CRC reception. Nevertheless, reading the PEC value
determines whether the received CRC is right or wrong.

Bit 11 OVR: Overrun/Underrun

0: No overrun/underrun
1: Overrun or underrun

– Set by hardware in slave mode when NOSTRETCH=1 and:

– In reception when a new byte is received (including ACK pulse) and the DR register has not
been read yet. New received byte is lost.

– In transmission when a new byte should be sent and the DR register has not been written
yet. The same byte is sent twice.

– Cleared by software writing 0, or by hardware when PE=0.

Note: If the DR write occurs very close to SCL rising edge, the sent data is unspecified and a
hold timing error occurs

Bit 10 AF: Acknowledge failure

0: No acknowledge failure
1: Acknowledge failure

– Set by hardware when no acknowledge is returned.

– Cleared by software writing 0, or by hardware when PE=0.

Inter-integrated circuit (I2C) interface RM0038

688/908 DocID15965 Rev 14

Bit 9 ARLO: Arbitration lost (master mode)

0: No Arbitration Lost detected
1: Arbitration Lost detected
Set by hardware when the interface loses the arbitration of the bus to another master

– Cleared by software writing 0, or by hardware when PE=0.

After an ARLO event the interface switches back automatically to Slave mode (MSL=0).

Note: In SMBUS, the arbitration on the data in slave mode occurs only during the data phase,
or the acknowledge transmission (not on the address acknowledge).

Bit 8 BERR: Bus error

0: No misplaced Start or Stop condition
1: Misplaced Start or Stop condition

– Set by hardware when the interface detects an SDA rising or falling edge while SCL is high,
occurring in a non-valid position during a byte transfer.

– Cleared by software writing 0, or by hardware when PE=0.

Bit 7 TxE: Data register empty (transmitters)

0: Data register not empty
1: Data register empty

– Set when DR is empty in transmission. TxE is not set during address phase.

– Cleared by software writing to the DR register or by hardware after a start or a stop condition
or when PE=0.

TxE is not set if either a NACK is received, or if next byte to be transmitted is PEC (PEC=1)

Note: TxE is not cleared by writing the first data being transmitted, or by writing data when
BTF is set, as in both cases the data register is still empty.

Bit 6 RxNE: Data register not empty (receivers)

0: Data register empty
1: Data register not empty

– Set when data register is not empty in receiver mode. RxNE is not set during address phase.

– Cleared by software reading or writing the DR register or by hardware when PE=0.

RxNE is not set in case of ARLO event.

Note: RxNE is not cleared by reading data when BTF is set, as the data register is still full.

Bit 5 Reserved, must be kept at reset value

Bit 4 STOPF: Stop detection (slave mode)

0: No Stop condition detected
1: Stop condition detected

– Set by hardware when a Stop condition is detected on the bus by the slave after an
acknowledge (if ACK=1).

– Cleared by software reading the SR1 register followed by a write in the CR1 register, or by
hardware when PE=0

Note: The STOPF bit is not set after a NACK reception.
It is recommended to perform the complete clearing sequence (READ SR1 then
WRITE CR1) after the STOPF is set. Refer to Figure 211: Transfer sequence diagram
for slave receiver on page 667.

DocID15965 Rev 14 689/908

RM0038 Inter-integrated circuit (I2C) interface

693

Bit 3 ADD10: 10-bit header sent (Master mode)

0: No ADD10 event occurred.
1: Master has sent first address byte (header).

– Set by hardware when the master has sent the first byte in 10-bit address mode.

– Cleared by software reading the SR1 register followed by a write in the DR register of the
second address byte, or by hardware when PE=0.

Note: ADD10 bit is not set after a NACK reception

Bit 2 BTF: Byte transfer finished

0: Data byte transfer not done
1: Data byte transfer succeeded

– Set by hardware when NOSTRETCH=0 and:

– In reception when a new byte is received (including ACK pulse) and DR has not been read
yet (RxNE=1).

– In transmission when a new byte should be sent and DR has not been written yet (TxE=1).

– Cleared by software by either a read or write in the DR register or by hardware after a start or
a stop condition in transmission or when PE=0.

Note: The BTF bit is not set after a NACK reception

The BTF bit is not set if next byte to be transmitted is the PEC (TRA=1 in I2C_SR2
register and PEC=1 in I2C_CR1 register)

Bit 1 ADDR: Address sent (master mode)/matched (slave mode)

This bit is cleared by software reading SR1 register followed reading SR2, or by hardware
when PE=0.
Address matched (Slave)
0: Address mismatched or not received.
1: Received address matched.

– Set by hardware as soon as the received slave address matched with the OAR registers
content or a general call or a SMBus Device Default Address or SMBus Host or SMBus Alert
is recognized. (when enabled depending on configuration).

Note: In slave mode, it is recommended to perform the complete clearing sequence (READ
SR1 then READ SR2) after ADDR is set. Refer to Figure 211: Transfer sequence
diagram for slave receiver on page 667.

Address sent (Master)
0: No end of address transmission
1: End of address transmission

– For 10-bit addressing, the bit is set after the ACK of the 2nd byte.

– For 7-bit addressing, the bit is set after the ACK of the byte.

Note: ADDR is not set after a NACK reception

Bit 0 SB: Start bit (Master mode)

0: No Start condition
1: Start condition generated.

– Set when a Start condition generated.

– Cleared by software by reading the SR1 register followed by writing the DR register, or by
hardware when PE=0

Inter-integrated circuit (I2C) interface RM0038

690/908 DocID15965 Rev 14

26.6.7 I2C Status register 2 (I2C_SR2)

Address offset: 0x18
Reset value: 0x0000

Note: Reading I2C_SR2 after reading I2C_SR1 clears the ADDR flag, even if the ADDR flag was
set after reading I2C_SR1. Consequently, I2C_SR2 must be read only when ADDR is found
set in I2C_SR1 or when the STOPF bit is cleared.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PEC[7:0] DUALF
SMB

HOST
SMBDE
FAULT

GEN
CALL Res.

TRA BUSY MSL

r r r r r r r r r r r r r r r

Bits 15:8 PEC[7:0] Packet error checking register

This register contains the internal PEC when ENPEC=1.

Bit 7 DUALF: Dual flag (Slave mode)

0: Received address matched with OAR1
1: Received address matched with OAR2

– Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 6 SMBHOST: SMBus host header (Slave mode)

0: No SMBus Host address
1: SMBus Host address received when SMBTYPE=1 and ENARP=1.

– Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 5 SMBDEFAULT: SMBus device default address (Slave mode)

0: No SMBus Device Default address
1: SMBus Device Default address received when ENARP=1

– Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 4 GENCALL: General call address (Slave mode)

0: No General Call
1: General Call Address received when ENGC=1

– Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 3 Reserved, must be kept at reset value

DocID15965 Rev 14 691/908

RM0038 Inter-integrated circuit (I2C) interface

693

Note: Reading I2C_SR2 after reading I2C_SR1 clears the ADDR flag, even if the ADDR flag was
set after reading I2C_SR1. Consequently, I2C_SR2 must be read only when ADDR is found
set in I2C_SR1 or when the STOPF bit is cleared.

26.6.8 I2C Clock control register (I2C_CCR)

Address offset: 0x1C
Reset value: 0x0000

Note: fPCLK1 must be at least 2 MHz to achieve Sm mode I²C frequencies. It must be at least 4
MHz to achieve Fm mode I²C frequencies. It must be a multiple of 10MHz to reach the
400 kHz maximum I²C Fm mode clock.

The CCR register must be configured only when the I2C is disabled (PE = 0).

Bit 2 TRA: Transmitter/receiver

0: Data bytes received
1: Data bytes transmitted
This bit is set depending on the R/W bit of the address byte, at the end of total address
phase.
It is also cleared by hardware after detection of Stop condition (STOPF=1), repeated Start
condition, loss of bus arbitration (ARLO=1), or when PE=0.

Bit 1 BUSY: Bus busy

0: No communication on the bus
1: Communication ongoing on the bus

– Set by hardware on detection of SDA or SCL low

– cleared by hardware on detection of a Stop condition.

It indicates a communication in progress on the bus. This information is still updated when
the interface is disabled (PE=0).

Bit 0 MSL: Master/slave

0: Slave Mode
1: Master Mode

– Set by hardware as soon as the interface is in Master mode (SB=1).

– Cleared by hardware after detecting a Stop condition on the bus or a loss of arbitration
(ARLO=1), or by hardware when PE=0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F/S DUTY
Reserved

CCR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 F/S: I2C master mode selection

0: Sm mode I2C
1: Fm mode I2C

Inter-integrated circuit (I2C) interface RM0038

692/908 DocID15965 Rev 14

26.6.9 I2C TRISE register (I2C_TRISE)

Address offset: 0x20
Reset value: 0x0002

Bit 14 DUTY: Fm mode duty cycle

0: Fm mode tlow/thigh = 2
1: Fm mode tlow/thigh = 16/9 (see CCR)

Bits 13:12 Reserved, must be kept at reset value

Bits 11:0 CCR[11:0]: Clock control register in Fm/Sm mode (Master mode)

Controls the SCL clock in master mode.
Sm mode or SMBus:
Thigh = CCR * TPCLK1
Tlow = CCR * TPCLK1
Fm mode:
If DUTY = 0:
Thigh = CCR * TPCLK1
Tlow = 2 * CCR * TPCLK1
If DUTY = 1: (to reach 400 kHz)
Thigh = 9 * CCR * TPCLK1
Tlow = 16 * CCR * TPCLK1
For instance: in Sm mode, to generate a 100 kHz SCL frequency:
If FREQR = 08, TPCLK1 = 125 ns so CCR must be programmed with 0x28
(0x28 <=> 40d x 125 ns = 5000 ns.)

Note: The minimum allowed value is 0x04, except in FAST DUTY mode where the minimum
allowed value is 0x01

thigh = tr(SCL) + tw(SCLH). See device datasheet for the definitions of parameters.

tlow = tf(SCL) + tw(SCLL). See device datasheet for the definitions of parameters.

I2C communication speed, fSCL ~ 1/(thigh + tlow). The real frequency may differ due to
the analog noise filter input delay.

The CCR register must be configured only when the I2C is disabled (PE = 0).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TRISE[5:0]

rw rw rw rw rw rw

Bits 15:6 Reserved, must be kept at reset value

Bits 5:0 TRISE[5:0]: Maximum rise time in Fm/Sm mode (Master mode)

These bits should provide the maximum duration of the SCL feedback loop in master mode.
The purpose is to keep a stable SCL frequency whatever the SCL rising edge duration.
These bits must be programmed with the maximum SCL rise time given in the I2C bus
specification, incremented by 1.
For instance: in Sm mode, the maximum allowed SCL rise time is 1000 ns.
If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to 0x08 and TPCLK1 = 125 ns
therefore the TRISE[5:0] bits must be programmed with 09h.
(1000 ns / 125 ns = 8 + 1)
The filter value can also be added to TRISE[5:0].
If the result is not an integer, TRISE[5:0] must be programmed with the integer part, in order
to respect the tHIGH parameter.

Note: TRISE[5:0] must be configured only when the I2C is disabled (PE = 0).

DocID15965 Rev 14 693/908

RM0038 Inter-integrated circuit (I2C) interface

693

26.6.10 I2C register map

The table below provides the I2C register map and reset values. The reserved memory
areas are highlighted in gray in the table.

Refer to Table 5 on page 47 for the register boundary addresses table.

Refer to Section: Memory map for the register boundary addresses table.

Table 140. I2C register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
I2C_CR1

Reserved

S
W

R
S

T

R
e

se
rv

e
d

A
L

E
R

T

P
E

C

P
O

S

A
C

K

S
T

O
P

S
TA

R
T

N
O

S
T

R
E

T
C

H

E
N

G
C

E
N

P
E

C

E
N

A
R

P

S
M

B
T

Y
P

E

R
e

se
rv

e
d

S
M

B
U

S

P
E

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
I2C_CR2

Reserved L
A

S
T

D
M

A
E

N

IT
B

U
F

E
N

IT
E

V
T

E
N

IT
E

R
R

E
N

R
e

se
rv

e
d

FREQ[5:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0

0x08
I2C_OAR1

Reserved

A
D

D
M

O
D

E

Reserved
ADD[9:8] ADD[7:1]

A
D

D
0

Reset value 0 0 0 0 0 0 0 0 0 0 0

0x0C
I2C_OAR2

Reserved
ADD2[7:1]

E
N

D
U

A
L

Reset value 0 0 0 0 0 0 0 0

0x10
I2C_DR

Reserved
DR[7:0]

Reset value 0 0 0 0 0 0 0 0

0x14
I2C_SR1

Reserved

S
M

B
A

L
E

R
T

T
IM

E
O

U
T

R
e

se
rv

e
d

P
E

C
E

R
R

O
V

R

A
F

A
R

LO

B
E

R
R

T
xE

R
xN

E

R
e

se
rv

e
d

S
T

O
P

F

A
D

D
10

B
T

F

A
D

D
R

S
B

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
I2C_SR2

Reserved
PEC[7:0]

D
U

A
L

F

S
M

B
H

O
S

T

S
M

B
D

E
F

A
U

LT

G
E

N
C

A
L

L

R
e

se
rv

e
d

T
R

A

B
U

S
Y

M
S

L

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
I2C_CCR

Reserved F
/S

D
U

T
Y

R
e

se
rv

e
d

CCR[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
I2C_TRISE

Reserved
TRISE[5:0]

Reset value 0 0 0 0 1 0

Universal synchronous asynchronous receiver transmitter (USART) RM0038

694/908 DocID15965 Rev 14

27 Universal synchronous asynchronous receiver
transmitter (USART)

27.1 USART introduction

The universal synchronous asynchronous receiver transmitter (USART) offers a flexible
means of full-duplex data exchange with external equipment requiring an industry standard
NRZ asynchronous serial data format. The USART offers a very wide range of baud rates
using a fractional baud rate generator.

It supports synchronous one-way communication and half-duplex single wire
communication. It also supports the LIN (local interconnection network), Smartcard Protocol
and IrDA (infrared data association) SIR ENDEC specifications, and modem operations
(CTS/RTS). It allows multiprocessor communication.

High speed data communication is possible by using the DMA for multibuffer configuration.

27.2 USART main features

• Full duplex, asynchronous communications

• NRZ standard format (Mark/Space)

• Configurable oversampling method by 16 or by 8 to give flexibility between speed and
clock tolerance

• Fractional baud rate generator systems

– Common programmable transmit and receive baud rate of up to 4 Mbit/s when the
APB frequency is 32 MHz and oversampling is by 8

• Programmable data word length (8 or 9 bits)

• Configurable stop bits - support for 1 or 2 stop bits

• LIN Master Synchronous Break send capability and LIN slave break detection
capability

– 13-bit break generation and 10/11 bit break detection when USART is hardware
configured for LIN

• Transmitter clock output for synchronous transmission

• IrDA SIR encoder decoder

– Support for 3/16 bit duration for normal mode

• Smartcard emulation capability

– The Smartcard interface supports the asynchronous protocol Smartcards as
defined in the ISO 7816-3 standards

– 0.5, 1.5 stop bits for Smartcard operation

• Single-wire half-duplex communication

• Configurable multibuffer communication using DMA (direct memory access)

– Buffering of received/transmitted bytes in reserved SRAM using centralized DMA

• Separate enable bits for transmitter and receiver

• Transfer detection flags:

– Receive buffer full

DocID15965 Rev 14 695/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

– Transmit buffer empty

– End of transmission flags

• Parity control:

– Transmits parity bit

– Checks parity of received data byte

• Four error detection flags:

– Overrun error

– Noise detection

– Frame error

– Parity error

• Ten interrupt sources with flags:

– CTS changes

– LIN break detection

– Transmit data register empty

– Transmission complete

– Receive data register full

– Idle line received

– Overrun error

– Framing error

– Noise error

– Parity error

• Multiprocessor communication - enter into mute mode if address match does not occur

• Wake up from mute mode (by idle line detection or address mark detection)

• Two receiver wakeup modes: Address bit (MSB, 9th bit), Idle line

27.3 USART functional description

The interface is externally connected to another device by three pins (see Figure 215). Any
USART bidirectional communication requires a minimum of two pins: Receive Data In (RX)
and Transmit Data Out (TX):

RX: Receive Data Input is the serial data input. Oversampling techniques are used for data
recovery by discriminating between valid incoming data and noise.

TX: Transmit Data Output. When the transmitter is disabled, the output pin returns to its I/O
port configuration. When the transmitter is enabled and nothing is to be transmitted, the TX
pin is at high level. In single-wire and smartcard modes, this I/O is used to transmit and
receive the data (at USART level, data are then received on SW_RX).

Universal synchronous asynchronous receiver transmitter (USART) RM0038

696/908 DocID15965 Rev 14

Through these pins, serial data is transmitted and received in normal USART mode as
frames comprising:

• An Idle Line prior to transmission or reception

• A start bit

• A data word (8 or 9 bits) least significant bit first

• 0.5,1, 1.5, 2 Stop bits indicating that the frame is complete

• This interface uses a fractional baud rate generator - with a 12-bit mantissa and 4-bit
fraction

• A status register (USART_SR)

• Data Register (USART_DR)

• A baud rate register (USART_BRR) - 12-bit mantissa and 4-bit fraction.

• A Guardtime Register (USART_GTPR) in case of Smartcard mode.

Refer to Section 27.6: USART registers on page 735 for the definitions of each bit.

The following pin is required to interface in synchronous mode:

• CK: Transmitter clock output. This pin outputs the transmitter data clock for
synchronous transmission corresponding to SPI master mode (no clock pulses on start
bit and stop bit, and a software option to send a clock pulse on the last data bit). In
parallel data can be received synchronously on RX. This can be used to control
peripherals that have shift registers (e.g. LCD drivers). The clock phase and polarity
are software programmable. In smartcard mode, CK can provide the clock to the
smartcard.

The following pins are required in Hardware flow control mode:

• CTS: Clear To Send blocks the data transmission at the end of the current transfer
when high

• RTS: Request to send indicates that the USART is ready to receive a data (when low).

DocID15965 Rev 14 697/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

Figure 215. USART block diagram

Universal synchronous asynchronous receiver transmitter (USART) RM0038

698/908 DocID15965 Rev 14

27.3.1 USART character description

Word length may be selected as being either 8 or 9 bits by programming the M bit in the
USART_CR1 register (see Figure 216).

The TX pin is in low state during the start bit. It is in high state during the stop bit.

An Idle character is interpreted as an entire frame of “1”s followed by the start bit of the
next frame which contains data (The number of “1” ‘s will include the number of stop bits).

A Break character is interpreted on receiving “0”s for a frame period. At the end of the
break frame the transmitter inserts either 1 or 2 stop bits (logic “1” bit) to acknowledge the
start bit.

Transmission and reception are driven by a common baud rate generator, the clock for each
is generated when the enable bit is set respectively for the transmitter and receiver.

The details of each block is given below.

Figure 216. Word length programming

DocID15965 Rev 14 699/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

27.3.2 Transmitter

The transmitter can send data words of either 8 or 9 bits depending on the M bit status.
When the transmit enable bit (TE) is set, the data in the transmit shift register is output on
the TX pin and the corresponding clock pulses are output on the CK pin.

Character transmission

During an USART transmission, data shifts out least significant bit first on the TX pin. In this
mode, the USART_DR register consists of a buffer (TDR) between the internal bus and the
transmit shift register (see Figure 215).

Every character is preceded by a start bit which is a logic level low for one bit period. The
character is terminated by a configurable number of stop bits.

The following stop bits are supported by USART: 0.5, 1, 1.5 and 2 stop bits.

Note: The TE bit should not be reset during transmission of data. Resetting the TE bit during the
transmission will corrupt the data on the TX pin as the baud rate counters will get frozen.
The current data being transmitted will be lost.

An idle frame will be sent after the TE bit is enabled.

Configurable stop bits

The number of stop bits to be transmitted with every character can be programmed in
Control register 2, bits 13,12.

• 1 stop bit: This is the default value of number of stop bits.

• 2 Stop bits: This will be supported by normal USART, single-wire and modem modes.

• 0.5 stop bit: To be used when receiving data in Smartcard mode.

• 1.5 stop bits: To be used when transmitting and receiving data in Smartcard mode.

An idle frame transmission will include the stop bits.

A break transmission will be 10 low bits followed by the configured number of stop bits
(when m = 0) and 11 low bits followed by the configured number of stop bits (when m = 1). It
is not possible to transmit long breaks (break of length greater than 10/11 low bits).

Universal synchronous asynchronous receiver transmitter (USART) RM0038

700/908 DocID15965 Rev 14

Figure 217. Configurable stop bits

Procedure:

1. Enable the USART by writing the UE bit in USART_CR1 register to 1.

2. Program the M bit in USART_CR1 to define the word length.

3. Program the number of stop bits in USART_CR2.

4. Select DMA enable (DMAT) in USART_CR3 if Multi buffer Communication is to take
place. Configure the DMA register as explained in multibuffer communication.

5. Select the desired baud rate using the USART_BRR register.

6. Set the TE bit in USART_CR1 to send an idle frame as first transmission.

7. Write the data to send in the USART_DR register (this clears the TXE bit). Repeat this
for each data to be transmitted in case of single buffer.

8. After writing the last data into the USART_DR register, wait until TC=1. This indicates
that the transmission of the last frame is complete. This is required for instance when
the USART is disabled or enters the Halt mode to avoid corrupting the last
transmission.

Single byte communication

Clearing the TXE bit is always performed by a write to the data register.

The TXE bit is set by hardware and it indicates:

• The data has been moved from TDR to the shift register and the data transmission has
started.

• The TDR register is empty.

• The next data can be written in the USART_DR register without overwriting the
previous data.

This flag generates an interrupt if the TXEIE bit is set.

DocID15965 Rev 14 701/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

When a transmission is taking place, a write instruction to the USART_DR register stores
the data in the TDR register and which is copied in the shift register at the end of the current
transmission.

When no transmission is taking place, a write instruction to the USART_DR register places
the data directly in the shift register, the data transmission starts, and the TXE bit is
immediately set.

If a frame is transmitted (after the stop bit) and the TXE bit is set, the TC bit goes high. An
interrupt is generated if the TCIE bit is set in the USART_CR1 register.

After writing the last data into the USART_DR register, it is mandatory to wait for TC=1
before disabling the USART or causing the microcontroller to enter the low-power mode
(see Figure 218: TC/TXE behavior when transmitting).

The TC bit is cleared by the following software sequence:

1. A read from the USART_SR register

2. A write to the USART_DR register

Note: The TC bit can also be cleared by writing a ‘0 to it. This clearing sequence is recommended
only for Multibuffer communication.

Figure 218. TC/TXE behavior when transmitting

Break characters

Setting the SBK bit transmits a break character. The break frame length depends on the M
bit (see Figure 216).

If the SBK bit is set to ‘1 a break character is sent on the TX line after completing the current
character transmission. This bit is reset by hardware when the break character is completed
(during the stop bit of the break character). The USART inserts a logic 1 bit at the end of the
last break frame to guarantee the recognition of the start bit of the next frame.

Note: If the software resets the SBK bit before the commencement of break transmission, the
break character will not be transmitted. For two consecutive breaks, the SBK bit should be
set after the stop bit of the previous break.

Universal synchronous asynchronous receiver transmitter (USART) RM0038

702/908 DocID15965 Rev 14

Idle characters

Setting the TE bit drives the USART to send an idle frame before the first data frame.

27.3.3 Receiver

The USART can receive data words of either 8 or 9 bits depending on the M bit in the
USART_CR1 register.

Start bit detection

The start bit detection sequence is the same when oversampling by 16 or by 8.

In the USART, the start bit is detected when a specific sequence of samples is recognized.
This sequence is: 1 1 1 0 X 0 X 0 X 0 0 0 0.

Figure 219. Start bit detection when oversampling by 16 or 8

Note: If the sequence is not complete, the start bit detection aborts and the receiver returns to the
idle state (no flag is set) where it waits for a falling edge.

The start bit is confirmed (RXNE flag set, interrupt generated if RXNEIE=1) if the 3 sampled
bits are at 0 (first sampling on the 3rd, 5th and 7th bits finds the 3 bits at 0 and second
sampling on the 8th, 9th and 10th bits also finds the 3 bits at 0).

The start bit is validated (RXNE flag set, interrupt generated if RXNEIE=1) but the NE noise
flag is set if, for both samplings, at least 2 out of the 3 sampled bits are at 0 (sampling on the

DocID15965 Rev 14 703/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

3rd, 5th and 7th bits and sampling on the 8th, 9th and 10th bits). If this condition is not met,
the start detection aborts and the receiver returns to the idle state (no flag is set).

If, for one of the samplings (sampling on the 3rd, 5th and 7th bits or sampling on the 8th, 9th
and 10th bits), 2 out of the 3 bits are found at 0, the start bit is validated but the NE noise
flag bit is set.

Character reception

During an USART reception, data shifts in least significant bit first through the RX pin. In this
mode, the USART_DR register consists of a buffer (RDR) between the internal bus and the
received shift register.

Procedure:

1. Enable the USART by writing the UE bit in USART_CR1 register to 1.

2. Program the M bit in USART_CR1 to define the word length.

3. Program the number of stop bits in USART_CR2.

4. Select DMA enable (DMAR) in USART_CR3 if multibuffer communication is to take
place. Configure the DMA register as explained in multibuffer communication. STEP 3

5. Select the desired baud rate using the baud rate register USART_BRR

6. Set the RE bit USART_CR1. This enables the receiver which begins searching for a
start bit.

When a character is received

• The RXNE bit is set. It indicates that the content of the shift register is transferred to the
RDR. In other words, data has been received and can be read (as well as its
associated error flags).

• An interrupt is generated if the RXNEIE bit is set.

• The error flags can be set if a frame error, noise or an overrun error has been detected
during reception.

• In multibuffer, RXNE is set after every byte received and is cleared by the DMA read to
the Data Register.

• In single buffer mode, clearing the RXNE bit is performed by a software read to the
USART_DR register. The RXNE flag can also be cleared by writing a zero to it. The
RXNE bit must be cleared before the end of the reception of the next character to avoid
an overrun error.

Note: The RE bit should not be reset while receiving data. If the RE bit is disabled during
reception, the reception of the current byte will be aborted.

Break character

When a break character is received, the USART handles it as a framing error.

Idle character

When an idle frame is detected, there is the same procedure as a data received character
plus an interrupt if the IDLEIE bit is set.

Universal synchronous asynchronous receiver transmitter (USART) RM0038

704/908 DocID15965 Rev 14

Overrun error

An overrun error occurs when a character is received when RXNE has not been reset. Data
can not be transferred from the shift register to the RDR register until the RXNE bit is
cleared.

The RXNE flag is set after every byte received. An overrun error occurs if RXNE flag is set
when the next data is received or the previous DMA request has not been serviced. When
an overrun error occurs:

• The ORE bit is set.

• The RDR content will not be lost. The previous data is available when a read to
USART_DR is performed.

• The shift register will be overwritten. After that point, any data received during overrun
is lost.

• An interrupt is generated if either the RXNEIE bit is set or both the EIE and DMAR bits
are set.

• The ORE bit is reset by a read to the USART_SR register followed by a USART_DR
register read operation.

Note: The ORE bit, when set, indicates that at least 1 data has been lost. There are two
possibilities:

• if RXNE=1, then the last valid data is stored in the receive register RDR and can be
read,

• if RXNE=0, then it means that the last valid data has already been read and thus there
is nothing to be read in the RDR. This case can occur when the last valid data is read in
the RDR at the same time as the new (and lost) data is received. It may also occur
when the new data is received during the reading sequence (between the USART_SR
register read access and the USART_DR read access).

Selecting the proper oversampling method

The receiver implements different user-configurable oversampling techniques (except in
synchronous mode) for data recovery by discriminating between valid incoming data and
noise.

The oversampling method can be selected by programming the OVER8 bit in the
USART_CR1 register and can be either 16 or 8 times the baud rate clock (Figure 220 and
Figure 221).

Depending on the application:

• select oversampling by 8 (OVER8=1) to achieve higher speed (up to fPCLK/8). In this
case the maximum receiver tolerance to clock deviation is reduced (refer to
Section 27.3.5: USART receiver tolerance to clock deviation on page 716)

• select oversampling by 16 (OVER8=0) to increase the tolerance of the receiver to clock
deviations. In this case, the maximum speed is limited to maximum fPCLK/16

DocID15965 Rev 14 705/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

Programming the ONEBIT bit in the USART_CR3 register selects the method used to
evaluate the logic level. There are two options:

• the majority vote of the three samples in the center of the received bit. In this case,
when the 3 samples used for the majority vote are not equal, the NF bit is set

• a single sample in the center of the received bit

Depending on the application:

– select the three samples’ majority vote method (ONEBIT=0) when operating in a
noisy environment and reject the data when a noise is detected (refer to
Figure 141) because this indicates that a glitch occurred during the sampling.

– select the single sample method (ONEBIT=1) when the line is noise-free to
increase the receiver’s tolerance to clock deviations (see Section 27.3.5: USART
receiver tolerance to clock deviation on page 716). In this case the NF bit will
never be set.

When noise is detected in a frame:

• The NF bit is set at the rising edge of the RXNE bit.

• The invalid data is transferred from the Shift register to the USART_DR register.

• No interrupt is generated in case of single byte communication. However this bit rises
at the same time as the RXNE bit which itself generates an interrupt. In case of
multibuffer communication an interrupt will be issued if the EIE bit is set in the
USART_CR3 register.

The NF bit is reset by a USART_SR register read operation followed by a USART_DR
register read operation.

Note: Oversampling by 8 is not available in the Smartcard, IrDA and LIN modes. In those modes,
the OVER8 bit is forced to ‘0 by hardware.

Figure 220. Data sampling when oversampling by 16

Universal synchronous asynchronous receiver transmitter (USART) RM0038

706/908 DocID15965 Rev 14

Figure 221. Data sampling when oversampling by 8

Framing error

A framing error is detected when:

The stop bit is not recognized on reception at the expected time, following either a de-
synchronization or excessive noise.

When the framing error is detected:

• The FE bit is set by hardware

• The invalid data is transferred from the Shift register to the USART_DR register.

• No interrupt is generated in case of single byte communication. However this bit rises
at the same time as the RXNE bit which itself generates an interrupt. In case of
multibuffer communication an interrupt will be issued if the EIE bit is set in the
USART_CR3 register.

The FE bit is reset by a USART_SR register read operation followed by a USART_DR
register read operation.

Table 141. Noise detection from sampled data

Sampled value NE status Received bit value

000 0 0

001 1 0

010 1 0

011 1 1

100 1 0

101 1 1

110 1 1

111 0 1

DocID15965 Rev 14 707/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

Configurable stop bits during reception

The number of stop bits to be received can be configured through the control bits of Control
Register 2 - it can be either 1 or 2 in normal mode and 0.5 or 1.5 in Smartcard mode.

1. 0.5 stop bit (reception in Smartcard mode): No sampling is done for 0.5 stop bit. As
a consequence, no framing error and no break frame can be detected when 0.5 stop bit
is selected.

2. 1 stop bit: Sampling for 1 stop Bit is done on the 8th, 9th and 10th samples.

3. 1.5 stop bits (Smartcard mode): When transmitting in smartcard mode, the device
must check that the data is correctly sent. Thus the receiver block must be enabled (RE
=1 in the USART_CR1 register) and the stop bit is checked to test if the smartcard has
detected a parity error. In the event of a parity error, the smartcard forces the data
signal low during the sampling - NACK signal-, which is flagged as a framing error.
Then, the FE flag is set with the RXNE at the end of the 1.5 stop bit. Sampling for 1.5
stop bits is done on the 16th, 17th and 18th samples (1 baud clock period after the
beginning of the stop bit). The 1.5 stop bit can be decomposed into 2 parts: one 0.5
baud clock period during which nothing happens, followed by 1 normal stop bit period
during which sampling occurs halfway through. Refer to Section 27.3.11: Smartcard on
page 725 for more details.

4. 2 stop bits: Sampling for 2 stop bits is done on the 8th, 9th and 10th samples of the
first stop bit. If a framing error is detected during the first stop bit the framing error flag
will be set. The second stop bit is not checked for framing error. The RXNE flag will be
set at the end of the first stop bit.

27.3.4 Fractional baud rate generation

The baud rate for the receiver and transmitter (Rx and Tx) are both set to the same value as
programmed in the Mantissa and Fraction values of USARTDIV.

Equation 1: Baud rate for standard USART (SPI mode included)

Equation 2: Baud rate in Smartcard, LIN and IrDA modes

USARTDIV is an unsigned fixed point number that is coded on the USART_BRR register.

• When OVER8=0, the fractional part is coded on 4 bits and programmed by the
DIV_fraction[3:0] bits in the USART_BRR register

• When OVER8=1, the fractional part is coded on 3 bits and programmed by the
DIV_fraction[2:0] bits in the USART_BRR register, and bit DIV_fraction[3] must be kept
cleared.

Note: The baud counters are updated to the new value in the baud registers after a write operation
to USART_BRR. Hence the baud rate register value should not be changed during
communication.

Tx/Rx baud
fCK

8 2 OVER8–() USARTDIV××
---=

Tx/Rx baud
fCK

16 USARTDIV×
--=

Universal synchronous asynchronous receiver transmitter (USART) RM0038

708/908 DocID15965 Rev 14

How to derive USARTDIV from USART_BRR register values when OVER8=0

Example 1:

If DIV_Mantissa = 0d27 and DIV_Fraction = 0d12 (USART_BRR = 0x1BC), then

Mantissa (USARTDIV) = 0d27

Fraction (USARTDIV) = 12/16 = 0d0.75

Therefore USARTDIV = 0d27.75

Example 2:

To program USARTDIV = 0d25.62

This leads to:

DIV_Fraction = 16*0d0.62 = 0d9.92

The nearest real number is 0d10 = 0xA

DIV_Mantissa = mantissa (0d25.620) = 0d25 = 0x19

Then, USART_BRR = 0x19A hence USARTDIV = 0d25.625

Example 3:

To program USARTDIV = 0d50.99

This leads to:

DIV_Fraction = 16*0d0.99 = 0d15.84

The nearest real number is 0d16 = 0x10 => overflow of DIV_frac[3:0] => carry must be
added up to the mantissa

DIV_Mantissa = mantissa (0d50.990 + carry) = 0d51 = 0x33

Then, USART_BRR = 0x330 hence USARTDIV = 0d51.000

How to derive USARTDIV from USART_BRR register values when OVER8=1

Example 1:

If DIV_Mantissa = 0x27 and DIV_Fraction[2:0]= 0d6 (USART_BRR = 0x1B6), then

Mantissa (USARTDIV) = 0d27

Fraction (USARTDIV) = 6/8 = 0d0.75

Therefore USARTDIV = 0d27.75

Example 2:

To program USARTDIV = 0d25.62

This leads to:

DIV_Fraction = 8*0d0.62 = 0d4.96

The nearest real number is 0d5 = 0x5

DIV_Mantissa = mantissa (0d25.620) = 0d25 = 0x19

DocID15965 Rev 14 709/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

Then, USART_BRR = 0x195 => USARTDIV = 0d25.625

Example 3:

To program USARTDIV = 0d50.99

This leads to:

DIV_Fraction = 8*0d0.99 = 0d7.92

The nearest real number is 0d8 = 0x8 => overflow of the DIV_frac[2:0] => carry must be
added up to the mantissa

DIV_Mantissa = mantissa (0d50.990 + carry) = 0d51 = 0x33

Then, USART_BRR = 0x0330 => USARTDIV = 0d51.000

Table 142. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz,
oversampling by 16(1)

Oversampling by 16 (OVER8=0)

Baud rate7 fPCLK = 8 MHz fPCLK = 12 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired) B.rate /
Desired B.rate

Actual

Value
programmed
in the baud
rate register

% Error

1 1.2 KBps 1.2 KBps 416.6875 0 1.2 KBps 625 0

2 2.4 KBps 2.4 KBps 208.3125 0.01 2.4 KBps 312.5 0

3 9.6 KBps 9.604 KBps 52.0625 0.04 9.6 KBps 78.125 0

4 19.2 KBps 19.185 KBps 26.0625 0.08 19.2 KBps 39.0625 0

5 38.4 KBps 38.462 KBps 13 0.16 38.339 KBps 19.5625 0.16

6 57.6 KBps 57.554 KBps 8.6875 0.08 57.692 KBps 13 0.16

7 115.2 KBps 115.942 KBps 4.3125 0.64 115.385 KBps 6.5 0.16

8 230.4 KBps 228.571 KBps 2.1875 0.79 230.769 KBps 3.25 0.16

9 460.8 KBps 470.588 KBps 1.0625 2.12 461.538 KBps 1.625 0.16

10 921.6 KBps NA NA NA NA NA NA

11 2 MBps NA NA NA NA NA NA

12 3 MBps NA NA NA NA NA NA

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Universal synchronous asynchronous receiver transmitter (USART) RM0038

710/908 DocID15965 Rev 14

Table 143. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK =12 MHz,
oversampling by 8(1)

Oversampling by 8 (OVER8 = 1)

Baud rate fPCLK = 8 MHz fPCLK = 12 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)
B.rate /
Desired
B.rate

Actual

Value
programmed
in the baud
rate register

% Error

1 1.2 KBps 1.2 KBps 833.375 0 1.2 KBps 1250 0

2 2.4 KBps 2.4 KBps 416.625 0.01 2.4 KBps 625 0

3 9.6 KBps 9.604 KBps 104.125 0.04 9.6 KBps 156.25 0

4 19.2 KBps 19.185 KBps 52.125 0.08 19.2 KBps 78.125 0

5 38.4 KBps 38.462 KBps 26 0.16 38.339 KBps 39.125 0.16

6 57.6 KBps 57.554 KBps 17.375 0.08 57.692 KBps 26 0.16

7 115.2 KBps 115.942 KBps 8.625 0.64 115.385 KBps 13 0.16

8 230.4 KBps 228.571 KBps 4.375 0.79 230.769 KBps 6.5 0.16

9 460.8 KBps 470.588 KBps 2.125 2.12 461.538 KBps 3.25 0.16

10 921.6 KBps 888.889 KBps 1.125 3.55 923.077 KBps 1.625 0.16

11 2 MBps NA NA NA NA NA NA

12 3 MBps NA NA NA NA NA NA

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Table 144. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz,
oversampling by 16(1)

Oversampling by 16 (OVER8 = 0)

Baud rate fPCLK = 16 MHz fPCLK = 24 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired) B.rate /
Desired B.rate

Actual

Value
programmed
in the baud
rate register

% Error

1 1.2 KBps 1.2 KBps 833.3125 0 1.2 1250 0

2 2.4 KBps 2.4 KBps 416.6875 0 2.4 625 0

3 9.6 KBps 9.598 KBps 104.1875 0.02 9.6 156.25 0

4 19.2 KBps 19.208 KBps 52.0625 0.04 19.2 78.125 0

5 38.4 KBps 38.369 KBps 26.0625 0.08 38.4 39.0625 0

6 57.6 KBps 57.554 KBps 17.375 0.08 57.554 26.0625 0.08

DocID15965 Rev 14 711/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

7 115.2 KBps 115.108 KBps 8.6875 0.08 115.385 13 0.16

8 230.4 KBps 231.884 KBps 4.3125 0.64 230.769 6.5 0.16

9 460.8 KBps 457.143 KBps 2.1875 0.79 461.538 3.25 0.16

10 921.6 KBps 941.176 KBps 1.0625 2.12 923.077 1.625 0.16

11 2 MBps NA NA NA NA NA NA

12 3 MBps NA NA NA NA NA NA

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Table 144. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz,
oversampling by 16(1) (continued)

Oversampling by 16 (OVER8 = 0)

Baud rate fPCLK = 16 MHz fPCLK = 24 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired) B.rate /
Desired B.rate

Actual

Value
programmed
in the baud
rate register

% Error

Table 145. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz,
oversampling by 8(1)

Oversampling by 8 (OVER8=1)

Baud rate fPCLK = 16 MHz fPCLK = 24 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired) B.rate /
Desired B.rate

Actual

Value
programmed
in the baud
rate register

% Error

1 1.2 KBps 1.2 KBps 1666.625 0 1.2 KBps 2500 0

2 2.4 KBps 2.4 KBps 833.375 0 2.4 KBps 1250 0

3 9.6 KBps 9.598 KBps 208.375 0.02 9.6 KBps 312.5 0

4 19.2 KBps 19.208 KBps 104.125 0.04 19.2 KBps 156.25 0

5 38.4 KBps 38.369 KBps 52.125 0.08 38.4 KBps 78.125 0

6 57.6 KBps 57.554 KBps 34.75 0.08 57.554 KBps 52.125 0.08

7 115.2 KBps 115.108 KBps 17.375 0.08 115.385 KBps 26 0.16

8 230.4 KBps 231.884 KBps 8.625 0.64 230.769 KBps 13 0.16

9 460.8 KBps 457.143 KBps 4.375 0.79 461.538 KBps 6.5 0.16

10 921.6 KBps 941.176 KBps 2.125 2.12 923.077 KBps 3.25 0.16

11 2 MBps 2000 KBps 1 0 2000 KBps 1.5 0

12 3 MBps NA NA NA 3000 KBps 1 0

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Universal synchronous asynchronous receiver transmitter (USART) RM0038

712/908 DocID15965 Rev 14

Table 146. Error calculation for programmed baud rates at fPCLK = 1 MHz or fPCLK = 8 MHz),
oversampling by 16(1)

Oversampling by 16 (OVER8 = 0)

Baud rate fPCLK = 1 MHz fPCLK = 8 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate /
Desired B.Rate

Actual

Value
programmed
in the baud
rate register

%
Error

1 1.2 KBps 1.2 KBps 52.0625 0.04 1.2 KBps 416.6875 0

2 2.4 KBps 2.398 KBps 26.0625 0.08 2.4 KBps 208.3125 0.01

3 9.6 KBps 9.615 KBps 6.5 0.16 9.604 KBps 52.0625 0.04

4 19.2 KBps 19.231 KBps 3.25 0.16 19.185 KBps 26.0625 0.08

5 38.4 KBps 38.462 KBps 1.625 0.16 38.462 KBps 13 0.16

6 57.6 KBps 58.824 KBps 1.0625 2.12 57.554 KBps 8.6875 0.08

7 115.2 KBps NA NA NA 115.942 KBps 4.3125 0.64

8 230.4 KBps NA NA NA 228.571 KBps 2.1875 0.79

9 460.8 KBps NA NA NA 470.588 KBps 1.0625 2.12

10 921.6 KBps NA NA NA NA NA NA

11 2 MBps NA NA NA NA NA NA

12 4 MBps NA NA NA NA NA NA

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Table 147. Error calculation for programmed baud rates at fPCLK = 1 MHz or fPCLK = 8 MHz),
oversampling by 8(1)

Oversampling by 8 (OVER8 = 1)

Baud rate fPCLK = 1 MHz fPCLK = 8 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate /
Desired B.Rate

Actual

Value
programmed
in the baud
rate register

%
Error

1 1.2 KBps 1.2 KBps 104.125 0.04 1.2 KBps 833.375 0

2 2.4 KBps 2.398 KBps 52.125 0.08 2.4 KBps 416.625 0.01

3 9.6 KBps 9.615 KBps 13 -0.16 9.604 KBps 104.125 0.04

4 19.2 KBps 19.231 KBps 6.5 0.16 19.185 KBps 52.125 0.08

5 38.4 KBps 38.462 KBps 3.25 0.16 38.462 KBps 26 0.16

6 57.6 KBps 58.824 KBps 2.125 2.12 57.554 KBps 17.375 0.08

7 115.2 KBps 111.111 KBps 1.125 3.55 115.942 KBps 8.625 0.64

8 230.4 KBps NA NA NA 228.571 KBps 4.375 0.79

DocID15965 Rev 14 713/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

9 460.8 KBps NA NA NA 470.588 KBps 2.125 2.12

10 921.6 KBps NA NA NA 888.889 KBps 1.125 3.55

11 2 MBps NA NA NA NA NA NA

12 4 MBps NA NA NA NA NA NA

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Table 147. Error calculation for programmed baud rates at fPCLK = 1 MHz or fPCLK = 8 MHz),
oversampling by 8(1) (continued)

Oversampling by 8 (OVER8 = 1)

Baud rate fPCLK = 1 MHz fPCLK = 8 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate /
Desired B.Rate

Actual

Value
programmed
in the baud
rate register

%
Error

Table 148. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 32 MHz),
oversampling by 16(1)

Oversampling by 16 (OVER8 = 0)

Baud rate fPCLK = 16 MHz fPCLK = 32 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate /
Desired B.Rate

Actual

Value
programmed
in the baud
rate register

% Error

1 1.2 KBps 1.2 KBps 833.3125 0 1.2 KBps 1666.6875 0

2 2.4 KBps 2.4 KBps 416.6875 0 2.4 KBps 833.3125 0

3 9.6 KBps 9.598 KBps 104.1875 0.02 9.601 KBps 208.3125 0.01

4 19.2 KBps 19.208 KBps 52.0625 0.04 19.196 KBps 104.1875 0.02

5 38.4 KBps 38.369 KBps 26.0625 0.08 38.415 KBps 52.0625 0.04

6 57.6 KBps 57.554 KBps 17.375 0.08 57.554 KBps 34.75 0.08

7 115.2 KBps 115.108 KBps 8.6875 0.08 115.108 KBps 17.375 0.08

8 230.4 KBps 231.884 KBps 4.3125 0.64 230.216 KBps 8.6875 0.08

9 460.8 KBps 457.143 KBps 2.1875 0.79 463.768 KBps 4.3125 0.64

10 921.6 KBps 941.176 KBps 1.0625 2.12 914.286 KBps 2.1875 0.79

11 2 MBps NA NA NA 2000 KBps 1 0

12 4 MBps NA NA NA NA NA NA

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Universal synchronous asynchronous receiver transmitter (USART) RM0038

714/908 DocID15965 Rev 14

Table 149. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 32 MHz),
oversampling by 8(1)

Oversampling by 8 (OVER8 = 1)

Baud rate fPCLK = 16 MHz fPCLK = 32 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate /
Desired B.Rate

Actual

Value
programmed
in the baud
rate register

%
Error

1 1.2 KBps 1.2 KBps 1666.625 0 1.2 KBps 3333.375 0

2 2.4 KBps 2.4 KBps 833.375 0 2.4 KBps 1666.625 0

3 9.6 KBps 9.598 KBps 208.375 0.02 9.601 KBps 416.625 0.01

4 19.2 KBps 19.208 KBps 104.125 0.04 19.196 KBps 208.375 0.02

5 38.4 KBps 38.369 KBps 52.125 0.08 38.415 KBps 104.125 0.04

6 57.6 KBps 57.554 KBps 34.75 0.08 57.554 KBps 69.5 0.08

7 115.2 KBps 115.108 KBps 17.375 0.08 115.108 KBps 34.75 0.08

8 230.4 KBps 231.884 KBps 8.625 0.64 230.216 KBps 17.375 0.08

9 460.8 KBps 457.143 KBps 4.375 0.79 463.768 KBps 8.625 0.64

10 921.6 KBps 941.176 KBps 2.125 2.12 914.286 KBps 4.375 0.79

11 2 MBps 2000 KBps 1 0 2000 KBps 2 0

12 4 MBps NA NA NA 4000 KBps 1 0

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Table 150. Error calculation for programmed baud rates at fPCLK = 1 MHz or fPCLK = 8 MHz),
oversampling by 8(1)

Oversampling by 8 (OVER8 = 1)

Baud rate fPCLK = 1 MHz fPCLK = 8 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate /
Desired B.Rate

Actual

Value
programmed
in the baud
rate register

%
Error

1 1.2 KBps 1.2 KBps 104.125 0.04 1.2 KBps 833.375 0

2 2.4 KBps 2.398 KBps 52.125 0.08 2.4 KBps 416.625 0.01

3 9.6 KBps 9.615 KBps 13 -0.16 9.604 KBps 104.125 0.04

4 19.2 KBps 19.231 KBps 6.5 0.16 19.185 KBps 52.125 0.08

5 38.4 KBps 38.462 KBps 3.25 0.16 38.462 KBps 26 0.16

6 57.6 KBps 58.824 KBps 2.125 2.12 57.554 KBps 17.375 0.08

7 115.2 KBps 111.111 KBps 1.125 3.55 115.942 KBps 8.625 0.64

DocID15965 Rev 14 715/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

8 230.4 KBps NA NA NA 228.571 KBps 4.375 0.79

9 460.8 KBps NA NA NA 470.588 KBps 2.125 2.12

10 921.6 KBps NA NA NA 888.889 KBps 1.125 3.55

11 2 MBps NA NA NA NA NA NA

12 4 MBps NA NA NA NA NA NA

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Table 150. Error calculation for programmed baud rates at fPCLK = 1 MHz or fPCLK = 8 MHz),
oversampling by 8(1) (continued)

Oversampling by 8 (OVER8 = 1)

Baud rate fPCLK = 1 MHz fPCLK = 8 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate /
Desired B.Rate

Actual

Value
programmed
in the baud
rate register

%
Error

Table 151. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 32 MHz),
oversampling by 16(1)

Oversampling by 16 (OVER8 = 0)

Baud rate fPCLK = 16 MHz fPCLK = 32 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate /
Desired B.Rate

Actual

Value
programmed
in the baud
rate register

% Error

1 1.2 KBps 1.2 KBps 833.3125 0 1.2 KBps 1666.6875 0

2 2.4 KBps 2.4 KBps 416.6875 0 2.4 KBps 833.3125 0

3 9.6 KBps 9.598 KBps 104.1875 0.02 9.601 KBps 208.3125 0.01

4 19.2 KBps 19.208 KBps 52.0625 0.04 19.196 KBps 104.1875 0.02

5 38.4 KBps 38.369 KBps 26.0625 0.08 38.415 KBps 52.0625 0.04

6 57.6 KBps 57.554 KBps 17.375 0.08 57.554 KBps 34.75 0.08

7 115.2 KBps 115.108 KBps 8.6875 0.08 115.108 KBps 17.375 0.08

8 230.4 KBps 231.884 KBps 4.3125 0.64 230.216 KBps 8.6875 0.08

9 460.8 KBps 457.143 KBps 2.1875 0.79 463.768 KBps 4.3125 0.64

10 921.6 KBps 941.176 KBps 1.0625 2.12 914.286 KBps 2.1875 0.79

11 2 MBps NA NA NA 2000 KBps 1 0

12 4 MBps NA NA NA NA NA NA

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Universal synchronous asynchronous receiver transmitter (USART) RM0038

716/908 DocID15965 Rev 14

27.3.5 USART receiver tolerance to clock deviation

The USART asynchronous receiver works correctly only if the total clock system deviation is
smaller than the USART receiver’s tolerance. The causes which contribute to the total
deviation are:

• DTRA: Deviation due to the transmitter error (which also includes the deviation of the
transmitter’s local oscillator)

• DQUANT: Error due to the baud rate quantization of the receiver

• DREC: Deviation of the receiver’s local oscillator

• DTCL: Deviation due to the transmission line (generally due to the transceivers which
can introduce an asymmetry between the low-to-high transition timing and the high-to-
low transition timing)

DTRA + DQUANT + DREC + DTCL < USART receiver’s tolerance

Table 152. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 32 MHz),
oversampling by 8(1)

Oversampling by 8 (OVER8 = 1)

Baud rate fPCLK = 16 MHz fPCLK = 32 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate /
Desired B.Rate

Actual

Value
programmed
in the baud
rate register

%
Error

1 1.2 KBps 1.2 KBps 1666.625 0 1.2 KBps 3333.375 0

2 2.4 KBps 2.4 KBps 833.375 0 2.4 KBps 1666.625 0

3 9.6 KBps 9.598 KBps 208.375 0.02 9.601 KBps 416.625 0.01

4 19.2 KBps 19.208 KBps 104.125 0.04 19.196 KBps 208.375 0.02

5 38.4 KBps 38.369 KBps 52.125 0.08 38.415 KBps 104.125 0.04

6 57.6 KBps 57.554 KBps 34.75 0.08 57.554 KBps 69.5 0.08

7 115.2 KBps 115.108 KBps 17.375 0.08 115.108 KBps 34.75 0.08

8 230.4 KBps 231.884 KBps 8.625 0.64 230.216 KBps 17.375 0.08

9 460.8 KBps 457.143 KBps 4.375 0.79 463.768 KBps 8.625 0.64

10 921.6 KBps 941.176 KBps 2.125 2.12 914.286 KBps 4.375 0.79

11 2 MBps 2000 KBps 1 0 2000 KBps 2 0

12 4 MBps NA NA NA 4000 KBps 1 0

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

DocID15965 Rev 14 717/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

The USART receiver’s tolerance to properly receive data is equal to the maximum tolerated
deviation and depends on the following choices:

• 10- or 11-bit character length defined by the M bit in the USART_CR1 register

• oversampling by 8 or 16 defined by the OVER8 bit in the USART_CR1 register

• use of fractional baud rate or not

• use of 1 bit or 3 bits to sample the data, depending on the value of the ONEBIT bit in
the USART_CR3 register

Note: The figures specified in Table 153 and Table 154 may slightly differ in the special case when
the received frames contain some Idle frames of exactly 10-bit times when M=0 (11-bit times
when M=1).

27.3.6 Multiprocessor communication

There is a possibility of performing multiprocessor communication with the USART (several
USARTs connected in a network). For instance one of the USARTs can be the master, its TX
output is connected to the RX input of the other USART. The others are slaves, their
respective TX outputs are logically ANDed together and connected to the RX input of the
master.

In multiprocessor configurations it is often desirable that only the intended message
recipient should actively receive the full message contents, thus reducing redundant USART
service overhead for all non addressed receivers.

The non addressed devices may be placed in mute mode by means of the muting function.
In mute mode:

• None of the reception status bits can be set.

• All the receive interrupts are inhibited.

• The RWU bit in USART_CR1 register is set to 1. RWU can be controlled automatically
by hardware or written by the software under certain conditions.

The USART can enter or exit from mute mode using one of two methods, depending on the
WAKE bit in the USART_CR1 register:

• Idle Line detection if the WAKE bit is reset,

• Address Mark detection if the WAKE bit is set.

Table 153. USART receiver’s tolerance when DIV fraction is 0

M bit
OVER8 bit = 0 OVER8 bit = 1

ONEBIT=0 ONEBIT=1 ONEBIT=0 ONEBIT=1

0 3.75% 4.375% 2.50% 3.75%

1 3.41% 3.97% 2.27% 3.41%

Table 154. USART receiver tolerance when DIV_Fraction is different from 0

M bit
OVER8 bit = 0 OVER8 bit = 1

ONEBIT=0 ONEBIT=1 ONEBIT=0 ONEBIT=1

0 3.33% 3.88% 2% 3%

1 3.03% 3.53% 1.82% 2.73%

Universal synchronous asynchronous receiver transmitter (USART) RM0038

718/908 DocID15965 Rev 14

Idle line detection (WAKE=0)

The USART enters mute mode when the RWU bit is written to 1.

It wakes up when an Idle frame is detected. Then the RWU bit is cleared by hardware but
the IDLE bit is not set in the USART_SR register. RWU can also be written to 0 by software.

An example of mute mode behavior using Idle line detection is given in Figure 222.

Figure 222. Mute mode using Idle line detection

Address mark detection (WAKE=1)

In this mode, bytes are recognized as addresses if their MSB is a ‘1 else they are
considered as data. In an address byte, the address of the targeted receiver is put on the 4
LSB. This 4-bit word is compared by the receiver with its own address which is programmed
in the ADD bits in the USART_CR2 register.

The USART enters mute mode when an address character is received which does not
match its programmed address. In this case, the RWU bit is set by hardware. The RXNE
flag is not set for this address byte and no interrupt nor DMA request is issued as the
USART would have entered mute mode.

It exits from mute mode when an address character is received which matches the
programmed address. Then the RWU bit is cleared and subsequent bytes are received
normally. The RXNE bit is set for the address character since the RWU bit has been
cleared.

The RWU bit can be written to as 0 or 1 when the receiver buffer contains no data (RXNE=0
in the USART_SR register). Otherwise the write attempt is ignored.

An example of mute mode behavior using address mark detection is given in Figure 223.

DocID15965 Rev 14 719/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

Figure 223. Mute mode using address mark detection

27.3.7 Parity control

Parity control (generation of parity bit in transmission and parity checking in reception) can
be enabled by setting the PCE bit in the USART_CR1 register. Depending on the frame
length defined by the M bit, the possible USART frame formats are as listed in Table 155.

Even parity

The parity bit is calculated to obtain an even number of “1s” inside the frame made of the 7
or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

E.g.: data=00110101; 4 bits set => parity bit will be 0 if even parity is selected (PS bit in
USART_CR1 = 0).

Odd parity

The parity bit is calculated to obtain an odd number of “1s” inside the frame made of the 7 or
8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

E.g.: data=00110101; 4 bits set => parity bit will be 1 if odd parity is selected (PS bit in
USART_CR1 = 1).

Parity checking in reception

If the parity check fails, the PE flag is set in the USART_SR register and an interrupt is
generated if PEIE is set in the USART_CR1 register. The PE flag is cleared by a software

Table 155. Frame formats

M bit PCE bit USART frame(1)

1. Legends: SB: start bit, STB: stop bit, PB: parity bit.

0 0 | SB | 8 bit data | STB |

0 1 | SB | 7-bit data | PB | STB |

1 0 | SB | 9-bit data | STB |

1 1 | SB | 8-bit data PB | STB |

Universal synchronous asynchronous receiver transmitter (USART) RM0038

720/908 DocID15965 Rev 14

sequence (a read from the status register followed by a read or write access to the
USART_DR data register).

Note: In case of wakeup by an address mark: the MSB bit of the data is taken into account to
identify an address but not the parity bit. And the receiver does not check the parity of the
address data (PE is not set in case of a parity error).

Parity generation in transmission

If the PCE bit is set in USART_CR1, then the MSB bit of the data written in the data register
is transmitted but is changed by the parity bit (even number of “1s” if even parity is selected
(PS=0) or an odd number of “1s” if odd parity is selected (PS=1)).

Note: The software routine that manages the transmission can activate the software sequence
which clears the PE flag (a read from the status register followed by a read or write access
to the data register). When operating in half-duplex mode, depending on the software, this
can cause the PE flag to be unexpectedly cleared.

27.3.8 LIN (local interconnection network) mode

The LIN mode is selected by setting the LINEN bit in the USART_CR2 register. In LIN
mode, the following bits must be kept cleared:

• STOP[1:0] and CLKEN in the USART_CR2 register

• SCEN, HDSEL and IREN in the USART_CR3 register.

LIN transmission

The same procedure explained in Section 27.3.2 has to be applied for LIN Master
transmission than for normal USART transmission with the following differences:

• Clear the M bit to configure 8-bit word length.

• Set the LINEN bit to enter LIN mode. In this case, setting the SBK bit sends 13 ‘0 bits
as a break character. Then a bit of value ‘1 is sent to allow the next start detection.

LIN reception

A break detection circuit is implemented on the USART interface. The detection is totally
independent from the normal USART receiver. A break can be detected whenever it occurs,
during Idle state or during a frame.

When the receiver is enabled (RE=1 in USART_CR1), the circuit looks at the RX input for a
start signal. The method for detecting start bits is the same when searching break
characters or data. After a start bit has been detected, the circuit samples the next bits
exactly like for the data (on the 8th, 9th and 10th samples). If 10 (when the LBDL = 0 in
USART_CR2) or 11 (when LBDL=1 in USART_CR2) consecutive bits are detected as ‘0,
and are followed by a delimiter character, the LBD flag is set in USART_SR. If the LBDIE
bit=1, an interrupt is generated. Before validating the break, the delimiter is checked for as it
signifies that the RX line has returned to a high level.

If a ‘1 is sampled before the 10 or 11 have occurred, the break detection circuit cancels the
current detection and searches for a start bit again.

If the LIN mode is disabled (LINEN=0), the receiver continues working as normal USART,
without taking into account the break detection.

If the LIN mode is enabled (LINEN=1), as soon as a framing error occurs (i.e. stop bit
detected at ‘0, which will be the case for any break frame), the receiver stops until the break

DocID15965 Rev 14 721/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

detection circuit receives either a ‘1, if the break word was not complete, or a delimiter
character if a break has been detected.

The behavior of the break detector state machine and the break flag is shown on the
Figure 224: Break detection in LIN mode (11-bit break length - LBDL bit is set) on page 721.

Examples of break frames are given on Figure 225: Break detection in LIN mode vs.
Framing error detection on page 722.

Figure 224. Break detection in LIN mode (11-bit break length - LBDL bit is set)

Universal synchronous asynchronous receiver transmitter (USART) RM0038

722/908 DocID15965 Rev 14

Figure 225. Break detection in LIN mode vs. Framing error detection

27.3.9 USART synchronous mode

The synchronous mode is selected by writing the CLKEN bit in the USART_CR2 register to
1. In synchronous mode, the following bits must be kept cleared:

• LINEN bit in the USART_CR2 register,

• SCEN, HDSEL and IREN bits in the USART_CR3 register.

The USART allows the user to control a bidirectional synchronous serial communications in
master mode. The CK pin is the output of the USART transmitter clock. No clock pulses are
sent to the CK pin during start bit and stop bit. Depending on the state of the LBCL bit in the
USART_CR2 register clock pulses will or will not be generated during the last valid data bit
(address mark). The CPOL bit in the USART_CR2 register allows the user to select the
clock polarity, and the CPHA bit in the USART_CR2 register allows the user to select the
phase of the external clock (see Figure 226, Figure 227 & Figure 228).

During the Idle state, preamble and send break, the external CK clock is not activated.

In synchronous mode the USART transmitter works exactly like in asynchronous mode. But
as CK is synchronized with TX (according to CPOL and CPHA), the data on TX is
synchronous.

In this mode the USART receiver works in a different manner compared to the
asynchronous mode. If RE=1, the data is sampled on CK (rising or falling edge, depending
on CPOL and CPHA), without any oversampling. A setup and a hold time must be
respected (which depends on the baud rate: 1/16 bit time).

Note: The CK pin works in conjunction with the TX pin. Thus, the clock is provided only if the
transmitter is enabled (TE=1) and a data is being transmitted (the data register USART_DR

DocID15965 Rev 14 723/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

has been written). This means that it is not possible to receive a synchronous data without
transmitting data.

The LBCL, CPOL and CPHA bits have to be selected when both the transmitter and the
receiver are disabled (TE=RE=0) to ensure that the clock pulses function correctly. These
bits should not be changed while the transmitter or the receiver is enabled.

It is advised that TE and RE are set in the same instruction in order to minimize the setup
and the hold time of the receiver.

The USART supports master mode only: it cannot receive or send data related to an input
clock (CK is always an output).

Figure 226. USART example of synchronous transmission

Figure 227. USART data clock timing diagram (M=0)

Universal synchronous asynchronous receiver transmitter (USART) RM0038

724/908 DocID15965 Rev 14

Figure 228. USART data clock timing diagram (M=1)

Figure 229. RX data setup/hold time

Note: The function of CK is different in Smartcard mode. Refer to the Smartcard mode chapter for
more details.

27.3.10 Single-wire half-duplex communication

The single-wire half-duplex mode is selected by setting the HDSEL bit in the USART_CR3
register. In this mode, the following bits must be kept cleared:

• LINEN and CLKEN bits in the USART_CR2 register,

• SCEN and IREN bits in the USART_CR3 register.

The USART can be configured to follow a single-wire half-duplex protocol where the TX and
RX lines are internally connected. The selection between half- and full-duplex
communication is made with a control bit ‘HALF DUPLEX SEL’ (HDSEL in USART_CR3).

DocID15965 Rev 14 725/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

As soon as HDSEL is written to 1:

• the TX and RX lines are internally connected

• the RX pin is no longer used

• the TX pin is always released when no data is transmitted. Thus, it acts as a standard
I/O in idle or in reception. It means that the I/O must be configured so that TX is
configured as floating input (or output high open-drain) when not driven by the USART.

Apart from this, the communications are similar to what is done in normal USART mode.
The conflicts on the line must be managed by the software (by the use of a centralized
arbiter, for instance). In particular, the transmission is never blocked by hardware and
continue to occur as soon as a data is written in the data register while the TE bit is set.

27.3.11 Smartcard

The Smartcard mode is selected by setting the SCEN bit in the USART_CR3 register. In
smartcard mode, the following bits must be kept cleared:

• LINEN bit in the USART_CR2 register,

• HDSEL and IREN bits in the USART_CR3 register.

Moreover, the CLKEN bit may be set in order to provide a clock to the smartcard.

The Smartcard interface is designed to support asynchronous protocol Smartcards as
defined in the ISO 7816-3 standard. The USART should be configured as:

• 8 bits plus parity: where M=1 and PCE=1 in the USART_CR1 register

• 1.5 stop bits when transmitting and receiving: where STOP=11 in the USART_CR2
register.

Note: It is also possible to choose 0.5 stop bit for receiving but it is recommended to use 1.5 stop
bits for both transmitting and receiving to avoid switching between the two configurations.

Figure 230 shows examples of what can be seen on the data line with and without parity
error.

Figure 230. ISO 7816-3 asynchronous protocol

When connected to a Smartcard, the TX output of the USART drives a bidirectional line that
is also driven by the Smartcard. The TX pin must be configured as open-drain.

Smartcard is a single wire half duplex communication protocol.

• Transmission of data from the transmit shift register is guaranteed to be delayed by a
minimum of 1/2 baud clock. In normal operation a full transmit shift register will start

Universal synchronous asynchronous receiver transmitter (USART) RM0038

726/908 DocID15965 Rev 14

shifting on the next baud clock edge. In Smartcard mode this transmission is further
delayed by a guaranteed 1/2 baud clock.

• If a parity error is detected during reception of a frame programmed with a 0.5 or 1.5
stop bit period, the transmit line is pulled low for a baud clock period after the
completion of the receive frame. This is to indicate to the Smartcard that the data
transmitted to USART has not been correctly received. This NACK signal (pulling
transmit line low for 1 baud clock) will cause a framing error on the transmitter side
(configured with 1.5 stop bits). The application can handle re-sending of data according
to the protocol. A parity error is ‘NACK’ed by the receiver if the NACK control bit is set,
otherwise a NACK is not transmitted.

• The assertion of the TC flag can be delayed by programming the Guard Time register.
In normal operation, TC is asserted when the transmit shift register is empty and no
further transmit requests are outstanding. In Smartcard mode an empty transmit shift
register triggers the guard time counter to count up to the programmed value in the
Guard Time register. TC is forced low during this time. When the guard time counter
reaches the programmed value TC is asserted high.

• The de-assertion of TC flag is unaffected by Smartcard mode.

• If a framing error is detected on the transmitter end (due to a NACK from the receiver),
the NACK will not be detected as a start bit by the receive block of the transmitter.
According to the ISO protocol, the duration of the received NACK can be 1 or 2 baud
clock periods.

• On the receiver side, if a parity error is detected and a NACK is transmitted the receiver
will not detect the NACK as a start bit.

Note: A break character is not significant in Smartcard mode. A 0x00 data with a framing error will
be treated as data and not as a break.

No Idle frame is transmitted when toggling the TE bit. The Idle frame (as defined for the
other configurations) is not defined by the ISO protocol.

Figure 231 details how the NACK signal is sampled by the USART. In this example the
USART is transmitting a data and is configured with 1.5 stop bits. The receiver part of the
USART is enabled in order to check the integrity of the data and the NACK signal.

Figure 231. Parity error detection using the 1.5 stop bits

The USART can provide a clock to the smartcard through the CK output. In smartcard
mode, CK is not associated to the communication but is simply derived from the internal
peripheral input clock through a 5-bit prescaler. The division ratio is configured in the

DocID15965 Rev 14 727/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

prescaler register USART_GTPR. CK frequency can be programmed from fCK/2 to fCK/62,
where fCK is the peripheral input clock.

27.3.12 IrDA SIR ENDEC block

The IrDA mode is selected by setting the IREN bit in the USART_CR3 register. In IrDA
mode, the following bits must be kept cleared:

• LINEN, STOP and CLKEN bits in the USART_CR2 register,

• SCEN and HDSEL bits in the USART_CR3 register.

The IrDA SIR physical layer specifies use of a Return to Zero, Inverted (RZI) modulation
scheme that represents logic 0 as an infrared light pulse (see Figure 232).

The SIR Transmit encoder modulates the Non Return to Zero (NRZ) transmit bit stream
output from USART. The output pulse stream is transmitted to an external output driver and
infrared LED. USART supports only bit rates up to 115.2Kbps for the SIR ENDEC. In normal
mode the transmitted pulse width is specified as 3/16 of a bit period.

The SIR receive decoder demodulates the return-to-zero bit stream from the infrared
detector and outputs the received NRZ serial bit stream to USART. The decoder input is
normally HIGH (marking state) in the Idle state. The transmit encoder output has the
opposite polarity to the decoder input. A start bit is detected when the decoder input is low.

• IrDA is a half duplex communication protocol. If the Transmitter is busy (i.e. the USART
is sending data to the IrDA encoder), any data on the IrDA receive line will be ignored
by the IrDA decoder and if the Receiver is busy (USART is receiving decoded data
from the USART), data on the TX from the USART to IrDA will not be encoded by IrDA.
While receiving data, transmission should be avoided as the data to be transmitted
could be corrupted.

• A ‘0 is transmitted as a high pulse and a ‘1 is transmitted as a ‘0. The width of the pulse
is specified as 3/16th of the selected bit period in normal mode (see Figure 233).

• The SIR decoder converts the IrDA compliant receive signal into a bit stream for
USART.

• The SIR receive logic interprets a high state as a logic one and low pulses as logic
zeros.

• The transmit encoder output has the opposite polarity to the decoder input. The SIR
output is in low state when Idle.

• The IrDA specification requires the acceptance of pulses greater than 1.41 us. The
acceptable pulse width is programmable. Glitch detection logic on the receiver end
filters out pulses of width less than 2 PSC periods (PSC is the prescaler value
programmed in the IrDA low-power Baud Register, USART_GTPR). Pulses of width
less than 1 PSC period are always rejected, but those of width greater than one and
less than two periods may be accepted or rejected, those greater than 2 periods will be
accepted as a pulse. The IrDA encoder/decoder doesn’t work when PSC=0.

• The receiver can communicate with a low-power transmitter.

• In IrDA mode, the STOP bits in the USART_CR2 register must be configured to “1 stop
bit”.

Universal synchronous asynchronous receiver transmitter (USART) RM0038

728/908 DocID15965 Rev 14

IrDA low-power mode

Transmitter:

In low-power mode the pulse width is not maintained at 3/16 of the bit period. Instead, the
width of the pulse is 3 times the low-power baud rate which can be a minimum of 1.42 MHz.
Generally this value is 1.8432 MHz (1.42 MHz < PSC< 2.12 MHz). A low-power mode
programmable divisor divides the system clock to achieve this value.

Receiver:

Receiving in low-power mode is similar to receiving in normal mode. For glitch detection the
USART should discard pulses of duration shorter than 1/PSC. A valid low is accepted only if
its duration is greater than 2 periods of the IrDA low-power Baud clock (PSC value in
USART_GTPR).

Note: A pulse of width less than two and greater than one PSC period(s) may or may not be
rejected.

The receiver set up time should be managed by software. The IrDA physical layer
specification specifies a minimum of 10 ms delay between transmission and reception (IrDA
is a half duplex protocol).

Figure 232. IrDA SIR ENDEC- block diagram

Figure 233. IrDA data modulation (3/16) -Normal mode

DocID15965 Rev 14 729/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

27.3.13 Continuous communication using DMA

The USART is capable of continuous communication using the DMA. The DMA requests for
Rx buffer and Tx buffer are generated independently.

Transmission using DMA

DMA mode can be enabled for transmission by setting DMAT bit in the USART_CR3
register. Data is loaded from a SRAM area configured using the DMA peripheral (refer to the
DMA specification) to the USART_DR register whenever the TXE bit is set. To map a DMA
channel for USART transmission, use the following procedure (x denotes the channel
number):

1. Write the USART_DR register address in the DMA control register to configure it as the
destination of the transfer. The data will be moved to this address from memory after
each TXE event.

2. Write the memory address in the DMA control register to configure it as the source of
the transfer. The data will be loaded into the USART_DR register from this memory
area after each TXE event.

3. Configure the total number of bytes to be transferred to the DMA control register.

4. Configure the channel priority in the DMA register

5. Configure DMA interrupt generation after half/ full transfer as required by the
application.

6. Clear the TC bit in the SR register by writing 0 to it.

7. Activate the channel in the DMA register.

When the number of data transfers programmed in the DMA Controller is reached, the DMA
controller generates an interrupt on the DMA channel interrupt vector.

In transmission mode, once the DMA has written all the data to be transmitted (the TCIF flag
is set in the DMA_ISR register), the TC flag can be monitored to make sure that the USART
communication is complete. This is required to avoid corrupting the last transmission before
disabling the USART or entering the Stop mode. The software must wait until TC=1. The TC
flag remains cleared during all data transfers and it is set by hardware at the last frame’s
end of transmission.

Universal synchronous asynchronous receiver transmitter (USART) RM0038

730/908 DocID15965 Rev 14

Figure 234. Transmission using DMA

Reception using DMA

DMA mode can be enabled for reception by setting the DMAR bit in USART_CR3 register.
Data is loaded from the USART_DR register to a SRAM area configured using the DMA
peripheral (refer to the DMA specification) whenever a data byte is received. To map a DMA
channel for USART reception, use the following procedure:

1. Write the USART_DR register address in the DMA control register to configure it as the
source of the transfer. The data will be moved from this address to the memory after
each RXNE event.

2. Write the memory address in the DMA control register to configure it as the destination
of the transfer. The data will be loaded from USART_DR to this memory area after each
RXNE event.

3. Configure the total number of bytes to be transferred in the DMA control register.

4. Configure the channel priority in the DMA control register

5. Configure interrupt generation after half/ full transfer as required by the application.

6. Activate the channel in the DMA control register.

When the number of data transfers programmed in the DMA Controller is reached, the DMA
controller generates an interrupt on the DMA channel interrupt vector. The DMAR bit should
be cleared by software in the USART_CR3 register during the interrupt subroutine.

DocID15965 Rev 14 731/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

Figure 235. Reception using DMA

Error flagging and interrupt generation in multibuffer communication

In case of multibuffer communication if any error occurs during the transaction the error flag
will be asserted after the current byte. An interrupt will be generated if the interrupt enable
flag is set. For framing error, overrun error and noise flag which are asserted with RXNE in
case of single byte reception, there will be separate error flag interrupt enable bit (EIE bit in
the USART_CR3 register), which if set will issue an interrupt after the current byte with
either of these errors.

27.3.14 Hardware flow control

It is possible to control the serial data flow between 2 devices by using the CTS input and
the RTS output. The Figure 236 shows how to connect 2 devices in this mode:

Figure 236. Hardware flow control between 2 USARTs

RTS and CTS flow control can be enabled independently by writing respectively RTSE and
CTSE bits to 1 (in the USART_CR3 register).

Universal synchronous asynchronous receiver transmitter (USART) RM0038

732/908 DocID15965 Rev 14

RTS flow control

If the RTS flow control is enabled (RTSE=1), then RTS is asserted (tied low) as long as the
USART receiver is ready to receive a new data. When the receive register is full, RTS is
deasserted, indicating that the transmission is expected to stop at the end of the current
frame. Figure 237 shows an example of communication with RTS flow control enabled.

Figure 237. RTS flow control

CTS flow control

If the CTS flow control is enabled (CTSE=1), then the transmitter checks the CTS input
before transmitting the next frame. If CTS is asserted (tied low), then the next data is
transmitted (assuming that a data is to be transmitted, in other words, if TXE=0), else the
transmission does not occur. When CTS is deasserted during a transmission, the current
transmission is completed before the transmitter stops.

When CTSE=1, the CTSIF status bit is automatically set by hardware as soon as the CTS
input toggles. It indicates when the receiver becomes ready or not ready for communication.
An interrupt is generated if the CTSIE bit in the USART_CR3 register is set. The figure
below shows an example of communication with CTS flow control enabled.

DocID15965 Rev 14 733/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

Figure 238. CTS flow control

Note: Special behavior of break frames: when the CTS flow is enabled, the transmitter does not
check the CTS input state to send a break.

Universal synchronous asynchronous receiver transmitter (USART) RM0038

734/908 DocID15965 Rev 14

27.4 USART interrupts

The USART interrupt events are connected to the same interrupt vector (see Figure 239).

• During transmission: Transmission Complete, Clear to Send or Transmit Data Register
empty interrupt.

• While receiving: Idle Line detection, Overrun error, Receive Data register not empty,
Parity error, LIN break detection, Noise Flag (only in multi buffer communication) and
Framing Error (only in multi buffer communication).

These events generate an interrupt if the corresponding Enable Control Bit is set.

Figure 239. USART interrupt mapping diagram

Table 156. USART interrupt requests

Interrupt event Event flag
Enable control

bit

Transmit Data Register Empty TXE TXEIE

CTS flag CTS CTSIE

Transmission Complete TC TCIE

Received Data Ready to be Read RXNE
RXNEIE

Overrun Error Detected ORE

Idle Line Detected IDLE IDLEIE

Parity Error PE PEIE

Break Flag LBD LBDIE

Noise Flag, Overrun error and Framing Error in multibuffer
communication

NF or ORE or FE EIE

DocID15965 Rev 14 735/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

27.5 USART mode configuration

27.6 USART registers

Refer to Section: List of abbreviations for registers for a list of abbreviations used in register
descriptions.

The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits).

27.6.1 Status register (USART_SR)

Address offset: 0x00

Reset value: 0x00C0 0000

Table 157. USART mode configuration(1)

1. X = supported; NA = not applicable.

USART modes USART1 USART2 USART3 UART4 UART5

Asynchronous mode X X X X X

Hardware flow control X X X NA NA

Multibuffer communication (DMA) X X X X X

Multiprocessor communication X X X X X

Synchronous X X X NA NA

Smartcard X X X NA NA

Half-duplex (single-wire mode) X X X X X

IrDA X X X X X

LIN X X X X X

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
CTS LBD TXE TC RXNE IDLE ORE NF FE PE

rc_w0 rc_w0 r rc_w0 rc_w0 r r r r r

Bits 31:10 Reserved, must be kept at reset value

Bit 9 CTS: CTS flag

This bit is set by hardware when the CTS input toggles, if the CTSE bit is set. It is cleared by
software (by writing it to 0). An interrupt is generated if CTSIE=1 in the USART_CR3
register.
0: No change occurred on the CTS status line
1: A change occurred on the CTS status line

Bit 8 LBD: LIN break detection flag

This bit is set by hardware when the LIN break is detected. It is cleared by software (by
writing it to 0). An interrupt is generated if LBDIE = 1 in the USART_CR2 register.
0: LIN Break not detected
1: LIN break detected

Note: An interrupt is generated when LBD=1 if LBDIE=1

Universal synchronous asynchronous receiver transmitter (USART) RM0038

736/908 DocID15965 Rev 14

Bit 7 TXE: Transmit data register empty

This bit is set by hardware when the content of the TDR register has been transferred into
the shift register. An interrupt is generated if the TXEIE bit =1 in the USART_CR1 register. It
is cleared by a write to the USART_DR register.
0: Data is not transferred to the shift register
1: Data is transferred to the shift register)

Note: This bit is used during single buffer transmission.

Bit 6 TC: Transmission complete

This bit is set by hardware if the transmission of a frame containing data is complete and if
TXE is set. An interrupt is generated if TCIE=1 in the USART_CR1 register. It is cleared by
a software sequence (a read from the USART_SR register followed by a write to the
USART_DR register). The TC bit can also be cleared by writing a '0' to it. This clearing
sequence is recommended only for multibuffer communication.
0: Transmission is not complete
1: Transmission is complete

Bit 5 RXNE: Read data register not empty

This bit is set by hardware when the content of the RDR shift register has been transferred
to the USART_DR register. An interrupt is generated if RXNEIE=1 in the USART_CR1
register. It is cleared by a read to the USART_DR register. The RXNE flag can also be
cleared by writing a zero to it. This clearing sequence is recommended only for multibuffer
communication.
0: Data is not received
1: Received data is ready to be read.

Bit 4 IDLE: IDLE line detected

This bit is set by hardware when an Idle Line is detected. An interrupt is generated if the
IDLEIE=1 in the USART_CR1 register. It is cleared by a software sequence (an read to the
USART_SR register followed by a read to the USART_DR register).
0: No Idle Line is detected
1: Idle Line is detected

Note: The IDLE bit will not be set again until the RXNE bit has been set itself (i.e. a new idle
line occurs).

Bit 3 ORE: Overrun error

This bit is set by hardware when the word currently being received in the shift register is
ready to be transferred into the RDR register while RXNE=1. An interrupt is generated if
RXNEIE=1 in the USART_CR1 register. It is cleared by a software sequence (an read to the
USART_SR register followed by a read to the USART_DR register).
0: No Overrun error
1: Overrun error is detected

Note: When this bit is set, the RDR register content will not be lost but the shift register will be
overwritten. An interrupt is generated on ORE flag in case of Multi Buffer
communication if the EIE bit is set.

DocID15965 Rev 14 737/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

Bit 2 NF: Noise detected flag

This bit is set by hardware when noise is detected on a received frame. It is cleared by a
software sequence (an read to the USART_SR register followed by a read to the
USART_DR register).
0: No noise is detected
1: Noise is detected

Note: This bit does not generate interrupt as it appears at the same time as the RXNE bit
which itself generates an interrupting interrupt is generated on NF flag in case of Multi
Buffer communication if the EIE bit is set.

Note: When the line is noise-free, the NF flag can be disabled by programming the ONEBIT
bit to 1 to increase the USART tolerance to deviations (Refer to Section 27.3.5: USART
receiver tolerance to clock deviation on page 716).

Bit 1 FE: Framing error

This bit is set by hardware when a de-synchronization, excessive noise or a break character
is detected. It is cleared by a software sequence (an read to the USART_SR register
followed by a read to the USART_DR register).
0: No Framing error is detected
1: Framing error or break character is detected

Note: This bit does not generate interrupt as it appears at the same time as the RXNE bit
which itself generates an interrupt. If the word currently being transferred causes both
frame error and overrun error, it will be transferred and only the ORE bit will be set.

An interrupt is generated on FE flag in case of Multi Buffer communication if the EIE bit
is set.

Bit 0 PE: Parity error

This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by a
software sequence (a read from the status register followed by a read or write access to the
USART_DR data register). The software must wait for the RXNE flag to be set before
clearing the PE bit.
An interrupt is generated if PEIE = 1 in the USART_CR1 register.
0: No parity error
1: Parity error

Universal synchronous asynchronous receiver transmitter (USART) RM0038

738/908 DocID15965 Rev 14

27.6.2 Data register (USART_DR)

Address offset: 0x04

Reset value: 0xXXXX XXXX

27.6.3 Baud rate register (USART_BRR)

Note: The baud counters stop counting if the TE or RE bits are disabled respectively.

Address offset: 0x08

Reset value: 0x0000 0000

27.6.4 Control register 1 (USART_CR1)

Address offset: 0x0C

Reset value: 0x0000 0000

Bits 31:9 Reserved, must be kept at reset value

Bits 8:0 DR[8:0]: Data value

Contains the Received or Transmitted data character, depending on whether it is read from
or written to.
The Data register performs a double function (read and write) since it is composed of two
registers, one for transmission (TDR) and one for reception (RDR)
The TDR register provides the parallel interface between the internal bus and the output shift
register (see Figure 1).
The RDR register provides the parallel interface between the input shift register and the
internal bus.
When transmitting with the parity enabled (PCE bit set to 1 in the USART_CR1 register), the
value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect because
it is replaced by the parity.
When receiving with the parity enabled, the value read in the MSB bit is the received parity
bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DIV_Mantissa[11:0] DIV_Fraction[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:4 DIV_Mantissa[11:0]: mantissa of USARTDIV

These 12 bits define the mantissa of the USART Divider (USARTDIV)

Bits 3:0 DIV_Fraction[3:0]: fraction of USARTDIV

These 4 bits define the fraction of the USART Divider (USARTDIV). When OVER8=1, the
DIV_Fraction3 bit is not considered and must be kept cleared.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OVER8 Reserved UE M WAKE PCE PS PEIE TXEIE TCIE RXNEIE IDLEIE TE RE RWU SBK

rw Res. rw rw rw rw rw rw rw rw rw rw rw rw rw rw

DocID15965 Rev 14 739/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

Bits 31:16 Reserved, must be kept at reset value

Bit 15 OVER8: Oversampling mode

0: oversampling by 16
1: oversampling by 8

Note: Oversampling by 8 is not available in the Smartcard, IrDA and LIN modes: when
SCEN=1,IREN=1 or LINEN=1 then OVER8 is forced to ‘0 by hardware.

Bit 14 Reserved, must be kept at reset value

Bit 13 UE: USART enable

When this bit is cleared, the USART prescalers and outputs are stopped and the end of the
current byte transfer in order to reduce power consumption. This bit is set and cleared by
software.
0: USART prescaler and outputs disabled
1: USART enabled

Bit 12 M: Word length

This bit determines the word length. It is set or cleared by software.
0: 1 Start bit, 8 Data bits, n Stop bit
1: 1 Start bit, 9 Data bits, n Stop bit

Note: The M bit must not be modified during a data transfer (both transmission and reception)

Bit 11 WAKE: Wakeup method

This bit determines the USART wakeup method, it is set or cleared by software.
0: Idle Line
1: Address Mark

Bit 10 PCE: Parity control enable

This bit selects the hardware parity control (generation and detection). When the parity
control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit
if M=0) and parity is checked on the received data. This bit is set and cleared by software.
Once it is set, PCE is active after the current byte (in reception and in transmission).
0: Parity control disabled
1: Parity control enabled

Bit 9 PS: Parity selection

This bit selects the odd or even parity when the parity generation/detection is enabled (PCE
bit set). It is set and cleared by software. The parity will be selected after the current byte.
0: Even parity
1: Odd parity

Bit 8 PEIE: PE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever PE=1 in the USART_SR register

Bit 7 TXEIE: TXE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever TXE=1 in the USART_SR register

Bit 6 TCIE: Transmission complete interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever TC=1 in the USART_SR register

Universal synchronous asynchronous receiver transmitter (USART) RM0038

740/908 DocID15965 Rev 14

Bit 5 RXNEIE: RXNE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever ORE=1 or RXNE=1 in the USART_SR
register

Bit 4 IDLEIE: IDLE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever IDLE=1 in the USART_SR register

Bit 3 TE: Transmitter enable

This bit enables the transmitter. It is set and cleared by software.
0: Transmitter is disabled
1: Transmitter is enabled

Note: During transmission, a “0” pulse on the TE bit (“0” followed by “1”) sends a preamble
(idle line) after the current word, except in smartcard mode.

When TE is set, there is a 1 bit-time delay before the transmission starts.

Bit 2 RE: Receiver enable

This bit enables the receiver. It is set and cleared by software.
0: Receiver is disabled
1: Receiver is enabled and begins searching for a start bit

Bit 1 RWU: Receiver wakeup

This bit determines if the USART is in mute mode or not. It is set and cleared by software
and can be cleared by hardware when a wakeup sequence is recognized.
0: Receiver in active mode
1: Receiver in mute mode

Note: Before selecting Mute mode (by setting the RWU bit) the USART must first receive a
data byte, otherwise it cannot function in Mute mode with wakeup by Idle line detection.

In Address Mark Detection wakeup configuration (WAKE bit=1) the RWU bit cannot be
modified by software while the RXNE bit is set.

Bit 0 SBK: Send break

This bit set is used to send break characters. It can be set and cleared by software. It should
be set by software, and will be reset by hardware during the stop bit of break.
0: No break character is transmitted
1: Break character will be transmitted

DocID15965 Rev 14 741/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

27.6.5 Control register 2 (USART_CR2)

Address offset: 0x10

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
LINEN STOP[1:0] CLKEN CPOL CPHA LBCL Res. LBDIE LBDL Res. ADD[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:15 Reserved, must be kept at reset value

Bit 14 LINEN: LIN mode enable

This bit is set and cleared by software.
0: LIN mode disabled
1: LIN mode enabled
The LIN mode enables the capability to send LIN Synch Breaks (13 low bits) using the SBK bit in
the USART_CR1 register, and to detect LIN Sync breaks.

Bits 13:12 STOP: STOP bits

These bits are used for programming the stop bits.
00: 1 Stop bit
01: 0.5 Stop bit
10: 2 Stop bits
11: 1.5 Stop bit

Bit 11 CLKEN: Clock enable

This bit allows the user to enable the CK pin.
0: CK pin disabled
1: CK pin enabled

Bit 10 CPOL: Clock polarity

This bit allows the user to select the polarity of the clock output on the CK pin in synchronous mode.
It works in conjunction with the CPHA bit to produce the desired clock/data relationship
0: Steady low value on CK pin outside transmission window.
1: Steady high value on CK pin outside transmission window.

Bit 9 CPHA: Clock phase

This bit allows the user to select the phase of the clock output on the CK pin in synchronous mode.
It works in conjunction with the CPOL bit to produce the desired clock/data relationship (see figures
227 to 228)

Note: 0: The first clock transition is the first data capture edge
1: The second clock transition is the first data capture edge

Bit 8 LBCL: Last bit clock pulse

This bit allows the user to select whether the clock pulse associated with the last data bit
transmitted (MSB) has to be output on the CK pin in synchronous mode.
0: The clock pulse of the last data bit is not output to the CK pin
1: The clock pulse of the last data bit is output to the CK pin

1: The last bit is the 8th or 9th data bit transmitted depending on the 8 or 9 bit format selected
by the M bit in the USART_CR1 register.

Bit 7 Reserved, must be kept at reset value

Universal synchronous asynchronous receiver transmitter (USART) RM0038

742/908 DocID15965 Rev 14

Note: These 3 bits (CPOL, CPHA, LBCL) should not be written while the transmitter is enabled.

27.6.6 Control register 3 (USART_CR3)

Address offset: 0x14

Reset value: 0x0000 0000

Bit 6 LBDIE: LIN break detection interrupt enable

Break interrupt mask (break detection using break delimiter).
0: Interrupt is inhibited
1: An interrupt is generated whenever LBD=1 in the USART_SR register

Bit 5 LBDL: lin break detection length

This bit is for selection between 11 bit or 10 bit break detection.
0: 10-bit break detection
1: 11-bit break detection

Bit 4 Reserved, must be kept at reset value

Bits 3:0 ADD[3:0]: Address of the USART node

This bit-field gives the address of the USART node.
This is used in multiprocessor communication during mute mode, for wake up with address mark
detection.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
ONEBIT CTSIE CTSE RTSE DMAT DMAR SCEN NACK HDSEL IRLP IREN EIE

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value

Bit 11 ONEBIT: One sample bit method enable

This bit allows the user to select the sample method. When the one sample bit method is
selected the noise detection flag (NF) is disabled.
0: Three sample bit method
1: One sample bit method

Note: The ONEBIT feature applies only to data bits. It does not apply to START bit.

Bit 10 CTSIE: CTS interrupt enable

0: Interrupt is inhibited
1: An interrupt is generated whenever CTS=1 in the USART_SR register

Bit 9 CTSE: CTS enable

0: CTS hardware flow control disabled
1: CTS mode enabled, data is only transmitted when the CTS input is asserted (tied to 0). If
the CTS input is deasserted while a data is being transmitted, then the transmission is
completed before stopping. If a data is written into the data register while CTS is asserted,
the transmission is postponed until CTS is asserted.

Bit 8 RTSE: RTS enable

0: RTS hardware flow control disabled
1: RTS interrupt enabled, data is only requested when there is space in the receive buffer.
The transmission of data is expected to cease after the current character has been
transmitted. The RTS output is asserted (tied to 0) when a data can be received.

DocID15965 Rev 14 743/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

Bit 7 DMAT: DMA enable transmitter

This bit is set/reset by software
1: DMA mode is enabled for transmission
0: DMA mode is disabled for transmission

Bit 6 DMAR: DMA enable receiver

This bit is set/reset by software
1: DMA mode is enabled for reception
0: DMA mode is disabled for reception

Bit 5 SCEN: Smartcard mode enable

This bit is used for enabling Smartcard mode.
0: Smartcard Mode disabled
1: Smartcard Mode enabled

Bit 4 NACK: Smartcard NACK enable

0: NACK transmission in case of parity error is disabled
1: NACK transmission during parity error is enabled

Bit 3 HDSEL: Half-duplex selection

Selection of Single-wire Half-duplex mode
0: Half duplex mode is not selected
1: Half duplex mode is selected

Bit 2 IRLP: IrDA low-power

This bit is used for selecting between normal and low-power IrDA modes
0: Normal mode
1: Low-power mode

Bit 1 IREN: IrDA mode enable

This bit is set and cleared by software.
0: IrDA disabled
1: IrDA enabled

Bit 0 EIE: Error interrupt enable

Error Interrupt Enable Bit is required to enable interrupt generation in case of a framing
error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USART_SR register) in
case of Multi Buffer Communication (DMAR=1 in the USART_CR3 register).
0: Interrupt is inhibited
1: An interrupt is generated whenever DMAR=1 in the USART_CR3 register and FE=1 or
ORE=1 or NF=1 in the USART_SR register.

Universal synchronous asynchronous receiver transmitter (USART) RM0038

744/908 DocID15965 Rev 14

27.6.7 Guard time and prescaler register (USART_GTPR)

Address offset: 0x18

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GT[7:0] PSC[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:8 GT[7:0]: Guard time value

This bit-field gives the Guard time value in terms of number of baud clocks.
This is used in Smartcard mode. The Transmission Complete flag is set after this guard time
value.

Bits 7:0 PSC[7:0]: Prescaler value

– In IrDA Low-power mode:

PSC[7:0] = IrDA Low-Power Baud Rate
Used for programming the prescaler for dividing the system clock to achieve the low-power
frequency:
The source clock is divided by the value given in the register (8 significant bits):
00000000: Reserved - do not program this value
00000001: divides the source clock by 1
00000010: divides the source clock by 2
...

– In normal IrDA mode: PSC must be set to 00000001.

– In smartcard mode:

PSC[4:0]: Prescaler value
Used for programming the prescaler for dividing the system clock to provide the smartcard
clock.
The value given in the register (5 significant bits) is multiplied by 2 to give the division factor
of the source clock frequency:
00000: Reserved - do not program this value
00001: divides the source clock by 2
00010: divides the source clock by 4
00011: divides the source clock by 6
...

Note: 1: Bits [7:5] have no effect if Smartcard mode is used.

DocID15965 Rev 14 745/908

RM0038 Universal synchronous asynchronous receiver transmitter (USART)

745

27.6.8 USART register map

The table below gives the USART register map and reset values. The reserved memory
areas are highlighted in gray in the table.

Refer to Section: Memory map for the register boundary addresses.

Table 158. USART register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
USART_SR

Reserved C
T

S

L
B

D

T
X

E

T
C

R
X

N
E

ID
L

E

O
R

E

N
F

F
E

P
E

Reset value 0 0 1 1 0 0 0 0 0 0

0x04
USART_DR

Reserved
DR[8:0]

Reset value 0 0 0 0 0 0 0 0 0

0x08
USART_BRR

Reserved
DIV_Mantissa[15:4]

DIV_Fraction
[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
USART_CR1

Reserved

O
V

E
R

8

R
e

se
rv

e
d

U
E M

W
A

K
E

P
C

E

P
S

P
E

IE

T
X

E
IE

T
C

IE

R
X

N
E

IE

ID
L

E
IE

T
E

R
E

R
W

U

S
B

K

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
USART_CR2

Reserved LI
N

E
N STOP

[1:0]

C
L

K
E

N

C
P

O
L

C
P

H
A

L
B

C
L

R
e

se
rv

ed

LB
D

IE

L
B

D
L

R
e

se
rv

ed ADD[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14
USART_CR3

Reserved

O
N

E
B

IT

C
T

S
IE

C
T

S
E

R
T

S
E

D
M

A
T

D
M

A
R

S
C

E
N

N
A

C
K

H
D

S
E

L

IR
L

P

IR
E

N

E
IE

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x18
USART_GTPR

Reserved
GT[7:0] PSC[7:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Serial peripheral interface (SPI) RM0038

746/908 DocID15965 Rev 14

28 Serial peripheral interface (SPI)

28.1 SPI introduction

The SPI interface provides two main functions, supporting either the SPI protocol or the I2S
audio protocol. By default, it is the SPI function that is selected. It is possible to switch the
interface from SPI to I2S by software.
In Cat.1 and Cat.2 devices, the I2S protocol is not available.

The serial peripheral interface (SPI) allows half/ full-duplex, synchronous, serial
communication with external devices. The interface can be configured as the master and in
this case it provides the communication clock (SCK) to the external slave device. The
interface is also capable of operating in multimaster configuration.

It may be used for a variety of purposes, including simplex synchronous transfers on two
lines with a possible bidirectional data line or reliable communication using CRC checking.

The I2S is also a synchronous serial communication interface. It can address four different
audio standards including the I2S Philips standard, the MSB- and LSB-justified standards,
and the PCM standard. It can operate as a slave or a master device in full-duplex mode
(using 4 pins) or in half-duplex mode (using 6 pins). Master clock can be provided by the
interface to an external slave component when the I2S is configured as the communication
master.

Warning: Since some SPI1 pins may be mapped onto some pins used
by the JTAG interface (SPI1_NSS onto JTDI, SPI1_SCK onto
JTDO and SPI1_MISO onto NJTRST), you may either:
– map SPI1 onto other pins
– disable the JTAG and use the SWD interface prior to
configuring the pins listed as SPI IOs (when debugging the
application) or
– disable both JTAG/SWD interfaces (for standalone
applications).
For more information on the configuration of the JTAG/SWD
interface pins, please refer to Section 7.3.2: I/O pin
multiplexer and mapping.

DocID15965 Rev 14 747/908

RM0038 Serial peripheral interface (SPI)

799

28.2 SPI and I2S main features

28.2.1 SPI features

• Full-duplex synchronous transfers on three lines

• Simplex synchronous transfers on two lines with or without a bidirectional data line

• 8- or 16-bit transfer frame format selection

• Master or slave operation

• Multimaster mode capability

• 8 master mode baud rate prescalers (fPCLK/2 max.)

• Slave mode frequency (fPCLK/2 max)

• Faster communication for both master and slave

• NSS management by hardware or software for both master and slave: dynamic change
of master/slave operations

• Programmable clock polarity and phase

• Programmable data order with MSB-first or LSB-first shifting

• Dedicated transmission and reception flags with interrupt capability

• SPI bus busy status flag

• SPI TI mode (in Cat.3, Cat.4, Cat.5 and Cat.6 devices)

• Hardware CRC feature for reliable communication:

– CRC value can be transmitted as last byte in Tx mode

– Automatic CRC error checking for last received byte

• Master mode fault, overrun and CRC error flags with interrupt capability

• 1-byte transmission and reception buffer with DMA capability: Tx and Rx requests

Serial peripheral interface (SPI) RM0038

748/908 DocID15965 Rev 14

28.2.2 I2S features

• Half-duplex communication (only transmitter or receiver)

• Master or slave operations

• 8-bit programmable linear prescaler to reach accurate audio sample frequencies (from
8 kHz to 192 kHz)

• Data format may be 16-bit, 24-bit or 32-bit

• Packet frame is fixed to 16-bit (16-bit data frame) or 32-bit (16-bit, 24-bit, 32-bit data
frame) by audio channel

• Programmable clock polarity (steady state)

• Underrun flag in slave transmission mode and Overrun flag in reception mode (master
and slave)

• 16-bit register for transmission and reception with one data register for both channel
sides

• Supported I2S protocols:

– I2S Phillps standard

– MSB-justified standard (left-justified)

– LSB-justified standard (right-justified)

– PCM standard (with short and long frame synchronization on 16-bit channel frame
or 16-bit data frame extended to 32-bit channel frame)

• Data direction is always MSB first

• DMA capability for transmission and reception (16-bit wide)

• Master clock may be output to drive an external audio component. Ratio is fixed at
256 × FS (where FS is the audio sampling frequency)

• Frame error flag which detects a frame resynchronization between the external master
device and the I2S slave device.

DocID15965 Rev 14 749/908

RM0038 Serial peripheral interface (SPI)

799

28.3 SPI functional description

28.3.1 General description

The block diagram of the SPI is shown in Figure 240.

Figure 240. SPI block diagram

Usually, the SPI is connected to external devices through 4 pins:

• MISO: Master In / Slave Out data. This pin can be used to transmit data in slave mode
and receive data in master mode.

• MOSI: Master Out / Slave In data. This pin can be used to transmit data in master
mode and receive data in slave mode.

• SCK: Serial Clock output for SPI masters and input for SPI slaves.

• NSS: Slave select. This is an optional pin to select a slave device. This pin acts as a
‘chip select’ to let the SPI master communicate with slaves individually and to avoid
contention on the data lines. Slave NSS inputs can be driven by standard IO ports on
the master device. The NSS pin may also be used as an output if enabled (SSOE bit)
and driven low if the SPI is in master configuration. In this manner, all NSS pins from
devices connected to the Master NSS pin see a low level and become slaves when
they are configured in NSS hardware mode. When configured in master mode with
NSS configured as an input (MSTR=1 and SSOE=0) and if NSS is pulled low, the SPI

Serial peripheral interface (SPI) RM0038

750/908 DocID15965 Rev 14

enters the master mode fault state: the MSTR bit is automatically cleared and the
device is configured in slave mode (refer to Section 28.3.10: Error flags on page 770).

A basic example of interconnections between a single master and a single slave is
illustrated in Figure 241.

Figure 241. Single master/ single slave application

1. Here, the NSS pin is configured as an input.

The MOSI pins are connected together and the MISO pins are connected together. In this
way data is transferred serially between master and slave (most significant bit first).

The communication is always initiated by the master. When the master device transmits
data to a slave device via the MOSI pin, the slave device responds via the MISO pin. This
implies full-duplex communication with both data out and data in synchronized with the
same clock signal (which is provided by the master device via the SCK pin).

Slave select (NSS) pin management

Hardware or software slave select management can be set using the SSM bit in the
SPI_CR1 register.

• Software NSS management (SSM = 1)

The slave select information is driven internally by the value of the SSI bit in the
SPI_CR1 register. The external NSS pin remains free for other application uses.

• Hardware NSS management (SSM = 0)

Two configurations are possible depending on the NSS output configuration (SSOE bit
in register SPI_CR2).

– NSS output enabled (SSM = 0, SSOE = 1)

This configuration is used only when the device operates in master mode. The
NSS signal is driven low when the master starts the communication and is kept
low until the SPI is disabled.

– NSS output disabled (SSM = 0, SSOE = 0)

This configuration allows multimaster capability for devices operating in master
mode. For devices set as slave, the NSS pin acts as a classical NSS input: the
slave is selected when NSS is low and deselected when NSS high.

DocID15965 Rev 14 751/908

RM0038 Serial peripheral interface (SPI)

799

Clock phase and clock polarity

Four possible timing relationships may be chosen by software, using the CPOL and CPHA
bits in the SPI_CR1 register. The CPOL (clock polarity) bit controls the steady state value of
the clock when no data is being transferred. This bit affects both master and slave modes. If
CPOL is reset, the SCK pin has a low-level idle state. If CPOL is set, the SCK pin has a
high-level idle state.

If the CPHA (clock phase) bit is set, the second edge on the SCK pin (falling edge if the
CPOL bit is reset, rising edge if the CPOL bit is set) is the MSBit capture strobe. Data are
latched on the occurrence of the second clock transition. If the CPHA bit is reset, the first
edge on the SCK pin (falling edge if CPOL bit is set, rising edge if CPOL bit is reset) is the
MSBit capture strobe. Data are latched on the occurrence of the first clock transition.

The combination of the CPOL (clock polarity) and CPHA (clock phase) bits selects the data
capture clock edge.

Figure 242, shows an SPI transfer with the four combinations of the CPHA and CPOL bits.
The diagram may be interpreted as a master or slave timing diagram where the SCK pin,
the MISO pin, the MOSI pin are directly connected between the master and the slave
device.

Note: Prior to changing the CPOL/CPHA bits the SPI must be disabled by resetting the SPE bit.

Master and slave must be programmed with the same timing mode.

The idle state of SCK must correspond to the polarity selected in the SPI_CR1 register (by
pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0).

The Data Frame Format (8- or 16-bit) is selected through the DFF bit in SPI_CR1 register,
and determines the data length during transmission/reception.

Serial peripheral interface (SPI) RM0038

752/908 DocID15965 Rev 14

Figure 242. Data clock timing diagram

1. These timings are shown with the LSBFIRST bit reset in the SPI_CR1 register.

Data frame format

Data can be shifted out either MSB-first or LSB-first depending on the value of the
LSBFIRST bit in the SPI_CR1 Register.

Each data frame is 8 or 16 bits long depending on the size of the data programmed using
the DFF bit in the SPI_CR1 register. The selected data frame format is applicable for
transmission and/or reception.

28.3.2 Configuring the SPI in slave mode

In the slave configuration, the serial clock is received on the SCK pin from the master
device. The value set in the BR[2:0] bits in the SPI_CR1 register, does not affect the data
transfer rate.

DocID15965 Rev 14 753/908

RM0038 Serial peripheral interface (SPI)

799

Note: It is recommended to enable the SPI slave before the master sends the clock. If not,
undesired data transmission might occur. The data register of the slave needs to be ready
before the first edge of the communication clock or before the end of the ongoing
communication. It is mandatory to have the polarity of the communication clock set to the
steady state value before the slave and the master are enabled.

Follow the procedure below to configure the SPI in slave mode:

Procedure

1. Set the DFF bit to define 8- or 16-bit data frame format

2. Select the CPOL and CPHA bits to define one of the four relationships between the
data transfer and the serial clock (see Figure 242). For correct data transfer, the CPOL
and CPHA bits must be configured in the same way in the slave device and the master
device. This step is not required when the TI mode is selected through the FRF bit in
the SPI_CR2 register.

3. The frame format (MSB-first or LSB-first depending on the value of the LSBFIRST bit in
the SPI_CR1 register) must be the same as the master device. This step is not
required when TI mode is selected.

4. In Hardware mode (refer to Slave select (NSS) pin management on page 750), the
NSS pin must be connected to a low level signal during the complete byte transmit
sequence. In NSS software mode, set the SSM bit and clear the SSI bit in the SPI_CR1
register. This step is not required when TI mode is selected.

5. Set the FRF bit in the SPI_CR2 register to select the TI mode protocol for serial
communications.

6. Clear the MSTR bit and set the SPE bit (both in the SPI_CR1 register) to assign the
pins to alternate functions.

In this configuration the MOSI pin is a data input and the MISO pin is a data output.

Transmit sequence

The data byte is parallel-loaded into the Tx buffer during a write cycle.

The transmit sequence begins when the slave device receives the clock signal and the most
significant bit of the data on its MOSI pin. The remaining bits (the 7 bits in 8-bit data frame
format, and the 15 bits in 16-bit data frame format) are loaded into the shift-register. The
TXE flag in the SPI_SR register is set on the transfer of data from the Tx Buffer to the shift
register and an interrupt is generated if the TXEIE bit in the SPI_CR2 register is set.

Receive sequence

For the receiver, when data transfer is complete:

• The Data in shift register is transferred to Rx Buffer and the RXNE flag (SPI_SR
register) is set

• An Interrupt is generated if the RXNEIE bit is set in the SPI_CR2 register.

After the last sampling clock edge the RXNE bit is set, a copy of the data byte received in
the shift register is moved to the Rx buffer. When the SPI_DR register is read, the SPI
peripheral returns this buffered value.

Clearing of the RXNE bit is performed by reading the SPI_DR register.

Serial peripheral interface (SPI) RM0038

754/908 DocID15965 Rev 14

SPI TI protocol in slave mode

In slave mode, the SPI interface is compatible with the TI protocol. The FRF bit of the
SPI_CR2 register can be used to configure the slave SPI serial communications to be
compliant with this protocol.

The clock polarity and phase are forced to conform to the TI protocol requirements whatever
the values set in the SPI_CR1 register. NSS management is also specific to the TI protocol
which makes the configuration of NSS management through the SPI_CR1 and SPI_CR2
registers (such as SSM, SSI, SSOE) transparent for the user.

In Slave mode (Figure 243: TI mode - Slave mode, single transfer and Figure 244: TI mode
- Slave mode, continuous transfer), the SPI baud rate prescaler is used to control the
moment when the MISO pin state changes to HI-Z. Any baud rate can be used thus allowing
to determine this moment with optimal flexibility. However, the baud rate is generally set to
the external master clock baud rate. The time for the MISO signal to become HI-Z (trelease)
depends on internal resynchronizations and on the baud rate value set in through BR[2:0] of
SPI_CR1 register. It is given by the formula:

Note: This feature is not available for Motorola SPI communications (FRF bit set to 0).

To detect TI frame errors in Slave transmitter only mode by using the Error interrupt (ERRIE
= 1), the SPI must be configured in 2-line unidirectional mode by setting BIDIMODE and
BIDIOE to 1 in the SPI_CR1 register. When BIDIMODE is set to 0, OVR is set to 1 because
the data register is never read and error interrupt are always generated, while when
BIDIMODE is set to 1, data are not received and OVR is never set.

Figure 243. TI mode - Slave mode, single transfer

tbaud_rate

2
---------------------- 4 tpclk×+ trelease

tbaud_rate

2
---------------------- 6 tpclk×+< <

DocID15965 Rev 14 755/908

RM0038 Serial peripheral interface (SPI)

799

Figure 244. TI mode - Slave mode, continuous transfer

28.3.3 Configuring the SPI in master mode

In the master configuration, the serial clock is generated on the SCK pin.

Procedure

1. Select the BR[2:0] bits to define the serial clock baud rate (see SPI_CR1 register).

2. Select the CPOL and CPHA bits to define one of the four relationships between the
data transfer and the serial clock (see Figure 242). This step is not required when the
TI mode is selected.

3. Set the DFF bit to define 8- or 16-bit data frame format

4. Configure the LSBFIRST bit in the SPI_CR1 register to define the frame format. This
step is not required when the TI mode is selected.

5. If the NSS pin is required in input mode, in hardware mode, connect the NSS pin to a
high-level signal during the complete byte transmit sequence. In NSS software mode,
set the SSM and SSI bits in the SPI_CR1 register. If the NSS pin is required in output
mode, the SSOE bit only should be set. This step is not required when the TI mode is
selected.

6. Set the FRF bit in SPI_CR2 to select the TI protocol for serial communications.

7. The MSTR and SPE bits must be set (they remain set only if the NSS pin is connected
to a high-level signal).

In this configuration the MOSI pin is a data output and the MISO pin is a data input.

Transmit sequence

The transmit sequence begins when a byte is written in the Tx Buffer.

The data byte is parallel-loaded into the shift register (from the internal bus) during the first
bit transmission and then shifted out serially to the MOSI pin MSB first or LSB first
depending on the LSBFIRST bit in the SPI_CR1 register. The TXE flag is set on the transfer
of data from the Tx Buffer to the shift register and an interrupt is generated if the TXEIE bit in
the SPI_CR2 register is set.

Serial peripheral interface (SPI) RM0038

756/908 DocID15965 Rev 14

Receive sequence

For the receiver, when data transfer is complete:

• The data in the shift register is transferred to the RX Buffer and the RXNE flag is set

• An interrupt is generated if the RXNEIE bit is set in the SPI_CR2 register

At the last sampling clock edge the RXNE bit is set, a copy of the data byte received in the
shift register is moved to the Rx buffer. When the SPI_DR register is read, the SPI
peripheral returns this buffered value.

Clearing the RXNE bit is performed by reading the SPI_DR register.

A continuous transmit stream can be maintained if the next data to be transmitted is put in
the Tx buffer once the transmission is started. Note that TXE flag should be ‘1 before any
attempt to write the Tx buffer is made.

Note: When a master is communicating with SPI slaves which need to be de-selected between
transmissions, the NSS pin must be configured as GPIO or another GPIO must be used and
toggled by software.

SPI TI protocol in master mode

In master mode, the SPI interface is compatible with the TI protocol. The FRF bit of the
SPI_CR2 register can be used to configure the master SPI serial communications to be
compliant with this protocol.

The clock polarity and phase are forced to conform to the TI protocol requirements whatever
the values set in the SPI_CR1 register. NSS management is also specific to the TI protocol
which makes the configuration of NSS management through the SPI_CR1 and SPI_CR2
registers (SSM, SSI, SSOE) transparent for the user.

Figure 245: TI mode - master mode, single transfer and Figure 246: TI mode - master mode,
continuous transfer) show the SPI master communication waveforms when the TI mode is
selected in master mode.

Figure 245. TI mode - master mode, single transfer

DocID15965 Rev 14 757/908

RM0038 Serial peripheral interface (SPI)

799

Figure 246. TI mode - master mode, continuous transfer

28.3.4 Configuring the SPI for half-duplex communication

The SPI is capable of operating in half-duplex mode in 2 configurations.

• 1 clock and 1 bidirectional data wire

• 1 clock and 1 data wire (receive-only or transmit-only)

1 clock and 1 bidirectional data wire (BIDIMODE=1)

This mode is enabled by setting the BIDIMODE bit in the SPI_CR1 register. In this mode
SCK is used for the clock and MOSI in master or MISO in slave mode is used for data
communication. The transfer direction (Input/Output) is selected by the BIDIOE bit in the
SPI_CR1 register. When this bit is 1, the data line is output otherwise it is input.

1 clock and 1 unidirectional data wire (BIDIMODE=0)

In this mode, the application can use the SPI either in transmit-only mode or in receive-only
mode.

• Transmit-only mode is similar to full-duplex mode (BIDIMODE=0, RXONLY=0): the
data are transmitted on the transmit pin (MOSI in master mode or MISO in slave mode)
and the receive pin (MISO in master mode or MOSI in slave mode) can be used as a
general-purpose IO. In this case, the application just needs to ignore the Rx buffer (if
the data register is read, it does not contain the received value).

• In receive-only mode, the application can disable the SPI output function by setting the
RXONLY bit in the SPI_CR2 register. In this case, it frees the transmit IO pin (MOSI in
master mode or MISO in slave mode), so it can be used for other purposes.

To start the communication in receive-only mode, configure and enable the SPI:

• In master mode, the communication starts immediately and stops when the SPE bit is
cleared and the current reception stops. There is no need to read the BSY flag in this
mode. It is always set when an SPI communication is ongoing.

• In slave mode, the SPI continues to receive as long as the NSS is pulled down (or the
SSI bit is cleared in NSS software mode) and the SCK is running.

Serial peripheral interface (SPI) RM0038

758/908 DocID15965 Rev 14

28.3.5 Data transmission and reception procedures

Rx and Tx buffers

In reception, data are received and then stored into an internal Rx buffer while In
transmission, data are first stored into an internal Tx buffer before being transmitted.

A read access of the SPI_DR register returns the Rx buffered value whereas a write access
to the SPI_DR stores the written data into the Tx buffer.

Start sequence in master mode

• In full-duplex (BIDIMODE=0 and RXONLY=0)

– The sequence begins when data are written into the SPI_DR register (Tx buffer).

– The data are then parallel loaded from the Tx buffer into the 8-bit shift register
during the first bit transmission and then shifted out serially to the MOSI pin.

– At the same time, the received data on the MISO pin is shifted in serially to the 8-
bit shift register and then parallel loaded into the SPI_DR register (Rx buffer).

• In unidirectional receive-only mode (BIDIMODE=0 and RXONLY=1)

– The sequence begins as soon as SPE=1

– Only the receiver is activated and the received data on the MISO pin are shifted in
serially to the 8-bit shift register and then parallel loaded into the SPI_DR register
(Rx buffer).

• In bidirectional mode, when transmitting (BIDIMODE=1 and BIDIOE=1)

– The sequence begins when data are written into the SPI_DR register (Tx buffer).

– The data are then parallel loaded from the Tx buffer into the 8-bit shift register
during the first bit transmission and then shifted out serially to the MOSI pin.

– No data are received.

• In bidirectional mode, when receiving (BIDIMODE=1 and BIDIOE=0)

– The sequence begins as soon as SPE=1 and BIDIOE=0.

– The received data on the MOSI pin are shifted in serially to the 8-bit shift register
and then parallel loaded into the SPI_DR register (Rx buffer).

– The transmitter is not activated and no data are shifted out serially to the MOSI
pin.

Start sequence in slave mode

• In full-duplex mode (BIDIMODE=0 and RXONLY=0)

– The sequence begins when the slave device receives the clock signal and the first
bit of the data on its MOSI pin. The 7 remaining bits are loaded into the shift
register.

– At the same time, the data are parallel loaded from the Tx buffer into the 8-bit shift
register during the first bit transmission, and then shifted out serially to the MISO

DocID15965 Rev 14 759/908

RM0038 Serial peripheral interface (SPI)

799

pin. The software must have written the data to be sent before the SPI master
device initiates the transfer.

• In unidirectional receive-only mode (BIDIMODE=0 and RXONLY=1)

– The sequence begins when the slave device receives the clock signal and the first
bit of the data on its MOSI pin. The 7 remaining bits are loaded into the shift
register.

– The transmitter is not activated and no data are shifted out serially to the MISO
pin.

• In bidirectional mode, when transmitting (BIDIMODE=1 and BIDIOE=1)

– The sequence begins when the slave device receives the clock signal and the first
bit in the Tx buffer is transmitted on the MISO pin.

– The data are then parallel loaded from the Tx buffer into the 8-bit shift register
during the first bit transmission and then shifted out serially to the MISO pin. The
software must have written the data to be sent before the SPI master device
initiates the transfer.

– No data are received.

• In bidirectional mode, when receiving (BIDIMODE=1 and BIDIOE=0)

– The sequence begins when the slave device receives the clock signal and the first
bit of the data on its MISO pin.

– The received data on the MISO pin are shifted in serially to the 8-bit shift register
and then parallel loaded into the SPI_DR register (Rx buffer).

– The transmitter is not activated and no data are shifted out serially to the MISO
pin.

Handling data transmission and reception

The TXE flag (Tx buffer empty) is set when the data are transferred from the Tx buffer to the
shift register. It indicates that the internal Tx buffer is ready to be loaded with the next data.
An interrupt can be generated if the TXEIE bit in the SPI_CR2 register is set. Clearing the
TXE bit is performed by writing to the SPI_DR register.

Note: The software must ensure that the TXE flag is set to 1 before attempting to write to the Tx
buffer. Otherwise, it overwrites the data previously written to the Tx buffer.

The RXNE flag (Rx buffer not empty) is set on the last sampling clock edge, when the data
are transferred from the shift register to the Rx buffer. It indicates that data are ready to be
read from the SPI_DR register. An interrupt can be generated if the RXNEIE bit in the
SPI_CR2 register is set. Clearing the RXNE bit is performed by reading the SPI_DR
register.

For some configurations, the BSY flag can be used during the last data transfer to wait until
the completion of the transfer.

Full-duplex transmit and receive procedure in master or slave mode (BIDIMODE=0 and
RXONLY=0)

The software has to follow this procedure to transmit and receive data (see Figure 247 and
Figure 248):

Serial peripheral interface (SPI) RM0038

760/908 DocID15965 Rev 14

1. Enable the SPI by setting the SPE bit to 1.

2. Write the first data item to be transmitted into the SPI_DR register (this clears the TXE
flag).

3. Wait until TXE=1 and write the second data item to be transmitted. Then wait until
RXNE=1 and read the SPI_DR to get the first received data item (this clears the RXNE
bit). Repeat this operation for each data item to be transmitted/received until the n–1
received data.

4. Wait until RXNE=1 and read the last received data.

5. Wait until TXE=1 and then wait until BSY=0 before disabling the SPI.

This procedure can also be implemented using dedicated interrupt subroutines launched at
each rising edges of the RXNE or TXE flag.

Figure 247. TXE/RXNE/BSY behavior in Master / full-duplex mode (BIDIMODE=0 and
RXONLY=0) in case of continuous transfers

DocID15965 Rev 14 761/908

RM0038 Serial peripheral interface (SPI)

799

Figure 248. TXE/RXNE/BSY behavior in Slave / full-duplex mode (BIDIMODE=0,
RXONLY=0) in case of continuous transfers

Transmit-only procedure (BIDIMODE=0 RXONLY=0)

In this mode, the procedure can be reduced as described below and the BSY bit can be
used to wait until the completion of the transmission (see Figure 249 and Figure 250).

1. Enable the SPI by setting the SPE bit to 1.

2. Write the first data item to send into the SPI_DR register (this clears the TXE bit).

3. Wait until TXE=1 and write the next data item to be transmitted. Repeat this step for
each data item to be transmitted.

4. After writing the last data item into the SPI_DR register, wait until TXE=1, then wait until
BSY=0, this indicates that the transmission of the last data is complete.

This procedure can be also implemented using dedicated interrupt subroutines launched at
each rising edge of the TXE flag.

Note: During discontinuous communications, there is a 2 APB clock period delay between the
write operation to SPI_DR and the BSY bit setting. As a consequence, in transmit-only
mode, it is mandatory to wait first until TXE is set and then until BSY is cleared after writing
the last data.

After transmitting two data items in transmit-only mode, the OVR flag is set in the SPI_SR
register since the received data are never read.

Serial peripheral interface (SPI) RM0038

762/908 DocID15965 Rev 14

Figure 249. TXE/BSY behavior in Master transmit-only mode (BIDIMODE=0 and RXONLY=0)
in case of continuous transfers

Figure 250. TXE/BSY in Slave transmit-only mode (BIDIMODE=0 and RXONLY=0) in case of
continuous transfers

Bidirectional transmit procedure (BIDIMODE=1 and BIDIOE=1)

In this mode, the procedure is similar to the procedure in Transmit-only mode except that
the BIDIMODE and BIDIOE bits both have to be set in the SPI_CR2 register before enabling
the SPI.

Unidirectional receive-only procedure (BIDIMODE=0 and RXONLY=1)

In this mode, the procedure can be reduced as described below (see Figure 251):

DocID15965 Rev 14 763/908

RM0038 Serial peripheral interface (SPI)

799

1. Set the RXONLY bit in the SPI_CR2 register.

2. Enable the SPI by setting the SPE bit to 1:

a) In master mode, this immediately activates the generation of the SCK clock, and
data are serially received until the SPI is disabled (SPE=0).

b) In slave mode, data are received when the SPI master device drives NSS low and
generates the SCK clock.

3. Wait until RXNE=1 and read the SPI_DR register to get the received data (this clears
the RXNE bit). Repeat this operation for each data item to be received.

This procedure can also be implemented using dedicated interrupt subroutines launched at
each rising edge of the RXNE flag.

Note: If it is required to disable the SPI after the last transfer, follow the recommendation
described in Section 28.3.8: Disabling the SPI on page 767.

Figure 251. RXNE behavior in receive-only mode (BIDIRMODE=0 and RXONLY=1)
in case of continuous transfers

Bidirectional receive procedure (BIDIMODE=1 and BIDIOE=0)

In this mode, the procedure is similar to the Receive-only mode procedure except that the
BIDIMODE bit has to be set and the BIDIOE bit cleared in the SPI_CR2 register before
enabling the SPI.

Continuous and discontinuous transfers

When transmitting data in master mode, if the software is fast enough to detect each rising
edge of TXE (or TXE interrupt) and to immediately write to the SPI_DR register before the
ongoing data transfer is complete, the communication is said to be continuous. In this case,
there is no discontinuity in the generation of the SPI clock between each data item and the
BSY bit is never cleared between each data transfer.

On the contrary, if the software is not fast enough, this can lead to some discontinuities in
the communication. In this case, the BSY bit is cleared between each data transmission
(see Figure 252).

In Master receive-only mode (RXONLY=1), the communication is always continuous and
the BSY flag is always read at 1.

Serial peripheral interface (SPI) RM0038

764/908 DocID15965 Rev 14

In slave mode, the continuity of the communication is decided by the SPI master device. In
any case, even if the communication is continuous, the BSY flag goes low between each
transfer for a minimum duration of one SPI clock cycle (see Figure 250).

Figure 252. TXE/BSY behavior when transmitting (BIDIRMODE=0 and RXONLY=0)
in case of discontinuous transfers

28.3.6 CRC calculation

A CRC calculator has been implemented for communication reliability. Separate CRC
calculators are implemented for transmitted data and received data. The CRC is calculated
using a programmable polynomial serially on each bit. It is calculated on the sampling clock
edge defined by the CPHA and CPOL bits in the SPI_CR1 register.

Note: This SPI offers two kinds of CRC calculation standard which depend directly on the data
frame format selected for the transmission and/or reception: 8-bit data (CR8) and 16-bit data
(CRC16).

CRC calculation is enabled by setting the CRCEN bit in the SPI_CR1 register. This action
resets the CRC registers (SPI_RXCRCR and SPI_TXCRCR). In full duplex or transmitter
only mode, when the transfers are managed by the software (CPU mode), it is necessary to
write the bit CRCNEXT immediately after the last data to be transferred is written to the
SPI_DR. At the end of this last data transfer, the SPI_TXCRCR value is transmitted.

In receive only mode and when the transfers are managed by software (CPU mode), it is
necessary to write the CRCNEXT bit after the second last data has been received. The CRC
is received just after the last data reception and the CRC check is then performed.

At the end of data and CRC transfers, the CRCERR flag in the SPI_SR register is set if
corruption occurs during the transfer.

If data are present in the TX buffer, the CRC value is transmitted only after the transmission
of the data byte. During CRC transmission, the CRC calculator is switched off and the
register value remains unchanged.

SPI communication using the CRC is possible through the following procedure:

DocID15965 Rev 14 765/908

RM0038 Serial peripheral interface (SPI)

799

1. Program the CPOL, CPHA, LSBFirst, BR, SSM, SSI and MSTR values.

2. Program the polynomial in the SPI_CRCPR register.

3. Enable the CRC calculation by setting the CRCEN bit in the SPI_CR1 register. This
also clears the SPI_RXCRCR and SPI_TXCRCR registers.

4. Enable the SPI by setting the SPE bit in the SPI_CR1 register.

5. Start the communication and sustain the communication until all but one byte or half-
word have been transmitted or received.

– In full duplex or transmitter-only mode, when the transfers are managed by
software, when writing the last byte or half word to the Tx buffer, set the
CRCNEXT bit in the SPI_CR1 register to indicate that the CRC will be transmitted
after the transmission of the last byte.

– In receiver only mode, set the bit CRCNEXT just after the reception of the second
to last data to prepare the SPI to enter in CRC Phase at the end of the reception of
the last data. CRC calculation is frozen during the CRC transfer.

6. After the transfer of the last byte or half word, the SPI enters the CRC transfer and
check phase. In full duplex mode or receiver-only mode, the received CRC is
compared to the SPI_RXCRCR value. If the value does not match, the CRCERR flag in
SPI_SR is set and an interrupt can be generated when the ERRIE bit in the SPI_CR2
register is set.

Note: When the SPI is in slave mode, be careful to enable CRC calculation only when the clock is
stable, that is, when the clock is in the steady state. If not, a wrong CRC calculation may be
done. In fact, the CRC is sensitive to the SCK slave input clock as soon as CRCEN is set,
and this, whatever the value of the SPE bit.

With high bitrate frequencies, be careful when transmitting the CRC. As the number of used
CPU cycles has to be as low as possible in the CRC transfer phase, it is forbidden to call
software functions in the CRC transmission sequence to avoid errors in the last data and
CRC reception. In fact, CRCNEXT bit has to be written before the end of the
transmission/reception of the last data.

For high bit rate frequencies, it is advised to use the DMA mode to avoid the degradation of
the SPI speed performance due to CPU accesses impacting the SPI bandwidth.

When the devices are configured as slaves and the NSS hardware mode is used, the NSS
pin needs to be kept low between the data phase and the CRC phase.

When the SPI is configured in slave mode with the CRC feature enabled, CRC calculation
takes place even if a high level is applied on the NSS pin. This may happen for example in
case of a multislave environment where the communication master addresses slaves
alternately.

Between a slave deselection (high level on NSS) and a new slave selection (low level on
NSS), the CRC value should be cleared on both master and slave sides in order to
resynchronize the master and slave for their respective CRC calculation.

To clear the CRC, follow the procedure below:

1. Disable SPI (SPE = 0)

2. Clear the CRCEN bit

3. Set the CRCEN bit

4. Enable the SPI (SPE = 1)

Serial peripheral interface (SPI) RM0038

766/908 DocID15965 Rev 14

28.3.7 Status flags

Four status flags are provided for the application to completely monitor the state of the SPI
bus.

Tx buffer empty flag (TXE)

When it is set, this flag indicates that the Tx buffer is empty and the next data to be
transmitted can be loaded into the buffer. The TXE flag is cleared when writing to the
SPI_DR register.

Rx buffer not empty (RXNE)

When set, this flag indicates that there are valid received data in the Rx buffer. It is cleared
when SPI_DR is read.

BUSY flag

This BSY flag is set and cleared by hardware (writing to this flag has no effect). The BSY
flag indicates the state of the communication layer of the SPI.

When BSY is set, it indicates that the SPI is busy communicating. There is one exception in
master mode / bidirectional receive mode (MSTR=1 and BDM=1 and BDOE=0) where the
BSY flag is kept low during reception.

The BSY flag is useful to detect the end of a transfer if the software wants to disable the SPI
and enter Halt mode (or disable the peripheral clock). This avoids corrupting the last
transfer. For this, the procedure described below must be strictly respected.

The BSY flag is also useful to avoid write collisions in a multimaster system.

The BSY flag is set when a transfer starts, with the exception of master mode / bidirectional
receive mode (MSTR=1 and BDM=1 and BDOE=0).

It is cleared:

• when a transfer is finished (except in master mode if the communication is continuous)

• when the SPI is disabled

• when a master mode fault occurs (MODF=1)

When communication is not continuous, the BSY flag is low between each communication.

When communication is continuous:

• in master mode, the BSY flag is kept high during all the transfers

• in slave mode, the BSY flag goes low for one SPI clock cycle between each transfer

Note: Do not use the BSY flag to handle each data transmission or reception. It is better to use the
TXE and RXNE flags instead.

DocID15965 Rev 14 767/908

RM0038 Serial peripheral interface (SPI)

799

28.3.8 Disabling the SPI

When a transfer is terminated, the application can stop the communication by disabling the
SPI peripheral. This is done by clearing the SPE bit.

For some configurations, disabling the SPI and entering the Halt mode while a transfer is
ongoing can cause the current transfer to be corrupted and/or the BSY flag might become
unreliable.

To avoid any of those effects, it is recommended to respect the following procedure when
disabling the SPI:

In master or slave full-duplex mode (BIDIMODE=0, RXONLY=0)

1. Wait until RXNE=1 to receive the last data

2. Wait until TXE=1

3. Then wait until BSY=0

4. Disable the SPI (SPE=0) and, eventually, enter the Halt mode (or disable the peripheral
clock)

In master or slave unidirectional transmit-only mode (BIDIMODE=0,
RXONLY=0) or bidirectional transmit mode (BIDIMODE=1, BIDIOE=1)

After the last data is written into the SPI_DR register:

1. Wait until TXE=1

2. Then wait until BSY=0

3. Disable the SPI (SPE=0) and, eventually, enter the Halt mode (or disable the peripheral
clock)

In master unidirectional receive-only mode (MSTR=1, BIDIMODE=0,
RXONLY=1) or bidirectional receive mode (MSTR=1, BIDIMODE=1, BIDIOE=0)

This case must be managed in a particular way to ensure that the SPI does not initiate a
new transfer. The sequence below is valid only for SPI Motorola configuration (FRF bit set to
0):

1. Wait for the second to last occurrence of RXNE=1 (n–1)

2. Then wait for one SPI clock cycle (using a software loop) before disabling the SPI
(SPE=0)

3. Then wait for the last RXNE=1 before entering the Halt mode (or disabling the
peripheral clock)

When the SPI is configured in TI mode (Bit FRF set to 1), the following procedure has to be
respected to avoid generating an undesired pulse on NSS when the SPI is disabled:

1. Wait for the second to last occurrence of RXNE = 1 (n-1).

2. Disable the SPI (SPE = 0) in the following window frame using a software loop:

– After at least one SPI clock cycle,

– Before the beginning of the LSB data transfer.

Note: In master bidirectional receive mode (MSTR=1 and BDM=1 and BDOE=0), the BSY flag is
kept low during transfers.

Serial peripheral interface (SPI) RM0038

768/908 DocID15965 Rev 14

In slave receive-only mode (MSTR=0, BIDIMODE=0, RXONLY=1) or
bidirectional receive mode (MSTR=0, BIDIMODE=1, BIDOE=0)

1. You can disable the SPI (write SPE=1) at any time: the current transfer will complete
before the SPI is effectively disabled

2. Then, if you want to enter the Halt mode, you must first wait until BSY = 0 before
entering the Halt mode (or disabling the peripheral clock).

28.3.9 SPI communication using DMA (direct memory addressing)

To operate at its maximum speed, the SPI needs to be fed with the data for transmission
and the data received on the Rx buffer should be read to avoid overrun. To facilitate the
transfers, the SPI features a DMA capability implementing a simple request/acknowledge
protocol.

A DMA access is requested when the enable bit in the SPI_CR2 register is enabled.
Separate requests must be issued to the Tx and Rx buffers (see Figure 253 and
Figure 254):

• In transmission, a DMA request is issued each time TXE is set to 1. The DMA then
writes to the SPI_DR register (this clears the TXE flag).

• In reception, a DMA request is issued each time RXNE is set to 1. The DMA then reads
the SPI_DR register (this clears the RXNE flag).

When the SPI is used only to transmit data, it is possible to enable only the SPI Tx DMA
channel. In this case, the OVR flag is set because the data received are not read.

When the SPI is used only to receive data, it is possible to enable only the SPI Rx DMA
channel.

In transmission mode, when the DMA has written all the data to be transmitted (flag TCIF is
set in the DMA_ISR register), the BSY flag can be monitored to ensure that the SPI
communication is complete. This is required to avoid corrupting the last transmission before
disabling the SPI or entering the Stop mode. The software must first wait until TXE=1 and
then until BSY=0.

Note: During discontinuous communications, there is a 2 APB clock period delay between the
write operation to SPI_DR and the BSY bit setting. As a consequence, it is mandatory to
wait first until TXE=1 and then until BSY=0 after writing the last data.

DocID15965 Rev 14 769/908

RM0038 Serial peripheral interface (SPI)

799

Figure 253. Transmission using DMA

Figure 254. Reception using DMA

Serial peripheral interface (SPI) RM0038

770/908 DocID15965 Rev 14

DMA capability with CRC

When SPI communication is enabled with CRC communication and DMA mode, the
transmission and reception of the CRC at the end of communication are automatic that is
without using the bit CRCNEXT. After the CRC reception, the CRC must be read in the
SPI_DR register to clear the RXNE flag.

At the end of data and CRC transfers, the CRCERR flag in SPI_SR is set if corruption
occurs during the transfer.

28.3.10 Error flags

Master mode fault (MODF)

Master mode fault occurs when the master device has its NSS pin pulled low (in NSS
hardware mode) or SSI bit low (in NSS software mode), this automatically sets the MODF
bit. Master mode fault affects the SPI peripheral in the following ways:

• The MODF bit is set and an SPI interrupt is generated if the ERRIE bit is set.

• The SPE bit is cleared. This blocks all output from the device and disables the SPI
interface.

• The MSTR bit is cleared, thus forcing the device into slave mode.

Use the following software sequence to clear the MODF bit:

1. Make a read or write access to the SPI_SR register while the MODF bit is set.

2. Then write to the SPI_CR1 register.

To avoid any multiple slave conflicts in a system comprising several MCUs, the NSS pin
must be pulled high during the MODF bit clearing sequence. The SPE and MSTR bits can
be restored to their original state after this clearing sequence.

As a security, hardware does not allow the setting of the SPE and MSTR bits while the
MODF bit is set.

In a slave device the MODF bit cannot be set. However, in a multimaster configuration, the
device can be in slave mode with this MODF bit set. In this case, the MODF bit indicates
that there might have been a multimaster conflict for system control. An interrupt routine can
be used to recover cleanly from this state by performing a reset or returning to a default
state.

Overrun condition

An overrun condition occurs when the master device has sent data bytes and the slave
device has not cleared the RXNE bit resulting from the previous data byte transmitted.
When an overrun condition occurs:

• the OVR bit is set and an interrupt is generated if the ERRIE bit is set.

In this case, the receiver buffer contents will not be updated with the newly received data
from the master device. A read from the SPI_DR register returns this byte. All other
subsequently transmitted bytes are lost.

Clearing the OVR bit is done by a read from the SPI_DR register followed by a read access
to the SPI_SR register.

DocID15965 Rev 14 771/908

RM0038 Serial peripheral interface (SPI)

799

CRC error

This flag is used to verify the validity of the value received when the CRCEN bit in the
SPI_CR1 register is set. The CRCERR flag in the SPI_SR register is set if the value
received in the shift register does not match the receiver SPI_RXCRCR value.

TI mode frame format error

A TI mode frame format error is detected when an NSS pulse occurs during an ongoing
communication when the SPI is acting in slave mode and configured to conform to the TI
mode protocol. When this error occurs, the TIFRFE flag is set in the SPI_SR register. The
SPI is not disabled when an error occurs, the NSS pulse is ignored, and the SPI waits for
the next NSS pulse before starting a new transfer. The data may be corrupted since the
error detection may result in the lost of two data bytes.

The TIFRFE flag is cleared when SPI_SR register is read. If the bit ERRIE is set, an
interrupt is generated on the NSS error detection. In this case, the SPI should be disabled
because data consistency is no more guaranteed and communications should be reinitiated
by the master when the slave SPI is re-enabled.

Figure 255. TI mode frame format error detection

28.3.11 SPI interrupts

Table 159. SPI interrupt requests

Interrupt event Event flag Enable Control bit

Transmit buffer empty flag TXE TXEIE

Receive buffer not empty flag RXNE RXNEIE

Master Mode fault event MODF

ERRIEOverrun error OVR

CRC error flag CRCERR

TI frame format error TIFRFE ERRIE

Serial peripheral interface (SPI) RM0038

772/908 DocID15965 Rev 14

28.4 I2S functional description

The I2S audio protocol is not available in Cat.1 and Cat.2 devices.

28.4.1 I2S general description

The block diagram of the I2S is shown in Figure 256.

Figure 256. I2S block diagram

DocID15965 Rev 14 773/908

RM0038 Serial peripheral interface (SPI)

799

The SPI could function as an audio I2S interface when the I2S capability is enabled (by
setting the I2SMOD bit in the SPI_I2SCFGR register). This interface uses almost the same
pins, flags and interrupts as the SPI.

The I2S shares three common pins with the SPI:

• SD: Serial Data (mapped on the MOSI pin) to transmit or receive the two time-
multiplexed data channels (in half-duplex mode only).

• WS: Word Select (mapped on the NSS pin) is the data control signal output in master
mode and input in slave mode.

• CK: Serial Clock (mapped on the SCK pin) is the serial clock output in master mode
and serial clock input in slave mode.

An additional pin could be used when a master clock output is needed for some external
audio devices:

• MCK: Master Clock (mapped separately) is used, when the I2S is configured in master
mode (and when the MCKOE bit in the SPI_I2SPR register is set), to output this
additional clock generated at a preconfigured frequency rate equal to 256 × FS, where
FS is the audio sampling frequency.

The I2S uses its own clock generator to produce the communication clock when it is set in
master mode. This clock generator is also the source of the master clock output. Two
additional registers are available in I2S mode. One is linked to the clock generator
configuration SPI_I2SPR and the other one is a generic I2S configuration register
SPI_I2SCFGR (audio standard, slave/master mode, data format, packet frame, clock
polarity, etc.).

The SPI_CR1 register and all CRC registers are not used in the I2S mode. Likewise, the
SSOE bit in the SPI_CR2 register and the MODF and CRCERR bits in the SPI_SR are not
used.

The I2S uses the same SPI register for data transfer (SPI_DR) in 16-bit wide mode.

28.4.2 Supported audio protocols

The three-line bus has to handle only audio data generally time-multiplexed on two
channels: the right channel and the left channel. However there is only one 16-bit register
for the transmission and the reception. So, it is up to the software to write into the data
register the adequate value corresponding to the considered channel side, or to read the
data from the data register and to identify the corresponding channel by checking the
CHSIDE bit in the SPI_SR register. Channel Left is always sent first followed by the channel
right (CHSIDE has no meaning for the PCM protocol).

Four data and packet frames are available. Data may be sent with a format of:

• 16-bit data packed in 16-bit frame

• 16-bit data packed in 32-bit frame

• 24-bit data packed in 32-bit frame

• 32-bit data packed in 32-bit frame

When using 16-bit data extended on 32-bit packet, the first 16 bits (MSB) are the significant
bits, the 16-bit LSB is forced to 0 without any need for software action or DMA request (only
one read/write operation).

Serial peripheral interface (SPI) RM0038

774/908 DocID15965 Rev 14

The 24-bit and 32-bit data frames need two CPU read or write operations to/from the
SPI_DR or two DMA operations if the DMA is preferred for the application. For 24-bit data
frame specifically, the 8 nonsignificant bits are extended to 32 bits with 0-bits (by hardware).

For all data formats and communication standards, the most significant bit is always sent
first (MSB first).

The I2S interface supports four audio standards, configurable using the I2SSTD[1:0] and
PCMSYNC bits in the SPI_I2SCFGR register.

I2S Philips standard

For this standard, the WS signal is used to indicate which channel is being transmitted. It is
activated one CK clock cycle before the first bit (MSB) is available.

Figure 257. I2S Philips protocol waveforms (16/32-bit full accuracy, CPOL = 0)

Data are latched on the falling edge of CK (for the transmitter) and are read on the rising
edge (for the receiver). The WS signal is also latched on the falling edge of CK.

Figure 258. I2S Philips standard waveforms (24-bit frame with CPOL = 0)

This mode needs two write or read operations to/from the SPI_DR.

• In transmission mode:

if 0x8EAA33 has to be sent (24-bit):

DocID15965 Rev 14 775/908

RM0038 Serial peripheral interface (SPI)

799

Figure 259. Transmitting 0x8EAA33

• In reception mode:

if data 0x8EAA33 is received:

Figure 260. Receiving 0x8EAA33

Figure 261. I2S Philips standard (16-bit extended to 32-bit packet frame with
CPOL = 0)

When 16-bit data frame extended to 32-bit channel frame is selected during the I2S
configuration phase, only one access to SPI_DR is required. The 16 remaining bits are
forced by hardware to 0x0000 to extend the data to 32-bit format.

If the data to transmit or the received data are 0x76A3 (0x76A30000 extended to 32-bit), the
operation shown in Figure 262 is required.

Figure 262. Example

Serial peripheral interface (SPI) RM0038

776/908 DocID15965 Rev 14

For transmission, each time an MSB is written to SPI_DR, the TXE flag is set and its
interrupt, if allowed, is generated to load SPI_DR with the new value to send. This takes
place even if 0x0000 have not yet been sent because it is done by hardware.

For reception, the RXNE flag is set and its interrupt, if allowed, is generated when the first
16 MSB half-word is received.

In this way, more time is provided between two write or read operations, which prevents
underrun or overrun conditions (depending on the direction of the data transfer).

MSB justified standard

For this standard, the WS signal is generated at the same time as the first data bit, which is
the MSBit.

Figure 263. MSB Justified 16-bit or 32-bit full-accuracy length with CPOL = 0

Data are latched on the falling edge of CK (for transmitter) and are read on the rising edge
(for the receiver).

Figure 264. MSB Justified 24-bit frame length with CPOL = 0

DocID15965 Rev 14 777/908

RM0038 Serial peripheral interface (SPI)

799

Figure 265. MSB Justified 16-bit extended to 32-bit packet frame with CPOL = 0

LSB justified standard

This standard is similar to the MSB justified standard (no difference for the 16-bit and 32-bit
full-accuracy frame formats).

Figure 266. LSB justified 16-bit or 32-bit full-accuracy with CPOL = 0

Figure 267. LSB Justified 24-bit frame length with CPOL = 0

• In transmission mode:

If data 0x3478AE have to be transmitted, two write operations to the SPI_DR register
are required from software or by DMA. The operations are shown below.

Serial peripheral interface (SPI) RM0038

778/908 DocID15965 Rev 14

Figure 268. Operations required to transmit 0x3478AE

• In reception mode:

If data 0x3478AE are received, two successive read operations from SPI_DR are
required on each RXNE event.

Figure 269. Operations required to receive 0x3478AE

Figure 270. LSB justified 16-bit extended to 32-bit packet frame with CPOL = 0

When 16-bit data frame extended to 32-bit channel frame is selected during the I2S
configuration phase, Only one access to SPI_DR is required. The 16 remaining bits are
forced by hardware to 0x0000 to extend the data to 32-bit format. In this case it corresponds
to the half-word MSB.

If the data to transmit or the received data are 0x76A3 (0x0000 76A3 extended to 32-bit),
the operation shown in Figure 271 is required.

DocID15965 Rev 14 779/908

RM0038 Serial peripheral interface (SPI)

799

Figure 271. Example of LSB justified 16-bit extended to 32-bit packet frame

In transmission mode, when TXE is asserted, the application has to write the data to be
transmitted (in this case 0x76A3). The 0x000 field is transmitted first (extension on 32-bit).
TXE is asserted again as soon as the effective data (0x76A3) is sent on SD.

In reception mode, RXNE is asserted as soon as the significant half-word is received (and
not the 0x0000 field).

In this way, more time is provided between two write or read operations to prevent underrun
or overrun conditions.

PCM standard

For the PCM standard, there is no need to use channel-side information. The two PCM
modes (short and long frame) are available and configurable using the PCMSYNC bit in
SPI_I2SCFGR.

Figure 272. PCM standard waveforms (16-bit)

For long frame synchronization, the WS signal assertion time is fixed 13 bits in master
mode.

For short frame synchronization, the WS synchronization signal is only one cycle long.

Serial peripheral interface (SPI) RM0038

780/908 DocID15965 Rev 14

Figure 273. PCM standard waveforms (16-bit extended to 32-bit packet frame)

Note: For both modes (master and slave) and for both synchronizations (short and long), the
number of bits between two consecutive pieces of data (and so two synchronization signals)
needs to be specified (DATLEN and CHLEN bits in the SPI_I2SCFGR register) even in
slave mode.

28.4.3 Clock generator

The I2S bitrate determines the dataflow on the I2S data line and the I2S clock signal
frequency.

I2S bitrate = number of bits per channel × number of channels × sampling audio frequency

For a 16-bit audio, left and right channel, the I2S bitrate is calculated as follows:

I2S bitrate = 16 × 2 × FS

It will be: I2S bitrate = 32 x 2 x FS if the packet length is 32-bit wide.

Figure 274. Audio sampling frequency definition

When the master mode is configured, a specific action needs to be taken to properly
program the linear divider in order to communicate with the desired audio frequency.

DocID15965 Rev 14 781/908

RM0038 Serial peripheral interface (SPI)

799

Figure 275. I2S clock generator architecture

1. Where x could be 2 or 3.

Figure 274 presents the communication clock architecture.. The I2SxCLK source is the
system clock (provided by the HSI, the HSE or the PLL, and sourcing the AHB clock).

The audio sampling frequency can be 96 kHz, 48 kHz, 44.1 kHz, 32 kHz, 22.05 kHz,
16 kHz, 11.025 kHz or 8 kHz (or any other value within this range). In order to reach the
desired frequency, the linear divider needs to be programmed according to the formulas
below:

When the master clock is generated (MCKOE in the SPI_I2SPR register is set):

FS = I2SxCLK / [(16*2)*((2*I2SDIV)+ODD)*8)] when the channel frame is 16-bit wide

FS = I2SxCLK / [(32*2)*((2*I2SDIV)+ODD)*4)] when the channel frame is 32-bit wide

When the master clock is disabled (MCKOE bit cleared):

FS = I2SxCLK / [(16*2)*((2*I2SDIV)+ODD))] when the channel frame is 16-bit wide

FS = I2SxCLK / [(32*2)*((2*I2SDIV)+ODD))] when the channel frame is 32-bit wide

Table 160 provides example precision values for different clock configurations.

Note: Other configurations are possible that allow optimum clock precision.

Table 160. Audio-frequency precision using standard 8 MHz HSE (Cat.3, Cat.4, Cat.5
and Cat.6 devices only)

Data length I2SDIV I2SODD MCLK Target fs(Hz) Real fs (kHz) Error

16 5 0 No 96000 100 4.1667%

32 2 0 No 96000 100 4.1667%

16 10 1 No 48000 47.619 0.7937%

32 5 0 No 48000 50 4.1667%

16 11 1 No 44100 43.478 1.4098%

32 5 1 No 44100 45.454 3.0715%

16 15 1 No 32000 32.258 0.8065%

Serial peripheral interface (SPI) RM0038

782/908 DocID15965 Rev 14

Note: This table gives only example values for different clock configurations. Other configurations
with a dedicated HSE clock value allow optimum clock precision.

To get 0 error precision, the I2S sampling rate should be based on Real fs instead of Target
fs.

28.4.4 I2S master mode

The I2S can be configured in master mode for transmission and reception. This means that
the serial clock is generated on the CK pin as well as the Word Select signal WS. Master
clock (MCK) may be output or not, thanks to the MCKOE bit in the SPI_I2SPR register.

Procedure

1. Select the I2SDIV[7:0] bits in the SPI_I2SPR register to define the serial clock baud
rate to reach the proper audio sample frequency. The ODD bit in the SPI_I2SPR
register also has to be defined.

2. Select the CKPOL bit to define the steady level for the communication clock. Set the
MCKOE bit in the SPI_I2SPR register if the master clock MCK needs to be provided to
the external DAC/ADC audio component (the I2SDIV and ODD values should be

32 8 0 No 32000 31.25 2.3430%

16 22 1 No 22050 22.222 0.7811%

32 11 1 No 22050 21.739 1.4098%

16 31 1 No 16000 15.873 0.7937%

32 15 1 No 16000 16.129 0.8065%

16 45 1 No 11025 10.989 0.3264%

32 22 1 No 11025 11.111 0.7811%

16 62 1 No 8000 8 0.0000%

32 31 1 No 8000 7.936 0.7937%

16 2 0 Yes 32000 31.25 2.3430%

32 2 0 Yes 32000 31.25 2.3430%

16 3 0 Yes 22050 20.833 5.5170%

32 3 0 Yes 22050 20.833 5.5170%

16 4 0 Yes 16000 15.625 2.3428%

32 4 0 Yes 16000 15.625 2.3428%

16 5 1 Yes 11025 11.363 3.0715%

32 5 1 Yes 11025 11.363 3.0715%

16 8 0 Yes 8000 7.812 2.3428%

32 8 0 Yes 8000 7.812 2.3428%

Table 160. Audio-frequency precision using standard 8 MHz HSE (Cat.3, Cat.4, Cat.5
and Cat.6 devices only) (continued)

Data length I2SDIV I2SODD MCLK Target fs(Hz) Real fs (kHz) Error

DocID15965 Rev 14 783/908

RM0038 Serial peripheral interface (SPI)

799

computed depending on the state of the MCK output, for more details refer to
Section 28.4.3: Clock generator).

3. Set the I2SMOD bit in SPI_I2SCFGR to activate the I2S functionalities and choose the
I2S standard through the I2SSTD[1:0] and PCMSYNC bits, the data length through the
DATLEN[1:0] bits and the number of bits per channel by configuring the CHLEN bit.
Select also the I2S master mode and direction (Transmitter or Receiver) through the
I2SCFG[1:0] bits in the SPI_I2SCFGR register.

4. If needed, select all the potential interruption sources and the DMA capabilities by
writing the SPI_CR2 register.

5. The I2SE bit in SPI_I2SCFGR register must be set.

WS and CK are configured in output mode. MCK is also an output, if the MCKOE bit in
SPI_I2SPR is set.

Transmission sequence

The transmission sequence begins when a half-word is written into the Tx buffer.

Assumedly, the first data written into the Tx buffer correspond to the channel Left data.
When data are transferred from the Tx buffer to the shift register, TXE is set and data
corresponding to the channel Right have to be written into the Tx buffer. The CHSIDE flag
indicates which channel is to be transmitted. It has a meaning when the TXE flag is set
because the CHSIDE flag is updated when TXE goes high.

A full frame has to be considered as a Left channel data transmission followed by a Right
channel data transmission. It is not possible to have a partial frame where only the left
channel is sent.

The data half-word is parallel loaded into the 16-bit shift register during the first bit
transmission, and then shifted out, serially, to the MOSI/SD pin, MSB first. The TXE flag is
set after each transfer from the Tx buffer to the shift register and an interrupt is generated if
the TXEIE bit in the SPI_CR2 register is set.

For more details about the write operations depending on the I2S standard mode selected,
refer to Section 28.4.2: Supported audio protocols).

To ensure a continuous audio data transmission, it is mandatory to write the SPI_DR with
the next data to transmit before the end of the current transmission.

To switch off the I2S, by clearing I2SE, it is mandatory to wait for TXE = 1 and BSY = 0.

Reception sequence

The operating mode is the same as for the transmission mode except for the point 3 (refer to
the procedure described in Section 28.4.4: I2S master mode), where the configuration
should set the master reception mode through the I2SCFG[1:0] bits.

Whatever the data or channel length, the audio data are received by 16-bit packets. This
means that each time the Rx buffer is full, the RXNE flag is set and an interrupt is generated
if the RXNEIE bit is set in SPI_CR2 register. Depending on the data and channel length
configuration, the audio value received for a right or left channel may result from one or two
receptions into the Rx buffer.

Clearing the RXNE bit is performed by reading the SPI_DR register.

CHSIDE is updated after each reception. It is sensitive to the WS signal generated by the
I2S cell.

Serial peripheral interface (SPI) RM0038

784/908 DocID15965 Rev 14

For more details about the read operations depending on the I2S standard mode selected,
refer to Section 28.4.2: Supported audio protocols.

If data are received while the previously received data have not been read yet, an overrun is
generated and the OVR flag is set. If the ERRIE bit is set in the SPI_CR2 register, an
interrupt is generated to indicate the error.

To switch off the I2S, specific actions are required to ensure that the I2S completes the
transfer cycle properly without initiating a new data transfer. The sequence depends on the
configuration of the data and channel lengths, and on the audio protocol mode selected. In
the case of:

• 16-bit data length extended on 32-bit channel length (DATLEN = 00 and CHLEN = 1)
using the LSB justified mode (I2SSTD = 10)

a) Wait for the second to last RXNE = 1 (n – 1)

b) Then wait 17 I2S clock cycles (using a software loop)

c) Disable the I2S (I2SE = 0)

• 16-bit data length extended on 32-bit channel length (DATLEN = 00 and CHLEN = 1) in
MSB justified, I2S or PCM modes (I2SSTD = 00, I2SSTD = 01 or I2SSTD = 11,
respectively)

a) Wait for the last RXNE

b) Then wait 1 I2S clock cycle (using a software loop)

c) Disable the I2S (I2SE = 0)

• For all other combinations of DATLEN and CHLEN, whatever the audio mode selected
through the I2SSTD bits, carry out the following sequence to switch off the I2S:

a) Wait for the second to last RXNE = 1 (n – 1)

b) Then wait one I2S clock cycle (using a software loop)

c) Disable the I2S (I2SE = 0)

Note: The BSY flag is kept low during transfers.

28.4.5 I2S slave mode

In slave mode, the I2S can be configured in transmission or reception mode.The operating
mode is following mainly the same rules as described for the I2S master configuration. In
slave mode, there is no clock to be generated by the I2S interface. The clock and WS
signals are input from the external master connected to the I2S interface. There is then no
need, for the user, to configure the clock.

The configuration steps to follow are listed below:

1. Set the I2SMOD bit in the SPI_I2SCFGR register to reach the I2S functionalities and
choose the I2S standard through the I2SSTD[1:0] bits, the data length through the
DATLEN[1:0] bits and the number of bits per channel for the frame configuring the
CHLEN bit. Select also the mode (transmission or reception) for the slave through the
I2SCFG[1:0] bits in SPI_I2SCFGR register.

2. If needed, select all the potential interrupt sources and the DMA capabilities by writing
the SPI_CR2 register.

3. The I2SE bit in SPI_I2SCFGR register must be set.

DocID15965 Rev 14 785/908

RM0038 Serial peripheral interface (SPI)

799

Transmission sequence

The transmission sequence begins when the external master device sends the clock and
when the WS signal requests the transfer of data. The slave has to be enabled before the
external master starts the communication. The I2S data register has to be loaded before the
master initiates the communication.

For the I2S, MSB justified and LSB justified modes, the first data item to be written into the
data register corresponds to the data for the left channel. When the communication starts,
the data are transferred from the Tx buffer to the shift register. The TXE flag is then set in
order to request the right channel data to be written into the I2S data register.

The CHSIDE flag indicates which channel is to be transmitted. Compared to the master
transmission mode, in slave mode, CHSIDE is sensitive to the WS signal coming from the
external master. This means that the slave needs to be ready to transmit the first data
before the clock is generated by the master. WS assertion corresponds to left channel
transmitted first.

Note: The I2SE has to be written at least two PCLK cycles before the first clock of the master
comes on the CK line.

The data half-word is parallel-loaded into the 16-bit shift register (from the internal bus)
during the first bit transmission, and then shifted out serially to the MOSI/SD pin MSB first.
The TXE flag is set after each transfer from the Tx buffer to the shift register and an interrupt
is generated if the TXEIE bit in the SPI_CR2 register is set.

Note that the TXE flag should be checked to be at 1 before attempting to write the Tx buffer.

For more details about the write operations depending on the I2S standard mode selected,
refer to Section 28.4.2: Supported audio protocols.

To secure a continuous audio data transmission, it is mandatory to write the SPI_DR
register with the next data to transmit before the end of the current transmission. An
underrun flag is set and an interrupt may be generated if the data are not written into the
SPI_DR register before the first clock edge of the next data communication. This indicates
to the software that the transferred data are wrong. If the ERRIE bit is set into the SPI_CR2
register, an interrupt is generated when the UDR flag in the SPI_SR register goes high. In
this case, it is mandatory to switch off the I2S and to restart a data transfer starting from the
left channel.

To switch off the I2S, by clearing the I2SE bit, it is mandatory to wait for TXE = 1 and BSY =
0.

Reception sequence

The operating mode is the same as for the transmission mode except for the point 1 (refer to
the procedure described in Section 28.4.5: I2S slave mode), where the configuration should
set the master reception mode using the I2SCFG[1:0] bits in the SPI_I2SCFGR register.

Whatever the data length or the channel length, the audio data are received by 16-bit
packets. This means that each time the RX buffer is full, the RXNE flag in the SPI_SR
register is set and an interrupt is generated if the RXNEIE bit is set in the SPI_CR2 register.
Depending on the data length and channel length configuration, the audio value received for
a right or left channel may result from one or two receptions into the RX buffer.

The CHSIDE flag is updated each time data are received to be read from SPI_DR. It is
sensitive to the external WS line managed by the external master component.

Clearing the RXNE bit is performed by reading the SPI_DR register.

Serial peripheral interface (SPI) RM0038

786/908 DocID15965 Rev 14

For more details about the read operations depending the I2S standard mode selected, refer
to Section 28.4.2: Supported audio protocols.

If data are received while the precedent received data have not yet been read, an overrun is
generated and the OVR flag is set. If the bit ERRIE is set in the SPI_CR2 register, an
interrupt is generated to indicate the error.

To switch off the I2S in reception mode, I2SE has to be cleared immediately after receiving
the last RXNE = 1.

Note: The external master components should have the capability of sending/receiving data in 16-
bit or 32-bit packets via an audio channel.

28.4.6 Status flags

Three status flags are provided for the application to fully monitor the state of the I2S bus.

Busy flag (BSY)

The BSY flag is set and cleared by hardware (writing to this flag has no effect). It indicates
the state of the communication layer of the I2S.

When BSY is set, it indicates that the I2S is busy communicating. There is one exception in
master receive mode (I2SCFG = 11) where the BSY flag is kept low during reception.

The BSY flag is useful to detect the end of a transfer if the software needs to disable the I2S.
This avoids corrupting the last transfer. For this, the procedure described below must be
strictly respected.

The BSY flag is set when a transfer starts, except when the I2S is in master receiver mode.

The BSY flag is cleared:

• when a transfer completes (except in master transmit mode, in which the
communication is supposed to be continuous)

• when the I2S is disabled

When communication is continuous:

• In master transmit mode, the BSY flag is kept high during all the transfers

• In slave mode, the BSY flag goes low for one I2S clock cycle between each transfer

Note: Do not use the BSY flag to handle each data transmission or reception. It is better to use the
TXE and RXNE flags instead.

Tx buffer empty flag (TXE)

When set, this flag indicates that the Tx buffer is empty and the next data to be transmitted
can then be loaded into it. The TXE flag is reset when the Tx buffer already contains data to
be transmitted. It is also reset when the I2S is disabled (I2SE bit is reset).

RX buffer not empty (RXNE)

When set, this flag indicates that there are valid received data in the RX Buffer. It is reset
when SPI_DR register is read.

Channel Side flag (CHSIDE)

In transmission mode, this flag is refreshed when TXE goes high. It indicates the channel
side to which the data to transfer on SD has to belong. In case of an underrun error event in

DocID15965 Rev 14 787/908

RM0038 Serial peripheral interface (SPI)

799

slave transmission mode, this flag is not reliable and I2S needs to be switched off and
switched on before resuming the communication.

In reception mode, this flag is refreshed when data are received into SPI_DR. It indicates
from which channel side data have been received. Note that in case of error (like OVR) this
flag becomes meaningless and the I2S should be reset by disabling and then enabling it
(with configuration if it needs changing).

This flag has no meaning in the PCM standard (for both Short and Long frame modes).

When the OVR or UDR flag in the SPI_SR is set and the ERRIE bit in SPI_CR2 is also set,
an interrupt is generated. This interrupt can be cleared by reading the SPI_SR status
register (once the interrupt source has been cleared).

28.4.7 Error flags

There are three error flags for the I2S cell.

Underrun flag (UDR)

In slave transmission mode this flag is set when the first clock for data transmission appears
while the software has not yet loaded any value into SPI_DR. It is available when the
I2SMOD bit in SPI_I2SCFGR is set. An interrupt may be generated if the ERRIE bit in
SPI_CR2 is set.
The UDR bit is cleared by a read operation on the SPI_SR register.

Overrun flag (OVR)

This flag is set when data are received and the previous data have not yet been read from
SPI_DR. As a result, the incoming data are lost. An interrupt may be generated if the ERRIE
bit is set in SPI_CR2.

In this case, the receive buffer contents are not updated with the newly received data from
the transmitter device. A read operation to the SPI_DR register returns the previous
correctly received data. All other subsequently transmitted half-words are lost.

Clearing the OVR bit is done by a read operation on the SPI_DR register followed by a read
access to the SPI_SR register.

Frame error flag (FRE)

This flag can be set by hardware only if the I2S is configured in Slave mode. It is set if the
external master is changing the WS line at a moment when the slave is not expected this
change. If the synchronization is lost, to recover from this state and resynchronize the
external master device with the I2S slave device, follow the steps below:

1. Disable the I2S

2. Re-enable it when the correct level is detected on the WS line (WS line is high in I2S
mode, or low for MSB- or LSB-justified or PCM modes).

Desynchronization between the master and slave device may be due to noisy environment
on the SCK communication clock or on the WS frame synchronization line. An error interrupt
can be generated if the ERRIE bit is set. The desynchronization flag (FRE) is cleared by
software when the status register is read.

Serial peripheral interface (SPI) RM0038

788/908 DocID15965 Rev 14

28.4.8 I2S interrupts

Table 161 provides the list of I2S interrupts.

Table 161. I2S interrupt requests

Interrupt event Event flag Enable Control bit

Transmit buffer empty flag TXE TXEIE

Receive buffer not empty flag RXNE RXNEIE

Overrun error OVR
ERRIE

Underrun error UDR

Frame error flag FRE FRE

DocID15965 Rev 14 789/908

RM0038 Serial peripheral interface (SPI)

799

28.5 SPI and I2S registers

Refer to Section: List of abbreviations for registers.

The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits).

28.5.1 SPI control register 1 (SPI_CR1)(not used in I2S mode)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BIDI
MODE

BIDI
OE

CRC
EN

CRC
NEXT

DFF
RX

ONLY
SSM SSI

LSB
FIRST

SPE BR [2:0] MSTR CPOL CPHA

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 BIDIMODE: Bidirectional data mode enable

0: 2-line unidirectional data mode selected
1: 1-line bidirectional data mode selected

Note: This bit is not used in I2S mode

Bit 14 BIDIOE: Output enable in bidirectional mode

This bit combined with the BIDImode bit selects the direction of transfer in bidirectional mode
0: Output disabled (receive-only mode)
1: Output enabled (transmit-only mode)

Note: This bit is not used in I2S mode.

In master mode, the MOSI pin is used while the MISO pin is used in slave mode.

Bit 13 CRCEN: Hardware CRC calculation enable

0: CRC calculation disabled
1: CRC calculation enabled

Note: This bit should be written only when SPI is disabled (SPE = ‘0’) for correct operation.

It is not used in I2S mode.

Bit 12 CRCNEXT: CRC transfer next

0: Data phase (no CRC phase)
1: Next transfer is CRC (CRC phase)

Note: When the SPI is configured in full duplex or transmitter only modes, CRCNEXT must be
written as soon as the last data is written to the SPI_DR register.
When the SPI is configured in receiver only mode, CRCNEXT must be set after the
second last data reception.
This bit should be kept cleared when the transfers are managed by DMA.
It is not used in I2S mode.

Bit 11 DFF: Data frame format

0: 8-bit data frame format is selected for transmission/reception
1: 16-bit data frame format is selected for transmission/reception

Note: This bit should be written only when SPI is disabled (SPE = ‘0’) for correct operation.

It is not used in I2S mode.

Serial peripheral interface (SPI) RM0038

790/908 DocID15965 Rev 14

Bit 10 RXONLY: Receive only

This bit combined with the BIDImode bit selects the direction of transfer in 2-line
unidirectional mode. This bit is also useful in a multislave system in which this particular
slave is not accessed, the output from the accessed slave is not corrupted.
0: Full duplex (Transmit and receive)
1: Output disabled (Receive-only mode)

Note: This bit is not used in I2S mode

Bit 9 SSM: Software slave management

When the SSM bit is set, the NSS pin input is replaced with the value from the SSI bit.
0: Software slave management disabled
1: Software slave management enabled

Note: This bit is not used in I2S mode and SPI TI mode

Bit 8 SSI: Internal slave select

This bit has an effect only when the SSM bit is set. The value of this bit is forced onto the
NSS pin and the IO value of the NSS pin is ignored.

Note: This bit is not used in I2S mode and SPI TI mode

Bit 7 LSBFIRST: Frame format

0: MSB transmitted first
1: LSB transmitted first

Note: This bit should not be changed when communication is ongoing.

It is not used in I2S mode and SPI TI mode

Bit 6 SPE: SPI enable

0: Peripheral disabled
1: Peripheral enabled

Note: This bit is not used in I2S mode.

When disabling the SPI, follow the procedure described in Section 28.3.8: Disabling the
SPI.

Bits 5:3 BR[2:0]: Baud rate control

000: fPCLK/2
001: fPCLK/4
010: fPCLK/8
011: fPCLK/16
100: fPCLK/32
101: fPCLK/64
110: fPCLK/128
111: fPCLK/256

Note: These bits should not be changed when communication is ongoing.

They are not used in I2S mode.

DocID15965 Rev 14 791/908

RM0038 Serial peripheral interface (SPI)

799

28.5.2 SPI control register 2 (SPI_CR2)

Address offset: 0x04

Reset value: 0x0000

Bit 2 MSTR: Master selection

0: Slave configuration
1: Master configuration

Note: This bit should not be changed when communication is ongoing.

It is not used in I2S mode.

Bit1 CPOL: Clock polarity

0: CK to 0 when idle
1: CK to 1 when idle

Note: This bit should not be changed when communication is ongoing.

It is not used in I2S mode and SPI TI mode.

Bit 0 CPHA: Clock phase

0: The first clock transition is the first data capture edge
1: The second clock transition is the first data capture edge

Note: This bit should not be changed when communication is ongoing.

It is not used in I2S mode and SPI TI mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
TXEIE RXNEIE ERRIE FRF

Res.
SSOE TXDMAEN RXDMAEN

rw rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 TXEIE: Tx buffer empty interrupt enable

0: TXE interrupt masked
1: TXE interrupt not masked. Used to generate an interrupt request when the TXE flag is set.

Bit 6 RXNEIE: RX buffer not empty interrupt enable

0: RXNE interrupt masked
1: RXNE interrupt not masked. Used to generate an interrupt request when the RXNE flag is
set.

Bit 5 ERRIE: Error interrupt enable

This bit controls the generation of an interrupt when an error condition occurs (CRCERR,
OVR, MODF, FRE in SPI mode and UDR, OVR, FRE in I2S mode).
0: Error interrupt is masked
1: Error interrupt is enabled

Bit 4 FRF: Frame format

0: SPI Motorola mode
1 SPI TI mode (in Cat.3, Cat.4, Cat.5 and Cat.6 devices)

Note: This bit is not used in I2S mode.

Bit 3 Reserved. Forced to 0 by hardware.

Serial peripheral interface (SPI) RM0038

792/908 DocID15965 Rev 14

28.5.3 SPI status register (SPI_SR)

Address offset: 0x08

Reset value: 0x0002

Bit 2 SSOE: SS output enable

0: SS output is disabled in master mode and the cell can work in multimaster configuration
1: SS output is enabled in master mode and when the cell is enabled. The cell cannot work
in a multimaster environment.

Note: This bit is not used in I2S mode and SPI TI mode.

Bit 1 TXDMAEN: Tx buffer DMA enable

When this bit is set, the DMA request is made whenever the TXE flag is set.
0: Tx buffer DMA disabled
1: Tx buffer DMA enabled

Bit 0 RXDMAEN: Rx buffer DMA enable

When this bit is set, the DMA request is made whenever the RXNE flag is set.
0: Rx buffer DMA disabled
1: Rx buffer DMA enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
FRE BSY OVR MODF

CRC
ERR

UDR
CHSID

E
TXE RXNE

r r r r rc_w0 r r r r

Bits 15:9 Reserved. Forced to 0 by hardware.

Bit 8 FRE: Frame Error

0: No frame error
1: Frame error occurred.
This bit is set by hardware and cleared by software when the SPI_SR register is read.
This bit is used in SPI TI mode or in I2S mode whatever the audio protocol selected. It
detects a change on NSS or WS line which takes place in slave mode at a non expected
time, informing about a desynchronization between the external master device and the
slave.

Bit 7 BSY: Busy flag

0: SPI(or I2S) not busy
1: SPI(or I2S) is busy in communication or Tx buffer is not empty
This flag is set and cleared by hardware.

Note: BSY flag must be used with caution: refer to Section 28.3.7: Status flags and
Section 28.3.8: Disabling the SPI.

Bit 6 OVR: Overrun flag

0: No overrun occurred
1: Overrun occurred
This flag is set by hardware and reset by a software sequence.Refer to Section 28.4.7 on
page 787 for the software sequence.

DocID15965 Rev 14 793/908

RM0038 Serial peripheral interface (SPI)

799

28.5.4 SPI data register (SPI_DR)

Address offset: 0x0C

Reset value: 0x0000

Bit 5 MODF: Mode fault

0: No mode fault occurred
1: Mode fault occurred
This flag is set by hardware and reset by a software sequence. Refer to Section 28.3.10 on
page 770 for the software sequence.

Note: This bit is not used in I2S mode

Bit 4 CRCERR: CRC error flag

0: CRC value received matches the SPI_RXCRCR value
1: CRC value received does not match the SPI_RXCRCR value
This flag is set by hardware and cleared by software writing 0.

Note: This bit is not used in I2S mode.

Bit 3 UDR: Underrun flag

0: No underrun occurred
1: Underrun occurred

This flag is set by hardware and reset by a software sequence. Refer to Section 28.4.7 on
page 787 for the software sequence.

Note: This bit is not used in SPI mode.

Bit 2 CHSIDE: Channel side

0: Channel Left has to be transmitted or has been received
1: Channel Right has to be transmitted or has been received

Note: This bit is not used for SPI mode and is meaningless in PCM mode.

Bit 1 TXE: Transmit buffer empty

0: Tx buffer not empty
1: Tx buffer empty

Bit 0 RXNE: Receive buffer not empty

0: Rx buffer empty
1: Rx buffer not empty

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Serial peripheral interface (SPI) RM0038

794/908 DocID15965 Rev 14

Bits 15:0 DR[15:0]: Data register

Data received or to be transmitted.
The data register is split into 2 buffers - one for writing (Transmit Buffer) and another one for
reading (Receive buffer). A write to the data register will write into the Tx buffer and a read
from the data register will return the value held in the Rx buffer.

Note: These notes apply to SPI mode:

Depending on the data frame format selection bit (DFF in SPI_CR1 register), the data
sent or received is either 8-bit or 16-bit. This selection has to be made before enabling
the SPI to ensure correct operation.

For an 8-bit data frame, the buffers are 8-bit and only the LSB of the register
(SPI_DR[7:0]) is used for transmission/reception. When in reception mode, the MSB of
the register (SPI_DR[15:8]) is forced to 0.

For a 16-bit data frame, the buffers are 16-bit and the entire register, SPI_DR[15:0] is
used for transmission/reception.

DocID15965 Rev 14 795/908

RM0038 Serial peripheral interface (SPI)

799

28.5.5 SPI CRC polynomial register (SPI_CRCPR)(not used in I2S
mode)

Address offset: 0x10

Reset value: 0x0007

28.5.6 SPI RX CRC register (SPI_RXCRCR)(not used in I2S mode)

Address offset: 0x14

Reset value: 0x0000

28.5.7 SPI TX CRC register (SPI_TXCRCR)(not used in I2S mode)

Address offset: 0x18

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CRCPOLY[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CRCPOLY[15:0]: CRC polynomial register

This register contains the polynomial for the CRC calculation.
The CRC polynomial (0007h) is the reset value of this register. Another polynomial can be
configured as required.

Note: These bits are not used for the I2S mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RXCRC[15:0]

r r r r r r r r r r r r r r r r

Bits 15:0 RXCRC[15:0]: Rx CRC register

When CRC calculation is enabled, the RxCRC[15:0] bits contain the computed CRC value of
the subsequently received bytes. This register is reset when the CRCEN bit in SPI_CR1
register is written to 1. The CRC is calculated serially using the polynomial programmed in
the SPI_CRCPR register.
Only the 8 LSB bits are considered when the data frame format is set to be 8-bit data (DFF
bit of SPI_CR1 is cleared). CRC calculation is done based on any CRC8 standard.
The entire 16-bits of this register are considered when a 16-bit data frame format is selected
(DFF bit of the SPI_CR1 register is set). CRC calculation is done based on any CRC16
standard.

Note: A read to this register when the BSY Flag is set could return an incorrect value.
Theser bits are not used for I2S mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TXCRC[15:0]

r r r r r r r r r r r r r r r r

Serial peripheral interface (SPI) RM0038

796/908 DocID15965 Rev 14

28.5.8 SPI_I2S configuration register (SPI_I2SCFGR)

Address offset: 0x1C

Reset value: 0x0000

Bits 15:0 TXCRC[15:0]: Tx CRC register

When CRC calculation is enabled, the TxCRC[7:0] bits contain the computed CRC value of
the subsequently transmitted bytes. This register is reset when the CRCEN bit of SPI_CR1
is written to 1. The CRC is calculated serially using the polynomial programmed in the
SPI_CRCPR register.
Only the 8 LSB bits are considered when the data frame format is set to be 8-bit data (DFF
bit of SPI_CR1 is cleared). CRC calculation is done based on any CRC8 standard.
The entire 16-bits of this register are considered when a 16-bit data frame format is selected
(DFF bit of the SPI_CR1 register is set). CRC calculation is done based on any CRC16
standard.

Note: A read to this register when the BSY flag is set could return an incorrect value.
These bits are not used for I2S mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
I2SMOD I2SE I2SCFG

PCMSY
NC Res.

I2SSTD CKPOL DATLEN CHLEN

rw rw rw rw rw rw rw rw rw rw rw

Bits 15:12 Reserved, must be kept at reset value.

Bit 11 I2SMOD: I2S mode selection

0: SPI mode is selected
1: I2S mode is selected

Note: This bit should be configured when the SPI or I2S is disabled

Bit 10 I2SE: I2S Enable

0: I2S peripheral is disabled
1: I2S peripheral is enabled

Note: This bit is not used in SPI mode.

Bits 9:8 I2SCFG: I2S configuration mode

00: Slave - transmit
01: Slave - receive
10: Master - transmit
11: Master - receive

Note: This bit should be configured when the I2S is disabled.

It is not used in SPI mode.

Bit 7 PCMSYNC: PCM frame synchronization

0: Short frame synchronization
1: Long frame synchronization

Note: This bit has a meaning only if I2SSTD = 11 (PCM standard is used)

It is not used in SPI mode.

Bit 6 Reserved: forced at 0 by hardware

DocID15965 Rev 14 797/908

RM0038 Serial peripheral interface (SPI)

799

28.5.9 SPI_I2S prescaler register (SPI_I2SPR)

Address offset: 0x20

Reset value: 0000 0010 (0x0002)

Bits 5:4 I2SSTD: I2S standard selection

00: I2S Philips standard.
01: MSB justified standard (left justified)
10: LSB justified standard (right justified)
11: PCM standard

For more details on I2S standards, refer to Section 28.4.2 on page 773. Not used in SPI mode.

Note: For correct operation, these bits should be configured when the I2S is disabled.

Bit 3 CKPOL: Steady state clock polarity

0: I2S clock steady state is low level
1: I2S clock steady state is high level

Note: For correct operation, this bit should be configured when the I2S is disabled.

This bit is not used in SPI mode

Bits 2:1 DATLEN: Data length to be transferred

00: 16-bit data length
01: 24-bit data length
10: 32-bit data length
11: Not allowed

Note: For correct operation, these bits should be configured when the I2S is disabled.

This bit is not used in SPI mode.

Bit 0 CHLEN: Channel length (number of bits per audio channel)

0: 16-bit wide
1: 32-bit wide
The bit write operation has a meaning only if DATLEN = 00 otherwise the channel length is fixed to
32-bit by hardware whatever the value filled in. Not used in SPI mode.

Note: For correct operation, this bit should be configured when the I2S is disabled.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
MCKOE ODD I2SDIV

rw rw rw

Serial peripheral interface (SPI) RM0038

798/908 DocID15965 Rev 14

Bits 15:10 Reserved, must be kept at reset value.

Bit 9 MCKOE: Master clock output enable

0: Master clock output is disabled
1: Master clock output is enabled

Note: This bit should be configured when the I2S is disabled. It is used only when the I2S is in master
mode.

This bit is not used in SPI mode.

Bit 8 ODD: Odd factor for the prescaler

0: real divider value is = I2SDIV *2
1: real divider value is = (I2SDIV * 2)+1

Refer to Section 28.4.3 on page 780. Not used in SPI mode.

Note: This bit should be configured when the I2S is disabled. It is used only when the I2S is in master
mode.

Bits 7:0 I2SDIV: I2S Linear prescaler

I2SDIV [7:0] = 0 or I2SDIV [7:0] = 1 are forbidden values.
Refer to Section 28.4.3 on page 780. Not used in SPI mode.

Note: These bits should be configured when the I2S is disabled. It is used only when the I2S is in
master mode.

DocID15965 Rev 14 799/908

RM0038 Serial peripheral interface (SPI)

799

28.5.10 SPI register map

The table provides shows the SPI register map and reset values. The reserved memory
areas are highlighted in gray in the table.

Refer to Section: Memory map for the register boundary addresses.

Table 162. SPI register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
SPI_CR1

Reserved

B
ID

IM
O

D
E

B
ID

IO
E

C
R

C
E

N

C
R

C
N

E
X

T

D
F

F

R
X

O
N

LY

S
S

M

S
S

I

L
S

B
F

IR
S

T

S
P

E BR [2:0]

M
S

T
R

C
P

O
L

C
P

H
A

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
SPI_CR2

Reserved T
X

E
IE

R
X

N
E

IE

E
R

R
IE

F
R

F

R
e

se
rv

e
d

S
S

O
E

T
X

D
M

A
E

N

R
X

D
M

A
E

N

Reset value 0 0 0 0 0 0 0

0x08
SPI_SR

Reserved F
R

E

B
S

Y

O
V

R

M
O

D
F

C
R

C
E

R
R

U
D

R

C
H

S
ID

E

T
X

E

R
X

N
E

Reset value 0 0 0 0 0 0 0 1 0

0x0C
SPI_DR

Reserved
DR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
SPI_CRCPR

Reserved
CRCPOLY[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0x14
SPI_RXCRCR

Reserved
RxCRC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
SPI_TXCRCR

Reserved
TxCRC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
SPI_I2SCFGR

Reserved

I2
S

M
O

D

I2
S

E

I2
S

C
F

G

P
C

M
S

Y
N

C

R
e

se
rv

ed

I2
S

S
T

D

C
K

P
O

L

D
A

T
L

E
N

C
H

L
E

N

Reset value 0 0 0 0 0 0 0 0 0 0 0

0x20
SPI_I2SPR

Reserved

M
C

K
O

E

O
D

D I2SDIV

Reset value 0 0 0 0 0 0 0 0 1 0

Secure digital input/output interface (SDIO) RM0038

800/908 DocID15965 Rev 14

29 Secure digital input/output interface (SDIO)

This section applies to Cat.4 devices only. See device datasheet for SDIO availability.

29.1 SDIO main features

The SD/SDIO MMC card host interface (SDIO) provides an interface between the APB2
peripheral bus and MultiMediaCards (MMCs), SD memory cards, SDIO cards and CE-ATA
devices.

The MultiMediaCard system specifications are available through the MultiMediaCard
Association website at http://www.jedec.org/, published by the MMCA technical committee.

SD memory card and SD I/O card system specifications are available through the SD card
Association website at http://www.sdcard.org.

CE-ATA system specifications are available through the CE-ATA workgroup website.

The SDIO features include the following:

• Full compliance with MultiMediaCard System Specification Version 4.2. Card support
for three different databus modes: 1-bit (default), 4-bit and 8-bit

• Full compatibility with previous versions of MultiMediaCards (forward compatibility)

• Full compliance with SD Memory Card Specifications Version 2.0

• Full compliance with SD I/O Card Specification Version 2.0: card support for two
different databus modes: 1-bit (default) and 4-bit

• Full support of the CE-ATA features (full compliance with CE-ATA digital protocol
Rev1.1)

• Data transfer up to 50 MHz for the 8 bit mode

• Data and command output enable signals to control external bidirectional drivers.

Note: The SDIO does not have an SPI-compatible communication mode.

The SD memory card protocol is a superset of the MultiMediaCard protocol as defined in the
MultiMediaCard system specification V2.11. Several commands required for SD memory
devices are not supported by either SD I/O-only cards or the I/O portion of combo cards.
Some of these commands have no use in SD I/O devices, such as erase commands, and
thus are not supported in the SDIO. In addition, several commands are different between
SD memory cards and SD I/O cards and thus are not supported in the SDIO. For details
refer to SD I/O card Specification Version 1.0. CE-ATA is supported over the MMC electrical
interface using a protocol that utilizes the existing MMC access primitives. The interface
electrical and signaling definition is as defined in the MMC reference.

The MultiMediaCard/SD bus connects cards to the controller.

The current version of the SDIO supports only one SD/SDIO/MMC4.2 card at any one time
and a stack of MMC4.1 or previous.

DocID15965 Rev 14 801/908

RM0038 Secure digital input/output interface (SDIO)

856

29.2 SDIO bus topology

Communication over the bus is based on command and data transfers.

The basic transaction on the MultiMediaCard/SD/SD I/O bus is the command/response
transaction. These types of bus transaction transfer their information directly within the
command or response structure. In addition, some operations have a data token.

Data transfers to/from SD/SDIO memory cards are done in data blocks. Data transfers
to/from MMC are done data blocks or streams. Data transfers to/from the CE-ATA Devices
are done in data blocks.

Figure 276. SDIO “no response” and “no data” operations

Figure 277. SDIO (multiple) block read operation

Secure digital input/output interface (SDIO) RM0038

802/908 DocID15965 Rev 14

Figure 278. SDIO (multiple) block write operation

Note: The SDIO will not send any data as long as the Busy signal is asserted (SDIO_D0 pulled
low).

Figure 279. SDIO sequential read operation

Figure 280. SDIO sequential write operation

DocID15965 Rev 14 803/908

RM0038 Secure digital input/output interface (SDIO)

856

29.3 SDIO functional description

The SDIO consists of two parts:

• The SDIO adapter block provides all functions specific to the MMC/SD/SD I/O card
such as the clock generation unit, command and data transfer.

• The APB2 interface accesses the SDIO adapter registers, and generates interrupt and
DMA request signals.

Figure 281. SDIO block diagram

By default SDIO_D0 is used for data transfer. After initialization, the host can change the
databus width.

If a MultiMediaCard is connected to the bus, SDIO_D0, SDIO_D[3:0] or SDIO_D[7:0] can be
used for data transfer. MMC V3.31 or previous, supports only 1 bit of data so only SDIO_D0
can be used.

If an SD or SD I/O card is connected to the bus, data transfer can be configured by the host
to use SDIO_D0 or SDIO_D[3:0]. All data lines are operating in push-pull mode.

SDIO_CMD has two operational modes:

• Open-drain for initialization (only for MMCV3.31 or previous)

• Push-pull for command transfer (SD/SD I/O card MMC4.2 use push-pull drivers also for
initialization)

SDIO_CK is the clock to the card: one bit is transferred on both command and data lines
with each clock cycle.

The SDIO uses two clock signals:

• SDIO adapter clock SDIOCLK up to 50 MHz (48 MHz when in use with USB)

• APB2 bus clock (PCLK2)

PCLK2 and SDIO_CK clock frequencies must respect the following condition:

The signals shown in Table 163 are used on the MultiMediaCard/SD/SD I/O card bus.

Frequenc PCLK2() 3 8⁄ Frequency SDIO_CK()×≥

Secure digital input/output interface (SDIO) RM0038

804/908 DocID15965 Rev 14

29.3.1 SDIO adapter

Figure 282 shows a simplified block diagram of an SDIO adapter.

Figure 282. SDIO adapter

The SDIO adapter is a multimedia/secure digital memory card bus master that provides an
interface to a multimedia card stack or to a secure digital memory card. It consists of five
subunits:

• Adapter register block

• Control unit

• Command path

• Data path

• Data FIFO

Note: The adapter registers and FIFO use the APB2 bus clock domain (PCLK2). The control unit,
command path and data path use the SDIO adapter clock domain (SDIOCLK).

Adapter register block

The adapter register block contains all system registers. This block also generates the
signals that clear the static flags in the multimedia card. The clear signals are generated
when 1 is written into the corresponding bit location in the SDIO Clear register.

Table 163. SDIO I/O definitions

Pin Direction Description

SDIO_CK Output
MultiMediaCard/SD/SDIO card clock. This pin is the clock from
host to card.

SDIO_CMD Bidirectional
MultiMediaCard/SD/SDIO card command. This pin is the
bidirectional command/response signal.

SDIO_D[7:0] Bidirectional
MultiMediaCard/SD/SDIO card data. These pins are the
bidirectional databus.

DocID15965 Rev 14 805/908

RM0038 Secure digital input/output interface (SDIO)

856

Control unit

The control unit contains the power management functions and the clock divider for the
memory card clock.

There are three power phases:

• power-off

• power-up

• power-on

Figure 283. Control unit

The control unit is illustrated in Figure 283. It consists of a power management subunit and
a clock management subunit.

The power management subunit disables the card bus output signals during the power-off
and power-up phases.

The clock management subunit generates and controls the SDIO_CK signal. The SDIO_CK
output can use either the clock divide or the clock bypass mode. The clock output is
inactive:

• after reset

• during the power-off or power-up phases

• if the power saving mode is enabled and the card bus is in the Idle state (eight clock
periods after both the command and data path subunits enter the Idle phase)

Command path

The command path unit sends commands to and receives responses from the cards.

Secure digital input/output interface (SDIO) RM0038

806/908 DocID15965 Rev 14

Figure 284. SDIO adapter command path

• Command path state machine (CPSM)

– When the command register is written to and the enable bit is set, command
transfer starts. When the command has been sent, the command path state
machine (CPSM) sets the status flags and enters the Idle state if a response is not
required. If a response is required, it waits for the response (see Figure 285 on
page 807). When the response is received, the received CRC code and the
internally generated code are compared, and the appropriate status flags are set.

DocID15965 Rev 14 807/908

RM0038 Secure digital input/output interface (SDIO)

856

Figure 285. Command path state machine (CPSM)

When the Wait state is entered, the command timer starts running. If the timeout is reached
before the CPSM moves to the Receive state, the timeout flag is set and the Idle state is
entered.

Note: The command timeout has a fixed value of 64 SDIO_CK clock periods.

If the interrupt bit is set in the command register, the timer is disabled and the CPSM waits
for an interrupt request from one of the cards. If a pending bit is set in the command register,
the CPSM enters the Pend state, and waits for a CmdPend signal from the data path
subunit. When CmdPend is detected, the CPSM moves to the Send state. This enables the
data counter to trigger the stop command transmission.

Note: The CPSM remains in the Idle state for at least eight SDIO_CK periods to meet the NCC and
NRC timing constraints. NCC is the minimum delay between two host commands, and NRC is
the minimum delay between the host command and the card response.

Secure digital input/output interface (SDIO) RM0038

808/908 DocID15965 Rev 14

Figure 286. SDIO command transfer

• Command format

– Command: a command is a token that starts an operation. Command are sent
from the host either to a single card (addressed command) or to all connected
cards (broadcast command are available for MMC V3.31 or previous). Commands
are transferred serially on the CMD line. All commands have a fixed length of 48
bits. The general format for a command token for MultiMediaCards, SD-Memory
cards and SDIO-Cards is shown in Table 164. CE-ATA commands are an
extension of MMC commands V4.2, and so have the same format.

The command path operates in a half-duplex mode, so that commands and
responses can either be sent or received. If the CPSM is not in the Send state, the
SDIO_CMD output is in the Hi-Z state, as shown in Figure 286 on page 808. Data
on SDIO_CMD are synchronous with the rising edge of SDIO_CK. Table shows
the command format.

– Response: a response is a token that is sent from an addressed card (or
synchronously from all connected cards for MMC V3.31 or previous), to the host
as an answer to a previously received command. Responses are transferred
serially on the CMD line.

The SDIO supports two response types. Both use CRC error checking:

• 48 bit short response

• 136 bit long response

Note: If the response does not contain a CRC (CMD1 response), the device driver must ignore the
CRC failed status.

Table 164. Command format

Bit position Width Value Description

47 1 0 Start bit

46 1 1 Transmission bit

[45:40] 6 - Command index

[39:8] 32 - Argument

[7:1] 7 - CRC7

0 1 1 End bit

DocID15965 Rev 14 809/908

RM0038 Secure digital input/output interface (SDIO)

856

The command register contains the command index (six bits sent to a card) and the
command type. These determine whether the command requires a response, and whether
the response is 48 or 136 bits long (see Section 29.9.4 on page 844). The command path
implements the status flags shown in Table 167:

The CRC generator calculates the CRC checksum for all bits before the CRC code. This
includes the start bit, transmitter bit, command index, and command argument (or card
status). The CRC checksum is calculated for the first 120 bits of CID or CSD for the long
response format. Note that the start bit, transmitter bit and the six reserved bits are not used
in the CRC calculation.

The CRC checksum is a 7-bit value:

 CRC[6:0] = Remainder [(M(x) * x7) / G(x)]

G(x) = x7 + x3 + 1

M(x) = (start bit) * x39 + ... + (last bit before CRC) * x0, or

M(x) = (start bit) * x119 + ... + (last bit before CRC) * x0

Table 165. Short response format

Bit position Width Value Description

47 1 0 Start bit

46 1 0 Transmission bit

[45:40] 6 - Command index

[39:8] 32 - Argument

[7:1] 7 - CRC7(or 1111111)

0 1 1 End bit

Table 166. Long response format

Bit position Width Value Description

135 1 0 Start bit

134 1 0 Transmission bit

[133:128] 6 111111 Reserved

[127:1] 127 - CID or CSD (including internal CRC7)

0 1 1 End bit

Table 167. Command path status flags

Flag Description

CMDREND Set if response CRC is OK.

CCRCFAIL Set if response CRC fails.

CMDSENT Set when command (that does not require response) is sent

CTIMEOUT Response timeout.

CMDACT Command transfer in progress.

Secure digital input/output interface (SDIO) RM0038

810/908 DocID15965 Rev 14

Data path

The data path subunit transfers data to and from cards. Figure 287 shows a block diagram
of the data path.

Figure 287. Data path

The card databus width can be programmed using the clock control register. If the 4-bit wide
bus mode is enabled, data is transferred at four bits per clock cycle over all four data signals
(SDIO_D[3:0]). If the 8-bit wide bus mode is enabled, data is transferred at eight bits per
clock cycle over all eight data signals (SDIO_D[7:0]). If the wide bus mode is not enabled,
only one bit per clock cycle is transferred over SDIO_D0.

Depending on the transfer direction (send or receive), the data path state machine (DPSM)
moves to the Wait_S or Wait_R state when it is enabled:

• Send: the DPSM moves to the Wait_S state. If there is data in the transmit FIFO, the
DPSM moves to the Send state, and the data path subunit starts sending data to a
card.

• Receive: the DPSM moves to the Wait_R state and waits for a start bit. When it
receives a start bit, the DPSM moves to the Receive state, and the data path subunit
starts receiving data from a card.

Data path state machine (DPSM)

The DPSM operates at SDIO_CK frequency. Data on the card bus signals is synchronous to
the rising edge of SDIO_CK. The DPSM has six states, as shown in Figure 288: Data path
state machine (DPSM).

DocID15965 Rev 14 811/908

RM0038 Secure digital input/output interface (SDIO)

856

Figure 288. Data path state machine (DPSM)

• Idle: the data path is inactive, and the SDIO_D[7:0] outputs are in Hi-Z. When the data
control register is written and the enable bit is set, the DPSM loads the data counter
with a new value and, depending on the data direction bit, moves to either the Wait_S
or the Wait_R state.

• Wait_R: if the data counter equals zero, the DPSM moves to the Idle state when the
receive FIFO is empty. If the data counter is not zero, the DPSM waits for a start bit on
SDIO_D. The DPSM moves to the Receive state if it receives a start bit before a
timeout, and loads the data block counter. If it reaches a timeout before it detects a
start bit, or a start bit error occurs, it moves to the Idle state and sets the timeout status
flag.

• Receive: serial data received from a card is packed in bytes and written to the data
FIFO. Depending on the transfer mode bit in the data control register, the data transfer
mode can be either block or stream:

– In block mode, when the data block counter reaches zero, the DPSM waits until it
receives the CRC code. If the received code matches the internally generated

Secure digital input/output interface (SDIO) RM0038

812/908 DocID15965 Rev 14

CRC code, the DPSM moves to the Wait_R state. If not, the CRC fail status flag is
set and the DPSM moves to the Idle state.

– In stream mode, the DPSM receives data while the data counter is not zero. When
the counter is zero, the remaining data in the shift register is written to the data
FIFO, and the DPSM moves to the Wait_R state.

If a FIFO overrun error occurs, the DPSM sets the FIFO error flag and moves to the
Idle state:

• Wait_S: the DPSM moves to the Idle state if the data counter is zero. If not, it waits until
the data FIFO empty flag is deasserted, and moves to the Send state.

Note: The DPSM remains in the Wait_S state for at least two clock periods to meet the NWR timing
requirements, where NWR is the number of clock cycles between the reception of the card
response and the start of the data transfer from the host.

• Send: the DPSM starts sending data to a card. Depending on the transfer mode bit in
the data control register, the data transfer mode can be either block or stream:

– In block mode, when the data block counter reaches zero, the DPSM sends an
internally generated CRC code and end bit, and moves to the Busy state.

– In stream mode, the DPSM sends data to a card while the enable bit is high and
the data counter is not zero. It then moves to the Idle state.

If a FIFO underrun error occurs, the DPSM sets the FIFO error flag and moves to the
Idle state.

• Busy: the DPSM waits for the CRC status flag:

– If it does not receive a positive CRC status, it moves to the Idle state and sets the
CRC fail status flag.

– If it receives a positive CRC status, it moves to the Wait_S state if SDIO_D0 is not
low (the card is not busy).

If a timeout occurs while the DPSM is in the Busy state, it sets the data timeout flag and
moves to the Idle state.

The data timer is enabled when the DPSM is in the Wait_R or Busy state, and
generates the data timeout error:

– When transmitting data, the timeout occurs if the DPSM stays in the Busy state for
longer than the programmed timeout period

– When receiving data, the timeout occurs if the end of the data is not true, and if the
DPSM stays in the Wait_R state for longer than the programmed timeout period.

• Data: data can be transferred from the card to the host or vice versa. Data is
transferred via the data lines. They are stored in a FIFO of 32 words, each word is 32
bits wide.

Table 168. Data token format

Description Start bit Data CRC16 End bit

Block Data 0 - yes 1

Stream Data 0 - no 1

DocID15965 Rev 14 813/908

RM0038 Secure digital input/output interface (SDIO)

856

Data FIFO

The data FIFO (first-in-first-out) subunit is a data buffer with a transmit and receive unit.

The FIFO contains a 32-bit wide, 32-word deep data buffer, and transmit and receive logic.
Because the data FIFO operates in the APB2 clock domain (PCLK2), all signals from the
subunits in the SDIO clock domain (SDIOCLK) are resynchronized.

Depending on the TXACT and RXACT flags, the FIFO can be disabled, transmit enabled, or
receive enabled. TXACT and RXACT are driven by the data path subunit and are mutually
exclusive:

– The transmit FIFO refers to the transmit logic and data buffer when TXACT is
asserted

– The receive FIFO refers to the receive logic and data buffer when RXACT is
asserted

• Transmit FIFO:

Data can be written to the transmit FIFO through the APB2 interface when the SDIO is
enabled for transmission.

The transmit FIFO is accessible via 32 sequential addresses. The transmit FIFO
contains a data output register that holds the data word pointed to by the read pointer.
When the data path subunit has loaded its shift register, it increments the read pointer
and drives new data out.

If the transmit FIFO is disabled, all status flags are deasserted. The data path subunit
asserts TXACT when it transmits data.

• Receive FIFO

When the data path subunit receives a word of data, it drives the data on the write
databus. The write pointer is incremented after the write operation completes. On the
read side, the contents of the FIFO word pointed to by the current value of the read
pointer is driven onto the read databus. If the receive FIFO is disabled, all status flags
are deasserted, and the read and write pointers are reset. The data path subunit
asserts RXACT when it receives data. Table 170 lists the receive FIFO status flags.
The receive FIFO is accessible via 32 sequential addresses.

Table 169. Transmit FIFO status flags

Flag Description

TXFIFOF Set to high when all 32 transmit FIFO words contain valid data.

TXFIFOE Set to high when the transmit FIFO does not contain valid data.

TXFIFOHE
Set to high when 8 or more transmit FIFO words are empty. This flag can be used
as a DMA request.

TXDAVL
Set to high when the transmit FIFO contains valid data. This flag is the inverse of
the TXFIFOE flag.

TXUNDERR
Set to high when an underrun error occurs. This flag is cleared by writing to the
SDIO Clear register.

Secure digital input/output interface (SDIO) RM0038

814/908 DocID15965 Rev 14

29.3.2 SDIO APB2 interface

The APB2 interface generates the interrupt and DMA requests, and accesses the SDIO
adapter registers and the data FIFO. It consists of a data path, register decoder, and
interrupt/DMA logic.

SDIO interrupts

The interrupt logic generates an interrupt request signal that is asserted when at least one
of the selected status flags is high. A mask register is provided to allow selection of the
conditions that will generate an interrupt. A status flag generates the interrupt request if a
corresponding mask flag is set.

SDIO/DMA interface - procedure for data transfers between the SDIO and
memory

In the example shown, the transfer is from the SDIO host controller to an MMC (512 bytes
using CMD24 (WRITE_BLOCK). The SDIO FIFO is filled by data stored in a memory using
the DMA controller.

1. Do the card identification process

2. Increase the SDIO_CK frequency

3. Select the card by sending CMD7

4. Configure the DMA2 as follows:

a) Enable DMA2 controller and clear any pending interrupts.

b) Program the DMA2_Stream3 or DMA2_Stream6 Channel4 source address
register with the memory location’s base address and DMA2_Stream3 or

Table 170. Receive FIFO status flags

Flag Description

RXFIFOF Set to high when all 32 receive FIFO words contain valid data

RXFIFOE Set to high when the receive FIFO does not contain valid data.

RXFIFOHF
 Set to high when 8 or more receive FIFO words contain valid data. This flag can be
used as a DMA request.

RXDAVL
Set to high when the receive FIFO is not empty. This flag is the inverse of the
RXFIFOE flag.

RXOVERR
Set to high when an overrun error occurs. This flag is cleared by writing to the SDIO
Clear register.

DocID15965 Rev 14 815/908

RM0038 Secure digital input/output interface (SDIO)

856

DMA2_Stream6 Channel4 destination address register with the SDIO_FIFO
register address.

c) Program DMA2_Stream3 or DMA2_Stream6 Channel4 control register (memory
increment, not peripheral increment, peripheral and source width is word size).

d) Program DMA2_Stream3 or DMA2_Stream6 Channel4 to select the peripheral as
flow controller (set PFCTRL bit in DMA_S3CR or DMA_S6CR configuration
register).

e) Configure the incremental burst transfer to 4 beats (at least from peripheral side)
in DMA2_Stream3 or DMA2_Stream6 Channel4.

f) Enable DMA2_Stream3 or DMA2_Stream6 Channel4

5. Send CMD24 (WRITE_BLOCK) as follows:

a) Program the SDIO data length register (SDIO data timer register should be
already programmed before the card identification process).

b) Program the SDIO argument register with the address location of the card where
data is to be transferred.

c) Program the SDIO command register: CmdIndex with 24 (WRITE_BLOCK);
WaitResp with ‘1’ (SDIO card host waits for a response); CPSMEN with ‘1’ (SDIO
card host enabled to send a command). Other fields are at their reset value.

d) Wait for SDIO_STA[6] = CMDREND interrupt, then program the SDIO data control
register: DTEN with ‘1’ (SDIO card host enabled to send data); DTDIR with ‘0’
(from controller to card); DTMODE with ‘0’ (block data transfer); DMAEN with ‘1’
(DMA enabled); DBLOCKSIZE with 0x9 (512 bytes). Other fields are don’t care.

e) Wait for SDIO_STA[10] = DBCKEND.

6. Check that no channels are still enabled by polling the DMA Enabled Channel Status
register.

29.4 Card functional description

29.4.1 Card identification mode

While in card identification mode the host resets all cards, validates the operation voltage
range, identifies cards and sets a relative card address (RCA) for each card on the bus. All
data communications in the card identification mode use the command line (CMD) only.

29.4.2 Card reset

The GO_IDLE_STATE command (CMD0) is the software reset command and it puts the
MultiMediaCard and SD memory in the Idle state. The IO_RW_DIRECT command (CMD52)
resets the SD I/O card. After power-up or CMD0, all cards output bus drivers are in the high-
impedance state and the cards are initialized with a default relative card address
(RCA=0x0001) and with a default driver stage register setting (lowest speed, highest driving
current capability).

29.4.3 Operating voltage range validation

All cards can communicate with the SDIO card host using any operating voltage within the
specification range. The supported minimum and maximum VDD values are defined in the
operation conditions register (OCR) on the card.

Secure digital input/output interface (SDIO) RM0038

816/908 DocID15965 Rev 14

Cards that store the card identification number (CID) and card specific data (CSD) in the
payload memory are able to communicate this information only under data-transfer VDD
conditions. When the SDIO card host module and the card have incompatible VDD ranges,
the card is not able to complete the identification cycle and cannot send CSD data. For this
purpose, the special commands, SEND_OP_COND (CMD1), SD_APP_OP_COND (ACMD41
for SD Memory), and IO_SEND_OP_COND (CMD5 for SD I/O), are designed to provide a
mechanism to identify and reject cards that do not match the VDD range desired by the
SDIO card host. The SDIO card host sends the required VDD voltage window as the
operand of these commands. Cards that cannot perform data transfer in the specified range
disconnect from the bus and go to the inactive state.

By using these commands without including the voltage range as the operand, the SDIO
card host can query each card and determine the common voltage range before placing out-
of-range cards in the inactive state. This query is used when the SDIO card host is able to
select a common voltage range or when the user requires notification that cards are not
usable.

29.4.4 Card identification process

The card identification process differs for MultiMediaCards and SD cards. For
MultiMediaCard cards, the identification process starts at clock rate Fod. The SDIO_CMD
line output drivers are open-drain and allow parallel card operation during this process. The
registration process is accomplished as follows:

1. The bus is activated.

2. The SDIO card host broadcasts SEND_OP_COND (CMD1) to receive operation
conditions.

3. The response is the wired AND operation of the operation condition registers from all
cards.

4. Incompatible cards are placed in the inactive state.

5. The SDIO card host broadcasts ALL_SEND_CID (CMD2) to all active cards.

6. The active cards simultaneously send their CID numbers serially. Cards with outgoing
CID bits that do not match the bits on the command line stop transmitting and must wait
for the next identification cycle. One card successfully transmits a full CID to the SDIO
card host and enters the Identification state.

7. The SDIO card host issues SET_RELATIVE_ADDR (CMD3) to that card. This new
address is called the relative card address (RCA); it is shorter than the CID and
addresses the card. The assigned card changes to the Standby state, it does not react
to further identification cycles, and its output switches from open-drain to push-pull.

8. The SDIO card host repeats steps 5 through 7 until it receives a timeout condition.

For the SD card, the identification process starts at clock rate Fod, and the SDIO_CMD line
output drives are push-pull drivers instead of open-drain. The registration process is
accomplished as follows:

DocID15965 Rev 14 817/908

RM0038 Secure digital input/output interface (SDIO)

856

1. The bus is activated.

2. The SDIO card host broadcasts SD_APP_OP_COND (ACMD41).

3. The cards respond with the contents of their operation condition registers.

4. The incompatible cards are placed in the inactive state.

5. The SDIO card host broadcasts ALL_SEND_CID (CMD2) to all active cards.

6. The cards send back their unique card identification numbers (CIDs) and enter the
Identification state.

7. The SDIO card host issues SET_RELATIVE_ADDR (CMD3) to an active card with an
address. This new address is called the relative card address (RCA); it is shorter than
the CID and addresses the card. The assigned card changes to the Standby state. The
SDIO card host can reissue this command to change the RCA. The RCA of the card is
the last assigned value.

8. The SDIO card host repeats steps 5 through 7 with all active cards.

For the SD I/O card, the registration process is accomplished as follows:

1. The bus is activated.

2. The SDIO card host sends IO_SEND_OP_COND (CMD5).

3. The cards respond with the contents of their operation condition registers.

4. The incompatible cards are set to the inactive state.

5. The SDIO card host issues SET_RELATIVE_ADDR (CMD3) to an active card with an
address. This new address is called the relative card address (RCA); it is shorter than
the CID and addresses the card. The assigned card changes to the Standby state. The
SDIO card host can reissue this command to change the RCA. The RCA of the card is
the last assigned value.

29.4.5 Block write

During block write (CMD24 - 27) one or more blocks of data are transferred from the host to
the card with a CRC appended to the end of each block by the host. A card supporting block
write is always able to accept a block of data defined by WRITE_BL_LEN. If the CRC fails,
the card indicates the failure on the SDIO_D line and the transferred data are discarded and
not written, and all further transmitted blocks (in multiple block write mode) are ignored.

If the host uses partial blocks whose accumulated length is not block aligned and, block
misalignment is not allowed (CSD parameter WRITE_BLK_MISALIGN is not set), the card
will detect the block misalignment error before the beginning of the first misaligned block.
(ADDRESS_ERROR error bit is set in the status register). The write operation will also be
aborted if the host tries to write over a write-protected area. In this case, however, the card
will set the WP_VIOLATION bit.

Programming of the CID and CSD registers does not require a previous block length setting.
The transferred data is also CRC protected. If a part of the CSD or CID register is stored in
ROM, then this unchangeable part must match the corresponding part of the receive buffer.
If this match fails, then the card reports an error and does not change any register contents.
Some cards may require long and unpredictable times to write a block of data. After
receiving a block of data and completing the CRC check, the card begins writing and holds
the SDIO_D line low if its write buffer is full and unable to accept new data from a new
WRITE_BLOCK command. The host may poll the status of the card with a SEND_STATUS
command (CMD13) at any time, and the card will respond with its status. The
READY_FOR_DATA status bit indicates whether the card can accept new data or whether
the write process is still in progress. The host may deselect the card by issuing CMD7 (to

Secure digital input/output interface (SDIO) RM0038

818/908 DocID15965 Rev 14

select a different card), which will place the card in the Disconnect state and release the
SDIO_D line(s) without interrupting the write operation. When selecting the card again, it will
reactivate busy indication by pulling SDIO_D to low if programming is still in progress and
the write buffer is unavailable.

29.4.6 Block read

In Block read mode the basic unit of data transfer is a block whose maximum size is defined
in the CSD (READ_BL_LEN). If READ_BL_PARTIAL is set, smaller blocks whose start and
end addresses are entirely contained within one physical block (as defined by
READ_BL_LEN) may also be transmitted. A CRC is appended to the end of each block,
ensuring data transfer integrity. CMD17 (READ_SINGLE_BLOCK) initiates a block read and
after completing the transfer, the card returns to the Transfer state.

CMD18 (READ_MULTIPLE_BLOCK) starts a transfer of several consecutive blocks.

The host can abort reading at any time, within a multiple block operation, regardless of its
type. Transaction abort is done by sending the stop transmission command.

If the card detects an error (for example, out of range, address misalignment or internal
error) during a multiple block read operation (both types) it stops the data transmission and
remains in the data state. The host must than abort the operation by sending the stop
transmission command. The read error is reported in the response to the stop transmission
command.

If the host sends a stop transmission command after the card transmits the last block of a
multiple block operation with a predefined number of blocks, it is responded to as an illegal
command, since the card is no longer in the data state. If the host uses partial blocks whose
accumulated length is not block-aligned and block misalignment is not allowed, the card
detects a block misalignment error condition at the beginning of the first misaligned block
(ADDRESS_ERROR error bit is set in the status register).

29.4.7 Stream access, stream write and stream read
(MultiMediaCard only)

In stream mode, data is transferred in bytes and no CRC is appended at the end of each
block.

Stream write (MultiMediaCard only)

WRITE_DAT_UNTIL_STOP (CMD20) starts the data transfer from the SDIO card host to the
card, beginning at the specified address and continuing until the SDIO card host issues a
stop command. When partial blocks are allowed (CSD parameter WRITE_BL_PARTIAL is
set), the data stream can start and stop at any address within the card address space,
otherwise it can only start and stop at block boundaries. Because the amount of data to be
transferred is not determined in advance, a CRC cannot be used. When the end of the
memory range is reached while sending data and no stop command is sent by the SD card
host, any additional transferred data are discarded.

DocID15965 Rev 14 819/908

RM0038 Secure digital input/output interface (SDIO)

856

The maximum clock frequency for a stream write operation is given by the following
equation fields of the card-specific data register:

• Maximumspeed = maximum write frequency

• TRANSPEED = maximum data transfer rate

• writebllen = maximum write data block length

• NSAC = data read access time 2 in CLK cycles

• TAAC = data read access time 1

• R2WFACTOR = write speed factor

If the host attempts to use a higher frequency, the card may not be able to process the data
and stop programming, set the OVERRUN error bit in the status register, and while ignoring
all further data transfer, wait (in the receive data state) for a stop command. The write
operation is also aborted if the host tries to write over a write-protected area. In this case,
however, the card sets the WP_VIOLATION bit.

Stream read (MultiMediaCard only)

READ_DAT_UNTIL_STOP (CMD11) controls a stream-oriented data transfer.

This command instructs the card to send its data, starting at a specified address, until the
SDIO card host sends STOP_TRANSMISSION (CMD12). The stop command has an
execution delay due to the serial command transmission and the data transfer stops after
the end bit of the stop command. When the end of the memory range is reached while
sending data and no stop command is sent by the SDIO card host, any subsequent data
sent are considered undefined.

The maximum clock frequency for a stream read operation is given by the following
equation and uses fields of the card specific data register.

• Maximumspeed = maximum read frequency

• TRANSPEED = maximum data transfer rate

• readbllen = maximum read data block length

• writebllen = maximum write data block length

• NSAC = data read access time 2 in CLK cycles

• TAAC = data read access time 1

• R2WFACTOR = write speed factor

If the host attempts to use a higher frequency, the card is not able to sustain data transfer. If
this happens, the card sets the UNDERRUN error bit in the status register, aborts the
transmission and waits in the data state for a stop command.

Maximumspeed MIN TRANSPEED 8 2writebllen×() NSAC–()
TAAC R2WFACTOR×

---(,)=

Maximumspeed MIN TRANSPEED 8 2readbllen×() NSAC–()
TAAC R2WFACTOR×

--(,)=

Secure digital input/output interface (SDIO) RM0038

820/908 DocID15965 Rev 14

29.4.8 Erase: group erase and sector erase

The erasable unit of the MultiMediaCard is the erase group. The erase group is measured in
write blocks, which are the basic writable units of the card. The size of the erase group is a
card-specific parameter and defined in the CSD.

The host can erase a contiguous range of Erase Groups. Starting the erase process is a
three-step sequence.

First the host defines the start address of the range using the ERASE_GROUP_START
(CMD35) command, next it defines the last address of the range using the
ERASE_GROUP_END (CMD36) command and, finally, it starts the erase process by issuing
the ERASE (CMD38) command. The address field in the erase commands is an Erase
Group address in byte units. The card ignores all LSBs below the Erase Group size,
effectively rounding the address down to the Erase Group boundary.

If an erase command is received out of sequence, the card sets the ERASE_SEQ_ERROR
bit in the status register and resets the whole sequence.

If an out-of-sequence (neither of the erase commands, except SEND_STATUS) command
received, the card sets the ERASE_RESET status bit in the status register, resets the erase
sequence and executes the last command.

If the erase range includes write protected blocks, they are left intact and only unprotected
blocks are erased. The WP_ERASE_SKIP status bit in the status register is set.

The card indicates that an erase is in progress by holding SDIO_D low. The actual erase
time may be quite long, and the host may issue CMD7 to deselect the card.

29.4.9 Wide bus selection or deselection

Wide bus (4-bit bus width) operation mode is selected or deselected using
SET_BUS_WIDTH (ACMD6). The default bus width after power-up or GO_IDLE_STATE
(CMD0) is 1 bit. SET_BUS_WIDTH (ACMD6) is only valid in a transfer state, which means
that the bus width can be changed only after a card is selected by
SELECT/DESELECT_CARD (CMD7).

29.4.10 Protection management

Three write protection methods for the cards are supported in the SDIO card host module:

1. internal card write protection (card responsibility)

2. mechanical write protection switch (SDIO card host module responsibility only)

3. password-protected card lock operation

Internal card write protection

Card data can be protected against write and erase. By setting the permanent or temporary
write-protect bits in the CSD, the entire card can be permanently write-protected by the
manufacturer or content provider. For cards that support write protection of groups of
sectors by setting the WP_GRP_ENABLE bit in the CSD, portions of the data can be
protected, and the write protection can be changed by the application. The write protection
is in units of WP_GRP_SIZE sectors as specified in the CSD. The SET_WRITE_PROT and
CLR_WRITE_PROT commands control the protection of the addressed group. The
SEND_WRITE_PROT command is similar to a single block read command. The card sends
a data block containing 32 write protection bits (representing 32 write protect groups starting

DocID15965 Rev 14 821/908

RM0038 Secure digital input/output interface (SDIO)

856

at the specified address) followed by 16 CRC bits. The address field in the write protect
commands is a group address in byte units.

The card ignores all LSBs below the group size.

Mechanical write protect switch

A mechanical sliding tab on the side of the card allows the user to set or clear the write
protection on a card. When the sliding tab is positioned with the window open, the card is
write-protected, and when the window is closed, the card contents can be changed. A
matched switch on the socket side indicates to the SDIO card host module that the card is
write-protected. The SDIO card host module is responsible for protecting the card. The
position of the write protect switch is unknown to the internal circuitry of the card.

Password protect

The password protection feature enables the SDIO card host module to lock and unlock a
card with a password. The password is stored in the 128-bit PWD register and its size is set
in the 8-bit PWD_LEN register. These registers are nonvolatile so that a power cycle does
not erase them. Locked cards respond to and execute certain commands. This means that
the SDIO card host module is allowed to reset, initialize, select, and query for status,
however it is not allowed to access data on the card. When the password is set (as indicated
by a nonzero value of PWD_LEN), the card is locked automatically after power-up. As with
the CSD and CID register write commands, the lock/unlock commands are available in the
transfer state only. In this state, the command does not include an address argument and
the card must be selected before using it. The card lock/unlock commands have the
structure and bus transaction types of a regular single-block write command. The
transferred data block includes all of the required information for the command (the
password setting mode, the PWD itself, and card lock/unlock). The command data block
size is defined by the SDIO card host module before it sends the card lock/unlock
command, and has the structure shown in Table 184.

The bit settings are as follows:

• ERASE: setting it forces an erase operation. All other bits must be zero, and only the
command byte is sent

• LOCK_UNLOCK: setting it locks the card. LOCK_UNLOCK can be set simultaneously
with SET_PWD, however not with CLR_PWD

• CLR_PWD: setting it clears the password data

• SET_PWD: setting it saves the password data to memory

• PWD_LEN: it defines the length of the password in bytes

• PWD: the password (new or currently used, depending on the command)

The following sections list the command sequences to set/reset a password, lock/unlock the
card, and force an erase.

Setting the password

1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected.

2. Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit card
lock/unlock mode, the 8-bit PWD_LEN, and the number of bytes of the new password.

Secure digital input/output interface (SDIO) RM0038

822/908 DocID15965 Rev 14

When a password replacement is done, the block size must take into account that both
the old and the new passwords are sent with the command.

3. Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line
including the 16-bit CRC. The data block indicates the mode (SET_PWD = 1), the
length (PWD_LEN), and the password (PWD) itself. When a password replacement is
done, the length value (PWD_LEN) includes the length of both passwords, the old and
the new one, and the PWD field includes the old password (currently used) followed by
the new password.

4. When the password is matched, the new password and its size are saved into the PWD
and PWD_LEN fields, respectively. When the old password sent does not correspond
(in size and/or content) to the expected password, the LOCK_UNLOCK_FAILED error
bit is set in the card status register, and the password is not changed.

The password length field (PWD_LEN) indicates whether a password is currently set. When
this field is nonzero, there is a password set and the card locks itself after power-up. It is
possible to lock the card immediately in the current power session by setting the
LOCK_UNLOCK bit (while setting the password) or sending an additional command for card
locking.

Resetting the password

1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected.

2. Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit card
lock/unlock mode, the 8-bit PWD_LEN, and the number of bytes in the currently used
password.

3. Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line
including the 16-bit CRC. The data block indicates the mode (CLR_PWD = 1), the
length (PWD_LEN) and the password (PWD) itself. The LOCK_UNLOCK bit is ignored.

4. When the password is matched, the PWD field is cleared and PWD_LEN is set to 0.
When the password sent does not correspond (in size and/or content) to the expected
password, the LOCK_UNLOCK_FAILED error bit is set in the card status register, and
the password is not changed.

Locking a card

1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected.

2. Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit card
lock/unlock mode (byte 0 in Table 184), the 8-bit PWD_LEN, and the number of bytes
of the current password.

3. Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line
including the 16-bit CRC. The data block indicates the mode (LOCK_UNLOCK = 1), the
length (PWD_LEN), and the password (PWD) itself.

4. When the password is matched, the card is locked and the CARD_IS_LOCKED status
bit is set in the card status register. When the password sent does not correspond (in
size and/or content) to the expected password, the LOCK_UNLOCK_FAILED error bit
is set in the card status register, and the lock fails.

It is possible to set the password and to lock the card in the same sequence. In this case,
the SDIO card host module performs all the required steps for setting the password (see
Setting the password on page 821), however it is necessary to set the LOCK_UNLOCK bit
in Step 3 when the new password command is sent.

DocID15965 Rev 14 823/908

RM0038 Secure digital input/output interface (SDIO)

856

When the password is previously set (PWD_LEN is not 0), the card is locked automatically
after power-on reset. An attempt to lock a locked card or to lock a card that does not have a
password fails and the LOCK_UNLOCK_FAILED error bit is set in the card status register.

Unlocking the card

1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected.

2. Define the block length (SET_BLOCKLEN, CMD16) to send, given by the 8-bit
cardlock/unlock mode (byte 0 in Table 184), the 8-bit PWD_LEN, and the number of
bytes of the current password.

3. Send LOCK/UNLOCK (CMD42) with the appropriate data block size on the data line
including the 16-bit CRC. The data block indicates the mode (LOCK_UNLOCK = 0), the
length (PWD_LEN), and the password (PWD) itself.

4. When the password is matched, the card is unlocked and the CARD_IS_LOCKED
status bit is cleared in the card status register. When the password sent is not correct in
size and/or content and does not correspond to the expected password, the
LOCK_UNLOCK_FAILED error bit is set in the card status register, and the card
remains locked.

The unlocking function is only valid for the current power session. When the PWD field is not
clear, the card is locked automatically on the next power-up.

An attempt to unlock an unlocked card fails and the LOCK_UNLOCK_FAILED error bit is set
in the card status register.

Forcing erase

If the user has forgotten the password (PWD content), it is possible to access the card after
clearing all the data on the card. This forced erase operation erases all card data and all
password data.

1. Select a card (SELECT/DESELECT_CARD, CMD7), if none is already selected.

2. Set the block length (SET_BLOCKLEN, CMD16) to 1 byte. Only the 8-bit card
lock/unlock byte (byte 0 in Table 184) is sent.

3. Send LOCK/UNLOCK (CMD42) with the appropriate data byte on the data line including
the 16-bit CRC. The data block indicates the mode (ERASE = 1). All other bits must be
zero.

4. When the ERASE bit is the only bit set in the data field, all card contents are erased,
including the PWD and PWD_LEN fields, and the card is no longer locked. When any
other bits are set, the LOCK_UNLOCK_FAILED error bit is set in the card status
register and the card retains all of its data, and remains locked.

An attempt to use a force erase on an unlocked card fails and the LOCK_UNLOCK_FAILED
error bit is set in the card status register.

29.4.11 Card status register

The response format R1 contains a 32-bit field named card status. This field is intended to
transmit the card status information (which may be stored in a local status register) to the
host. If not specified otherwise, the status entries are always related to the previously issued
command.

Table 171 defines the different entries of the status. The type and clear condition fields in
the table are abbreviated as follows:

Secure digital input/output interface (SDIO) RM0038

824/908 DocID15965 Rev 14

Type:

• E: error bit

• S: status bit

• R: detected and set for the actual command response

• X: detected and set during command execution. The SDIO card host must poll the card
by issuing the status command to read these bits.

Clear condition:

• A: according to the card current state

• B: always related to the previous command. Reception of a valid command clears it
(with a delay of one command)

• C: clear by read

Table 171. Card status

Bits Identifier Type Value Description
Clear

condition

31
ADDRESS_
OUT_OF_RANGE

E R X
’0’= no error

’1’= error

The command address argument was out
of the allowed range for this card.

A multiple block or stream read/write
operation is (although started in a valid
address) attempting to read or write
beyond the card capacity.

C

30 ADDRESS_MISALIGN -
’0’= no error

’1’= error

The commands address argument (in
accordance with the currently set block
length) positions the first data block
misaligned to the card physical blocks.

A multiple block read/write operation
(although started with a valid
address/block-length combination) is
attempting to read or write a data block
which is not aligned with the physical
blocks of the card.

C

29 BLOCK_LEN_ERROR -
’0’= no error

’1’= error

Either the argument of a
SET_BLOCKLEN command exceeds the
maximum value allowed for the card, or
the previously defined block length is
illegal for the current command (e.g. the
host issues a write command, the current
block length is smaller than the maximum
allowed value for the card and it is not
allowed to write partial blocks)

C

28 ERASE_SEQ_ERROR -
’0’= no error
’1’= error

An error in the sequence of erase
commands occurred.

C

27 ERASE_PARAM E X
’0’= no error
’1’= error

An invalid selection of erase groups for
erase occurred.

C

26 WP_VIOLATION E X
’0’= no error
’1’= error

Attempt to program a write-protected
block. C

DocID15965 Rev 14 825/908

RM0038 Secure digital input/output interface (SDIO)

856

25 CARD_IS_LOCKED S R
‘0’ = card
unlocked
‘1’ = card locked

When set, signals that the card is locked
by the host

A

24
LOCK_UNLOCK_
FAILED

E X
’0’= no error
’1’= error

Set when a sequence or password error
has been detected in lock/unlock card
command

C

23 COM_CRC_ERROR E R
’0’= no error
’1’= error

The CRC check of the previous command
failed.

B

22 ILLEGAL_COMMAND E R
’0’= no error
’1’= error

Command not legal for the card state B

21 CARD_ECC_FAILED E X
’0’= success
’1’= failure

Card internal ECC was applied but failed
to correct the data.

C

20 CC_ERROR E R
’0’= no error
’1’= error

(Undefined by the standard) A card error
occurred, which is not related to the host
command.

C

19 ERROR E X
’0’= no error
’1’= error

(Undefined by the standard) A generic
card error related to the (and detected
during) execution of the last host
command (e.g. read or write failures).

C

18 Reserved

17 Reserved

16 CID/CSD_OVERWRITE E X
’0’= no error ‘1’=
error

Can be either of the following errors:

– The CID register has already been
written and cannot be overwritten

– The read-only section of the CSD does
not match the card contents

– An attempt to reverse the copy (set as
original) or permanent WP
(unprotected) bits was made

C

15 WP_ERASE_SKIP E X
’0’= not protected
’1’= protected

Set when only partial address space
was erased due to existing write

C

14 CARD_ECC_DISABLED S X
’0’= enabled
’1’= disabled

The command has been executed without
using the internal ECC.

A

13 ERASE_RESET -
’0’= cleared
’1’= set

An erase sequence was cleared before
executing because an out of erase
sequence command was received
(commands other than CMD35, CMD36,
CMD38 or CMD13)

C

Table 171. Card status (continued)

Bits Identifier Type Value Description
Clear

condition

Secure digital input/output interface (SDIO) RM0038

826/908 DocID15965 Rev 14

29.4.12 SD status register

The SD status contains status bits that are related to the SD memory card proprietary
features and may be used for future application-specific usage. The size of the SD Status is
one data block of 512 bits. The contents of this register are transmitted to the SDIO card
host if ACMD13 is sent (CMD55 followed with CMD13). ACMD13 can be sent to a card in
transfer state only (card is selected).

Table 172 defines the different entries of the SD status register. The type and clear condition
fields in the table are abbreviated as follows:

Type:

• E: error bit

• S: status bit

• R: detected and set for the actual command response

• X: detected and set during command execution. The SDIO card Host must poll the card
by issuing the status command to read these bits

12:9 CURRENT_STATE S R

0 = Idle
1 = Ready
2 = Ident
3 = Stby
4 = Tran
5 = Data
6 = Rcv
7 = Prg
8 = Dis
9 = Btst
10-15 = reserved

The state of the card when receiving the
command. If the command execution
causes a state change, it will be visible to
the host in the response on the next
command. The four bits are interpreted as
a binary number between 0 and 15.

B

8 READY_FOR_DATA S R
’0’= not ready ‘1’
= ready

Corresponds to buffer empty signalling on
the bus

-

7 SWITCH_ERROR E X
’0’= no error
’1’= switch error

If set, the card did not switch to the
expected mode as requested by the
SWITCH command

B

6 Reserved

5 APP_CMD S R
‘0’ = Disabled
‘1’ = Enabled

The card will expect ACMD, or an
indication that the command has been
interpreted as ACMD

C

4 Reserved for SD I/O Card

3 AKE_SEQ_ERROR E R
’0’= no error
’1’= error

Error in the sequence of the
authentication process

C

2 Reserved for application specific commands

1
Reserved for manufacturer test mode

0

Table 171. Card status (continued)

Bits Identifier Type Value Description
Clear

condition

DocID15965 Rev 14 827/908

RM0038 Secure digital input/output interface (SDIO)

856

Clear condition:

• A: according to the card current state

• B: always related to the previous command. Reception of a valid command clears it
(with a delay of one command)

• C: clear by read

Table 172. SD status

Bits Identifier Type Value Description
Clear

condition

511: 510 DAT_BUS_WIDTH S R

’00’= 1 (default)
‘01’= reserved
‘10’= 4 bit width
‘11’= reserved

Shows the currently defined
databus width that was
defined by
SET_BUS_WIDTH
command

A

509 SECURED_MODE S R
’0’= Not in the mode
’1’= In Secured Mode

Card is in Secured Mode of
operation (refer to the “SD
Security Specification”).

A

508: 496 Reserved

495: 480 SD_CARD_TYPE S R

’00xxh’= SD Memory Cards as
defined in Physical Spec Ver1.01-
2.00 (’x’= don’t care). The
following cards are currently
defined:
’0000’= Regular SD RD/WR Card.
’0001’= SD ROM Card

In the future, the 8 LSBs will
be used to define different
variations of an SD memory
card (each bit will define
different SD types). The 8
MSBs will be used to define
SD Cards that do not comply
with current SD physical
layer specification.

A

479: 448
SIZE_OF_PROTE
CT ED_AREA

S R
Size of protected area (See
below)

(See below) A

447: 440 SPEED_CLASS S R
Speed Class of the card (See
below)

(See below) A

439: 432
PERFORMANCE_
MOVE

S R
Performance of move indicated by
1 [MB/s] step.

(See below)
(See below) A

431:428 AU_SIZE S R
Size of AU

(See below)
(See below) A

427:424 Reserved

423:408 ERASE_SIZE S R
Number of AUs to be erased at a
time

(See below) A

407:402 ERASE_TIMEOUT S R
Timeout value for erasing areas
specified by
UNIT_OF_ERASE_AU

(See below) A

401:400 ERASE_OFFSET S R
Fixed offset value added to erase
time.

(See below) A

399:312 Reserved

311:0 Reserved for Manufacturer

Secure digital input/output interface (SDIO) RM0038

828/908 DocID15965 Rev 14

SIZE_OF_PROTECTED_AREA

Setting this field differs between standard- and high-capacity cards. In the case of a
standard-capacity card, the capacity of protected area is calculated as follows:

Protected area = SIZE_OF_PROTECTED_AREA_* MULT * BLOCK_LEN.

SIZE_OF_PROTECTED_AREA is specified by the unit in MULT*BLOCK_LEN.

In the case of a high-capacity card, the capacity of protected area is specified in this field:

Protected area = SIZE_OF_PROTECTED_AREA

SIZE_OF_PROTECTED_AREA is specified by the unit in bytes.

SPEED_CLASS

This 8-bit field indicates the speed class and the value can be calculated by PW/2 (where
PW is the write performance).

PERFORMANCE_MOVE

This 8-bit field indicates Pm (performance move) and the value can be set by 1 [MB/sec]
steps. If the card does not move used RUs (recording units), Pm should be considered as
infinity. Setting the field to FFh means infinity.

Table 173. Speed class code field

SPEED_CLASS Value definition

00h Class 0

01h Class 2

02h Class 4

03h Class 6

04h – FFh Reserved

Table 174. Performance move field

PERFORMANCE_MOVE Value definition

00h Not defined

01h 1 [MB/sec]

02h 02h 2 [MB/sec]

--------- ---------

FEh 254 [MB/sec]

FFh Infinity

DocID15965 Rev 14 829/908

RM0038 Secure digital input/output interface (SDIO)

856

AU_SIZE

This 4-bit field indicates the AU size and the value can be selected in the power of 2 base
from 16 KB.

The maximum AU size, which depends on the card capacity, is defined in Table 176. The
card can be set to any AU size between RU size and maximum AU size.

ERASE_SIZE

This 16-bit field indicates NERASE. When NERASE numbers of AUs are erased, the
timeout value is specified by ERASE_TIMEOUT (Refer to ERASE_TIMEOUT). The host
should determine the proper number of AUs to be erased in one operation so that the host
can show the progress of the erase operation. If this field is set to 0, the erase timeout
calculation is not supported.

Table 175. AU_SIZE field

AU_SIZE Value definition

00h Not defined

01h 16 KB

02h 32 KB

03h 64 KB

04h 128 KB

05h 256 KB

06h 512 KB

07h 1 MB

08h 2 MB

09h 4 MB

Ah – Fh Reserved

Table 176. Maximum AU size

Capacity 16 MB-64 MB 128 MB-256 MB 512 MB 1 GB-32 GB

Maximum AU Size 512 KB 1 MB 2 MB 4 MB

Table 177. Erase size field

ERASE_SIZE Value definition

0000h Erase timeout calculation is not supported.

0001h 1 AU

0002h 2 AU

0003h 3 AU

--------- ---------

FFFFh 65535 AU

Secure digital input/output interface (SDIO) RM0038

830/908 DocID15965 Rev 14

ERASE_TIMEOUT

This 6-bit field indicates TERASE and the value indicates the erase timeout from offset
when multiple AUs are being erased as specified by ERASE_SIZE. The range of
ERASE_TIMEOUT can be defined as up to 63 seconds and the card manufacturer can
choose any combination of ERASE_SIZE and ERASE_TIMEOUT depending on the
implementation. Determining ERASE_TIMEOUT determines the ERASE_SIZE.

ERASE_OFFSET

This 2-bit field indicates TOFFSET and one of four values can be selected. This field is
meaningless if the ERASE_SIZE and ERASE_TIMEOUT fields are set to 0.

29.4.13 SD I/O mode

SD I/O interrupts

To allow the SD I/O card to interrupt the MultiMediaCard/SD module, an interrupt function is
available on a pin on the SD interface. Pin 8, used as SDIO_D1 when operating in the 4-bit
SD mode, signals the cards interrupt to the MultiMediaCard/SD module. The use of the
interrupt is optional for each card or function within a card. The SD I/O interrupt is level-
sensitive, which means that the interrupt line must be held active (low) until it is either
recognized and acted upon by the MultiMediaCard/SD module or deasserted due to the end
of the interrupt period. After the MultiMediaCard/SD module has serviced the interrupt, the
interrupt status bit is cleared via an I/O write to the appropriate bit in the SD I/O card’s
internal registers. The interrupt output of all SD I/O cards is active low and the application
must provide external pull-up resistors on all data lines (SDIO_D[3:0]). The
MultiMediaCard/SD module samples the level of pin 8 (SDIO_D/IRQ) into the interrupt
detector only during the interrupt period. At all other times, the MultiMediaCard/SD module
ignores this value.

Table 178. Erase timeout field

ERASE_TIMEOUT Value definition

00 Erase timeout calculation is not supported.

01 1 [sec]

02 2 [sec]

03 3 [sec]

--------- ---------

63 63 [sec]

Table 179. Erase offset field

ERASE_OFFSET Value definition

0h 0 [sec]

1h 1 [sec]

2h 2 [sec]

3h 3 [sec]

DocID15965 Rev 14 831/908

RM0038 Secure digital input/output interface (SDIO)

856

The interrupt period is applicable for both memory and I/O operations. The definition of the
interrupt period for operations with single blocks is different from the definition for multiple-
block data transfers.

SD I/O suspend and resume

Within a multifunction SD I/O or a card with both I/O and memory functions, there are
multiple devices (I/O and memory) that share access to the MMC/SD bus. To share access
to the MMC/SD module among multiple devices, SD I/O and combo cards optionally
implement the concept of suspend/resume. When a card supports suspend/resume, the
MMC/SD module can temporarily halt a data transfer operation to one function or memory
(suspend) to free the bus for a higher-priority transfer to a different function or memory. After
this higher-priority transfer is complete, the original transfer is resumed (restarted) where it
left off. Support of suspend/resume is optional on a per-card basis. To perform the
suspend/resume operation on the MMC/SD bus, the MMC/SD module performs the
following steps:

1. Determines the function currently using the SDIO_D [3:0] line(s)

2. Requests the lower-priority or slower transaction to suspend

3. Waits for the transaction suspension to complete

4. Begins the higher-priority transaction

5. Waits for the completion of the higher priority transaction

6. Restores the suspended transaction

SD I/O ReadWait

The optional ReadWait (RW) operation is defined only for the SD 1-bit and 4-bit modes. The
ReadWait operation allows the MMC/SD module to signal a card that it is reading multiple
registers (IO_RW_EXTENDED, CMD53) to temporarily stall the data transfer while allowing
the MMC/SD module to send commands to any function within the SD I/O device. To
determine when a card supports the ReadWait protocol, the MMC/SD module must test
capability bits in the internal card registers. The timing for ReadWait is based on the
interrupt period.

29.4.14 Commands and responses

Application-specific and general commands

The SD card host module system is designed to provide a standard interface for a variety of
applications types. In this environment, there is a need for specific customer/application
features. To implement these features, two types of generic commands are defined in the
standard: application-specific commands (ACMD) and general commands (GEN_CMD).

When the card receives the APP_CMD (CMD55) command, the card expects the next
command to be an application-specific command. ACMDs have the same structure as
regular MultiMediaCard commands and can have the same CMD number. The card
recognizes it as ACMD because it appears after APP_CMD (CMD55). When the command
immediately following the APP_CMD (CMD55) is not a defined application-specific
command, the standard command is used. For example, when the card has a definition for
SD_STATUS (ACMD13), and receives CMD13 immediately following APP_CMD (CMD55),
this is interpreted as SD_STATUS (ACMD13). However, when the card receives CMD7
immediately following APP_CMD (CMD55) and the card does not have a definition for
ACMD7, this is interpreted as the standard (SELECT/DESELECT_CARD) CMD7.

Secure digital input/output interface (SDIO) RM0038

832/908 DocID15965 Rev 14

To use one of the manufacturer-specific ACMDs the SD card Host must perform the
following steps:

1. Send APP_CMD (CMD55)
The card responds to the MultiMediaCard/SD module, indicating that the APP_CMD bit
is set and an ACMD is now expected.

2. Send the required ACMD
The card responds to the MultiMediaCard/SD module, indicating that the APP_CMD bit
is set and that the accepted command is interpreted as an ACMD. When a nonACMD
is sent, it is handled by the card as a normal MultiMediaCard command and the
APP_CMD bit in the card status register stays clear.

When an invalid command is sent (neither ACMD nor CMD) it is handled as a standard
MultiMediaCard illegal command error.

The bus transaction for a GEN_CMD is the same as the single-block read or write
commands (WRITE_BLOCK, CMD24 or READ_SINGLE_BLOCK,CMD17). In this case, the
argument denotes the direction of the data transfer rather than the address, and the data
block has vendor-specific format and meaning.

The card must be selected (in transfer state) before sending GEN_CMD (CMD56). The data
block size is defined by SET_BLOCKLEN (CMD16). The response to GEN_CMD (CMD56)
is in R1b format.

Command types

Both application-specific and general commands are divided into the four following types:

• broadcast command (BC): sent to all cards; no responses returned.

• broadcast command with response (BCR): sent to all cards; responses received
from all cards simultaneously.

• addressed (point-to-point) command (AC): sent to the card that is selected; does
not include a data transfer on the SDIO_D line(s).

• addressed (point-to-point) data transfer command (ADTC): sent to the card that is
selected; includes a data transfer on the SDIO_D line(s).

Command formats

See Table 164 on page 808 for command formats.

Commands for the MultiMediaCard/SD module

Table 180. Block-oriented write commands

CMD
index

Type Argument
Response

format
Abbreviation Description

CMD23 ac
[31:16] set to 0
[15:0] number
of blocks

R1 SET_BLOCK_COUNT

Defines the number of blocks which
are going to be transferred in the
multiple-block read or write command
that follows.

CMD24 adtc
[31:0] data
address

R1 WRITE_BLOCK
Writes a block of the size selected by
the SET_BLOCKLEN command.

DocID15965 Rev 14 833/908

RM0038 Secure digital input/output interface (SDIO)

856

CMD25 adtc
[31:0] data
address

R1 WRITE_MULTIPLE_BLOCK

Continuously writes blocks of data
until a STOP_TRANSMISSION
follows or the requested number of
blocks has been received.

CMD26 adtc [31:0] stuff bits R1 PROGRAM_CID

Programming of the card identification
register. This command must be
issued only once per card. The card
contains hardware to prevent this
operation after the first programming.
Normally this command is reserved
for manufacturer.

CMD27 adtc [31:0] stuff bits R1 PROGRAM_CSD
Programming of the programmable
bits of the CSD.

Table 180. Block-oriented write commands (continued)

CMD
index

Type Argument
Response

format
Abbreviation Description

Table 181. Block-oriented write protection commands

CMD
index

Type Argument
Response

format
Abbreviation Description

CMD28 ac
[31:0] data
address

R1b SET_WRITE_PROT

If the card has write protection features,
this command sets the write protection bit
of the addressed group. The properties of
write protection are coded in the card-
specific data (WP_GRP_SIZE).

CMD29 ac
[31:0] data
address

R1b CLR_WRITE_PROT
If the card provides write protection
features, this command clears the write
protection bit of the addressed group.

CMD30 adtc
[31:0] write
protect data
address

R1 SEND_WRITE_PROT

If the card provides write protection
features, this command asks the card to
send the status of the write protection
bits.

CMD31 Reserved

Table 182. Erase commands

CMD
index

Type Argument
Response

format
Abbreviation Description

CMD32

...

CMD34

Reserved. These command indexes cannot be used in order to maintain backward compatibility with older
versions of the MultiMediaCard.

CMD35 ac [31:0] data address R1 ERASE_GROUP_START
Sets the address of the first erase
group within a range to be selected
for erase.

CMD36 ac [31:0] data address R1 ERASE_GROUP_END
Sets the address of the last erase
group within a continuous range to be
selected for erase.

Secure digital input/output interface (SDIO) RM0038

834/908 DocID15965 Rev 14

CMD37
Reserved. This command index cannot be used in order to maintain backward compatibility with older
versions of the MultiMediaCards

CMD38 ac [31:0] stuff bits R1 ERASE
Erases all previously selected write
blocks.

Table 182. Erase commands (continued)

CMD
index

Type Argument
Response

format
Abbreviation Description

Table 183. I/O mode commands

CMD
index

Type Argument
Response

format
Abbreviation Description

CMD39 ac

[31:16] RCA
[15:15] register
write flag
[14:8] register
address
[7:0] register data

R4 FAST_IO

Used to write and read 8-bit (register) data
fields. The command addresses a card and a
register and provides the data for writing if
the write flag is set. The R4 response
contains data read from the addressed
register. This command accesses
application-dependent registers that are not
defined in the MultiMediaCard standard.

CMD40 bcr [31:0] stuff bits R5 GO_IRQ_STATE Places the system in the interrupt mode.

CMD41 Reserved

Table 184. Lock card

CMD
index

Type Argument
Response

format
Abbreviation Description

CMD42 adtc [31:0] stuff bits R1b LOCK_UNLOCK
Sets/resets the password or locks/unlocks
the card. The size of the data block is set
by the SET_BLOCK_LEN command.

CMD43
...
CMD54

Reserved

Table 185. Application-specific commands

CMD
index

Type Argument
Response

format
Abbreviation Description

CMD55 ac
[31:16] RCA

[15:0] stuff bits
R1 APP_CMD

Indicates to the card that the next command
bits is an application specific command rather
than a standard command

CMD56 adtc
[31:1] stuff bits

[0]: RD/WR

Used either to transfer a data block to the card
or to get a data block from the card for general
purpose/application-specific commands. The
size of the data block shall be set by the
SET_BLOCK_LEN command.

DocID15965 Rev 14 835/908

RM0038 Secure digital input/output interface (SDIO)

856

29.5 Response formats

All responses are sent via the MCCMD command line SDIO_CMD. The response
transmission always starts with the left bit of the bit string corresponding to the response
code word. The code length depends on the response type.

A response always starts with a start bit (always 0), followed by the bit indicating the
direction of transmission (card = 0). A value denoted by x in the tables below indicates a
variable entry. All responses, except for the R3 response type, are protected by a CRC.
Every command code word is terminated by the end bit (always 1).

There are five types of responses. Their formats are defined as follows:

29.5.1 R1 (normal response command)

Code length = 48 bits. The 45:40 bits indicate the index of the command to be responded to,
this value being interpreted as a binary-coded number (between 0 and 63). The status of the
card is coded in 32 bits.

29.5.2 R1b

It is identical to R1 with an optional busy signal transmitted on the data line. The card may
become busy after receiving these commands based on its state prior to the command
reception.

29.5.3 R2 (CID, CSD register)

Code length = 136 bits. The contents of the CID register are sent as a response to the
CMD2 and CMD10 commands. The contents of the CSD register are sent as a response to

CMD57
...
CMD59

Reserved.

CMD60
...
CMD63

Reserved for manufacturer.

Table 185. Application-specific commands (continued)

CMD
index

Type Argument
Response

format
Abbreviation Description

Table 186. R1 response

Bit position Width (bits Value Description

47 1 0 Start bit

46 1 0 Transmission bit

[45:40] 6 X Command index

[39:8] 32 X Card status

[7:1] 7 X CRC7

0 1 1 End bit

Secure digital input/output interface (SDIO) RM0038

836/908 DocID15965 Rev 14

CMD9. Only the bits [127...1] of the CID and CSD are transferred, the reserved bit [0] of
these registers is replaced by the end bit of the response. The card indicates that an erase
is in progress by holding MCDAT low. The actual erase time may be quite long, and the host
may issue CMD7 to deselect the card.

29.5.4 R3 (OCR register)

Code length: 48 bits. The contents of the OCR register are sent as a response to CMD1.
The level coding is as follows: restricted voltage windows = low, card busy = low.

29.5.5 R4 (Fast I/O)

Code length: 48 bits. The argument field contains the RCA of the addressed card, the
register address to be read from or written to, and its content.

Table 187. R2 response

Bit position Width (bits Value Description

135 1 0 Start bit

134 1 0 Transmission bit

[133:128] 6 ‘111111’ Command index

[127:1] 127 X Card status

0 1 1 End bit

Table 188. R3 response

Bit position Width (bits Value Description

47 1 0 Start bit

46 1 0 Transmission bit

[45:40] 6 ‘111111’ Reserved

[39:8] 32 X OCR register

[7:1] 7 ‘1111111’ Reserved

0 1 1 End bit

Table 189. R4 response

Bit position Width (bits Value Description

47 1 0 Start bit

46 1 0 Transmission bit

[45:40] 6 ‘100111’ CMD39

[39:8] Argument field

[31:16] 16 X RCA

[15:8] 8 X register address

[7:0] 8 X read register contents

DocID15965 Rev 14 837/908

RM0038 Secure digital input/output interface (SDIO)

856

29.5.6 R4b

For SD I/O only: an SDIO card receiving the CMD5 will respond with a unique SDIO
response R4. The format is:

Once an SD I/O card has received a CMD5, the I/O portion of that card is enabled to
respond normally to all further commands. This I/O enable of the function within the I/O card
will remain set until a reset, power cycle or CMD52 with write to I/O reset is received by the
card. Note that an SD memory-only card may respond to a CMD5. The proper response for
a memory-only card would be Present memory = 1 and Number of I/O functions = 0. A
memory-only card built to meet the SD Memory Card specification version 1.0 would detect
the CMD5 as an illegal command and not respond. The I/O aware host will send CMD5. If
the card responds with response R4, the host determines the card’s configuration based on
the data contained within the R4 response.

29.5.7 R5 (interrupt request)

Only for MultiMediaCard. Code length: 48 bits. If the response is generated by the host, the
RCA field in the argument will be 0x0.

[7:1] 7 X CRC7

0 1 1 End bit

Table 189. R4 response (continued)

Bit position Width (bits Value Description

Table 190. R4b response

Bit position Width (bits Value Description

47 1 0 Start bit

46 1 0 Transmission bit

[45:40] 6 x Reserved

[39:8] Argument field

39 16 X Card is ready

[38:36] 3 X Number of I/O functions

35 1 X Present memory

[34:32] 3 X Stuff bits

[31:8] 24 X I/O ORC

[7:1] 7 X Reserved

0 1 1 End bit

Table 191. R5 response

Bit position Width (bits Value Description

47 1 0 Start bit

46 1 0 Transmission bit

[45:40] 6 ‘101000’ CMD40

Secure digital input/output interface (SDIO) RM0038

838/908 DocID15965 Rev 14

29.5.8 R6

Only for SD I/O. The normal response to CMD3 by a memory device. It is shown in
Table 192.

The card [23:8] status bits are changed when CMD3 is sent to an I/O-only card. In this case,
the 16 bits of response are the SD I/O-only values:

• Bit [15] COM_CRC_ERROR

• Bit [14] ILLEGAL_COMMAND

• Bit [13] ERROR

• Bits [12:0] Reserved

29.6 SDIO I/O card-specific operations

The following features are SD I/O-specific operations:

• SDIO read wait operation by SDIO_D2 signalling

• SDIO read wait operation by stopping the clock

• SDIO suspend/resume operation (write and read suspend)

• SDIO interrupts

The SDIO supports these operations only if the SDIO_DCTRL[11] bit is set, except for read
suspend that does not need specific hardware implementation.

[39:8] Argument field

[31:16] 16 X
RCA [31:16] of winning
card or of the host

[15:0] 16 X
Not defined. May be used
for IRQ data

[7:1] 7 X CRC7

0 1 1 End bit

Table 191. R5 response (continued)

Bit position Width (bits Value Description

Table 192. R6 response

Bit position Width (bits) Value Description

47 1 0 Start bit

46 1 0 Transmission bit

[45:40] 6 ‘101000’ CMD40

[39:8] Argument
field

[31:16] 16 X RCA [31:16] of winning card or of the host

[15:0] 16 X Not defined. May be used for IRQ data

[7:1] 7 X CRC7

0 1 1 End bit

DocID15965 Rev 14 839/908

RM0038 Secure digital input/output interface (SDIO)

856

29.6.1 SDIO I/O read wait operation by SDIO_D2 signaling

It is possible to start the readwait interval before the first block is received: when the data
path is enabled (SDIO_DCTRL[0] bit set), the SDIO-specific operation is enabled
(SDIO_DCTRL[11] bit set), read wait starts (SDI0_DCTRL[10] =0 and SDI_DCTRL[8] =1)
and data direction is from card to SDIO (SDIO_DCTRL[1] = 1), the DPSM directly moves
from Idle to Readwait. In Readwait the DPSM drives SDIO_D2 to 0 after 2 SDIO_CK clock
cycles. In this state, when you set the RWSTOP bit (SDIO_DCTRL[9]), the DPSM remains
in Wait for two more SDIO_CK clock cycles to drive SDIO_D2 to 1 for one clock cycle (in
accordance with SDIO specification). The DPSM then starts waiting again until it receives
data from the card. The DPSM will not start a readwait interval while receiving a block even
if read wait start is set: the readwait interval will start after the CRC is received. The
RWSTOP bit has to be cleared to start a new read wait operation. During the readwait
interval, the SDIO can detect SDIO interrupts on SDIO_D1.

29.6.2 SDIO read wait operation by stopping SDIO_CK

If the SDIO card does not support the previous read wait method, the SDIO can perform a
read wait by stopping SDIO_CK (SDIO_DCTRL is set just like in the method presented in
Section 29.6.1, but SDIO_DCTRL[10] =1): DSPM stops the clock two SDIO_CK cycles after
the end bit of the current received block and starts the clock again after the read wait start bit
is set.

As SDIO_CK is stopped, any command can be issued to the card. During a read/wait
interval, the SDIO can detect SDIO interrupts on SDIO_D1.

29.6.3 SDIO suspend/resume operation

While sending data to the card, the SDIO can suspend the write operation. the
SDIO_CMD[11] bit is set and indicates to the CPSM that the current command is a suspend
command. The CPSM analyzes the response and when the ACK is received from the card
(suspend accepted), it acknowledges the DPSM that goes Idle after receiving the CRC
token of the current block.

The hardware does not save the number of the remaining block to be sent to complete the
suspended operation (resume).

The write operation can be suspended by software, just by disabling the DPSM
(SDIO_DCTRL[0] =0) when the ACK of the suspend command is received from the card.
The DPSM enters then the Idle state.

To suspend a read: the DPSM waits in the Wait_r state as the function to be suspended
sends a complete packet just before stopping the data transaction. The application
continues reading RxFIFO until the FIF0 is empty, and the DPSM goes Idle automatically.

29.6.4 SDIO interrupts

SDIO interrupts are detected on the SDIO_D1 line once the SDIO_DCTRL[11] bit is set.

Secure digital input/output interface (SDIO) RM0038

840/908 DocID15965 Rev 14

29.7 CE-ATA specific operations

The following features are CE-ATA specific operations:

• sending the command completion signal disable to the CE-ATA device

• receiving the command completion signal from the CE-ATA device

• signaling the completion of the CE-ATA command to the CPU, using the status bit
and/or interrupt.

The SDIO supports these operations only for the CE-ATA CMD61 command, that is, if
SDIO_CMD[14] is set.

29.7.1 Command completion signal disable

Command completion signal disable is sent 8 bit cycles after the reception of a short
response if the ‘enable CMD completion’ bit, SDIO_CMD[12], is not set and the ‘not interrupt
Enable’ bit, SDIO_CMD[13], is set.

The CPSM enters the Pend state, loading the command shift register with the disable
sequence “00001” and, the command counter with 43. Eight cycles after, a trigger moves
the CPSM to the Send state. When the command counter reaches 48, the CPSM becomes
Idle as no response is awaited.

29.7.2 Command completion signal enable

If the ‘enable CMD completion’ bit SDIO_CMD[12] is set and the ‘not interrupt Enable’ bit
SDIO_CMD[13] is set, the CPSM waits for the command completion signal in the Waitcpl
state.

When ‘0’ is received on the CMD line, the CPSM enters the Idle state. No new command
can be sent for 7 bit cycles. Then, for the last 5 cycles (out of the 7) the CMD line is driven to
‘1’ in push-pull mode.

29.7.3 CE-ATA interrupt

The command completion is signaled to the CPU by the status bit SDIO_STA[23]. This static
bit can be cleared with the clear bit SDIO_ICR[23].

The SDIO_STA[23] status bit can generate an interrupt on each interrupt line, depending on
the mask bit SDIO_MASKx[23].

29.7.4 Aborting CMD61

If the command completion disable signal has not been sent and CMD61 needs to be
aborted, the command state machine must be disabled. It then becomes Idle, and the
CMD12 command can be sent. No command completion disable signal is sent during the
operation.

DocID15965 Rev 14 841/908

RM0038 Secure digital input/output interface (SDIO)

856

29.8 HW flow control

The HW flow control functionality is used to avoid FIFO underrun (TX mode) and overrun
(RX mode) errors.

The behavior is to stop SDIO_CK and freeze SDIO state machines. The data transfer is
stalled while the FIFO is unable to transmit or receive data. Only state machines clocked by
SDIOCLK are frozen, the APB2 interface is still alive. The FIFO can thus be filled or emptied
even if flow control is activated.

To enable HW flow control, the SDIO_CLKCR[14] register bit must be set to 1. After reset
Flow Control is disabled.

29.9 SDIO registers

The device communicates to the system via 32-bit-wide control registers accessible via
APB2.

The peripheral registers have to be accessed by words (32 bits).

29.9.1 SDIO power control register (SDIO_POWER)

Address offset: 0x00

Reset value: 0x0000 0000

Note: At least seven HCLK clock periods are needed between two write accesses to this register.

After a data write, data cannot be written to this register for three SDIOCLK clock periods
plus two PCLK2 clock periods.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

PWRC
TRL

rw rw

Bits 31:2 Reserved, must be kept at reset value

Bits 1:0 PWRCTRL: Power supply control bits.

These bits are used to define the current functional state of the card clock:
00: Power-off: the clock to card is stopped.
01: Reserved
10: Reserved power-up
11: Power-on: the card is clocked.

Secure digital input/output interface (SDIO) RM0038

842/908 DocID15965 Rev 14

29.9.2 SDI clock control register (SDIO_CLKCR)

Address offset: 0x04

Reset value: 0x0000 0000

The SDIO_CLKCR register controls the SDIO_CK output clock.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

H
W

F
C

_
E

N

N
E

G
E

D
G

E

WID
BUS

B
Y

P
A

S
S

P
W

R
S

A
V

C
L

K
E

N

CLKDIV

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:15 Reserved, must be kept at reset value

Bit 14 HWFC_EN: HW Flow Control enable

0b: HW Flow Control is disabled
1b: HW Flow Control is enabled
When HW Flow Control is enabled, the meaning of the TXFIFOE and RXFIFOF interrupt
signals, please see SDIO Status register definition in Section 29.9.11.

Bit 13 NEGEDGE:SDIO_CK dephasing selection bit

0b: SDIO_CK generated on the rising edge of the master clock SDIOCLK
1b: SDIO_CK generated on the falling edge of the master clock SDIOCLK

Bits 12:11 WIDBUS: Wide bus mode enable bit

00: Default bus mode: SDIO_D0 used
01: 4-wide bus mode: SDIO_D[3:0] used
10: 8-wide bus mode: SDIO_D[7:0] used

Bit 10 BYPASS: Clock divider bypass enable bit

0: Disable bypass: SDIOCLK is divided according to the CLKDIV value before driving the
SDIO_CK output signal.
1: Enable bypass: SDIOCLK directly drives the SDIO_CK output signal.

Bit 9 PWRSAV: Power saving configuration bit

For power saving, the SDIO_CK clock output can be disabled when the bus is idle by setting
PWRSAV:
0: SDIO_CK clock is always enabled
1: SDIO_CK is only enabled when the bus is active

Bit 8 CLKEN: Clock enable bit

0: SDIO_CK is disabled
1: SDIO_CK is enabled

Bits 7:0 CLKDIV: Clock divide factor

This field defines the divide factor between the input clock (SDIOCLK) and the output clock
(SDIO_CK): SDIO_CK frequency = SDIOCLK / [CLKDIV + 2].

DocID15965 Rev 14 843/908

RM0038 Secure digital input/output interface (SDIO)

856

Note: While the SD/SDIO card or MultiMediaCard is in identification mode, the SDIO_CK
frequency must be less than 400 kHz.

The clock frequency can be changed to the maximum card bus frequency when relative
card addresses are assigned to all cards.

After a data write, data cannot be written to this register for three SDIOCLK clock periods
plus two PCLK2 clock periods. SDIO_CK can also be stopped during the read wait interval
for SD I/O cards: in this case the SDIO_CLKCR register does not control SDIO_CK.

29.9.3 SDIO argument register (SDIO_ARG)

Address offset: 0x08

Reset value: 0x0000 0000

The SDIO_ARG register contains a 32-bit command argument, which is sent to a card as
part of a command message.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMDARG

rw rw

Bits 31:0 CMDARG: Command argument

Command argument sent to a card as part of a command message. If a command contains
an argument, it must be loaded into this register before writing a command to the command
register.

Secure digital input/output interface (SDIO) RM0038

844/908 DocID15965 Rev 14

29.9.4 SDIO command register (SDIO_CMD)

Address offset: 0x0C

Reset value: 0x0000 0000

The SDIO_CMD register contains the command index and command type bits. The
command index is sent to a card as part of a command message. The command type bits
control the command path state machine (CPSM).

Note: After a data write, data cannot be written to this register for three SDIOCLK clock periods
plus two PCLK2 clock periods.

MultiMediaCards can send two kinds of response: short responses, 48 bits long, or long
responses,136 bits long. SD card and SD I/O card can send only short responses, the

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

C
E

-A
TA

C
M

D

n
IE

N

E
N

C
M

D
co

m
p

l

S
D

IO
S

u
sp

e
n

d

C
P

S
M

E
N

W
A

IT
P

E
N

D

W
A

IT
IN

T

W
A

IT
R

E
S

P

C
M

D
IN

D
E

X

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:15 Reserved, must be kept at reset value

Bit 14 ATACMD: CE-ATA command

If ATACMD is set, the CPSM transfers CMD61.

Bit 13 nIEN: not Interrupt Enable

if this bit is 0, interrupts in the CE-ATA device are enabled.

Bit 12 ENCMDcompl: Enable CMD completion

If this bit is set, the command completion signal is enabled.

Bit 11 SDIOSuspend: SD I/O suspend command

If this bit is set, the command to be sent is a suspend command (to be used only with SDIO
card).

Bit 10 CPSMEN: Command path state machine (CPSM) Enable bit

If this bit is set, the CPSM is enabled.

Bit 9 WAITPEND: CPSM Waits for ends of data transfer (CmdPend internal signal).

If this bit is set, the CPSM waits for the end of data transfer before it starts sending a
command.

Bit 8 WAITINT: CPSM waits for interrupt request

If this bit is set, the CPSM disables command timeout and waits for an interrupt request.

Bits 7:6 WAITRESP: Wait for response bits

They are used to configure whether the CPSM is to wait for a response, and if yes, which
kind of response.
00: No response, expect CMDSENT flag
01: Short response, expect CMDREND or CCRCFAIL flag
10: No response, expect CMDSENT flag
11: Long response, expect CMDREND or CCRCFAIL flag

Bits 5:0 CMDINDEX: Command index

The command index is sent to the card as part of a command message.

DocID15965 Rev 14 845/908

RM0038 Secure digital input/output interface (SDIO)

856

argument can vary according to the type of response: the software will distinguish the type
of response according to the sent command. CE-ATA devices send only short responses.

29.9.5 SDIO command response register (SDIO_RESPCMD)

Address offset: 0x10

Reset value: 0x0000 0000

The SDIO_RESPCMD register contains the command index field of the last command
response received. If the command response transmission does not contain the command
index field (long or OCR response), the RESPCMD field is unknown, although it must
contain 111111b (the value of the reserved field from the response).

29.9.6 SDIO response 1..4 register (SDIO_RESPx)

Address offset: (0x10 + (4 × x)); x = 1..4

Reset value: 0x0000 0000

The SDIO_RESP1/2/3/4 registers contain the status of a card, which is part of the received
response.

The Card Status size is 32 or 127 bits, depending on the response type.

The most significant bit of the card status is received first. The SDIO_RESP3 register LSB is
always 0b.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
RESPCMD

r r r r r r

Bits 31:6 Reserved, must be kept at reset value

Bits 5:0 RESPCMD: Response command index

Read-only bit field. Contains the command index of the last command response received.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CARDSTATUSx

r r

Bits 31:0 CARDSTATUSx: see Table 193.

Table 193. Response type and SDIO_RESPx registers

Register Short response Long response

SDIO_RESP1 Card Status[31:0] Card Status [127:96]

SDIO_RESP2 Unused Card Status [95:64]

SDIO_RESP3 Unused Card Status [63:32]

SDIO_RESP4 Unused Card Status [31:1]0b

Secure digital input/output interface (SDIO) RM0038

846/908 DocID15965 Rev 14

29.9.7 SDIO data timer register (SDIO_DTIMER)

Address offset: 0x24

Reset value: 0x0000 0000

The SDIO_DTIMER register contains the data timeout period, in card bus clock periods.

A counter loads the value from the SDIO_DTIMER register, and starts decrementing when
the data path state machine (DPSM) enters the Wait_R or Busy state. If the timer reaches 0
while the DPSM is in either of these states, the timeout status flag is set.

Note: A data transfer must be written to the data timer register and the data length register before
being written to the data control register.

29.9.8 SDIO data length register (SDIO_DLEN)

Address offset: 0x28

Reset value: 0x0000 0000

The SDIO_DLEN register contains the number of data bytes to be transferred. The value is
loaded into the data counter when data transfer starts.

Note: For a block data transfer, the value in the data length register must be a multiple of the block
size (see SDIO_DCTRL). A data transfer must be written to the data timer register and the
data length register before being written to the data control register.

For an SDIO multibyte transfer the value in the data length register must be between 1 and
512.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATATIME

rw rw

Bits 31:0 DATATIME: Data timeout period

Data timeout period expressed in card bus clock periods.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DATALENGTH

rw rw

Bits 31:25 Reserved, must be kept at reset value

Bits 24:0 DATALENGTH: Data length value

Number of data bytes to be transferred.

DocID15965 Rev 14 847/908

RM0038 Secure digital input/output interface (SDIO)

856

29.9.9 SDIO data control register (SDIO_DCTRL)

Address offset: 0x2C

Reset value: 0x0000 0000

The SDIO_DCTRL register control the data path state machine (DPSM).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

S
D

IO
E

N

R
W

M
O

D

R
W

S
T

O
P

R
W

S
TA

R
T

DBLOCKSIZE

D
M

A
E

N

D
T

M
O

D
E

D
T

D
IR

D
T

E
N

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value

Bit 11 SDIOEN: SD I/O enable functions

If this bit is set, the DPSM performs an SD I/O-card-specific operation.

Bit 10 RWMOD: Read wait mode

0: Read Wait control stopping SDIO_D2
1: Read Wait control using SDIO_CK

Bit 9 RWSTOP: Read wait stop

0: Read wait in progress if RWSTART bit is set
1: Enable for read wait stop if RWSTART bit is set

Bit 8 RWSTART: Read wait start

If this bit is set, read wait operation starts.

Bits 7:4 DBLOCKSIZE: Data block size

Define the data block length when the block data transfer mode is selected:

0000: (0 decimal) lock length = 20 = 1 byte
0001: (1 decimal) lock length = 21 = 2 bytes
0010: (2 decimal) lock length = 22 = 4 bytes
0011: (3 decimal) lock length = 23 = 8 bytes
0100: (4 decimal) lock length = 24 = 16 bytes
0101: (5 decimal) lock length = 25 = 32 bytes
0110: (6 decimal) lock length = 26 = 64 bytes
0111: (7 decimal) lock length = 27 = 128 bytes
1000: (8 decimal) lock length = 28 = 256 bytes
1001: (9 decimal) lock length = 29 = 512 bytes
1010: (10 decimal) lock length = 210 = 1024 bytes
1011: (11 decimal) lock length = 211 = 2048 bytes
1100: (12 decimal) lock length = 212 = 4096 bytes
1101: (13 decimal) lock length = 213 = 8192 bytes
1110: (14 decimal) lock length = 214 = 16384 bytes
1111: (15 decimal) reserved

Bit 3 DMAEN: DMA enable bit

0: DMA disabled.
1: DMA enabled.

Secure digital input/output interface (SDIO) RM0038

848/908 DocID15965 Rev 14

Note: After a data write, data cannot be written to this register for three SDIOCLK clock periods
plus two PCLK2 clock periods.

The meaning of the DTMODE bit changes according to the value of the SDIOEN bit. When
SDIOEN=0 and DTMODE=1, the MultiMediaCard stream mode is enabled, and when
SDIOEN=1 and DTMODE=1, the peripheral enables an SDIO multibyte transfer.

29.9.10 SDIO data counter register (SDIO_DCOUNT)

Address offset: 0x30

Reset value: 0x0000 0000

The SDIO_DCOUNT register loads the value from the data length register (see
SDIO_DLEN) when the DPSM moves from the Idle state to the Wait_R or Wait_S state. As
data is transferred, the counter decrements the value until it reaches 0. The DPSM then
moves to the Idle state and the data status end flag, DATAEND, is set.

Note: This register should be read only when the data transfer is complete.

Bit 2 DTMODE: Data transfer mode selection 1: Stream or SDIO multibyte data transfer.

0: Block data transfer
1: Stream or SDIO multibyte data transfer

Bit 1 DTDIR: Data transfer direction selection

0: From controller to card.
1: From card to controller.

Bit 0 DTEN: Data transfer enabled bit

Data transfer starts if 1b is written to the DTEN bit. Depending on the direction bit, DTDIR,
the DPSM moves to the Wait_S, Wait_R state or Readwait if RW Start is set immediately at
the beginning of the transfer. It is not necessary to clear the enable bit after the end of a data
transfer but the SDIO_DCTRL must be updated to enable a new data transfer

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DATACOUNT

r r

Bits 31:25 Reserved, must be kept at reset value

Bits 24:0 DATACOUNT: Data count value

When this bit is read, the number of remaining data bytes to be transferred is returned. Write
has no effect.

DocID15965 Rev 14 849/908

RM0038 Secure digital input/output interface (SDIO)

856

29.9.11 SDIO status register (SDIO_STA)

Address offset: 0x34

Reset value: 0x0000 0000

The SDIO_STA register is a read-only register. It contains two types of flag:

• Static flags (bits [23:22,10:0]): these bits remain asserted until they are cleared by
writing to the SDIO Interrupt Clear register (see SDIO_ICR)

• Dynamic flags (bits [21:11]): these bits change state depending on the state of the
underlying logic (for example, FIFO full and empty flags are asserted and deasserted
as data while written to the FIFO)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
e

se
rv

ed

C
E

A
TA

E
N

D

S
D

IO
IT

R
X

D
A

V
L

T
X

D
A

V
L

R
X

F
IF

O
E

T
X

F
IF

O
E

R
X

F
IF

O
F

T
X

F
IF

O
F

R
X

F
IF

O
H

F

T
X

F
IF

O
H

E

R
X

A
C

T

T
X

A
C

T

C
M

D
A

C
T

D
B

C
K

E
N

D

S
T

B
IT

E
R

R

D
A

TA
E

N
D

C
M

D
S

E
N

T

C
M

D
R

E
N

D

R
X

O
V

E
R

R

T
X

U
N

D
E

R
R

D
T

IM
E

O
U

T

C
T

IM
E

O
U

T

D
C

R
C

FA
IL

C
C

R
C

FA
IL

r r

Bits 31:24 Reserved, must be kept at reset value

Bit 23 CEATAEND: CE-ATA command completion signal received for CMD61

Bit 22 SDIOIT: SDIO interrupt received

Bit 21 RXDAVL: Data available in receive FIFO

Bit 20 TXDAVL: Data available in transmit FIFO

Bit 19 RXFIFOE: Receive FIFO empty

Bit 18 TXFIFOE: Transmit FIFO empty

When HW Flow Control is enabled, TXFIFOE signals becomes activated when the FIFO
contains 2 words.

Bit 17 RXFIFOF: Receive FIFO full

When HW Flow Control is enabled, RXFIFOF signals becomes activated 2 words before the
FIFO is full.

Bit 16 TXFIFOF: Transmit FIFO full

Bit 15 RXFIFOHF: Receive FIFO half full: there are at least 8 words in the FIFO

Bit 14 TXFIFOHE: Transmit FIFO half empty: at least 8 words can be written into the FIFO

Bit 13 RXACT: Data receive in progress

Bit 12 TXACT: Data transmit in progress

Bit 11 CMDACT: Command transfer in progress

Bit 10 DBCKEND: Data block sent/received (CRC check passed)

Bit 9 STBITERR: Start bit not detected on all data signals in wide bus mode

Bit 8 DATAEND: Data end (data counter, SDIDCOUNT, is zero)

Bit 7 CMDSENT: Command sent (no response required)

Bit 6 CMDREND: Command response received (CRC check passed)

Bit 5 RXOVERR: Received FIFO overrun error

Secure digital input/output interface (SDIO) RM0038

850/908 DocID15965 Rev 14

29.9.12 SDIO interrupt clear register (SDIO_ICR)

Address offset: 0x38

Reset value: 0x0000 0000

The SDIO_ICR register is a write-only register. Writing a bit with 1b clears the corresponding
bit in the SDIO_STA Status register.

Bit 4 TXUNDERR: Transmit FIFO underrun error

Bit 3 DTIMEOUT: Data timeout

Bit 2 CTIMEOUT: Command response timeout

The Command TimeOut period has a fixed value of 64 SDIO_CK clock periods.

Bit 1 DCRCFAIL: Data block sent/received (CRC check failed)

Bit 0 CCRCFAIL: Command response received (CRC check failed)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

C
E

A
TA

E
N

D
C

S
D

IO
IT

C

Reserved

D
B

C
K

E
N

D
C

S
T

B
IT

E
R

R
C

D
A

TA
E

N
D

C

C
M

D
S

E
N

T
C

C
M

D
R

E
N

D
C

R
X

O
V

E
R

R
C

T
X

U
N

D
E

R
R

C

D
T

IM
E

O
U

T
C

C
T

IM
E

O
U

T
C

D
C

R
C

F
A

IL
C

C
C

R
C

F
A

IL
C

rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, must be kept at reset value

Bit 23 CEATAENDC: CEATAEND flag clear bit

Set by software to clear the CEATAEND flag.
0: CEATAEND not cleared
1: CEATAEND cleared

Bit 22 SDIOITC: SDIOIT flag clear bit

Set by software to clear the SDIOIT flag.
0: SDIOIT not cleared
1: SDIOIT cleared

Bits 21:11 Reserved, must be kept at reset value

Bit 10 DBCKENDC: DBCKEND flag clear bit

Set by software to clear the DBCKEND flag.
0: DBCKEND not cleared
1: DBCKEND cleared

Bit 9 STBITERRC: STBITERR flag clear bit

Set by software to clear the STBITERR flag.
0: STBITERR not cleared
1: STBITERR cleared

Bit 8 DATAENDC: DATAEND flag clear bit

Set by software to clear the DATAEND flag.
0: DATAEND not cleared
1: DATAEND cleared

DocID15965 Rev 14 851/908

RM0038 Secure digital input/output interface (SDIO)

856

Bit 7 CMDSENTC: CMDSENT flag clear bit

Set by software to clear the CMDSENT flag.
0: CMDSENT not cleared
1: CMDSENT cleared

Bit 6 CMDRENDC: CMDREND flag clear bit

Set by software to clear the CMDREND flag.
0: CMDREND not cleared
1: CMDREND cleared

Bit 5 RXOVERRC: RXOVERR flag clear bit

Set by software to clear the RXOVERR flag.
0: RXOVERR not cleared
1: RXOVERR cleared

Bit 4 TXUNDERRC: TXUNDERR flag clear bit

Set by software to clear TXUNDERR flag.
0: TXUNDERR not cleared
1: TXUNDERR cleared

Bit 3 DTIMEOUTC: DTIMEOUT flag clear bit

Set by software to clear the DTIMEOUT flag.
0: DTIMEOUT not cleared
1: DTIMEOUT cleared

Bit 2 CTIMEOUTC: CTIMEOUT flag clear bit

Set by software to clear the CTIMEOUT flag.
0: CTIMEOUT not cleared
1: CTIMEOUT cleared

Bit 1 DCRCFAILC: DCRCFAIL flag clear bit

Set by software to clear the DCRCFAIL flag.
0: DCRCFAIL not cleared
1: DCRCFAIL cleared

Bit 0 CCRCFAILC: CCRCFAIL flag clear bit

Set by software to clear the CCRCFAIL flag.
0: CCRCFAIL not cleared
1: CCRCFAIL cleared

Secure digital input/output interface (SDIO) RM0038

852/908 DocID15965 Rev 14

29.9.13 SDIO mask register (SDIO_MASK)

Address offset: 0x3C

Reset value: 0x0000 0000

The interrupt mask register determines which status flags generate an interrupt request by
setting the corresponding bit to 1b.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

C
E

A
TA

E
N

D
IE

S
D

IO
IT

IE

R
X

D
A

V
L

IE

T
X

D
A

V
LI

E

R
X

F
IF

O
E

IE

T
X

F
IF

O
E

IE

R
X

F
IF

O
F

IE

T
X

F
IF

O
F

IE

R
X

F
IF

O
H

F
IE

T
X

F
IF

O
H

E
IE

R
X

A
C

T
IE

T
X

A
C

T
IE

C
M

D
A

C
T

IE

D
B

C
K

E
N

D
IE

S
T

B
IT

E
R

R
IE

D
A

TA
E

N
D

IE

C
M

D
S

E
N

T
IE

C
M

D
R

E
N

D
IE

R
X

O
V

E
R

R
IE

T
X

U
N

D
E

R
R

IE

D
T

IM
E

O
U

T
IE

C
T

IM
E

O
U

T
IE

D
C

R
C

F
A

IL
IE

C
C

R
C

F
A

IL
IE

rw rw

Bits 31:24 Reserved, must be kept at reset value

Bit 23 CEATAENDIE: CE-ATA command completion signal received interrupt enable

Set and cleared by software to enable/disable the interrupt generated when receiving the
CE-ATA command completion signal.
0: CE-ATA command completion signal received interrupt disabled
1: CE-ATA command completion signal received interrupt enabled

Bit 22 SDIOITIE: SDIO mode interrupt received interrupt enable

Set and cleared by software to enable/disable the interrupt generated when receiving the
SDIO mode interrupt.
0: SDIO Mode Interrupt Received interrupt disabled
1: SDIO Mode Interrupt Received interrupt enabled

Bit 21 RXDAVLIE: Data available in Rx FIFO interrupt enable

Set and cleared by software to enable/disable the interrupt generated by the presence of
data available in Rx FIFO.
0: Data available in Rx FIFO interrupt disabled
1: Data available in Rx FIFO interrupt enabled

Bit 20 TXDAVLIE: Data available in Tx FIFO interrupt enable

Set and cleared by software to enable/disable the interrupt generated by the presence of
data available in Tx FIFO.
0: Data available in Tx FIFO interrupt disabled
1: Data available in Tx FIFO interrupt enabled

Bit 19 RXFIFOEIE: Rx FIFO empty interrupt enable

Set and cleared by software to enable/disable interrupt caused by Rx FIFO empty.
0: Rx FIFO empty interrupt disabled
1: Rx FIFO empty interrupt enabled

Bit 18 TXFIFOEIE: Tx FIFO empty interrupt enable

Set and cleared by software to enable/disable interrupt caused by Tx FIFO empty.
0: Tx FIFO empty interrupt disabled
1: Tx FIFO empty interrupt enabled

Bit 17 RXFIFOFIE: Rx FIFO full interrupt enable

Set and cleared by software to enable/disable interrupt caused by Rx FIFO full.
0: Rx FIFO full interrupt disabled
1: Rx FIFO full interrupt enabled

DocID15965 Rev 14 853/908

RM0038 Secure digital input/output interface (SDIO)

856

Bit 16 TXFIFOFIE: Tx FIFO full interrupt enable

Set and cleared by software to enable/disable interrupt caused by Tx FIFO full.
0: Tx FIFO full interrupt disabled
1: Tx FIFO full interrupt enabled

Bit 15 RXFIFOHFIE: Rx FIFO half full interrupt enable

Set and cleared by software to enable/disable interrupt caused by Rx FIFO half full.
0: Rx FIFO half full interrupt disabled
1: Rx FIFO half full interrupt enabled

Bit 14 TXFIFOHEIE: Tx FIFO half empty interrupt enable

Set and cleared by software to enable/disable interrupt caused by Tx FIFO half empty.
0: Tx FIFO half empty interrupt disabled
1: Tx FIFO half empty interrupt enabled

Bit 13 RXACTIE: Data receive acting interrupt enable

Set and cleared by software to enable/disable interrupt caused by data being received (data
receive acting).
0: Data receive acting interrupt disabled
1: Data receive acting interrupt enabled

Bit 12 TXACTIE: Data transmit acting interrupt enable

Set and cleared by software to enable/disable interrupt caused by data being transferred
(data transmit acting).
0: Data transmit acting interrupt disabled
1: Data transmit acting interrupt enabled

Bit 11 CMDACTIE: Command acting interrupt enable

Set and cleared by software to enable/disable interrupt caused by a command being
transferred (command acting).
0: Command acting interrupt disabled
1: Command acting interrupt enabled

Bit 10 DBCKENDIE: Data block end interrupt enable

Set and cleared by software to enable/disable interrupt caused by data block end.
0: Data block end interrupt disabled
1: Data block end interrupt enabled

Bit 9 STBITERRIE: Start bit error interrupt enable

Set and cleared by software to enable/disable interrupt caused by start bit error.
0: Start bit error interrupt disabled
1: Start bit error interrupt enabled

Bit 8 DATAENDIE: Data end interrupt enable

Set and cleared by software to enable/disable interrupt caused by data end.
0: Data end interrupt disabled
1: Data end interrupt enabled

Bit 7 CMDSENTIE: Command sent interrupt enable

Set and cleared by software to enable/disable interrupt caused by sending command.
0: Command sent interrupt disabled
1: Command sent interrupt enabled

Secure digital input/output interface (SDIO) RM0038

854/908 DocID15965 Rev 14

29.9.14 SDIO FIFO counter register (SDIO_FIFOCNT)

Address offset: 0x48

Reset value: 0x0000 0000

The SDIO_FIFOCNT register contains the remaining number of words to be written to or
read from the FIFO. The FIFO counter loads the value from the data length register (see
SDIO_DLEN) when the data transfer enable bit, DTEN, is set in the data control register
(SDIO_DCTRL register) and the DPSM is at the Idle state. If the data length is not word-
aligned (multiple of 4), the remaining 1 to 3 bytes are regarded as a word.

Bit 6 CMDRENDIE: Command response received interrupt enable

Set and cleared by software to enable/disable interrupt caused by receiving command
response.
0: Command response received interrupt disabled
1: command Response Received interrupt enabled

Bit 5 RXOVERRIE: Rx FIFO overrun error interrupt enable

Set and cleared by software to enable/disable interrupt caused by Rx FIFO overrun error.
0: Rx FIFO overrun error interrupt disabled
1: Rx FIFO overrun error interrupt enabled

Bit 4 TXUNDERRIE: Tx FIFO underrun error interrupt enable

Set and cleared by software to enable/disable interrupt caused by Tx FIFO underrun error.
0: Tx FIFO underrun error interrupt disabled
1: Tx FIFO underrun error interrupt enabled

Bit 3 DTIMEOUTIE: Data timeout interrupt enable

Set and cleared by software to enable/disable interrupt caused by data timeout.
0: Data timeout interrupt disabled
1: Data timeout interrupt enabled

Bit 2 CTIMEOUTIE: Command timeout interrupt enable

Set and cleared by software to enable/disable interrupt caused by command timeout.
0: Command timeout interrupt disabled
1: Command timeout interrupt enabled

Bit 1 DCRCFAILIE: Data CRC fail interrupt enable

Set and cleared by software to enable/disable interrupt caused by data CRC failure.
0: Data CRC fail interrupt disabled
1: Data CRC fail interrupt enabled

Bit 0 CCRCFAILIE: Command CRC fail interrupt enable

Set and cleared by software to enable/disable interrupt caused by command CRC failure.
0: Command CRC fail interrupt disabled
1: Command CRC fail interrupt enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
FIFOCOUNT

r r

Bits 31:24 Reserved, must be kept at reset value

Bits 23:0 FIFOCOUNT: Remaining number of words to be written to or read from the FIFO.

DocID15965 Rev 14 855/908

RM0038 Secure digital input/output interface (SDIO)

856

29.9.15 SDIO data FIFO register (SDIO_FIFO)

Address offset: 0x80

Reset value: 0x0000 0000

The receive and transmit FIFOs can be read or written as 32-bit wide registers. The FIFOs
contain 32 entries on 32 sequential addresses. This allows the CPU to use its load and store
multiple operands to read from/write to the FIFO.

29.9.16 SDIO register map

The following table summarizes the SDIO registers. The reserved memory areas are
highlighted in gray in the table.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FIF0Data

rw rw

bits 31:0 FIFOData: Receive and transmit FIFO data

The FIFO data occupies 32 entries of 32-bit words, from address:
SDIO base + 0x080 to SDIO base + 0xFC.

Table 194. SDIO register map

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00 SDIO_POWER

R
e

se
rv

ed

P
W

R
C

T
R

L

0x04 SDIO_CLKCR

R
es

er
ve

d

H
W

F
C

_
E

N

N
E

G
E

D
G

E

W
ID

B
U

S

B
Y

P
A

S
S

P
W

R
S

A
V

C
LK

E
N

C
LK

D
IV

0x08 SDIO_ARG CMDARG

0x0C SDIO_CMD

R
e

se
rv

ed

C
E

-A
TA

C
M

D

n
IE

N

E
N

C
M

D
co

m
p

l

S
D

IO
S

u
sp

e
nd

C
P

S
M

E
N

W
A

IT
P

E
N

D

W
A

IT
IN

T

W
A

IT
R

E
S

P

C
M

D
IN

D
E

X

0x10 SDIO_RESPCMD Reserved RESPCMD

0x14 SDIO_RESP1 CARDSTATUS1

0x18 SDIO_RESP2 CARDSTATUS2

0x1C SDIO_RESP3 CARDSTATUS3

0x20 SDIO_RESP4 CARDSTATUS4

0x24 SDIO_DTIMER DATATIME

0x28 SDIO_DLEN Reserved DATALENGTH

0x2C SDIO_DCTRL

R
es

er
ve

d

S
D

IO
E

N

R
W

M
O

D

R
W

S
T

O
P

R
W

S
TA

R
T

D
B

LO
C

K
S

IZ
E

D
M

A
E

N

D
T

M
O

D
E

D
T

D
IR

D
T

E
N

0x30 SDIO_DCOUNT Reserved DATACOUNT

Secure digital input/output interface (SDIO) RM0038

856/908 DocID15965 Rev 14

0x34 SDIO_STA

R
e

se
rv

e
d

C
E

A
TA

E
N

D

S
D

IO
IT

R
X

D
A

V
L

T
X

D
A

V
L

R
X

F
IF

O
E

T
X

F
IF

O
E

R
X

F
IF

O
F

T
X

F
IF

O
F

R
X

F
IF

O
H

F

T
X

F
IF

O
H

E

R
X

A
C

T

T
X

A
C

T

C
M

D
A

C
T

D
B

C
K

E
N

D

S
T

B
IT

E
R

R

D
A

TA
E

N
D

C
M

D
S

E
N

T

C
M

D
R

E
N

D

R
X

O
V

E
R

R

T
X

U
N

D
E

R
R

D
T

IM
E

O
U

T

C
T

IM
E

O
U

T

D
C

R
C

F
A

IL

C
C

R
C

F
A

IL

0x38 SDIO_ICR
R

es
er

ve
d

C
E

A
TA

E
N

D
C

S
D

IO
IT

C

R
es

er
ve

d

D
B

C
K

E
N

D
C

S
T

B
IT

E
R

R
C

D
A

TA
E

N
D

C

C
M

D
S

E
N

T
C

C
M

D
R

E
N

D
C

R
X

O
V

E
R

R
C

T
X

U
N

D
E

R
R

C

D
T

IM
E

O
U

T
C

C
T

IM
E

O
U

T
C

D
C

R
C

F
A

IL
C

C
C

R
C

F
A

IL
C

0x3C SDIO_MASK

R
es

er
ve

d

C
E

A
TA

E
N

D
IE

S
D

IO
IT

IE

R
X

D
A

V
LI

E

T
X

D
A

V
L

IE

R
X

F
IF

O
E

IE

T
X

F
IF

O
E

IE

R
X

F
IF

O
F

IE

T
X

F
IF

O
F

IE

R
X

F
IF

O
H

F
IE

T
X

F
IF

O
H

E
IE

R
X

A
C

T
IE

T
X

A
C

T
IE

C
M

D
A

C
T

IE

D
B

C
K

E
N

D
IE

S
T

B
IT

E
R

R
IE

D
A

TA
E

N
D

IE

C
M

D
S

E
N

T
IE

C
M

D
R

E
N

D
IE

R
X

O
V

E
R

R
IE

T
X

U
N

D
E

R
R

IE

D
T

IM
E

O
U

T
IE

C
T

IM
E

O
U

T
IE

D
C

R
C

F
A

IL
IE

C
C

R
C

F
A

IL
IE

0x48 SDIO_FIFOCNT Reserved FIFOCOUNT

0x80 SDIO_FIFO FIF0Data

Table 194. SDIO register map (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

DocID15965 Rev 14 857/908

RM0038 Debug support (DBG)

887

30 Debug support (DBG)

30.1 Overview

The STM32L1xxxx are built around a Cortex®-M3 core which contains hardware extensions
for advanced debugging features. The debug extensions allow the core to be stopped either
on a given instruction fetch (breakpoint) or data access (watchpoint). When stopped, the
core’s internal state and the system’s external state may be examined. Once examination is
complete, the core and the system may be restored and program execution resumed.

The debug features are used by the debugger host when connecting to and debugging the
STM32L1xxxx MCUs.

Two interfaces for debug are available:

• Serial wire

• JTAG debug port

Figure 289. Block diagram of STM32 MCU and Cortex®-M3-level debug support

Note: The debug features embedded in the Cortex®-M3 core are a subset of the ARM® CoreSight
Design Kit.

Debug support (DBG) RM0038

858/908 DocID15965 Rev 14

The ARM® Cortex®-M3 core provides integrated on-chip debug support. It is comprised of:

• SWJ-DP: Serial wire / JTAG debug port

• AHP-AP: AHB access port

• ITM: Instrumentation trace macrocell

• FPB: Flash patch breakpoint

• DWT: Data watchpoint trigger

• TPUI: Trace port unit interface (available on larger packages, where the corresponding
pins are mapped)

• ETM: Embedded Trace Macrocell (available on larger packages, where the
corresponding pins are mapped)

It also includes debug features dedicated to the STM32L1xxxx:

• Flexible debug pinout assignment

• MCU debug box (support for low-power modes, control over peripheral clocks, etc.)

Note: For further information on debug functionality supported by the ARM® Cortex®-M3 core,
refer to the Cortex®-M3 -r2p0 Technical Reference Manual and to the CoreSight Design Kit-
r2p0 TRM (see Section 30.2: Reference ARM® documentation).

30.2 Reference ARM® documentation

• Cortex®-M3 r2p0 Technical Reference Manual (TRM)

(see Related documents on page 1)

• ARM® Debug Interface V5

• ARM® CoreSight Design Kit revision r2p0 Technical Reference Manual

30.3 SWJ debug port (serial wire and JTAG)

The core of the STM32L1xxxx integrates the Serial Wire / JTAG Debug Port (SWJ-DP). It is
an ARM® standard CoreSight debug port that combines a JTAG-DP (5-pin) interface and a
SW-DP (2-pin) interface.

• The JTAG Debug Port (JTAG-DP) provides a 5-pin standard JTAG interface to the
AHP-AP port.

• The Serial Wire Debug Port (SW-DP) provides a 2-pin (clock + data) interface to the
AHP-AP port.

In the SWJ-DP, the two JTAG pins of the SW-DP are multiplexed with some of the five JTAG
pins of the JTAG-DP.

DocID15965 Rev 14 859/908

RM0038 Debug support (DBG)

887

Figure 290. SWJ debug port

Figure 290 shows that the asynchronous TRACE output (TRACESWO) is multiplexed with
TDO. This means that the asynchronous trace can only be used with SW-DP, not JTAG-DP.

30.3.1 Mechanism to select the JTAG-DP or the SW-DP

By default, the JTAG-Debug Port is active.

If the debugger host wants to switch to the SW-DP, it must provide a dedicated JTAG
sequence on TMS/TCK (respectively mapped to SWDIO and SWCLK) which disables the
JTAG-DP and enables the SW-DP. This way it is possible to activate the SWDP using only
the SWCLK and SWDIO pins.

This sequence is:

1. Send more than 50 TCK cycles with TMS (SWDIO) =1

2. Send the 16-bit sequence on TMS (SWDIO) = 0111100111100111 (MSB transmitted
first)

3. Send more than 50 TCK cycles with TMS (SWDIO) =1

30.4 Pinout and debug port pins

The STM32L1xxxx MCUs are available in various packages with different numbers of
available pins. As a result, some functionality (ETM) related to pin availability may differ
between packages.

Debug support (DBG) RM0038

860/908 DocID15965 Rev 14

30.4.1 SWJ debug port pins

Five pins are used as outputs from the STM32L1xxxx for the SWJ-DP as alternate functions
of general-purpose I/Os. These pins are available on all packages.

30.4.2 Flexible SWJ-DP pin assignment

After RESET (SYSRESETn or PORESETn), all five pins used for the SWJ-DP are assigned
as dedicated pins immediately usable by the debugger host (note that the trace outputs are
not assigned except if explicitly programmed by the debugger host).

However, the STM32L1xxxx MCU offers the possibility of disabling some or all of the SWJ-
DP ports and so, of releasing (in gray in Table 196) the associated pins for general-purpose
IO (GPIO) usage.

Note: When the APB bridge write buffer is full, it takes one extra APB cycle when writing the
GPIO_AFR register. This is because the deactivation of the JTAGSW pins is done in two
cycles to guarantee a clean level on the nTRST and TCK input signals of the core.

• Cycle 1: the JTAGSW input signals to the core are tied to 1 or 0 (to 1 for nTRST, TDI
and TMS, to 0 for TCK)

• Cycle 2: the GPIO controller takes the control signals of the SWJTAG IO pins (like
controls of direction, pull-up/down, Schmitt trigger activation, etc.).

Table 195. SWJ debug port pins

SWJ-DP pin name
JTAG debug port SW debug port Pin

assignment
Type Description Type Debug assignment

JTMS/SWDIO I JTAG Test Mode Selection IO Serial Wire Data Input/Output PA13

JTCK/SWCLK I JTAG Test Clock I Serial Wire Clock PA14

JTDI I JTAG Test Data Input - - PA15

JTDO/TRACESWO O JTAG Test Data Output -
TRACESWO if async trace is
enabled

PB3

NJTRST I JTAG Test nReset - - PB4

Table 196. Flexible SWJ-DP pin assignment

Available debug ports

SWJ IO pin assigned

PA13 /
JTMS /
SWDIO

PA14 /
JTCK /
SWCLK

PA15 /
JTDI

PB3 /
JTDO

PB4 /
NJTRST

Full SWJ (JTAG-DP + SW-DP) - Reset State X X X X X

Full SWJ (JTAG-DP + SW-DP) but without NJTRST X X X X

JTAG-DP Disabled and SW-DP Enabled X X

JTAG-DP Disabled and SW-DP Disabled Released

DocID15965 Rev 14 861/908

RM0038 Debug support (DBG)

887

30.4.3 Internal pull-up and pull-down on JTAG pins

It is necessary to ensure that the JTAG input pins are not floating since they are directly
connected to flip-flops to control the debug mode features. Special care must be taken with
the SWCLK/TCK pin which is directly connected to the clock of some of these flip-flops.

To avoid any uncontrolled IO levels, the device embeds internal pull-ups and pull-downs on
the JTAG input pins:

• NJTRST: Internal pull-up

• JTDI: Internal pull-up

• JTMS/SWDIO: Internal pull-up

• TCK/SWCLK: Internal pull-down

Once a JTAG IO is released by the user software, the GPIO controller takes control again.
The reset states of the GPIO control registers put the I/Os in the equivalent state:

• NJTRST: AF input pull-up

• JTDI: AF input pull-up

• JTMS/SWDIO: AF input pull-up

• JTCK/SWCLK: AF input pull-down

• JTDO: AF floating

The software can then use these I/Os as standard GPIOs.

Note: The JTAG IEEE standard recommends to add pull-ups on TDI, TMS and nTRST but there is
no special recommendation for TCK. However, for JTCK, the device needs an integrated
pull-down.

Having embedded pull-ups and pull-downs removes the need to add external resistors.

Debug support (DBG) RM0038

862/908 DocID15965 Rev 14

30.4.4 Using serial wire and releasing the unused debug pins as GPIOs

To use the serial wire DP to release some GPIOs, the user software must change the GPIO
(PA15, PB3 and PB4) configuration mode in the GPIO_MODER register. This releases
PA15, PB3 and PB4 which now become available as GPIOs.

When debugging, the host performs the following actions:

• Under system reset, all SWJ pins are assigned (JTAG-DP + SW-DP).

• Under system reset, the debugger host sends the JTAG sequence to switch from the
JTAG-DP to the SW-DP.

• Still under system reset, the debugger sets a breakpoint on vector reset.

• The system reset is released and the Core halts.

• All the debug communications from this point are done using the SW-DP. The other
JTAG pins can then be reassigned as GPIOs by the user software.

Note: For user software designs, note that:

To release the debug pins, remember that they will be first configured either in input-pull-up
(nTRST, TMS, TDI) or pull-down (TCK) or output tristate (TDO) for a certain duration after
reset until the instant when the user software releases the pins.

When debug pins (JTAG or SW or TRACE) are mapped, changing the corresponding IO pin
configuration in the IOPORT controller has no effect.

30.5 STM32L1xxxx JTAG TAP connection

The STM32L1xxxx MCUs integrate two serially connected JTAG TAPs, the boundary scan
TAP (IR is 5-bit wide) and the Cortex®-M3 TAP (IR is 4-bit wide).

To access the TAP of the Cortex®-M3 for debug purposes:

1. First, it is necessary to shift the BYPASS instruction of the boundary scan TAP.

2. Then, for each IR shift, the scan chain contains 9 bits (=5+4) and the unused TAP
instruction must be shifted in using the BYPASS instruction.

3. For each data shift, the unused TAP, which is in BYPASS mode, adds 1 extra data bit in
the data scan chain.

Note: Important: Once Serial-Wire is selected using the dedicated ARM® JTAG sequence, the
boundary scan TAP is automatically disabled (JTMS forced high).

DocID15965 Rev 14 863/908

RM0038 Debug support (DBG)

887

Figure 291. JTAG TAP connections

Debug support (DBG) RM0038

864/908 DocID15965 Rev 14

30.6 ID codes and locking mechanism

There are several ID codes inside the STM32L1xxxx MCUs. ST strongly recommends tools
designers to lock their debuggers using the MCU DEVICE ID code located in the external
PPB memory map at address 0xE0042000.

30.6.1 MCU device ID code

The STM32L1xxxx MCUs integrate an MCU ID code. This ID identifies the ST MCU part-
number and the die revision. It is part of the DBG_MCU component and is mapped on the
external PPB bus (see Section 30.16 on page 876). This code is accessible using the JTAG
debug port (4 to 5 pins) or the SW debug port (two pins) or by the user software. It is even
accessible while the MCU is under system reset.

Only the DEV_ID(11:0) should be used for identification by the debugger/programmer tools.

DBGMCU_IDCODE

Address: 0xE004 2000

Only 32-bits access supported. Read-only.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

REV_ID

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved
DEV_ID

r r r r r r r r r r r r

Bits 31:16 REV_ID[15:0] Revision identifier

This field indicates the revision of the device:

Value
Cat.1

devices
Cat.2

devices
Cat.3

devices
Cat.4 / Cat.3
devices(1)

1. Cat.3 devices: STM32L15xxC or STM3216xxC devices with RPN ending with letter 'A', in WLCSP64
packages or with more then 100 pin.

Cat.5
devices

Cat.6
devices

0x1000:

0x1008:

0x1018

0x1038:

0x1078:

Rev A

Rev Y

Rev W

Rev V

Rev A

Rev Z

Rev A

Rev Y

Rev X

Rev A

Rev Z

Rev Y

Rev A Rev A

Bits 15:12 Reserved, must be kept at reset value.

Bits 11:0 DEV_ID[11:0]: Device identifier

This field indicates the device ID.
0x416: Cat.1 device
0x429: Cat.2 device
0x427: Cat.3 device
0x436: Cat.4 device or Cat.3 device(1)

0x437: Cat.5 device or Cat.6 device

DocID15965 Rev 14 865/908

RM0038 Debug support (DBG)

887

30.6.2 Boundary scan TAP

JTAG ID code

The TAP of the STM32L1xxxx BSC (boundary scan) integrates a JTAG ID code equal to
0x4BA00477.

30.6.3 Cortex®-M3 TAP

The TAP of the ARM® Cortex®-M3 integrates a JTAG ID code. This ID code is the ARM®
default one and has not been modified. This code is only accessible by the JTAG Debug
Port.
This code is 0x4BA00477 (corresponds to Cortex®-M3 r2p0, see Section 30.2: Reference
ARM® documentation).

30.6.4 Cortex®-M3 JEDEC-106 ID code

The ARM® Cortex®-M3 integrates a JEDEC-106 ID code. It is located in the 4KB ROM table
mapped on the internal PPB bus at address 0xE00FF000_0xE00FFFFF.

This code is accessible by the JTAG Debug Port (4 to 5 pins) or by the SW Debug Port (two
pins) or by the user software.

30.7 JTAG debug port

A standard JTAG state machine is implemented with a 4-bit instruction register (IR) and five
data registers (for full details, refer to the Cortex®-M3 r2p0 Technical Reference Manual
(TRM), for references, see Section 30.2: Reference ARM® documentation).

Table 197. JTAG debug port data registers

IR(3:0) Data register Details

1111
BYPASS

[1 bit]

1110
IDCODE

[32 bits]

ID CODE

0x4BA00477 (ARM® Cortex®-M3 r2p0 ID Code)

1010
DPACC

[35 bits]

Debug port access register

This initiates a debug port and allows access to a debug port register.

– When transferring data IN:
Bits 34:3 = DATA[31:0] = 32-bit data to transfer for a write request
Bits 2:1 = A[3:2] = 2-bit address of a debug port register.
Bit 0 = RnW = Read request (1) or write request (0).

– When transferring data OUT:
Bits 34:3 = DATA[31:0] = 32-bit data which is read following a read
request
Bits 2:0 = ACK[2:0] = 3-bit Acknowledge:
010 = OK/FAULT
001 = WAIT
OTHER = reserved

Refer to Table 198 for a description of the A[3:2] bits

Debug support (DBG) RM0038

866/908 DocID15965 Rev 14

1011
APACC

[35 bits]

Access port access register

Initiates an access port and allows access to an access port register.

– When transferring data IN:
Bits 34:3 = DATA[31:0] = 32-bit data to shift in for a write request
Bits 2:1 = A[3:2] = 2-bit address (sub-address AP registers).
Bit 0 = RnW= Read request (1) or write request (0).

– When transferring data OUT:
Bits 34:3 = DATA[31:0] = 32-bit data which is read following a read
request
Bits 2:0 = ACK[2:0] = 3-bit Acknowledge:
010 = OK/FAULT
001 = WAIT
OTHER = reserved

There are many AP Registers (see AHB-AP) addressed as the
combination of:

– The shifted value A[3:2]

– The current value of the DP SELECT register

1000
ABORT

[35 bits]

Abort register

– Bits 31:1 = Reserved

– Bit 0 = DAPABORT: write 1 to generate a DAP abort.

Table 198. 32-bit debug port registers addressed through the shifted value A[3:2]

Address A[3:2] value Description

0x0 00 Reserved, must be kept at reset value.

0x4 01

DP CTRL/STAT register. Used to:

– Request a system or debug power-up

– Configure the transfer operation for AP accesses

– Control the pushed compare and pushed verify operations.

– Read some status flags (overrun, power-up acknowledges)

0x8 10

DP SELECT register: Used to select the current access port and the
active 4-words register window.

– Bits 31:24: APSEL: select the current AP

– Bits 23:8: reserved

– Bits 7:4: APBANKSEL: select the active 4-words register window on the
current AP

– Bits 3:0: reserved

0xC 11
DP RDBUFF register: Used to allow the debugger to get the final result
after a sequence of operations (without requesting new JTAG-DP
operation)

Table 197. JTAG debug port data registers (continued)

IR(3:0) Data register Details

DocID15965 Rev 14 867/908

RM0038 Debug support (DBG)

887

30.8 SW debug port

30.8.1 SW protocol introduction

This synchronous serial protocol uses two pins:

• SWCLK: clock from host to target

• SWDIO: bidirectional

The protocol allows two banks of registers (DPACC registers and APACC registers) to be
read and written to.

Bits are transferred LSB-first on the wire.

For SWDIO bidirectional management, the line must be pulled-up on the board (100 KΩ
recommended by ARM®).

Each time the direction of SWDIO changes in the protocol, a turnaround time is inserted
where the line is not driven by the host nor the target. By default, this turnaround time is one
bit time, however this can be adjusted by configuring the SWCLK frequency.

30.8.2 SW protocol sequence

Each sequence consist of three phases:

1. Packet request (8 bits) transmitted by the host

2. Acknowledge response (3 bits) transmitted by the target

3. Data transfer phase (33 bits) transmitted by the host or the target

Refer to the Cortex®-M3 r2p0 TRM for a detailed description of DPACC and APACC
registers.

The packet request is always followed by the turnaround time (default 1 bit) where neither
the host nor target drive the line.

Table 199. Packet request (8-bits)

Bit Name Description

0 Start Must be “1”

1 APnDP
0: DP Access

1: AP Access

2 RnW
0: Write Request

1: Read Request

4:3 A[3:2] Address field of the DP or AP registers (refer to Table 198)

5 Parity Single bit parity of preceding bits

6 Stop 0

7 Park
Not driven by the host. Must be read as “1” by the target because of
the pull-up

Debug support (DBG) RM0038

868/908 DocID15965 Rev 14

The ACK Response must be followed by a turnaround time only if it is a READ transaction
or if a WAIT or FAULT acknowledge has been received.

The DATA transfer must be followed by a turnaround time only if it is a READ transaction.

30.8.3 SW-DP state machine (reset, idle states, ID code)

The State Machine of the SW-DP has an internal ID code which identifies the SW-DP. It
follows the JEP-106 standard. This ID code is the default ARM® one and is set to
0x4BA00477 (corresponding to Cortex®-M3 r2p0).

Note: Note that the SW-DP state machine is inactive until the target reads this ID code.

• The SW-DP state machine is in RESET STATE either after power-on reset, or after the
DP has switched from JTAG to SWD or after the line is high for more than 50 cycles

• The SW-DP state machine is in IDLE STATE if the line is low for at least two cycles
after RESET state.

• After RESET state, it is mandatory to first enter into an IDLE state AND to perform a
READ access of the DP-SW ID CODE register. Otherwise, the target will issue a
FAULT acknowledge response on another transactions.

Further details of the SW-DP state machine can be found in the Cortex®-M3 r2p0 TRM and
the CoreSight Design Kit r2p0 TRM.

30.8.4 DP and AP read/write accesses

• Read accesses to the DP are not posted: the target response can be immediate (if
ACK=OK) or can be delayed (if ACK=WAIT).

• Read accesses to the AP are posted. This means that the result of the access is
returned on the next transfer. If the next access to be done is NOT an AP access, then
the DP-RDBUFF register must be read to obtain the result.
The READOK flag of the DP-CTRL/STAT register is updated on every AP read access
or RDBUFF read request to know if the AP read access was successful.

• The SW-DP implements a write buffer (for both DP or AP writes), that enables it to
accept a write operation even when other transactions are still outstanding. If the write
buffer is full, the target acknowledge response is “WAIT”. With the exception of

Table 200. ACK response (3 bits)

Bit Name Description

0..2 ACK

001: FAULT

010: WAIT

100: OK

Table 201. DATA transfer (33 bits)

Bit Name Description

0..31 WDATA or RDATA Write or Read data

32 Parity Single parity of the 32 data bits

DocID15965 Rev 14 869/908

RM0038 Debug support (DBG)

887

IDCODE read or CTRL/STAT read or ABORT write which are accepted even if the write
buffer is full.

• Because of the asynchronous clock domains SWCLK and HCLK, two extra SWCLK
cycles are needed after a write transaction (after the parity bit) to make the write
effective internally. These cycles should be applied while driving the line low (IDLE
state)
This is particularly important when writing the CTRL/STAT for a power-up request. If the
next transaction (requiring a power-up) occurs immediately, it will fail.

30.8.5 SW-DP registers

Access to these registers are initiated when APnDP=0

Table 202. SW-DP registers

A[3:2] R/W
CTRLSEL bit
of SELECT

register
Register Notes

00 Read - IDCODE
The manufacturer code is not set to ST
code. 0x4BA00477 (identifies the SW-DP)

00 Write - ABORT -

01 Read/Write 0
DP-
CTRL/STAT

Purpose is to:

– request a system or debug power-up

– configure the transfer operation for AP
accesses

– control the pushed compare and pushed
verify operations.

– read some status flags (overrun, power-
up acknowledges)

01 Read/Write 1
WIRE
CONTROL

Purpose is to configure the physical serial
port protocol (like the duration of the
turnaround time)

10 Read -
READ
RESEND

Enables recovery of the read data from a
corrupted debugger transfer, without
repeating the original AP transfer.

10 Write - SELECT
The purpose is to select the current access
port and the active 4-words register window

11 Read/Write -
READ
BUFFER

This read buffer is useful because AP
accesses are posted (the result of a read AP
request is available on the next AP
transaction).

This read buffer captures data from the AP,
presented as the result of a previous read,
without initiating a new transaction

Debug support (DBG) RM0038

870/908 DocID15965 Rev 14

30.8.6 SW-AP registers

Access to these registers are initiated when APnDP=1

There are many AP Registers (see AHB-AP) addressed as the combination of:

• The shifted value A[3:2]

• The current value of the DP SELECT register

30.9 AHB-AP (AHB access port) - valid for both JTAG-DP
and SW-DP

Features:

• System access is independent of the processor status.

• Either SW-DP or JTAG-DP accesses AHB-AP.

• The AHB-AP is an AHB master into the Bus Matrix. Consequently, it can access all the
data buses (Dcode Bus, System Bus, internal and external PPB bus) but the ICode
bus.

• Bitband transactions are supported.

• AHB-AP transactions bypass the FPB.

The address of the 32-bits AHP-AP resisters are 6-bits wide (up to 64 words or 256 bytes)
and consists of:

f) Bits [7:4] = the bits [7:4] APBANKSEL of the DP SELECT register

g) Bits [3:2] = the 2 address bits of A[3:2] of the 35-bit packet request for SW-DP.

The AHB-AP of the Cortex®-M3 includes 9 x 32-bits registers:

Refer to the Cortex®-M3 r2p0 TRM for further details.

Table 203. Cortex®-M3 AHB-AP registers

Address
offset

Register name Notes

0x00
AHB-AP Control and Status
Word

Configures and controls transfers through the AHB
interface (size, hprot, status on current transfer, address
increment type

0x04 AHB-AP Transfer Address -

0x0C AHB-AP Data Read/Write -

0x10 AHB-AP Banked Data 0

Directly maps the 4 aligned data words without rewriting
the Transfer Address Register.

0x14 AHB-AP Banked Data 1

0x18 AHB-AP Banked Data 2

0x1C AHB-AP Banked Data 3

0xF8 AHB-AP Debug ROM Address Base Address of the debug interface

0xFC AHB-AP ID Register -

DocID15965 Rev 14 871/908

RM0038 Debug support (DBG)

887

30.10 Core debug

Core debug is accessed through the core debug registers. Debug access to these registers
is by means of the Advanced High-performance Bus (AHB-AP) port. The processor can
access these registers directly over the internal Private Peripheral Bus (PPB).

It consists of 4 registers:

Note: Important: these registers are not reset by a system reset. They are only reset by a power-
on reset.

Refer to the Cortex®-M3 r2p0 TRM for further details.

To Halt on reset, it is necessary to:

• enable the bit0 (VC_CORRESET) of the Debug and Exception Monitor Control
Register

• enable the bit0 (C_DEBUGEN) of the Debug Halting Control and Status Register.

Table 204. Core debug registers

Register Description

DHCSR
The 32-bit Debug Halting Control and Status Register

This provides status information about the state of the processor enable core debug
halt and step the processor

DCRSR
The 17-bit Debug Core Register Selector Register:

This selects the processor register to transfer data to or from.

DCRDR
The 32-bit Debug Core Register Data Register:

This holds data for reading and writing registers to and from the processor selected
by the DCRSR (Selector) register.

DEMCR
The 32-bit Debug Exception and Monitor Control Register:

This provides Vector Catching and Debug Monitor Control. This register contains a
bit named TRCENA which enable the use of a TRACE.

Debug support (DBG) RM0038

872/908 DocID15965 Rev 14

30.11 Capability of the debugger host to connect under system
reset

The reset system of the STM32L1xxxx MCU comprises the following reset sources:

• POR (power-on reset) which asserts a RESET at each power-up.

• Internal watchdog reset

• Software reset

• External reset

The Cortex®-M3 differentiates the reset of the debug part (generally PORRESETn) and the
other one (SYSRESETn)

This way, it is possible for the debugger to connect under System Reset, programming the
Core Debug Registers to halt the core when fetching the reset vector. Then the host can
release the system reset and the core will immediately halt without having executed any
instructions. In addition, it is possible to program any debug features under System Reset.

Note: It is highly recommended for the debugger host to connect (set a breakpoint in the reset
vector) under system reset.

30.12 FPB (Flash patch breakpoint)

The FPB unit:

• implements hardware breakpoints

• patches code and data from code space to system space. This feature gives the
possibility to correct software bugs located in the Code Memory Space.

The use of a Software Patch or a Hardware Breakpoint is exclusive.

The FPB consists of:

• 2 literal comparators for matching against literal loads from Code Space and remapping
to a corresponding area in the System Space.

• 6 instruction comparators for matching against instruction fetches from Code Space.
They can be used either to remap to a corresponding area in the System Space or to
generate a Breakpoint Instruction to the core.

DocID15965 Rev 14 873/908

RM0038 Debug support (DBG)

887

30.13 DWT (data watchpoint trigger)

The DWT unit consists of four comparators. They are configurable as:

• a hardware watchpoint or

• a trigger to an ETM or

• a PC sampler or

• a data address sampler

The DWT also provides some means to give some profiling informations. For this, some
counters are accessible to give the number of:

• Clock cycle

• Folded instructions

• Load store unit (LSU) operations

• Sleep cycles

• CPI (clock per instructions)

• Interrupt overhead

30.14 ITM (instrumentation trace macrocell)

30.14.1 General description

The ITM is an application-driven trace source that supports printf style debugging to trace
Operating System (OS) and application events, and emits diagnostic system information.
The ITM emits trace information as packets which can be generated as:

• Software trace. Software can write directly to the ITM stimulus registers to emit
packets.

• Hardware trace. The DWT generates these packets, and the ITM emits them.

• Time stamping. Timestamps are emitted relative to packets. The ITM contains a 21-bit
counter to generate the timestamp. The Cortex®-M3 clock or the bit clock rate of the
Serial Wire Viewer (SWV) output clocks the counter.

The packets emitted by the ITM are output to the TPIU (Trace Port Interface Unit). The
formatter of the TPIU adds some extra packets (refer to TPIU) and then output the complete
packets sequence to the debugger host.

The bit TRCEN of the Debug Exception and Monitor Control Register must be enabled
before programming or using the ITM.

The SysTick timer clock is not stopped during the Stop mode debug (DBG_STOP bit set).
The counter keeps on being decremented and can generate interrupts if they are enabled

30.14.2 Time stamp packets, synchronization and overflow packets

Time stamp packets encode time stamp information, generic control and synchronization. It
uses a 21-bit timestamp counter (with possible prescalers) which is reset at each time
stamp packet emission. This counter can be either clocked by the CPU clock or the SWV
clock.

A synchronization packet consists of 6 bytes equal to 0x80_00_00_00_00_00 which is
emitted to the TPIU as 00 00 00 00 00 80 (LSB emitted first).

Debug support (DBG) RM0038

874/908 DocID15965 Rev 14

A synchronization packet is a timestamp packet control. It is emitted at each DWT trigger.

For this, the DWT must be configured to trigger the ITM: the bit CYCCNTENA (bit0) of the
DWT Control Register must be set. In addition, the bit2 (SYNCENA) of the ITM Trace
Control Register must be set.

Note: If the SYNENA bit is not set, the DWT generates Synchronization triggers to the TPIU which
will send only TPIU synchronization packets and not ITM synchronization packets.

An overflow packet consists is a special timestamp packets which indicates that data has
been written but the FIFO was full.

Table 205. Main ITM registers

Address Register Details

@E0000FB0 ITM lock access
Write 0xC5ACCE55 to unlock Write Access to the other ITM
registers

@E0000E80 ITM trace control

Bits 31-24 = Always 0

Bits 23 = Busy

Bits 22-16 = 7-bits ATB ID which identifies the source of the
trace data.

Bits 15-10 = Always 0

Bits 9:8 = TSPrescale = Time Stamp Prescaler

Bits 7-5 = Reserved

Bit 4 = SWOENA = Enable SWV behavior (to clock the
timestamp counter by the SWV clock).

Bit 3 = DWTENA: Enable the DWT Stimulus

Bit 2 = SYNCENA: this bit must be to 1 to enable the DWT to
generate synchronization triggers so that the TPIU can then
emit the synchronization packets.

Bit 1 = TSENA (Timestamp Enable)

Bit 0 = ITMENA: Global Enable Bit of the ITM

@E0000E40 ITM trace privilege

Bit 3: mask to enable tracing ports31:24

Bit 2: mask to enable tracing ports23:16

Bit 1: mask to enable tracing ports15:8

Bit 0: mask to enable tracing ports7:0

@E0000E00 ITM trace enable
Each bit enables the corresponding Stimulus port to generate
trace.

@E0000000-
E000007C

Stimulus port
registers 0-31

Write the 32-bits data on the selected Stimulus Port (32
available) to be traced out.

DocID15965 Rev 14 875/908

RM0038 Debug support (DBG)

887

Example of configuration

To output a simple value to the TPIU:

• Configure the TPIU and assign TRACE I/Os by configuring the DBGMCU_CR (refer to
Section 30.17.2: TRACE pin assignment and Section 30.16.3: Debug MCU
configuration register)

• Write 0xC5ACCE55 to the ITM Lock Access Register to unlock the write access to the
ITM registers

• Write 0x00010005 to the ITM Trace Control Register to enable the ITM with Sync
enabled and an ATB ID different from 0x00

• Write 0x1 to the ITM Trace Enable Register to enable the Stimulus Port 0

• Write 0x1 to the ITM Trace Privilege Register to unmask stimulus ports 7:0

• Write the value to output in the Stimulus Port Register 0: this can be done by software
(using a printf function)

30.15 ETM (Embedded trace macrocell)

30.15.1 ETM general description

The ETM enables the reconstruction of program execution. Data are traced using the Data
Watchpoint and Trace (DWT) component or the Instruction Trace Macrocell (ITM) whereas
instructions are traced using the Embedded Trace Macrocell (ETM).

The ETM transmits information as packets and is triggered by embedded resources. These
resources must be programmed independently and the trigger source is selected using the
Trigger Event Register (0xE0041008). An event could be a simple event (address match
from an address comparator) or a logic equation between 2 events. The trigger source is
one of the fourth comparators of the DWT module, The following events can be monitored:

• Clock cycle matching

• Data address matching

For more informations on the trigger resources refer to Section 30.13: DWT (data
watchpoint trigger).

The packets transmitted by the ETM are output to the TPIU (Trace Port Interface Unit). The
formatter of the TPIU adds some extra packets (refer to Section 30.17: TPIU (trace port
interface unit)) and then outputs the complete packet sequence to the debugger host.

30.15.2 ETM signal protocol and packet types

This part is described in the chapter 7 ETMv3 Signal Protocol of the ARM® IHI 0014N
document.

30.15.3 Main ETM registers

For more information on registers refer to the chapter 3 of the ARM® IHI 0014N
specification.

Debug support (DBG) RM0038

876/908 DocID15965 Rev 14

30.15.4 ETM configuration example

To output a simple value to the TPIU:

• Configure the TPIU and enable the I/IO_TRACEN to assign TRACE I/Os in the debug
configuration register.

• Write 0xC5AC CE55 to the ETM Lock Access Register to unlock the write access to the
ITM registers

• Write 0x0000 1D1E to the ETM control register (configure the trace)

• Write 0x0000 406F to the ETM Trigger Event register (define the trigger event)

• Write 0x0000 006F to the ETM Trace Enable Event register (define an event to
start/stop)

• Write 0x0000 0001 to the ETM Trace Start/stop register (enable the trace)

• Write 0x0000191E to the ETM Control Register (end of configuration)

30.16 MCU debug component (DBGMCU)

The MCU debug component helps the debugger provide support for:

• Low-power modes

• Clock control for timers, watchdog (WWDG and IWDG) and I2Cs

• Control of the trace pins assignment

30.16.1 Debug support for low-power modes

To enter low-power mode, the instruction WFI or WFE must be executed.

The MCU implements several low-power modes which can either deactivate the CPU clock
or reduce the power of the CPU.

The core does not allow FCLK or HCLK to be turned off during a debug session. As these
are required for the debugger connection, during a debug, they must remain active. The
MCU integrates special means to allow the user to debug software in low-power modes.

Table 206. Main ETM registers

Address Register Details

0xE0041FB0 ETM Lock Access
Write 0xC5ACCE55 to unlock the write access to the
other ETM registers.

0xE0041000 ETM Control
This register controls the general operation of the ETM,
for instance how tracing is enabled.

0xE0041010 ETM Status
This register provides information about the current status
of the trace and trigger logic.

0xE0041008 ETM Trigger Event This register defines the event that will control trigger.

0xE004101C
ETM Trace Enable
Control

This register defines which comparator is selected.

0xE0041020 ETM Trace Enable Event This register defines the trace enabling event.

0xE0041024 ETM Trace Start/Stop
This register defines the traces used by the trigger source
to start and stop the trace, respectively.

DocID15965 Rev 14 877/908

RM0038 Debug support (DBG)

887

For this, the debugger host must first set some debug configuration registers to change the
low-power mode behavior:

• In Sleep mode, DBG_SLEEP bit of DBGMCU_CR register must be previously set by
the debugger. This will feed HCLK with the same clock that is provided to FCLK
(system clock previously configured by the software).

• In Stop mode, the bit DBG_STOP must be previously set by the debugger. This will
enable the internal RC oscillator clock to feed FCLK and HCLK in STOP mode.

30.16.2 Debug support for timers, watchdog and I2C

During a breakpoint, it is necessary to choose how the counter of timers and watchdog
should behave:

• They can continue to count inside a breakpoint. This is usually required when a PWM is
controlling a motor, for example.

• They can stop to count inside a breakpoint. This is required for watchdog purposes.

For the I2C, the user can choose to block the SMBUS timeout during a breakpoint.

30.16.3 Debug MCU configuration register

This register allows the configuration of the MCU under DEBUG. This concerns:

• Low-power mode support: Sleep, Stop and Standby modes

• Trace pin assignment

This DBGMCU_CR is mapped on the External PPB bus at address 0xE0042004

It is asynchronously reset by the PORESET (and not the system reset). It can be written by
the debugger under system reset.

If the debugger host does not support these features, it is still possible for the user software
to write to these registers.

DBGMCU_CR register

Address: 0xE004 2004

Only 32-bit access supported

POR Reset: 0x0000 0000 (not reset by system reset)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

TRACE_
MODE [1:0]

TRACE_
IOEN Reserved

DBG_
STANDBY

DBG_
STOP

DBG_
SLEEP

rw rw rw rw rw rw

Debug support (DBG) RM0038

878/908 DocID15965 Rev 14

30.16.4 Debug MCU APB1 freeze register (DBGMCU_APB1_FZ)

The DBGMCU_APB1_FZ register is used to configure the MCU under DEBUG. It concerns
the APB1 peripherals:

• Timer clock counter freeze

• I2C SMBUS timeout freeze

• Window watchdog and independent watchdog counter freeze support

This DBGMCU_APB1_FZ is mapped on the external PPB bus at address 0xE0042008.

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:5 TRACE_MODE[1:0] and TRACE_IOEN: Trace pin assignment control

– With TRACE_IOEN=0:

TRACE_MODE=xx: TRACE pins not assigned (default state)

– With TRACE_IOEN=1:

– TRACE_MODE=00: TRACE pin assignment for Asynchronous Mode

– TRACE_MODE=01: TRACE pin assignment for Synchronous Mode with a
TRACEDATA size of 1

– TRACE_MODE=10: TRACE pin assignment for Synchronous Mode with a
TRACEDATA size of 2

– TRACE_MODE=11: TRACE pin assignment for Synchronous Mode with a
TRACEDATA size of 4

Bits 4:3 Reserved, must be kept at reset value.

Bit 2 DBG_STANDBY: Debug Standby mode

0: (FCLK=Off, HCLK=Off) The whole digital part is unpowered.
From software point of view, exiting from Standby is identical than fetching reset vector
(except a few status bit indicated that the MCU is resuming from Standby)
1: (FCLK=On, HCLK=On) In this case, the digital part is not unpowered and FCLK and
HCLK are provided by the internal RC oscillator which remains active. In addition, the MCU
generate a system reset during Standby mode so that exiting from Standby is identical than
fetching from reset

Bit 1 DBG_STOP: Debug Stop mode

0: (FCLK=Off, HCLK=Off) In STOP mode, the clock controller disables all clocks (including
HCLK and FCLK). When exiting from STOP mode, the clock configuration is identical to the
one after RESET (CPU clocked by the 16 MHz internal RC oscillator (HSI)). Consequently,
the software must reprogram the clock controller to enable the PLL, the Xtal, etc.
1: (FCLK=On, HCLK=On) In this case, when entering STOP mode, FCLK and HCLK are
provided by the internal RC oscillator which remains active in STOP mode. When exiting
STOP mode, the software must reprogram the clock controller to enable the PLL, the Xtal,
etc. (in the same way it would do in case of DBG_STOP=0)

Bit 0 DBG_SLEEP: Debug Sleep mode

0: (FCLK=On, HCLK=Off) In Sleep mode, FCLK is clocked by the system clock as
previously configured by the software while HCLK is disabled.
In Sleep mode, the clock controller configuration is not reset and remains in the previously
programmed state. Consequently, when exiting from Sleep mode, the software does not
need to reconfigure the clock controller.
1: (FCLK=On, HCLK=On) In this case, when entering Sleep mode, HCLK is fed by the same
clock that is provided to FCLK (system clock as previously configured by the software).

DocID15965 Rev 14 879/908

RM0038 Debug support (DBG)

887

The register is asynchronously reset by the POR (and not the system reset). It can be
written by the debugger under system reset.

Address: 0xE004 2008

Only 32-bit access are supported.

Power-on reset (POR): 0x0000 0000 (not reset by system reset)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

D
B

G
_

I2
C

2
_

S
M

B
U

S
_

T
IM

E
O

U
T

D
B

G
_

I2
C

1
_

S
M

B
U

S
_

T
IM

E
O

U
T

Reserved

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

D
B

G
_

IW
D

G
_

S
T

O
P

D
B

G
_

W
W

D
G

_
S

T
O

P

D
B

G
_

W
W

D
G

_
S

T
O

P

Reserved

D
B

G
_

T
IM

7
_

S
T

O
P

D
B

G
_

T
IM

6
_

S
T

O
P

R
e

se
rv

e
d

D
B

G
_

T
IM

4
_

S
T

O
P

D
B

G
_

T
IM

3
_

S
T

O
P

D
B

G
_

T
IM

2
_

S
T

O
P

rw rw rw rw rw rw rw rw

Bits 31:23 Reserved, must be kept at reset value.

Bit 22 DBG_I2C2_SMBUS_TIMEOUT: SMBUS timeout mode stopped when core is halted

0: Same behavior as in normal mode
1: The SMBUS timeout is frozen

Bit 21 DBG_I2C1_SMBUS_TIMEOUT: SMBUS timeout mode stopped when core is halted

0: Same behavior as in normal mode
1: The SMBUS timeout is frozen

Bits 20:13 Reserved, must be kept at reset value.

Bit 12 DBG_IWDG_STOP: Debug independent watchdog stopped when core is halted

0: The independent watchdog counter clock continues even if the core is halted
1: The independent watchdog counter clock is stopped when the core is halted

Bit 11 DBG_WWDG_STOP: Debug window watchdog stopped when core is halted

0: The window watchdog counter clock continues even if the core is halted
1: The window watchdog counter clock is stopped when the core is halted

Bit 10 DBG_RTC_STOP: Debug RTC stopped when core is halted

0: The clock of the RTC counter is fed even if the core is halted
1: The clock of the RTC counter is stopped when the core is halted

Note: This bit is available only in Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices.

Bits 9:6 Reserved, must be kept at reset value.

Debug support (DBG) RM0038

880/908 DocID15965 Rev 14

30.16.5 Debug MCU APB2 freeze register (DBGMCU_APB2_FZ)

The DBGMCU_APB2_FZ register is used to configure the MCU under DEBUG. It concerns
APB2 peripherals:

• Timer clock counter freeze

This register is mapped on the external PPB bus at address 0xE004 200C

It is asynchronously reset by the POR (and not the system reset). It can be written by the
debugger under system reset.

Address: 0xE004 200C

Only 32-bit access is supported.

POR: 0x0000 0000 (not reset by system reset)

Bit 5 DBG_TIM7_STOP: TIM7 counter stopped when core is halted

0: The counter clock of TIM7 is fed even if the core is halted
1: The counter clock of TIM7 is stopped when the core is halted

Bit 4 DBG_TIM6_STOP: TIM6 counter stopped when core is halted

0: The counter clock of TIM6 is fed even if the core is halted
1: The counter clock of TIM6 is stopped when the core is halted

Bit 3 DBG_TIM5_STOP: TIM5 counter stopped when core is halted

0: The counter clock of TIM5 is fed even if the core is halted
1: The counter clock of TIM5 is stopped when the core is halted

Note: This bit is available only in Cat.3, Cat.4, Cat.5 and Cat.6 devices.

Bit 2 DBG_TIM4_STOP: TIM4 counter stopped when core is halted

0: The counter clock of TIM4 is fed even if the core is halted
1: The counter clock of TIM4 is stopped when the core is halted

Bit 1 DBG_TIM3_STOP: TIM3 counter stopped when core is halted

0: The counter clock of TIM3 is fed even if the core is halted
1: The counter clock of TIM3 is stopped when the core is halted

Bit 0 DBG_TIM2_STOP: TIM2 counter stopped when core is halted

0: The counter clock of TIM2 is fed even if the core is halted
1: The counter clock of TIM2 is stopped when the core is halted

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Reserved

D
B

G
_

T
IM

11
_

S
T

O
P

D
B

G
_

T
IM

1
0

_S
T

O
P

D
B

G
_

T
IM

9_
S

T
O

P

Reserved

rw rw rw

DocID15965 Rev 14 881/908

RM0038 Debug support (DBG)

887

30.17 TPIU (trace port interface unit)

30.17.1 Introduction

The TPIU acts as a bridge between the on-chip trace data from the ITM and the ETM.

The output data stream encapsulates the trace source ID, that is then captured by a trace
port analyzer (TPA).

The core embeds a simple TPIU, especially designed for low-cost debug (consisting of a
special version of the CoreSight TPIU).

Figure 292. TPIU block diagram

Bits 31:5 Reserved, must be kept at reset value.

Bits 4:2 DBG_TIMx_STOP: TIMx counter stopped when core is halted (x=9..11)

0: The clock of the involved timer counter is fed even if the core is halted
1: The clock of the involved timer counter is stopped when the core is halted

Bits 1:0 Reserved, must be kept at reset value.

Debug support (DBG) RM0038

882/908 DocID15965 Rev 14

30.17.2 TRACE pin assignment

• Asynchronous mode

The asynchronous mode requires 1 extra pin and is available on all packages. It is only
available if using Serial Wire mode (not in JTAG mode).

• Synchronous mode

The synchronous mode requires from 2 to 6 extra pins depending on the data trace
size and is only available in the larger packages. In addition it is available in JTAG
mode and in Serial Wire mode and provides better bandwidth output capabilities than
asynchronous trace.

TPUI TRACE pin assignment

By default, these pins are NOT assigned. They can be assigned by setting the
TRACE_IOEN and TRACE_MODE bits in the MCU Debug component configuration
register. This configuration has to be done by the debugger host.

In addition, the number of pins to assign depends on the trace configuration (asynchronous
or synchronous).

• Asynchronous mode: 1 extra pin is needed

• Synchronous mode: from 2 to 5 extra pins are needed depending on the size of the
data trace port register (1, 2 or 4):

– TRACECK

– TRACED(0) if port size is configured to 1, 2 or 4

– TRACED(1) if port size is configured to 2 or 4

– TRACED(2) if port size is configured to 4

– TRACED(3) if port size is configured to 4

To assign the TRACE pin, the debugger host must program the bits TRACE_IOEN and
TRACE_MODE[1:0] of the Debug MCU configuration Register (DBGMCU_CR). By default
the TRACE pins are not assigned.

This register is mapped on the external PPB and is reset by the PORESET (and not by the
SYSTEM reset). It can be written by the debugger under SYSTEM reset.

Table 207. Asynchronous TRACE pin assignment

TPUI pin name
Trace synchronous mode STM32L1xxxx pin

assignment
Type Description

TRACESWO O TRACE Async Data Output PB3

Table 208. Synchronous TRACE pin assignment

TPUI pin name
Trace synchronous mode STM32L1xxxxpin

assignment
Type Description

TRACECK O TRACE Clock PE2

TRACED[3:0] O
TRACE Sync Data Outputs

Can be 1, 2 or 4.
PE[6:3]

DocID15965 Rev 14 883/908

RM0038 Debug support (DBG)

887

Note: By default, the TRACECLKIN input clock of the TPIU is tied to GND. It is assigned to HCLK
two clock cycles after the bit TRACE_IOEN has been set.

The debugger must then program the Trace Mode by writing the PROTOCOL[1:0] bits in the
SPP_R (Selected Pin Protocol) register of the TPIU.

• PROTOCOL=00: Trace Port Mode (synchronous)

• PROTOCOL=01 or 10: Serial Wire (Manchester or NRZ) Mode (asynchronous mode).
Default state is 01

It then also configures the TRACE port size by writing the bits [3:0] in the CPSPS_R
(Current Sync Port Size Register) of the TPIU:

• 0x1 for 1 pin (default state)

• 0x2 for 2 pins

• 0x8 for 4 pins

30.17.3 TPUI formatter

The formatter protocol outputs data in 16-byte frames:

• seven bytes of data

• eight bytes of mixed-use bytes consisting of:

– 1 bit (LSB) to indicate it is a DATA byte (‘0) or an ID byte (‘1).

– 7 bits (MSB) which can be data or change of source ID trace.

• one byte of auxiliary bits where each bit corresponds to one of the eight mixed-use
bytes:

– if the corresponding byte was a data, this bit gives bit0 of the data.

– if the corresponding byte was an ID change, this bit indicates when that ID change
takes effect.

Table 209. Flexible TRACE pin assignment

DBGMCU_CR
register

Pins
assigned for:

TRACE IO pin assigned

TRACE
_IOEN

TRACE
_MODE

[1:0]

PB3 /JTDO/
TRACESWO

PE2/

TRACECK
PE3 /

TRACED[0]
PE4 /

TRACED[1]
PE5 /

TRACED[2]
PE6 /

TRACED[3]

0 XX
No Trace

(default state)
Released (1) -

1 00
Asynchronous

Trace
TRACESWO - -

Released
(usable as GPIO)

1 01
Synchronous

Trace 1 bit

Released (1)

TRACECK TRACED[0] - - -

1 10
Synchronous

Trace 2 bit
TRACECK TRACED[0] TRACED[1] - -

1 11
Synchronous

Trace 4 bit
TRACECK TRACED[0] TRACED[1] TRACED[2] TRACED[3]

1. When Serial Wire mode is used, it is released. But when JTAG is used, it is assigned to JTDO.

Debug support (DBG) RM0038

884/908 DocID15965 Rev 14

Note: Refer to the ARM® CoreSight Architecture Specification v1.0 (ARM® IHI 0029B) for further
information

30.17.4 TPUI frame synchronization packets

The TPUI can generate two types of synchronization packets:

• The Frame Synchronization packet (or Full Word Synchronization packet)

It consists of the word: 0x7F_FF_FF_FF (LSB emitted first). This sequence can not
occur at any other time provided that the ID source code 0x7F has not been used.

It is output periodically between frames.

In continuous mode, the TPA must discard all these frames once a synchronization
frame has been found.

• The Half-Word Synchronization packet

It consists of the half word: 0x7F_FF (LSB emitted first).

It is output periodically between or within frames.

These packets are only generated in continuous mode and enable the TPA to detect
that the TRACE port is in IDLE mode (no TRACE to be captured). When detected by
the TPA, it must be discarded.

30.17.5 Transmission of the synchronization frame packet

There is no Synchronization Counter register implemented in the TPIU of the core.
Consequently, the synchronization trigger can only be generated by the DWT. Refer to the
registers DWT Control Register (bits SYNCTAP[11:10]) and the DWT Current PC Sampler
Cycle Count Register.

The TPUI Frame synchronization packet (0x7F_FF_FF_FF) is emitted:

• after each TPIU reset release. This reset is synchronously released with the rising
edge of the TRACECLKIN clock. This means that this packet is transmitted when the
TRACE_IOEN bit in the DBGMCU_CFG register is set. In this case, the word
0x7F_FF_FF_FF is not followed by any formatted packet.

• at each DWT trigger (assuming DWT has been previously configured). Two cases
occur:

– If the bit SYNENA of the ITM is reset, only the word 0x7F_FF_FF_FF is emitted
without any formatted stream which follows.

– If the bit SYNENA of the ITM is set, then the ITM synchronization packets will
follow (0x80_00_00_00_00_00), formatted by the TPUI (trace source ID added).

30.17.6 Synchronous mode

The trace data output size can be configured to 4, 2 or 1 pin: TRACED(3:0)

The output clock is output to the debugger (TRACECK)

Here, TRACECLKIN is driven internally and is connected to HCLK only when TRACE is
used.

Note: In this synchronous mode, it is not required to provide a stable clock frequency.

The TRACE I/Os (including TRACECK) are driven by the rising edge of TRACLKIN (equal
to HCLK). Consequently, the output frequency of TRACECK is equal to HCLK/2.

DocID15965 Rev 14 885/908

RM0038 Debug support (DBG)

887

30.17.7 Asynchronous mode

This is a low cost alternative to output the trace using only 1 pin: this is the asynchronous
output pin TRACESWO. Obviously there is a limited bandwidth.

TRACESWO is multiplexed with JTDO when using the SW-DP pin. This way, this
functionality is available in all STM32L1xxxx packages.

This asynchronous mode requires a constant frequency for TRACECLKIN. For the standard
UART (NRZ) capture mechanism, 5% accuracy is needed. The Manchester encoded
version is tolerant up to 10%.

30.17.8 TRACECLKIN connection inside the STM32L1xxxx

In the STM32L1xxxx, this TRACECLKIN input is internally connected to HCLK. This means
that when in asynchronous trace mode, the application is restricted to use to time frames
where the CPU frequency is stable.

Note: Important: when using asynchronous trace: it is important to be aware that:

The default clock of the STM32L1xxxx MCUs is the internal RC oscillator. Its frequency
under reset is different from the one after reset release. This is because the RC calibration
is the default one under system reset and is updated at each system reset release.

Consequently, the trace port analyzer (TPA) should not enable the trace (with the
TRACE_IOEN bit) under system reset, because a Synchronization Frame Packet will be
issued with a different bit time than trace packets which will be transmitted after reset
release.

30.17.9 TPIU registers

The TPIU APB registers can be read and written only if the bit TRCENA of the Debug
Exception and Monitor Control Register (DEMCR) is set. Otherwise, the registers are read
as zero (the output of this bit enables the PCLK of the TPIU).

Table 210. Important TPIU registers

Address Register Description

0xE0040004 Current port size

Allows the trace port size to be selected:

Bit 0: Port size = 1
Bit 1: Port size = 2
Bit 2: Port size = 3, not supported
Bit 3: Port Size = 4

Only 1 bit must be set. By default, the port size is one bit. (0x00000001)

0xE00400F0 Selected pin protocol

Allows the Trace Port Protocol to be selected:

Bit1:0=
00: Sync Trace Port Mode
01: Serial Wire Output - manchester (default value)
10: Serial Wire Output - NRZ
11: reserved

Debug support (DBG) RM0038

886/908 DocID15965 Rev 14

30.17.10 Example of configuration

• Set the bit TRCENA in the Debug Exception and Monitor Control Register (DEMCR)

• Write the TPIU Current Port Size Register to the desired value (default is 0x1 for a 1-bit
port size)

• Write TPIU Formatter and Flush Control Register to 0x102 (default value)

• Write the TPIU Select Pin Protocol to select the sync or async mode. Example: 0x2 for
async NRZ mode (UART like)

• Write the DBGMCU control register to 0x20 (bit IO_TRACEN) to assign TRACE I/Os
for async mode. A TPIU Sync packet is emitted at this time (FF_FF_FF_7F)

• Configure the ITM and write the ITM Stimulus register to output a value

30.18 DBG register map

The following table summarizes the Debug registers. The reserved memory areas are
highlighted in gray in the table.

0xE0040304
Formatter and flush
control

Bits 31-9 = always ‘0
Bit 8 = TrigIn = always ‘1 to indicate that triggers are indicated
Bits 7-4 = always 0
Bits 3-2 = always 0
Bit 1 = EnFCont. In Sync Trace mode (Select_Pin_Protocol register
bit1:0=00), this bit is forced to ‘1: the formatter is automatically enabled in
continuous mode. In asynchronous mode (Select_Pin_Protocol register
bit1:0 <> 00), this bit can be written to activate or not the formatter.
Bit 0 = always 0

The resulting default value is 0x102

Note: In synchronous mode, because the TRACECTL pin is not mapped
outside the chip, the formatter is always enabled in continuous mode -this
way the formatter inserts some control packets to identify the source of the
trace packets).

0xE0040300
Formatter and flush
status

Not used in Cortex®-M3, always read as 0x00000008

Table 210. Important TPIU registers (continued)

Address Register Description

DocID15965 Rev 14 887/908

RM0038 Debug support (DBG)

887

.

Table 211. DBG register map and reset values

Addr. Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0xE004
2000

DBGMCU_
IDCODE

REV_ID
Reserved

DEV_ID

Reset value(1) X

0xE004
2004

DBGMCU_CR
Reserved

T
R

A
C

E
_

M
O

D
E

 [
1

:0
]

T
R

A
C

E
_

IO
E

N

R
e

se
rv

e
d

D
B

G
_

D
B

G
_

D
B

G
_

Reset value 0 0 0 0 0 0

0xE004
2008

DBGMCU_
APB1_FZ Reserved

D
B

G
_

I2
C

2
_

S
M

B
U

S
_T

IM
E

O
U

T

D
B

G
_

I2
C

1
_

S
M

B
U

S
_T

IM
E

O
U

T

Reserved

D
B

G
_

IW
D

G
_

S
T

O
P

D
B

G
_W

W
D

G
_

S
T

O
P

D
B

G
_

R
T

C
_

S
T

O
P

Reserved

D
B

G
_

T
IM

7_
S

T
O

P

D
B

G
_

T
IM

6_
S

T
O

P

D
B

G
_

T
IM

5_
S

T
O

P

D
B

G
_

T
IM

4_
S

T
O

P

D
B

G
_

T
IM

3_
S

T
O

P

D
B

G
_

T
IM

2_
S

T
O

P

Reset value 0 0 0 0 0 0 0 0 0 0 0

0xE004
200C

DBGMCU_
APB2_FZ Reserved

D
B

G
_

T
IM

11
_

S
T

O
P

D
B

G
_T

IM
1

0_
S

T
O

P

D
B

G
_

T
IM

9
_

S
T

O
P

R
es

er
ve

d

Reset value 0 0 0

1. The reset value is product dependent. For more information, refer to Section 30.6.1: MCU device ID code.

Device electronic signature RM0038

888/908 DocID15965 Rev 14

31 Device electronic signature

This section applies to all STM32L1xxxx devices, unless otherwise specified.

The electronic signature is stored in the System memory area in the Flash memory module,
and can be read using the JTAG/SWD or the CPU. It contains factory-programmed
identification data that allow the user firmware or other external devices to automatically
match its interface to the characteristics of the STM32L1xxxx microcontroller.

31.1 Memory size register

31.1.1 Flash size register

Base address: 0x1FF8004C for Cat.1 and Cat.2 devices

Base address: 0x1FF800CC for Cat.3, Cat.4, Cat.5 and Cat.6 devices

Read only = 0xXXXX where X is factory-programmed

31.2 Unique device ID registers (96 bits)

The unique device identifier is ideally suited:

• for use as serial numbers

• for use as security keys in order to increase the security of code in Flash memory while
using and combining this unique ID with software cryptographic primitives and
protocols before programming the internal Flash memory

• to activate secure boot processes, etc.

The 96-bit unique device identifier provides a reference number which is unique for any
device and in any context. These bits can never be altered by the user.

The 96-bit unique device identifier can also be read in single bytes/half-words/words in
different ways and then be concatenated using a custom algorithm.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F_SIZE

r r r r r r r r r r r r r r r r

Bits 15:0 F_SIZE: Flash memory size

For DEV_ID = 0x416 or 0x427 or 0x429 or 0x437, this field value indicates the Flash memory
size of the device in Kbytes.
Example: 0x0080 = 128 Kbytes.
For DEV_ID = 0x436, the field value can be ‘0’ or ‘1’, with ‘0’ for 384 Kbytes and ‘1’ for 256
Kbytes.

Note: For DEV_ID = 0x429, only LSB part of F_SIZE: F_SIZE[7:0] is valid. The MSB part
F_SIZE[15:8] is reserved and must be ignored.

DocID15965 Rev 14 889/908

RM0038 Device electronic signature

889

Base address: 0x1FF80050 for Cat.1 and Cat.2 devices and 0x1FF800D0 for Cat.3, Cat.4,
Cat.5 and Cat.6 devices

Address offset: 0x00

Read only = 0xXXXX where X is factory-programmed

Address offset: 0x04

Read only = 0xXXXX where X is factory-programmed

Address offset: 0x14

Read only = 0xXXXX XXXX where X is factory-programmed

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

U_ID(31:16)

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U_ID(15:0)

r r r r r r r r r r r r r r r r

Bits 31:0 U_ID(31:0): 31:0 unique ID bits

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48

U_ID(63:48)

r r r r r r r r r r r r r r r r

47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

U_ID(47:32)

r r r r r r r r r r r r r r r r

Bits 63:32 U_ID(63:32): 63:32 unique ID bits

95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80

U_ID(95:80)

r r r r r r r r r r r r r r r r

79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64

U_ID(79:64)

r r r r r r r r r r r r r r r r

Bits 95:64 U_ID(95:64): 95:64 unique ID bits

RM0038 Index

DocID15965 Rev 14 890/908

Index

A
ADC_CCR .306
ADC_CR1 .84, 291
ADC_CR2 .293
ADC_CSR .306
ADC_DR .305
ADC_HTR .299
ADC_JDRx .304
ADC_JOFRx .299
ADC_JSQR .304
ADC_LTR .299
ADC_SMPR0 .305
ADC_SMPR1 .297
ADC_SMPR2 206-207, 297
ADC_SMPR3 .298
ADC_SQR1 .301
ADC_SQR2 .301
ADC_SQR3 .302
ADC_SQR4 .303
ADC_SQR5 .303
ADC_SR .289, 348
AES_CR .578
AES_DINR .581
AES_DOUTR .581
AES_IVR .583
AES_KEYRx .582
AES_SR .580

C
COMP_CSR .340
CRC_DR .95
CRC_IDR .95

D
DAC_CR .323
DAC_DHR12L1 .327
DAC_DHR12L2 .328
DAC_DHR12LD .329
DAC_DHR12R1 .326
DAC_DHR12R2 .328
DAC_DHR12RD .329
DAC_DHR8R1 .327
DAC_DHR8R2 .328
DAC_DHR8RD .330
DAC_DOR1 .330
DAC_DOR2 .330

DAC_SR . 331
DAC_SWTRIGR . 326
DBGMCU_APB1_FZ 878
DBGMCU_APB2_FZ 880
DBGMCU_CR . 877
DBGMCU_IDCODE 864
DMA_CCRx . 259
DMA_CMARx . 261
DMA_CNDTRx . 260
DMA_CPARx . 261
DMA_IFCR . 258
DMA_ISR . 257

E
EXTI_EMR . 241
EXTI_FTSR . 242
EXTI_IMR . 241
EXTI_PR . 244
EXTI_RTSR . 242
EXTI_SWIER . 243

F
FSMC_BCR1..4 . 651
FSMC_BTR1..4 . 654
FSMC_BWTR1..4 . 657

G
GPIOx_AFRH . 188
GPIOx_AFRL . 187
GPIOx_BRR . 188
GPIOx_BSRR . 185
GPIOx_IDR . 185
GPIOx_LCKR . 186
GPIOx_MODER . 183
GPIOx_ODR . 185
GPIOx_OSPEEDR . 184
GPIOx_OTYPER . 183
GPIOx_PUPDR . 184

I
I2C_CCR . 691
I2C_CR1 . 681
I2C_CR2 . 683
I2C_DR . 686
I2C_OAR1 . 685

Index RM0038

891/908 DocID15965 Rev 14

I2C_OAR2 .685
I2C_SR1 .686
I2C_SR2 .690
I2C_TRISE .692
IWDG_KR .551
IWDG_PR .551
IWDG_RLR .552
IWDG_SR .552

L
LCD_CLR .378
LCD_CR .374
LCD_RAM .379

P
PWR_CR .120
PWR_CSR .123

R
RCC_AHB1RSTR .147
RCC_AHBENR 153, 159
RCC_APB1ENR157, 163
RCC_APB1RSTR .150
RCC_APB2ENR155, 161
RCC_APB2RSTR .149
RCC_CFGR .141
RCC_CIR .144
RCC_CR .139
RCC_CSR .165
RI_ASCR1 .203
RI_ASCR2 .205
RI_HYSCR1 .206
RI_HYSCR4 .208
RI_ICR .201
RTC_ALRMAR .535
RTC_ALRMBR .536
RTC_ALRMBSSR .545
RTC_BKxR .546
RTC_CALIBR .534
RTC_CALR .540
RTC_CR .528
RTC_DR .527
RTC_ISR .530
RTC_PRER .533
RTC_SHIFTR .538
RTC_SSR .537
RTC_TCR .542
RTC_TR .526
RTC_TSDR .539
RTC_TSSSR .540

RTC_TSTR . 539
RTC_WPR . 537
RTC_WUTR . 533

S
SDIO_CLKCR . 842
SDIO_DCOUNT . 848
SDIO_DCTRL . 847
SDIO_DLEN . 846
SDIO_DTIMER . 846
SDIO_FIFO . 855
SDIO_FIFOCNT . 854
SDIO_ICR . 850
SDIO_MASK . 852
SDIO_POWER . 841
SDIO_RESPCMD . 845
SDIO_RESPx . 845
SDIO_STA . 849
SPI_CR1 . 789
SPI_CR2 . 791
SPI_CRCPR . 795
SPI_DR . 793
SPI_I2SCFGR . 796
SPI_I2SPR . 797
SPI_RXCRCR . 795
SPI_SR . 792
SPI_TXCRCR . 795
SYSCFG_EXTICR1 219
SYSCFG_EXTICR2 221
SYSCFG_EXTICR3 221
SYSCFG_EXTICR4 222
SYSCFG_MEMRMP 218

T
TIM2_OR . 437
TIMx_ARR433, 477, 490, 505
TIMx_CCER 431, 476, 489
TIMx_CCMR1 427, 473, 486
TIMx_CCMR2 . 430
TIMx_CCR1 433, 478-479, 491-492
TIMx_CCR2 . 434, 478
TIMx_CCR3 . 434
TIMx_CCR4 . 435
TIMx_CNT433, 477, 490, 504
TIMx_CR1 418, 463, 481-482, 501
TIMx_CR2 420, 465, 503
TIMx_DCR . 435
TIMx_DIER 423, 468, 484, 503
TIMx_DMAR . 436
TIMx_EGR426, 471, 485, 504
TIMx_PSC433, 477, 490, 505

RM0038 Index

DocID15965 Rev 14 892/908

TIMx_SMCR .421, 466
TIMx_SR 424, 470, 484, 504

U
USART_BRR .738
USART_CR1 .738
USART_CR2 .741
USART_CR3 .742
USART_DR .738
USART_GTPR .744
USART_SR .735
USB_ADDRn_RX .615
USB_ADDRn_TX .614
USB_BTABLE .608
USB_CNTR .602
USB_COUNTn_RX .616
USB_COUNTn_TX .615
USB_DADDR .608
USB_EPnR .609
USB_FNR .607
USB_ISTR .604

W
WWDG_CFR .559
WWDG_CR .558
WWDG_SR .559

DocID15965 Rev 14 893/908

RM0038 Revision history

907

32 Revision history

Table 212. Document revision history

Date Revision Changes

02-Jul-2010 1 Initial release.

01-Oct-2010 2

Modified note in Section 7.3.2 after Section Table 38.

Updated Figure 15: Clock tree on page 129
Modified Table 33: Standby mode on page 117 (wakeup latency)

Updated Section 12.12: Temperature sensor and internal reference
voltage on page 285

Updated SOF and SOFC bit descriptions in Section 16.5: LCD
registers on page 374

Updated RTC register write protection on page 513
Updated I2C Master receiver on page 671

29-Nov-2010 3

Modified Section 5.3.1: Behavior of clocks in low-power modes (65 kHz
instead of 64 KHz)
Modified Section 5.3.9: Waking up the device from Stop and Standby
modes using the RTC and comparators on page 117
Modified sequence orders in RTC auto-wakeup (AWU) from the Stop
mode on page 118 and Section 5.4.1: PWR power control register
(PWR_CR) on page 120
Modified Section 6.2.3: MSI clock on page 132
Modified MSIRANGE bit description in Section 6.3.2: Internal clock
sources calibration register (RCC_ICSCR) on page 141

Modified PLS[2:0] bit description in Section 5.4.1: PWR power control
register (PWR_CR)Modified Section 6.2.6: LSI clock on page 133
Modified Section 8.4.7: RI Hysteresis control register (RI_HYSCR4) on
page 208 (“SCM” instead of “ST”)
Modified Section 8.5.7: SYSCFG register map on page 222
(“SYSCFG_MEMRMP” instead of “SYSCFG_MEMRM”)
Updated Note: in Section 12.3: ADC functional description.

Updated Section 12.3.3: Channel selection.

Updated entire Section 12.12: Temperature sensor and internal
reference voltage including Figure 53: Temperature sensor and
VREFINT channel block diagram.

Updated AWDCH bit description in Section 12.15.2: ADC control
register 1 (ADC_CR1) on page 291.

Section 12.15.3: ADC control register 2 (ADC_CR2) on page 293.

Updated JSQ bit description and added note in Section 12.15.15: ADC
injected sequence register (ADC_JSQR) on page 304

Modified Figure 65: COMP2 interconnections (Cat.1 and Cat.2
devices) on page 337
odifiedSection 14.4: Comparator 1 (COMP1) on page 334 and
Section 14.9.1: COMP comparator control and status register
(COMP_CSR) on page 340
Modified Section 16.2: LCD main features on page 355

Revision history RM0038

894/908 DocID15965 Rev 14

29-Nov-2010
3

(continued)

Modified content of Section 20: Real-time clock (RTC) on page 507
and changed bit and register names, added note on APB vs RTCCLK
frequency in Section 20.3.6 on page 514.

Modified Table 92: Min/max IWDG timeout period at 37 kHz (LSI) on
page 550
Modified Section : LIN reception on page 720
Modified note in Structure and usage of packet buffers on page 591

Modified Section : on page 864
Modified Figure 68: Comparators in Window mode on page 339
Modified REV_ID(15:0) description in Section 30.6.1: MCU device ID
code on page 864
Added Section 31: Device electronic signature on page 888

Added Section 31.1.1: Flash size register on page 888

24-Feb-2010 4

Modified Table 49: Vector table (Cat.1 and Cat.2 devices) on page 230
(TIM9 and LCD)
Modified Figure 72: LCD controller block diagram on page 357
Modified PON[2:0], CC[2:0] and PS[3:0] bit description in
Section 16.5.2: LCD frame control register (LCD_FCR) on page 375
Modified Section 5.3: Low-power modes
Modified Section 7.3.13: Using the OSC32_IN/OSC32_OUT pins as
GPIO PC14/PC15 port pins and Section 7.3.14: Using the
OSC_IN/OSC_OUT pins as GPIO PH0/PH1 port pins

Modified Section 13.1: DAC introduction on page 311
Added note 2 to Section 16.2: LCD main features on page 355
Modified bit descriptions in Section 17.4.17: TIMx DMA control register
(TIMx_DCR) on page 435
Modified DMAB[15:0] bit description in Section 17.4.18: TIMx DMA
address for full transfer (TIMx_DMAR) on page 436
Modified Section 26.3.7: DMA requests on page 677
Added note below Figure 211: Transfer sequence diagram for slave
receiver on page 667
Modified Section : Closing slave communication on page 667
Modified Section 26.6.6: I2C Status register 1 (I2C_SR1) on page 686
Added note to Section 26.6.7: I2C Status register 2 (I2C_SR2) on
page 690

Modified note in Section 26.6.8: I2C Clock control register (I2C_CCR)
on page 691

Modified Section 28: Serial peripheral interface (SPI) on page 746
Added note below Figure 211: Transfer sequence diagram for slave
receiver on page 667

17-Jan-2012 5

Moved CRC calculation unit to Section 4

Added Section 9: Touch sensing I/Os, Section 15: Operational
amplifiers (OPAMP), Section 23: Advanced encryption standard
hardware accelerator (AES), Section 25: Flexible static memory
controller (FSMC), Section 29: Secure digital input/output interface
(SDIO) for Cat.1 devices.

Modified Section 6.2.9: Clock security system (CSS) on page 134
Modified Section 6.3.1: Clock control register (RCC_CR) on page 139

Table 212. Document revision history (continued)

Date Revision Changes

DocID15965 Rev 14 895/908

RM0038 Revision history

907

13-Jul-2012 6

Updated for medium+ devices

Added Figure 2: System architecture (Cat.3 devices) on page 43

Added Table 9: NVM module organization (Cat.3 devices) on page 54

Added Figure 26: Routing interface (RI) block diagram for Cat.3
devices on page 193

Added Table 50: Vector table (Cat.3 devices) on page 232

Added Figure 35: DMA block diagram in Cat.3 STM32L1xxxx devices
on page 248

Removed VDDA in Section 5.2.3: Programmable voltage detector
(PVD)

Replaced “pulse or pending” with “event or interrupt” in Section 10.2:
External interrupt/event controller (EXTI)

Replaced “simplex communication” and “simplex mode” with “half-
duplex communication” and “half-duplex” mode in Section 28: Serial
peripheral interface (SPI)

Corrected Figure 25: Routing interface (RI) block diagram for Cat.1 and
Cat.2 devices on page 192 and Figure 27: Routing interface (RI) block
diagram for Cat.4, Cat.5 and Cat.6 devices on page 194

In Section 9: Touch sensing I/Os:
replaced ‘36’ with ‘34’ in “supports up to 36 capacitive sensing
channels” ,
replaced ‘6’ with ‘4’ in “One sampling capacitor for up to 6 capacitive
sensing channels”,
replaced “Compatible with touch” with “compatible with touchkey”,
replaced “STM32 touch sensing” with “STM32L1xx STMTouch”,
replaced “STM32 touch sensing library STM32L1xx” with STMTouch
sensing library”

Corrected connection to G1_IO2 pin in Figure 29: Surface charge
transfer analog IO group structure on page 225

Corrected display of the ETF[3:0] bit-field description in Section 17.4.3:
TIMx slave mode control register (TIMx_SMCR)

Added Figure 213: Transfer sequence diagram for master receiver on
page 672

Added a line with value = "0x1018” in Section 30.6.1: MCU device ID
code

Added line “Clear WUF bit...” in Table 32: Stop mode on page 116

Table 212. Document revision history (continued)

Date Revision Changes

Revision history RM0038

896/908 DocID15965 Rev 14

13-Jul-2012
6

(continued)

Modified RTCSEL bit-field description in Section 6.3.14: Control/status
register (RCC_CSR) and changed “Reset value” to "Power-on reset
value”

Moved ‘Rev A’ label to line 0x1018 in the REV_ID bit field
Section 30.6.1: MCU device ID code on page 864 and added
‘Medium+’ in the description

Corrected ‘2728 conversions’ in Section 12.3.3: Channel selection on
page 270 and changed ‘Due to internal connections...’ note in
Section 12.3: ADC functional description on page 266.

Updated arrow between OC2 mux and NOR gate in Figure 31: Timer
mode acquisition logic on page 228

Corrected ‘7.9370%’ in Figure 160: Audio-frequency precision using
standard 8 MHz HSE (Cat.3, Cat.4, Cat.5 and Cat.6 devices only) on
page 781

Updated bit description for all CMR5 registers in Section 8.4: RI
registers on page 201

Replaced ‘CH31 GR7-1’, ‘COMP1_SW1’ and ‘CH31 GR11-5’ in
Section 8.4.2: RI analog switches control register (RI_ASCR1) on
page 203

Modified description of bit 25:22, bit 5 and bit 4 in Section 8.4.2: RI
analog switches control register (RI_ASCR1) on page 203, Modified
description of Bit 5 SW1 in Section 14.9.1: COMP comparator control
and status register (COMP_CSR) on page 340

Modified cross reference to RI(RI_ASRCR1) section in Section 15.3.2:
Using the OPAMP outputs as ADC inputs on page 346

Updated Table 45: RI register map and reset values on page 216 and
Table 71: COMP register map and reset values on page 343

Added bit 29 "GR5-4" and bit 15 "GR4-4" in Section 8.4.3: RI analog
switch control register 2 (RI_ASCR2) on page 205

Added ‘f_MSI range1’ in Section 5.3.4: Low-power run mode (LP run)
on page 111

14-Mar-2013 7

Updated description of OSPEEDR bits in Section 7: General-purpose
I/Os (GPIO).

Updated max. input frequency in Section 20.3.1: Clock and prescalers.

In Section 25: Flexible static memory controller (FSMC):

– Updated Figure 188: FSMC block diagram.

– Updated Section 25.5.4: NOR Flash/PSRAM controller
asynchronous transactions.

– Modified differences between Mode B and mode 1 in Section : Mode
2/B - NOR Flash.

Table 212. Document revision history (continued)

Date Revision Changes

DocID15965 Rev 14 897/908

RM0038 Revision history

907

14-Mar-2013
7

(continued)

– Modified differences between Mode C and mode 1 in Section : Mode
C - NOR Flash - OE toggling.

– Modified differences between Mode D and mode 1 in Section : Mode
D - asynchronous access with extended address.

– Updated NWAIT signal in Figure 203: Asynchronous wait during a
read access, Figure 204: Asynchronous wait during a write access,
Figure 205: Wait configurations, Figure 206: Synchronous
multiplexed read mode - NOR, PSRAM (CRAM), and Figure 207:
Synchronous multiplexed write mode - PSRAM (CRAM).

– Updated Section : SRAM/NOR-Flash chip-select control registers
1..4 (FSMC_BCR1..4).

– Updated WAITEN definition in Table 133: FSMC_BCRx bit fields and
Table 135: FSMC_BCRx bit fields.

– Updated Table 117: FSMC_BCRx bit fields to Table 136:
FSMC_BTRx bit fields.

Updated Bits 11:0 description in Section 30.6.1: MCU device ID code.

Updated Section 31.1.1: Flash size register and Section 31.2: Unique
device ID registers (96 bits).

19-Apr-2013 8

Added STM32L100xx value line

Added reference to PM0056 in cover page

Updated Section 5.1.3: RTC and RTC backup registers

Updated 4.2 MHz in Section 5.1.7: Voltage regulator and clock
management when VDD drops below 2.0 V, Section 5.3.1: Behavior of
clocks in low-power modes and Section 6.2.8: System clock source
frequency versus voltage range

Updated “...for each internal rest source” in Section 6.1.2: Power reset

Removed first paragraph in Section 8: System configuration controller
(SYSCFG) and routing interface (RI)

Removed GR5-4 and GR4-4 bits and corrected bits 28:16 definition in
Section 8.4.3: RI analog switch control register 2 (RI_ASCR2)

Updated Section 8.5.1: SYSCFG memory remap register
(SYSCFG_MEMRMP), added FSMC to bit MEM_MODE

Added LCD_CAPA to Section 8.5.2: SYSCFG peripheral mode
configuration register (SYSCFG_PMC)

Updated Section 8.5.3: SYSCFG external interrupt configuration
register 1 (SYSCFG_EXTICR1), Section 8.5.4: SYSCFG external
interrupt configuration register 2 (SYSCFG_EXTICR2), Section 8.5.5:
SYSCFG external interrupt configuration register 3
(SYSCFG_EXTICR3) and Section 8.5.6: SYSCFG external interrupt
configuration register 4 (SYSCFG_EXTICR4)

Table 212. Document revision history (continued)

Date Revision Changes

Revision history RM0038

898/908 DocID15965 Rev 14

19-Apr-2013
8

(continued)

Updated Section 9.1: Introduction for value line devices

Replaced 23 by 24 lines in Section 10: Interrupts and events

Updated Section 10.1: Nested vectored interrupt controller (NVIC)

Updated the number of GPIOs in Section 10.2.5: External
interrupt/event line mapping

Updated Figure 33: External interrupt/event GPIO mapping

Added bit 23 to Section 10.3: EXTI registers

Added Section 18.3.14: Encoder interface mode (only for TIM9)

Replaced OPAMP_OPTR and OPAMP_CSR with OPAMP_OTR in
Section 15.3.3: Calibration

Updated bit 31 OT_USER in Section 15.4.2: OPAMP offset trimming
register for normal mode (OPAMP_OTR)

Removed first paragraph in Section 12: Analog-to-digital converter
(ADC), Section 14: Comparators (COMP), Section 15: Operational
amplifiers (OPAMP), Section 17: General-purpose timers (TIM2 to
TIM5), Section 20: Real-time clock (RTC), Section 24: Universal serial
bus full-speed device interface (USB), Section 25: Flexible static
memory controller (FSMC), Section 28: Serial peripheral interface
(SPI) and Section 29: Secure digital input/output interface (SDIO)

Added “VLCD rails...” bullet in Section 16.2: LCD main features

Updated Figure 73: 1/3 bias, 1/4 duty

Added External decoupling to Section 16.4.5: Voltage generator

Updated Figure 80: LCD voltage control

Added Section 16.4.7: Double buffer memory

Removed Pulse mode in Section 18.2.2: TIM10/TIM11 main features

Updated Section 20.3.13: Tamper detection

Updated system reset value in Section 20.6.4: RTC initialization and
status register (RTC_ISR)

Changed min. value for address set to 0 in Table 120, Table 121,
Table 123, Table 124, Table 126

Updated DEV_ID = 0x436 in Section 31.1.1: Flash size register

Table 212. Document revision history (continued)

Date Revision Changes

DocID15965 Rev 14 899/908

RM0038 Revision history

907

03-Mar-2014 9

Replaced “Low density”, “Medium density”, “Medium+ density” and
“High density” categories by Cat.1, Cat.2, Cat.3, Cat.4 and Cat.5 in all
document.

Replaced Flash Memory by Non Volatile Memory (NVM) in all
document (when the term applies to NVM as a whole).

Added Section 1.3: Glossary.

Updated Section 1.4: Product category definition.

Removed GPIOF and GPIOG in Figure 2: System architecture (Cat.3
devices).

Added Figure 4: System architecture (Cat.5 and Cat.6 devices).

Updated first paragraph in Section 2.2: Memory organization.

Updated 0x4002 3C00 - 0x4002 3FFF line in Figure 5: Register
boundary addresses.

Updated Section 2.5: NVM overview.

Removed former section 2.6.1 Embedded Flash memory.

Updated Table 7: Memory mapping vs. boot mode/physical remap.

Updated Section 3.1: NVM introduction and Section 3.2: NVM
organization.

Updated Table 9: NVM module organization (Cat.3 devices) and
Table 10: NVM module organization (Cat.4 devices).

Added Table 11: NVM module organization (Cat.5 devices).

Updated Table 13: Number of wait states (WS) according to CPU clock
(HCLK) frequency.

Updated Table 14: Allowed configuration in FLASH_ACR.

Updated Section 3.4.1: Unlocking/locking memory Section 3.4.2:
Erasing memory and Section 3.4.4: Read while write (RWW).

Updated Table 18: Option byte organization and Table 19: Description
of the option bytes.

Updated Section 3.7.2: Write protection (WRP) of the program
memory.

Added RDERR in Section 3.8: Interrupts.

Updated Section 3.7.4: PCROP.

Added bit RDERR in Section 3.9.7: Status register (FLASH_SR).

Added SPRMOD bit in Section 3.9.8: Option byte register
(FLASH_OBR).

Updated Section 3.9.9: Write protection register (FLASH_WRPRx).

Updated Table 24: Register map and reset values.

Updated Figure 8: Power supply overview.

Updated list bullet 3 in Section 5.1.7: Voltage regulator and clock
management when VDD drops below 2.0 V.

Updated Section 5.1.5: Dynamic voltage scaling management and
Section 5.3.6: Low-power sleep mode (LP sleep).

Table 212. Document revision history (continued)

Date Revision Changes

Revision history RM0038

900/908 DocID15965 Rev 14

03-Mar-2014
9

(continued)

Updated Section 5.3.7: Stop mode.

Updated VOS bit description in Section 5.4.1: PWR power control
register (PWR_CR).

Updated Table 26: Performance versus VCORE ranges.

Updated WUF bit description in Section 5.4.2: PWR power
control/status register (PWR_CSR).

Updated “mode entry” description in Table 32: Stop mode.

Updated Figure 16: HSE/ LSE clock sources.

Updated Section 6.2.2: HSI clock and Section 6.2.3: MSI clock..

Updated Section 6.2.5: LSE clock.

Updated Section 6.2.10: Clock Security System on LSE.

Removed Cat.2 in GPIOGRST, GPIOFRST, GPIOHRST description in
Section 6.3.5: AHB peripheral reset register (RCC_AHBRSTR).

Removed Cat.2 in GPIOGEN, GPIOFEN description in Section 6.3.8:
AHB peripheral clock enable register (RCC_AHBENR).

Removed Cat.2 in GPIOGLPEN, GPIOFLPEN description in
Section 6.3.11: AHB peripheral clock enable in low-power mode
register (RCC_AHBLPENR).

Updated Figure 17: Using the TIM9/TIM10/TIM11 channel 1 input
capture to measure frequencies.

Updated Section 6.2.14: Internal/external clock measurement with
TIM9/TIM10/TIM11.

Removed frequency value in description of OSPEEDR bits.

Corrected typos: "IDRy[15:0]" replaced with "IDRy" in "GPIOx_IDR"
register, "ODRy[15:0]" replaced with "ODRy" in "GPIOx_ODR" register
and "OTy[1:0]" replaced with "OTy" in "GPIOx_OTYPER" register.

Updated Section 7.3.15: Selection of RTC_AF1 alternate functions.

Updated Table 40: GPIO register map and reset values.

Added Section 7.4.11: GPIO bit reset register (GPIOx_BRR) (x = A..H).

Updated Figure 26: Routing interface (RI) block diagram for Cat.3
devices and Figure 27: Routing interface (RI) block diagram for Cat.4,
Cat.5 and Cat.6 devices.

Updated Section 8.3.1: Special I/O configuration.

Updated Table 41: I/O groups and selection.

Updated Figure 25: Routing interface (RI) block diagram for Cat.1 and
Cat.2 devices, Figure 26: Routing interface (RI) block diagram for Cat.3
devices and Figure 27: Routing interface (RI) block diagram for Cat.4,
Cat.5 and Cat.6 devices.

Updated Section 8.3.1: Special I/O configuration.

Updated Section Table 41.: I/O groups and selection.

Table 212. Document revision history (continued)

Date Revision Changes

DocID15965 Rev 14 901/908

RM0038 Revision history

907

03-Mar-2014
9

(continued)

Updated Section 10.1: Nested vectored interrupt controller (NVIC),
Section 10.3.5: EXTI software interrupt event register (EXTI_SWIER)
and Section 10.3.6: EXTI pending register (EXTI_PR).

Updated Table 49: Vector table (Cat.1 and Cat.2 devices), Table 50:
Vector table (Cat.3 devices) and Table 51: Vector table (Cat.4, Cat.5
and Cat.6 devices).

Updated last but one bullet in Section 11.2: DMA main features and the
note at the end of the section.

Updated Figure 35: DMA block diagram in Cat.3 STM32L1xxxx
devices.

Updated Note: in Section 12.3: ADC functional description.

Updated Section 12.3.3: Channel selection.

Updated entire Section 12.12: Temperature sensor and internal
reference voltage including Figure 53: Temperature sensor and
VREFINT channel block diagram.

Updated AWDCH bit description in Section 12.15.2: ADC control
register 1 (ADC_CR1) on page 291.

Updated ADC_CFG bit description in Section 12.15.3: ADC control
register 2 (ADC_CR2) on page 293.

Updated JSQ bit description and added note in Section 12.15.15: ADC
injected sequence register (ADC_JSQR) on page 304.

Updated AWDCH bit description in Section 12.15.2: ADC control
register 1 (ADC_CR1) on page 291.

Updated ADC_CFG bit description in Section 12.15.3: ADC control
register 2 (ADC_CR2) on page 293.

Updated JSQ bit description and added note in Section 12.15.15: ADC
injected sequence register (ADC_JSQR) on page 304.

Removed former Figure 63: Comparator block diagram.

Updated Figure 63: COMP1 interconnections (Cat.1 and Cat.2
devices), Figure 64: COMP1 interconnections (Cat.3, Cat.4, Cat.5 and
Cat.6 devices), Figure 65: COMP2 interconnections (Cat.1 and Cat.2
devices) and Figure 66: COMP2 interconnections (Cat.3, Cat.4, Cat.5
and Cat.6 devices).

Updated FCH8 and FCH3 bit description in Section 14.9.1: COMP
comparator control and status register (COMP_CSR).

Updated Figure 69: OPAMP1 signal routing.

Updated Figure 70: OPAMP2 signal routing.Updated Section 16.4.3:
Common driver, Section 16.4.5: Voltage generator.

Updated Figure 80: LCD voltage control.

Updated Section 16.5.2: LCD frame control register (LCD_FCR).

Table 212. Document revision history (continued)

Date Revision Changes

Revision history RM0038

902/908 DocID15965 Rev 14

03-Mar-2014
9

(continued)

Updated Section 17.4.12: TIMx auto-reload register (TIMx_ARR).

Updated Table 82: TIMx register map and reset values.

Removed MMS bits.

Updated note related to IC1F bits in Section 17.4.7: TIMx
capture/compare mode register 1 (TIMx_CCMR1).

Updated Table 80: TIMx internal trigger connection.

Updated Section 18.5.12: TIM10 option register 1 (TIM10_OR).

Updated Section 19.4.1: TIM6&TIM7 control register 1 (TIMx_CR1).

Changed bit 9 ALRBIE to ALRBE in Section 20.6.3: RTC control
register (RTC_CR).

Updated Section 20.3.11: RTC smooth digital calibration (Cat.2, Cat.3,
Cat.4, Cat.5 and Cat.6 devices only).

Updated BUSTURN definition in Table 120: FSMC_BTRx bit fields.

Introduced Sm (standard mode) and Fm (fast mode) acronyms in
Section 26: Inter-integrated circuit (I2C) interface.

Replaced all occurrences of “power-on reset” with “backup domain
reset”.

Removed “or when the Flash readout protection is disabled” in
Section 20.6.20: RTC backup registers (RTC_BKPxR).

Replaced "System reset: 0x0000 0000 when BYPSHAD = 0. Not
affected when BYPSHAD = 1." with "System reset: 0x0000 0000
before the RSF flag is set, then the correct value is available." in
Section 20.6.1: RTC time register (RTC_TR).

Replaced "System reset: 0x0000 2101 when BYPSHAD = 0. Not
affected when BYPSHAD = 1." with "System reset: 0x0000 2101
before the RSF flag is set, then the correct value is available." in c.

Changed SHPF bit type to ‘r’ in RTC_ISR.

Updated: Section 20.2: RTC main features, Section 20.3.3:
Programmable alarms, Section 20.3.4: Periodic auto-wakeup,
Section 20.3.12: Timestamp function, Section 20.3.13: Tamper
detection, Section 20.3.14: Calibration clock output, Section 20.3.15:
Alarm output, Section 20.6.3: RTC control register (RTC_CR),
Section 20.6.17: RTC tamper and alternate function configuration
register (RTC_TAFCR).

Updated Section Figure 164.: RTC block diagram (Cat.1 devices) and
Section Figure 165.: RTC block diagram (Cat.2, Cat.3, Cat.4, Cat.5
and Cat.6 devices).

Corrected Figure 166: Independent watchdog block diagram.

Replaced all occurrences of DATALAT by DATLAT in the whole
Section 25: Flexible static memory controller (FSMC).

Updated Section 25.1: FSMC main features. Replaced SRAM/CRAM
by SRAM/PSRAM in the whole section.

Changed bits 27 to 20 of FSMC_BWTR1..4 to reserved.

Updated WREN bit in Table 117, Table 119, Table 122, Table 125,
Table 128, Table 131, and Table 135.

Table 212. Document revision history (continued)

Date Revision Changes

DocID15965 Rev 14 903/908

RM0038 Revision history

907

03-Mar-2014
9

(continued)

Updated ACCMOD in Table 120.

Updated Section 25.5.4: NOR Flash/PSRAM controller asynchronous
transactions, Section : SRAM/NOR-Flash chip-select control registers
1..4 (FSMC_BCR1..4), Section : SRAM/NOR-Flash chip-select timing
registers 1..4 (FSMC_BTR1..4) and Section : SRAM/NOR-Flash write
timing registers 1..4 (FSMC_BWTR1..4).

Removed note in Section 27.3.13: Continuous communication using
DMA.

Updated Section 27.3.8: LIN (local interconnection network) mode.

Added missing Figure 265: MSB Justified 16-bit extended to 32-bit
packet frame with CPOL = 0.

Updated definition of ERRIE bit in SPI_CR2 register.

Updated Figure 291: JTAG TAP connections.

Updated JTDO in Section 30.4.3: Internal pull-up and pull-down on
JTAG pins.

Updated BUSTURN definition in Table 120: FSMC_BTRx bit fields.

Updated introduction line of Section 25: Flexible static memory
controller (FSMC).

Updated introduction line of Section 29: Secure digital input/output
interface (SDIO).

Updated REV_ID and DEV_ID in Section 30.6.1: MCU device ID code.

Updated DBG_STOP bit decription in Section 30.16.3: Debug MCU
configuration register.

Updated F_SIZE in Section 31.1.1: Flash size register.

09-May-2014 10

Updated Section : Related documents.

Updated Table 1: Product categories and memory size overview,
Table 3: STM32L15xxx product categories and Table 4: STM32L162xx
product categories.

Updated Note: 1.

Updated last bullet in Section : Data EEPROM double Word Write.

Removed last sentence before Table 19: Description of the option
bytes.

Updated Section 5.2.2: Brown out reset title.

Updated last sentence in first paragraph of Section 5.2.4: Internal
voltage reference (VREFINT).

Updated Section : Calibration.

Updated Figure 111: Output stage of capture/compare channel
(channel 1).

Replaced IC2S by CC2S and updated tPULSE definition in
Section 17.3.10: One-pulse mode.

Removed note related to IC1F bits in Section 17.4.7: TIMx
capture/compare mode register 1 (TIMx_CCMR1) and Section 18.5.6:
TIM10/11 capture/compare mode register 1 (TIMx_CCMR1).

Added note in Section 20.3.14: Calibration clock output.

Added Rev X in Section : DBGMCU_IDCODE.

Table 212. Document revision history (continued)

Date Revision Changes

Revision history RM0038

904/908 DocID15965 Rev 14

18-July-2014 11

Updated Product category definition Table 1.

Updated Section 3.2: NVM organization.

Updated option byte description Table 18 and Table 19.

Updated Section 3.9.7: Status register (FLASH_SR).

Updated Section 3.7.4: PCROP.

Updated OPAMP functional description: OPAMP is not available in
STM32L100xx product categories.

Updated Cat.3 devices revision in Section 30.6.1: MCU device ID
code.

Updated Table 6: Boot modes adding nBFB2 option bit.

Updated Table 19: Description of the option bytes bit NBFB2.

Updated COMP Section 14.6: Comparators in Window mode.

Updated OPAMP Section 15.3.1: Signal routing replacing DAC1, DAC2
by DAC_Channel1,DAC_Channel2.

Updated Figure 4: System architecture (Cat.5 and Cat.6 devices)
removing OPAMP3.

Updated Figure 8: Power supply overview adding COMP in Vdda
domain.

23-Jan-2015 12

Updated Section 14.9.1: COMP comparator control and status register
(COMP_CSR) RCH13 bit.

Updated Section 25.5.4: NOR Flash/PSRAM controller asynchronous
transactions EXTMOD, ADDSET bits.

Updated Section 5.2.2: Brown out reset removing “by default, the level
4 threshold is activated”.

Updated Section 3.6: Quick reference to programming/erase functions
adding a note below Table 20 and Table 21.

Added Cat.6 devices in the whole reference manual.

Update cover page adding TN1201 as reference document.

08-Jul-2015 13

Updated WWDG Figure 167: Watchdog block diagram, replacing 6-bit
downcounter by 7-bit. downcounter.

Updated DEBUG : DBGMCU_IDCODE.

Updated I2C FREQ[5:0] bit description peripheral clock frequency.

Updated FMSC: SRAM/NOR-Flash chip-select control registers 1..4
(FSMC_BCR1..4) bits [19:16] BUSTURN description.

Updated FSMC: SRAM/NOR-Flash write timing registers 1..4
(FSMC_BWTR1..4) bits [19:16] BUSTURN description.

Updated UART removing note related to RXNEIE in Section :
Reception using DMA.
Updated Lite_TIM:

- Table 83: TIMx internal trigger connection ITR2 and ITR3.

- Updated presentation for: ETF[3:0] external trigger filter

& IC1F[3:0] input capture 1 filter.

- Updated Section 18.4.3: TIM9 slave mode control register
(TIMx_SMCR) encoder mode description and adding note on bits[2:0]
for the slave timer clock.

Table 212. Document revision history (continued)

Date Revision Changes

DocID15965 Rev 14 905/908

RM0038 Revision history

907

08-Jul-2015
13

(continued)

- Added note related to the slave timer clock in Section 18.3.12: Timer
synchronization (TIM9).

- Added note related to slave clock in MMS bits of TIMx_CR2.

Updated TIMx_SMCR and TIMx_CCMR1 register adding
“consecutive” in the description.

Updated TIM:

-Added note related to the slave timer clock in Section 17.3.15: Timer
synchronization.

- Updated SMS bit description in TIMx_SMCR and added note related
to slave clock.

- Added note related to slave clock in MMS bits of TIMx_CR2.

- Updated TIMx_SMCR and TIMx_CCMR1 register adding
“consecutive” in the description.

Updated TS=000 by “010” 3 times in Using one timer to enable another
timer and Using one timer to start another timer paragraphs.

Updated BasicTimers6_7 Section 19.4.2: TIM6&TIM7 control register 2
(TIMx_CR2) Adding note related to slave clock in MMS bits of
TIMx_CR2.

Updated Section 3.4.2: Erasing memory adding “wait for the BSY bit to
be cleared” at the end of process:

- For the data EEPROM double word erase process

- For the program memory page erase and paralllel page erase
process.

Updated PWR Table 28: Sleep-now and Table 29: Sleep-on-exit
adding ‘clear all interrupt pending bits’ and Figure 13: PVD thresholds
inverting PVD output.

Updated Table 22: Flash memory module protection according to RDP
and its complement.

Updated section SYSCFG:

- Modifying Figure 26.

- Adding note to Figure 25, Figure 26 and Figure 27.

- Section 8.3.1: Special I/O configuration Cat.3, Cat.4, Cat.5 and Cat.6
devices description.

Updated RTC2 Section : Programming the alarm with ALRBIE bit
changed in ALRBE.

Table 212. Document revision history (continued)

Date Revision Changes

Revision history RM0038

906/908 DocID15965 Rev 14

08-Sep-2016 14

PWR section:

– Updated stop mode in Table 27: Summary of low-power modes.

– Updated Section 5.3.1: Behavior of clocks in low-power modes.

– Updated Section 5.4.1: PWR power control register (PWR_CR)
PDDS bit 1 description.

– Updated Section 5.2.2: Brown out reset.

– Updated Section : RTC auto-wakeup (AWU) from the Standby mode
replacing ‘stop’ by ‘standby’ mode.

RCC section:

– Updated Section 6.2.11: RTC and LCD clock adding “when the RTC
clock is LSE, the RTC remains clocked and functional under system
reset”.

– Updated Section 6.2.6: LSI clock.

– Updated Section 6.3.14: Control/status register (RCC_CSR) LSIRDY
bit1 description.

– Updated Section 6.2.10: Clock Security System on LSE.

– Updated Section 6.3.2: Internal clock sources calibration register
(RCC_ICSCR) MSICAL[7:0] bits and HSICAL[7:0] bits description.

General purpose I/O (GPIOs) section

– Changed definition of OSPEEDR bits in Section 7.4.3: GPIO port
output speed register (GPIOx_OSPEEDR) (x = A..H).

SYSCFG section:

– Updated Section 8.3.1: Special I/O configuration.

– Updated Section 8.4: RI registers and Section 8.4.23: RI register
map shifting all register offsets by ‘-0x04’.

ADC section:

– Updated Section 12.15.8: ADC watchdog higher threshold register
(ADC_HTR) and Section 12.15.9: ADC watchdog lower threshold
register (ADC_LTR) adding note.

COMP section:

– Updated Section 14.9.1: COMP comparator control and status
register (COMP_CSR) bit 26, 27 description.

– Updated Section 14.9.1: COMP comparator control and status
register (COMP_CSR) SW1 bit 5 description.

LCD section:

– Updated Table 76: VLCDrail connections to GPIO pins replacing
‘VLCDrail1’ by ‘VLCDrail2’ and inversely.

TIMER section:

– Updated Section 17.4.11: TIMx prescaler (TIMx_PSC),
Section 18.4.10: TIM9 prescaler (TIMx_PSC), Section 18.5.9:
TIM10/11 prescaler (TIMx_PSC) and Section 19.4.7: TIM6&TIM7
prescaler (TIMx_PSC) PSC[15:0] bits description.

– Updated Section 18.5.1: TIM10/11 control register 1 (TIMx_CR1)
and Section 18.5.14: TIM10/11 register map adding OPM bit.

Table 212. Document revision history (continued)

Date Revision Changes

DocID15965 Rev 14 907/908

RM0038 Revision history

907

08-Sep-2016
14

(continued)

RTC section:

– Updated Section 20.3.5: RTC initialization and configuration
programming the wakeup timer.

– Updated Section 20.6.4: RTC initialization and status register
(RTC_ISR) bit 2 WUTWF.

– Added case of RTC clocked by LSE in Section 20.3.7: Resetting the
RTC.

– Updated caution at the end of Section 20.6.17: RTC tamper and
alternate function configuration register (RTC_TAFCR).

– Updated Section 20.3.14: Calibration clock output.

– Added note related to TSE in Section 20.6.3: RTC control register
(RTC_CR).

WWDG section:

– Updated Section 22.4: How to program the watchdog timeout
modifying the WWDG timeout calculation.

FSMC section:

– Updated Section 25.5.4: NOR Flash/PSRAM controller
asynchronous transactions putting ‘de-asserting the NOE signal’.

– Updated Section : SRAM/NOR-Flash chip-select timing registers 1..4
(FSMC_BTR1..4) adding new paragraph.

– Updated Section : SRAM/NOR-Flash write timing registers 1..4
(FSMC_BWTR1..4) adding new paragraph.

– Updated Section 25.5.6: NOR/PSRAM control registers adding
CPSIZE[2:0] bits and 011 configuration.

– Updated Section 25.5.7: FSMC register map.

SDIO section:

– Updated Section 29.1: SDIO main features. data transfer up to 50
MHz.

– Updated Section 29.3: SDIO functional description SDIO_CK
description.

– Updated notes removing 48 MHz in Section 29.9.1: SDIO power
control register (SDIO_POWER), Section 29.9.2: SDI clock control
register (SDIO_CLKCR), Section 29.9.4: SDIO command register
(SDIO_CMD) and Section 29.9.9: SDIO data control register
(SDIO_DCTRL).

UART section:

– Updated whole USART document replacing any occurrence of:
nCTS by CTS, nRTS by RTS, SCLK by CK.

– Updated Section 27.6.6: Control register 3 (USART_CR3) ‘ONEBIT’
bit 11 description adding a note.

FLASH section:

– Updated Section 3.9.8: Option byte register (FLASH_OBR) reset
value.

Table 212. Document revision history (continued)

Date Revision Changes

RM0038

908/908 DocID15965 Rev 14

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

	1 Documentation conventions
	1.1 List of abbreviations for registers
	1.2 Peripheral availability
	1.3 Glossary
	1.4 Product category definition
	Table 1. Product categories and memory size overview
	Table 2. STM32L100xx product categories
	Table 3. STM32L15xxx product categories
	Table 4. STM32L162xx product categories

	2 System architecture and memory overview
	2.1 System architecture
	Figure 1. System architecture (Cat.1 and Cat.2 devices)
	Figure 2. System architecture (Cat.3 devices)
	Figure 3. System architecture (Cat.4 devices)
	Figure 4. System architecture (Cat.5 and Cat.6 devices)

	2.2 Memory organization
	2.3 Memory map
	Table 5. Register boundary addresses

	2.4 Embedded SRAM
	2.5 NVM overview
	2.6 Bit banding
	2.7 Boot configuration
	Table 6. Boot modes
	Table 7. Memory mapping vs. boot mode/physical remap

	3 Flash program memory and data EEPROM (FLASH)
	3.1 NVM introduction
	3.2 NVM organization
	Table 8. NVM module organization (Cat.1 and Cat.2 devices)
	Table 9. NVM module organization (Cat.3 devices)
	Table 10. NVM module organization (Cat.4 devices)
	Table 11. NVM module organization (Cat.5 devices)
	Table 12. NVM module organization (Cat.6 devices)

	3.3 Read interface
	3.3.1 Relation between CPU clock frequency and Flash memory read time
	Table 13. Number of wait states (WS) according to CPU clock (HCLK) frequency

	3.3.2 Instruction prefetch when Flash access is 64 bits
	Figure 5. Sequential 32 bits instructions execution
	Table 14. Allowed configuration in FLASH_ACR

	3.3.3 Data management

	3.4 Memory operations
	3.4.1 Unlocking/locking memory
	3.4.2 Erasing memory
	3.4.3 Programming memory
	Table 15. Data EEPROM programming times

	3.4.4 Read while write (RWW)
	Table 16. Read While Write Summary
	Table 17. Prohibited operations

	3.5 Option byte description
	Table 18. Option byte organization
	Table 19. Description of the option bytes
	3.5.1 Option byte block programming

	3.6 Quick reference to programming/erase functions
	Table 20. Programming/erase functions (Cat.1, Cat.2 and Cat.3 devices)
	Table 21. Programming/erase functions (Cat.4, Cat.5 and Cat.6 devices)

	3.7 Memory protection
	3.7.1 Readout protection (RDP) of the program and data EEPROMs
	Figure 6. RDP levels
	Table 22. Flash memory module protection according to RDP and its complement

	3.7.2 Write protection (WRP) of the program memory
	3.7.3 Write protection error flag
	3.7.4 PCROP

	3.8 Interrupts
	Table 23. Interrupts

	3.9 Register description
	3.9.1 Access control register (FLASH_ACR)
	3.9.2 Program/erase control register (FLASH_PECR)
	3.9.3 Power down key register (FLASH_PDKEYR)
	3.9.4 Program/erase key register (FLASH_PEKEYR)
	3.9.5 Program memory key register (FLASH_PRGKEYR)
	3.9.6 Option byte key register (FLASH_OPTKEYR)
	3.9.7 Status register (FLASH_SR)
	3.9.8 Option byte register (FLASH_OBR)
	3.9.9 Write protection register (FLASH_WRPRx)
	3.9.10 Register map
	Table 24. Register map and reset values

	4 CRC calculation unit
	4.1 CRC introduction
	4.2 CRC main features
	Figure 7. CRC calculation unit block diagram

	4.3 CRC functional description
	4.4 CRC registers
	4.4.1 Data register (CRC_DR)
	4.4.2 Independent data register (CRC_IDR)
	4.4.3 Control register (CRC_CR)
	4.4.4 CRC register map
	Table 25. CRC calculation unit register map and reset values

	5 Power control (PWR)
	5.1 Power supplies
	Figure 8. Power supply overview
	5.1.1 Independent A/D and DAC converter supply and reference voltage
	5.1.2 Independent LCD supply
	5.1.3 RTC and RTC backup registers
	5.1.4 Voltage regulator
	5.1.5 Dynamic voltage scaling management
	Table 26. Performance versus VCORE ranges
	Figure 9. STM32L1xxxx performance versus VDD and VCORE range

	5.1.6 Dynamic voltage scaling configuration
	5.1.7 Voltage regulator and clock management when VDD drops below 2.0 V
	5.1.8 Voltage regulator and clock management when modifying the VCORE range

	5.2 Power supply supervisor
	Figure 10. Power supply supervisors
	5.2.1 Power on reset (POR)/power down reset (PDR)
	Figure 11. Power on reset/power down reset waveform

	5.2.2 Brown out reset
	Figure 12. BOR thresholds

	5.2.3 Programmable voltage detector (PVD)
	Figure 13. PVD thresholds

	5.2.4 Internal voltage reference (VREFINT)

	5.3 Low-power modes
	Table 27. Summary of low-power modes
	5.3.1 Behavior of clocks in low-power modes
	5.3.2 Slowing down system clocks
	5.3.3 Peripheral clock gating
	5.3.4 Low-power run mode (LP run)
	5.3.5 Sleep mode
	Table 28. Sleep-now
	Table 29. Sleep-on-exit

	5.3.6 Low-power sleep mode (LP sleep)
	Table 30. Sleep-now
	Table 31. Sleep-on-exit

	5.3.7 Stop mode
	Table 32. Stop mode

	5.3.8 Standby mode
	Table 33. Standby mode

	5.3.9 Waking up the device from Stop and Standby modes using the RTC and comparators

	5.4 Power control registers
	5.4.1 PWR power control register (PWR_CR)
	5.4.2 PWR power control/status register (PWR_CSR)
	5.4.3 PWR register map
	Table 34. PWR - register map and reset values

	6 Reset and clock control (RCC)
	6.1 Reset
	6.1.1 System reset
	6.1.2 Power reset
	Figure 14. Simplified diagram of the reset circuit

	6.1.3 RTC and backup registers reset

	6.2 Clocks
	Figure 15. Clock tree
	6.2.1 HSE clock
	Figure 16. HSE/ LSE clock sources

	6.2.2 HSI clock
	6.2.3 MSI clock
	6.2.4 PLL
	6.2.5 LSE clock
	6.2.6 LSI clock
	6.2.7 System clock (SYSCLK) selection
	6.2.8 System clock source frequency versus voltage range
	Table 35. System clock source frequency

	6.2.9 Clock security system (CSS)
	6.2.10 Clock Security System on LSE
	6.2.11 RTC and LCD clock
	6.2.12 Watchdog clock
	6.2.13 Clock-out capability
	6.2.14 Internal/external clock measurement with TIM9/TIM10/TIM11
	Figure 17. Using the TIM9/TIM10/TIM11 channel 1 input capture to measure frequencies

	6.2.15 Clock-independent system clock sources for TIM9/TIM10/TIM11

	6.3 RCC registers
	6.3.1 Clock control register (RCC_CR)
	6.3.2 Internal clock sources calibration register (RCC_ICSCR)
	6.3.3 Clock configuration register (RCC_CFGR)
	6.3.4 Clock interrupt register (RCC_CIR)
	6.3.5 AHB peripheral reset register (RCC_AHBRSTR)
	6.3.6 APB2 peripheral reset register (RCC_APB2RSTR)
	6.3.7 APB1 peripheral reset register (RCC_APB1RSTR)
	6.3.8 AHB peripheral clock enable register (RCC_AHBENR)
	6.3.9 APB2 peripheral clock enable register (RCC_APB2ENR)
	6.3.10 APB1 peripheral clock enable register (RCC_APB1ENR)
	6.3.11 AHB peripheral clock enable in low-power mode register (RCC_AHBLPENR)
	6.3.12 APB2 peripheral clock enable in low-power mode register (RCC_APB2LPENR)
	6.3.13 APB1 peripheral clock enable in low-power mode register (RCC_APB1LPENR)
	6.3.14 Control/status register (RCC_CSR)
	6.3.15 RCC register map
	Table 36. RCC register map and reset values

	7 General-purpose I/Os (GPIO)
	7.1 GPIO introduction
	7.2 GPIO main features
	7.3 GPIO functional description
	Figure 18. Basic structure of a standard I/O port bit
	Figure 19. Basic structure of a five-volt tolerant I/O port bit
	Table 37. Port bit configuration table
	7.3.1 General-purpose I/O (GPIO)
	7.3.2 I/O pin multiplexer and mapping
	Table 38. Flexible SWJ-DP pin assignment
	Figure 20. Selecting an alternate function

	7.3.3 I/O port control registers
	7.3.4 I/O port data registers
	7.3.5 I/O data bitwise handling
	7.3.6 GPIO locking mechanism
	7.3.7 I/O alternate function input/output
	7.3.8 External interrupt/wakeup lines
	7.3.9 Input configuration
	Figure 21. Input floating/pull up/pull down configurations

	7.3.10 Output configuration
	Figure 22. Output configuration

	7.3.11 Alternate function configuration
	Figure 23. Alternate function configuration

	7.3.12 Analog configuration
	Figure 24. High impedance-analog configuration

	7.3.13 Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins
	7.3.14 Using the OSC_IN/OSC_OUT pins as GPIO PH0/PH1 port pins
	7.3.15 Selection of RTC_AF1 alternate functions
	Table 39. RTC_AF1 pin

	7.4 GPIO registers
	7.4.1 GPIO port mode register (GPIOx_MODER) (x = A..H)
	7.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A..H)
	7.4.3 GPIO port output speed register (GPIOx_OSPEEDR) (x = A..H)
	7.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A..H)
	7.4.5 GPIO port input data register (GPIOx_IDR) (x = A..H)
	7.4.6 GPIO port output data register (GPIOx_ODR) (x = A..H)
	7.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A..H)
	7.4.8 GPIO port configuration lock register (GPIOx_LCKR) (x = A..H)
	7.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A..H)
	7.4.10 GPIO alternate function high register (GPIOx_AFRH) (x = A..H)
	7.4.11 GPIO bit reset register (GPIOx_BRR) (x = A..H)
	7.4.12 GPIO register map
	Table 40. GPIO register map and reset values

	8 System configuration controller (SYSCFG) and routing interface (RI)
	8.1 SYSCFG and RI introduction
	8.2 RI main features
	Figure 25. Routing interface (RI) block diagram for Cat.1 and Cat.2 devices
	Figure 26. Routing interface (RI) block diagram for Cat.3 devices
	Figure 27. Routing interface (RI) block diagram for Cat.4, Cat.5 and Cat.6 devices

	8.3 RI functional description
	8.3.1 Special I/O configuration
	Table 41. I/O groups and selection

	8.3.2 Input capture routing
	Table 42. Input capture mapping
	Table 43. Timer selection
	Table 44. Input capture selection

	8.3.3 Reference voltage routing
	Figure 28. Internal reference voltage output

	8.4 RI registers
	8.4.1 RI input capture register (RI_ICR)
	8.4.2 RI analog switches control register (RI_ASCR1)
	8.4.3 RI analog switch control register 2 (RI_ASCR2)
	8.4.4 RI hysteresis control register (RI_HYSCR1)
	8.4.5 RI Hysteresis control register (RI_HYSCR2)
	8.4.6 RI Hysteresis control register (RI_HYSCR3)
	8.4.7 RI Hysteresis control register (RI_HYSCR4)
	8.4.8 Analog switch mode register (RI_ASMR1)
	8.4.9 Channel mask register (RI_CMR1)
	8.4.10 Channel identification for capture register (RI_CICR1)
	8.4.11 Analog switch mode register (RI_ASMR2)
	8.4.12 Channel mask register (RI_CMR2)
	8.4.13 Channel identification for capture register (RI_CICR2)
	8.4.14 Analog switch mode register (RI_ASMR3)
	8.4.15 Channel mask register (RI_CMR3)
	8.4.16 Channel identification for capture register (RI_CICR3)
	8.4.17 Analog switch mode register (RI_ASMR4)
	8.4.18 Channel mask register (RI_CMR4)
	8.4.19 Channel identification for capture register (RI_CICR4)
	8.4.20 Analog switch mode register (RI_ASMR5)
	8.4.21 Channel mask register (RI_CMR5)
	8.4.22 Channel identification for capture register (RI_CICR5)
	8.4.23 RI register map
	Table 45. RI register map and reset values

	8.5 SYSCFG registers
	8.5.1 SYSCFG memory remap register (SYSCFG_MEMRMP)
	8.5.2 SYSCFG peripheral mode configuration register (SYSCFG_PMC)
	8.5.3 SYSCFG external interrupt configuration register 1 (SYSCFG_EXTICR1)
	8.5.4 SYSCFG external interrupt configuration register 2 (SYSCFG_EXTICR2)
	8.5.5 SYSCFG external interrupt configuration register 3 (SYSCFG_EXTICR3)
	8.5.6 SYSCFG external interrupt configuration register 4 (SYSCFG_EXTICR4)
	8.5.7 SYSCFG register map
	Table 46. SYSCFG register map and reset values

	9 Touch sensing I/Os
	9.1 Introduction
	9.2 Main features
	9.3 Functional description
	9.3.1 Surface charge transfer acquisition overview
	Figure 29. Surface charge transfer analog IO group structure
	Table 47. Acquisition switching sequence summary
	Figure 30. Sampling capacitor charge overview

	9.3.2 Charge transfer acquisition management
	Table 48. Channel and sampling capacitor I/Os configuration summary
	Figure 31. Timer mode acquisition logic

	9.4 Touch sensing library

	10 Interrupts and events
	10.1 Nested vectored interrupt controller (NVIC)
	10.1.1 SysTick calibration value register
	10.1.2 Interrupt and exception vectors
	Table 49. Vector table (Cat.1 and Cat.2 devices)
	Table 50. Vector table (Cat.3 devices)
	Table 51. Vector table (Cat.4, Cat.5 and Cat.6 devices)

	10.2 External interrupt/event controller (EXTI)
	10.2.1 Main features
	10.2.2 Block diagram
	Figure 32. External interrupt/event controller block diagram

	10.2.3 Wakeup event management
	10.2.4 Functional description
	10.2.5 External interrupt/event line mapping
	Figure 33. External interrupt/event GPIO mapping

	10.3 EXTI registers
	10.3.1 EXTI interrupt mask register (EXTI_IMR)
	10.3.2 EXTI event mask register (EXTI_EMR)
	10.3.3 EXTI rising edge trigger selection register (EXTI_RTSR)
	10.3.4 Falling edge trigger selection register (EXTI_FTSR)
	10.3.5 EXTI software interrupt event register (EXTI_SWIER)
	10.3.6 EXTI pending register (EXTI_PR)
	10.3.7 EXTI register map
	Table 52. External interrupt/event controller register map and reset values

	11 Direct memory access controller (DMA)
	11.1 DMA introduction
	11.2 DMA main features
	Figure 34. DMA block diagram in Cat.1 and Cat.2 STM32L1xxxx devices
	Figure 35. DMA block diagram in Cat.3 STM32L1xxxx devices
	Figure 36. DMA block diagram in Cat.4, Cat.5 and Cat.6 STM32L1xxxx devices

	11.3 DMA functional description
	11.3.1 DMA transactions
	11.3.2 Arbiter
	11.3.3 DMA channels
	11.3.4 Programmable data width, data alignment and endians
	Table 53. Programmable data width & endian behavior (when bits PINC = MINC = 1)

	11.3.5 Error management
	11.3.6 Interrupts
	Table 54. DMA interrupt requests

	11.3.7 DMA request mapping
	Figure 37. DMA1 request mapping
	Table 55. Summary of DMA1 requests for each channel
	Figure 38. DMA2 request mapping
	Table 56. Summary of DMA2 requests for each channel

	11.4 DMA registers
	11.4.1 DMA interrupt status register (DMA_ISR)
	11.4.2 DMA interrupt flag clear register (DMA_IFCR)
	11.4.3 DMA channel x configuration register (DMA_CCRx) (x = 1..7, where x = channel number)
	11.4.4 DMA channel x number of data register (DMA_CNDTRx) (x = 1..7, where x = channel number)
	11.4.5 DMA channel x peripheral address register (DMA_CPARx) (x = 1..7, where x = channel number)
	11.4.6 DMA channel x memory address register (DMA_CMARx) (x = 1..7, where x = channel number)
	11.4.7 DMA register map
	Table 57. DMA register map and reset values

	12 Analog-to-digital converter (ADC)
	12.1 ADC introduction
	12.2 ADC main features
	12.3 ADC functional description
	Figure 39. ADC block diagram (Cat.1 and Cat.2 devices)
	Table 58. ADC pins
	Figure 40. ADC block diagram (Cat.3, Cat.4, Cat.5 and Cat.6 devices)
	12.3.1 ADC power on-off control
	12.3.2 ADC clock
	12.3.3 Channel selection
	12.3.4 Single conversion mode
	12.3.5 Continuous conversion mode
	12.3.6 Timing diagram
	Figure 41. Timing diagram (normal mode, PDI=0)

	12.3.7 Analog watchdog
	Figure 42. Analog watchdog’s guarded area
	Table 59. Analog watchdog channel selection

	12.3.8 Scan mode
	12.3.9 Injected channel management
	Figure 43. Injected conversion latency

	12.3.10 Discontinuous mode

	12.4 Data alignment
	Figure 44. Right alignment of 12-bit data
	Figure 45. Left alignment of 12-bit data
	Figure 46. Left alignment of 6-bit data

	12.5 Channel-wise programmable sampling time
	12.6 Conversion on external trigger
	Table 60. Configuring the trigger edge detection
	Table 61. External trigger for regular channels
	Table 62. External trigger for injected channels

	12.7 Aborting a conversion
	12.7.1 Injected channels
	12.7.2 Regular channels

	12.8 Conversion resolution
	12.9 Hardware freeze and delay insertion modes for slow conversions
	Figure 47. ADC freeze mode
	12.9.1 Inserting a delay after each regular conversion
	Figure 48. Continuous regular conversions with a delay

	12.9.2 Inserting a delay after each sequence of auto-injected conversions
	Figure 49. Continuous conversions with a delay between each conversion

	12.10 Power saving
	Figure 50. Automatic power-down control: example 1
	Figure 51. Automatic power-down control: example 2
	Figure 52. Automatic power-down control: example 3

	12.11 Data management and overrun detection
	12.11.1 Using the DMA
	12.11.2 Managing a sequence of conversions without using the DMA
	12.11.3 Conversions without reading all the data
	12.11.4 Overrun detection

	12.12 Temperature sensor and internal reference voltage
	Figure 53. Temperature sensor and VREFINT channel block diagram

	12.13 Internal reference voltage (VREFINT) conversion
	12.14 ADC interrupts
	Figure 54. ADC flags and interrupts
	Table 63. ADC interrupts

	12.15 ADC registers
	12.15.1 ADC status register (ADC_SR)
	12.15.2 ADC control register 1 (ADC_CR1)
	12.15.3 ADC control register 2 (ADC_CR2)
	12.15.4 ADC sample time register 1 (ADC_SMPR1)
	12.15.5 ADC sample time register 2 (ADC_SMPR2)
	12.15.6 ADC sample time register 3 (ADC_SMPR3)
	12.15.7 ADC injected channel data offset register x (ADC_JOFRx)(x=1..4)
	12.15.8 ADC watchdog higher threshold register (ADC_HTR)
	12.15.9 ADC watchdog lower threshold register (ADC_LTR)
	12.15.10 ADC regular sequence register 1 (ADC_SQR1)
	12.15.11 ADC regular sequence register 2 (ADC_SQR2)
	12.15.12 ADC regular sequence register 3 (ADC_SQR3)
	12.15.13 ADC regular sequence register 4 (ADC_SQR4)
	12.15.14 ADC regular sequence register 5 (ADC_SQR5)
	12.15.15 ADC injected sequence register (ADC_JSQR)
	12.15.16 ADC injected data register x (ADC_JDRx) (x= 1..4)
	12.15.17 ADC regular data register (ADC_DR)
	12.15.18 ADC sample time register 0 (ADC_SMPR0)
	12.15.19 ADC common status register (ADC_CSR)
	12.15.20 ADC common control register (ADC_CCR)
	12.15.21 ADC register map
	Table 64. ADC global register map
	Table 65. ADC register map and reset values
	Table 66. ADC register map and reset values (common registers)

	13 Digital-to-analog converter (DAC)
	13.1 DAC introduction
	13.2 DAC main features
	Figure 55. DAC channel block diagram
	Table 67. DAC pins

	13.3 DAC functional description
	13.3.1 DAC channel enable
	13.3.2 DAC output buffer enable
	13.3.3 DAC data format
	Figure 56. Data registers in single DAC channel mode
	Figure 57. Data registers in dual DAC channel mode

	13.3.4 DAC conversion
	Figure 58. Timing diagram for conversion with trigger disabled TEN = 0

	13.3.5 DAC output voltage
	13.3.6 DAC trigger selection
	Table 68. External triggers

	13.3.7 DMA request
	13.3.8 Noise generation
	Figure 59. DAC LFSR register calculation algorithm
	Figure 60. DAC conversion (SW trigger enabled) with LFSR wave generation

	13.3.9 Triangle-wave generation
	Figure 61. DAC triangle wave generation
	Figure 62. DAC conversion (SW trigger enabled) with triangle wave generation

	13.4 Dual DAC channel conversion
	13.4.1 Independent trigger without wave generation
	13.4.2 Independent trigger with single LFSR generation
	13.4.3 Independent trigger with different LFSR generation
	13.4.4 Independent trigger with single triangle generation
	13.4.5 Independent trigger with different triangle generation
	13.4.6 Simultaneous software start
	13.4.7 Simultaneous trigger without wave generation
	13.4.8 Simultaneous trigger with single LFSR generation
	13.4.9 Simultaneous trigger with different LFSR generation
	13.4.10 Simultaneous trigger with single triangle generation
	13.4.11 Simultaneous trigger with different triangle generation

	13.5 DAC registers
	13.5.1 DAC control register (DAC_CR)
	13.5.2 DAC software trigger register (DAC_SWTRIGR)
	13.5.3 DAC channel1 12-bit right-aligned data holding register (DAC_DHR12R1)
	13.5.4 DAC channel1 12-bit left aligned data holding register (DAC_DHR12L1)
	13.5.5 DAC channel1 8-bit right aligned data holding register (DAC_DHR8R1)
	13.5.6 DAC channel2 12-bit right aligned data holding register (DAC_DHR12R2)
	13.5.7 DAC channel2 12-bit left aligned data holding register (DAC_DHR12L2)
	13.5.8 DAC channel2 8-bit right-aligned data holding register (DAC_DHR8R2)
	13.5.9 Dual DAC 12-bit right-aligned data holding register (DAC_DHR12RD)
	13.5.10 DUAL DAC 12-bit left aligned data holding register (DAC_DHR12LD)
	13.5.11 DUAL DAC 8-bit right aligned data holding register (DAC_DHR8RD)
	13.5.12 DAC channel1 data output register (DAC_DOR1)
	13.5.13 DAC channel2 data output register (DAC_DOR2)
	13.5.14 DAC status register (DAC_SR)
	13.5.15 DAC register map
	Table 69. DAC register map

	14 Comparators (COMP)
	14.1 Introduction
	14.2 Main features
	14.3 COMP clock
	14.4 Comparator 1 (COMP1)
	Figure 63. COMP1 interconnections (Cat.1 and Cat.2 devices)
	Figure 64. COMP1 interconnections (Cat.3, Cat.4, Cat.5 and Cat.6 devices)

	14.5 Comparator 2 (COMP2)
	Figure 65. COMP2 interconnections (Cat.1 and Cat.2 devices)
	Figure 66. COMP2 interconnections (Cat.3, Cat.4, Cat.5 and Cat.6 devices)
	Figure 67. Redirecting the COMP2 output

	14.6 Comparators in Window mode
	Figure 68. Comparators in Window mode

	14.7 Low-power modes
	Table 70. Comparator behavior in the low-power modes

	14.8 Interrupts
	14.9 COMP registers
	14.9.1 COMP comparator control and status register (COMP_CSR)
	14.9.2 COMP register map
	Table 71. COMP register map and reset values

	15 Operational amplifiers (OPAMP)
	15.1 OPAMP introduction
	15.2 OPAMP main features
	15.3 OPAMP functional description
	15.3.1 Signal routing
	Figure 69. OPAMP1 signal routing
	Figure 70. OPAMP2 signal routing
	Figure 71. OPAMP3 signal routing (Cat.4 devices only)

	15.3.2 Using the OPAMP outputs as ADC inputs
	15.3.3 Calibration
	Table 72. Operating modes and calibration

	15.4 OPAMP registers
	15.4.1 OPAMP control/status register (OPAMP_CSR)
	15.4.2 OPAMP offset trimming register for normal mode (OPAMP_OTR)
	15.4.3 OPAMP offset trimming register for low-power mode (OPAMP_LPOTR)
	15.4.4 OPAMP register map
	Table 73. OPAMP register map

	16 Liquid crystal display controller (LCD)
	16.1 Introduction
	16.2 LCD main features
	16.3 Glossary
	16.4 LCD functional description
	16.4.1 General description
	Figure 72. LCD controller block diagram

	16.4.2 Frequency generator
	Table 74. Example of frame rate calculation

	16.4.3 Common driver
	Figure 73. 1/3 bias, 1/4 duty
	Figure 74. Static duty
	Figure 75. Static duty
	Figure 76. 1/2 duty, 1/2 bias

	16.4.4 Segment driver
	Figure 77. 1/3 duty, 1/3 bias
	Figure 78. 1/4 duty, 1/3 bias
	Figure 79. 1/8 duty, 1/4 bias
	Table 75. Blink frequency

	16.4.5 Voltage generator
	Figure 80. LCD voltage control
	Table 76. VLCDrail connections to GPIO pins

	16.4.6 Deadtime
	Figure 81. Deadtime

	16.4.7 Double buffer memory
	16.4.8 COM and SEG multiplexing
	Table 77. Remapping capability
	Figure 82. SEG/COM mux feature example

	16.4.9 Flowchart
	Figure 83. Flowchart example

	16.5 LCD registers
	16.5.1 LCD control register (LCD_CR)
	16.5.2 LCD frame control register (LCD_FCR)
	16.5.3 LCD status register (LCD_SR)
	16.5.4 LCD clear register (LCD_CLR)
	16.5.5 LCD display memory (LCD_RAM)
	16.5.6 LCD register map
	Table 78. LCD register map and reset values

	17 General-purpose timers (TIM2 to TIM5)
	17.1 TIM2 to TIM5 introduction
	17.2 TIM2 to TIM5 main features
	Figure 84. General-purpose timer block diagram

	17.3 TIM2 to TIM5 functional description
	17.3.1 Time-base unit
	Figure 85. Counter timing diagram with prescaler division change from 1 to 2
	Figure 86. Counter timing diagram with prescaler division change from 1 to 4

	17.3.2 Counter modes
	Figure 87. Counter timing diagram, internal clock divided by 1
	Figure 88. Counter timing diagram, internal clock divided by 2
	Figure 89. Counter timing diagram, internal clock divided by 4
	Figure 90. Counter timing diagram, internal clock divided by N
	Figure 91. Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not preloaded)
	Figure 92. Counter timing diagram, Update event when ARPE=1 (TIMx_ARR preloaded)
	Figure 93. Counter timing diagram, internal clock divided by 1
	Figure 94. Counter timing diagram, internal clock divided by 2
	Figure 95. Counter timing diagram, internal clock divided by 4
	Figure 96. Counter timing diagram, internal clock divided by N
	Figure 97. Counter timing diagram, Update event
	Figure 98. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6
	Figure 99. Counter timing diagram, internal clock divided by 2
	Figure 100. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36
	Figure 101. Counter timing diagram, internal clock divided by N
	Figure 102. Counter timing diagram, Update event with ARPE=1 (counter underflow)
	Figure 103. Counter timing diagram, Update event with ARPE=1 (counter overflow)

	17.3.3 Clock selection
	Figure 104. Control circuit in normal mode, internal clock divided by 1
	Figure 105. TI2 external clock connection example
	Figure 106. Control circuit in external clock mode 1
	Figure 107. External trigger input block
	Figure 108. Control circuit in external clock mode 2

	17.3.4 Capture/compare channels
	Figure 109. Capture/compare channel (example: channel 1 input stage)
	Figure 110. Capture/compare channel 1 main circuit
	Figure 111. Output stage of capture/compare channel (channel 1)

	17.3.5 Input capture mode
	17.3.6 PWM input mode
	Figure 112. PWM input mode timing

	17.3.7 Forced output mode
	17.3.8 Output compare mode
	Figure 113. Output compare mode, toggle on OC1

	17.3.9 PWM mode
	Figure 114. Edge-aligned PWM waveforms (ARR=8)
	Figure 115. Center-aligned PWM waveforms (ARR=8)

	17.3.10 One-pulse mode
	Figure 116. Example of one-pulse mode

	17.3.11 Clearing the OCxREF signal on an external event
	Figure 117. Clearing TIMx OCxREF

	17.3.12 Encoder interface mode
	Table 79. Counting direction versus encoder signals
	Figure 118. Example of counter operation in encoder interface mode
	Figure 119. Example of encoder interface mode with TI1FP1 polarity inverted

	17.3.13 Timer input XOR function
	17.3.14 Timers and external trigger synchronization
	Figure 120. Control circuit in reset mode
	Figure 121. Control circuit in gated mode
	Figure 122. Control circuit in trigger mode
	Figure 123. Control circuit in external clock mode 2 + trigger mode

	17.3.15 Timer synchronization
	Figure 124. Master/Slave timer example
	Figure 125. Gating TIM2 with OC1REF of TIM3
	Figure 126. Gating TIM2 with Enable of TIM3
	Figure 127. Triggering TIM2 with update of TIM3
	Figure 128. Triggering TIM2 with Enable of TIM3
	Figure 129. Triggering TIM3 and TIM2 with TIM3 TI1 input

	17.3.16 Debug mode

	17.4 TIMx registers
	17.4.1 TIMx control register 1 (TIMx_CR1)
	17.4.2 TIMx control register 2 (TIMx_CR2)
	17.4.3 TIMx slave mode control register (TIMx_SMCR)
	Table 80. TIMx internal trigger connection

	17.4.4 TIMx DMA/Interrupt enable register (TIMx_DIER)
	17.4.5 TIMx status register (TIMx_SR)
	17.4.6 TIMx event generation register (TIMx_EGR)
	17.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1)
	17.4.8 TIMx capture/compare mode register 2 (TIMx_CCMR2)
	17.4.9 TIMx capture/compare enable register (TIMx_CCER)
	Table 81. Output control bit for standard OCx channels

	17.4.10 TIMx counter (TIMx_CNT)
	17.4.11 TIMx prescaler (TIMx_PSC)
	17.4.12 TIMx auto-reload register (TIMx_ARR)
	17.4.13 TIMx capture/compare register 1 (TIMx_CCR1)
	17.4.14 TIMx capture/compare register 2 (TIMx_CCR2)
	17.4.15 TIMx capture/compare register 3 (TIMx_CCR3)
	17.4.16 TIMx capture/compare register 4 (TIMx_CCR4)
	17.4.17 TIMx DMA control register (TIMx_DCR)
	17.4.18 TIMx DMA address for full transfer (TIMx_DMAR)
	17.4.19 TIM2 option register (TIM2_OR)
	17.4.20 TIM3 option register (TIM3_OR)
	17.4.21 TIMx register map
	Table 82. TIMx register map and reset values

	18 General-purpose timers (TIM9/10/11)
	18.1 TIM9/10/11 introduction
	18.2 TIM9/10/11 main features
	18.2.1 TIM9 main features
	Figure 130. General-purpose timer block diagram (TIM9)

	18.2.2 TIM10/TIM11 main features
	Figure 131. General-purpose timer block diagram (TIM10)
	Figure 132. General-purpose timer block diagram (TIM11)

	18.3 TIM9/10/11 functional description
	18.3.1 Time-base unit
	Figure 133. Counter timing diagram with prescaler division change from 1 to 2
	Figure 134. Counter timing diagram with prescaler division change from 1 to 4

	18.3.2 Counter modes
	Figure 135. Counter timing diagram, internal clock divided by 1
	Figure 136. Counter timing diagram, internal clock divided by 2
	Figure 137. Counter timing diagram, internal clock divided by 4
	Figure 138. Counter timing diagram, internal clock divided by N
	Figure 139. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded)
	Figure 140. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded)

	18.3.3 Clock selection
	Figure 141. Control circuit in normal mode, internal clock divided by 1
	Figure 142. TI2 external clock connection example
	Figure 143. Control circuit in external clock mode 1

	18.3.4 Capture/compare channels
	Figure 144. Capture/compare channel (example: channel 1 input stage)
	Figure 145. Capture/compare channel 1 main circuit
	Figure 146. Output stage of capture/compare channel (channel 1)

	18.3.5 Input capture mode
	18.3.6 PWM input mode (only for TIM9)
	Figure 147. PWM input mode timing

	18.3.7 Forced output mode
	18.3.8 Output compare mode
	Figure 148. Output compare mode, toggle on OC1.

	18.3.9 PWM mode
	Figure 149. Edge-aligned PWM waveforms (ARR=8)

	18.3.10 One-pulse mode
	Figure 150. Example of one pulse mode.

	18.3.11 TIM9 external trigger synchronization
	Figure 151. Control circuit in reset mode
	Figure 152. Control circuit in gated mode
	Figure 153. Control circuit in trigger mode

	18.3.12 Timer synchronization (TIM9)
	18.3.13 Debug mode
	18.3.14 Encoder interface mode (only for TIM9)

	18.4 TIM9 registers
	18.4.1 TIM9 control register 1 (TIMx_CR1)
	18.4.2 TIM9 control register 2 (TIMx_CR2)
	18.4.3 TIM9 slave mode control register (TIMx_SMCR)
	Table 83. TIMx internal trigger connection

	18.4.4 TIM9 Interrupt enable register (TIMx_DIER)
	18.4.5 TIM9 status register (TIMx_SR)
	18.4.6 TIM event generation register (TIMx_EGR)
	18.4.7 TIM capture/compare mode register 1 (TIMx_CCMR1)
	18.4.8 TIM9 capture/compare enable register (TIMx_CCER)
	Table 84. Output control bit for standard OCx channels

	18.4.9 TIM9 counter (TIMx_CNT)
	18.4.10 TIM9 prescaler (TIMx_PSC)
	18.4.11 TIM9 auto-reload register (TIMx_ARR)
	18.4.12 TIM9 capture/compare register 1 (TIMx_CCR1)
	18.4.13 TIM9 capture/compare register 2 (TIMx_CCR2)
	18.4.14 TIM9 option register 1 (TIM9_OR)
	18.4.15 TIM9 register map
	Table 85. TIM9 register map and reset values

	18.5 TIM10/11 registers
	18.5.1 TIM10/11 control register 1 (TIMx_CR1)
	18.5.2 TIM10/11 slave mode control register 1 (TIMx_SMCR)
	18.5.3 TIM10/11 Interrupt enable register (TIMx_DIER)
	18.5.4 TIM10/11 status register (TIMx_SR)
	18.5.5 TIM10/11 event generation register (TIMx_EGR)
	18.5.6 TIM10/11 capture/compare mode register 1 (TIMx_CCMR1)
	18.5.7 TIM10/11 capture/compare enable register (TIMx_CCER)
	Table 86. Output control bit for standard OCx channels

	18.5.8 TIM10/11 counter (TIMx_CNT)
	18.5.9 TIM10/11 prescaler (TIMx_PSC)
	18.5.10 TIM10/11 auto-reload register (TIMx_ARR)
	18.5.11 TIM10/11 capture/compare register 1 (TIMx_CCR1)
	18.5.12 TIM10 option register 1 (TIM10_OR)
	18.5.13 TIM11 option register 1 (TIM11_OR)
	18.5.14 TIM10/11 register map
	Table 87. TIM10/11 register map and reset values

	19 Basic timers (TIM6 and TIM7)
	19.1 TIM6&TIM7 introduction
	19.2 TIM6&TIM7 main features
	Figure 154. Basic timer block diagram

	19.3 TIM6&TIM7 functional description
	19.3.1 Time-base unit
	Figure 155. Counter timing diagram with prescaler division change from 1 to 2
	Figure 156. Counter timing diagram with prescaler division change from 1 to 4

	19.3.2 Counting mode
	Figure 157. Counter timing diagram, internal clock divided by 1
	Figure 158. Counter timing diagram, internal clock divided by 2
	Figure 159. Counter timing diagram, internal clock divided by 4
	Figure 160. Counter timing diagram, internal clock divided by N
	Figure 161. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded)
	Figure 162. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded)

	19.3.3 Clock source
	Figure 163. Control circuit in normal mode, internal clock divided by 1

	19.3.4 Debug mode

	19.4 TIM6&TIM7 registers
	19.4.1 TIM6&TIM7 control register 1 (TIMx_CR1)
	19.4.2 TIM6&TIM7 control register 2 (TIMx_CR2)
	19.4.3 TIM6&TIM7 DMA/Interrupt enable register (TIMx_DIER)
	19.4.4 TIM6&TIM7 status register (TIMx_SR)
	19.4.5 TIM6&TIM7 event generation register (TIMx_EGR)
	19.4.6 TIM6&TIM7 counter (TIMx_CNT)
	19.4.7 TIM6&TIM7 prescaler (TIMx_PSC)
	19.4.8 TIM6&TIM7 auto-reload register (TIMx_ARR)
	19.4.9 TIM6&TIM7 register map
	Table 88. TIM6&TIM7 register map and reset values

	20 Real-time clock (RTC)
	20.1 Introduction
	20.2 RTC main features
	Figure 164. RTC block diagram (Cat.1 devices)
	Figure 165. RTC block diagram (Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices)

	20.3 RTC functional description
	20.3.1 Clock and prescalers
	20.3.2 Real-time clock and calendar
	20.3.3 Programmable alarms
	20.3.4 Periodic auto-wakeup
	20.3.5 RTC initialization and configuration
	20.3.6 Reading the calendar
	20.3.7 Resetting the RTC
	20.3.8 RTC synchronization (Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices only)
	20.3.9 RTC reference clock detection
	20.3.10 RTC coarse digital calibration
	20.3.11 RTC smooth digital calibration (Cat.2, Cat.3, Cat.4, Cat.5 and Cat.6 devices only)
	20.3.12 Timestamp function
	20.3.13 Tamper detection
	20.3.14 Calibration clock output
	20.3.15 Alarm output

	20.4 RTC and low-power modes
	Table 89. Effect of low-power modes on RTC

	20.5 RTC interrupts
	Table 90. Interrupt control bits

	20.6 RTC registers
	20.6.1 RTC time register (RTC_TR)
	20.6.2 RTC date register (RTC_DR)
	20.6.3 RTC control register (RTC_CR)
	20.6.4 RTC initialization and status register (RTC_ISR)
	20.6.5 RTC prescaler register (RTC_PRER)
	20.6.6 RTC wakeup timer register (RTC_WUTR)
	20.6.7 RTC calibration register (RTC_CALIBR)
	20.6.8 RTC alarm A register (RTC_ALRMAR)
	20.6.9 RTC alarm B register (RTC_ALRMBR)
	20.6.10 RTC write protection register (RTC_WPR)
	20.6.11 RTC sub second register (RTC_SSR)
	20.6.12 RTC shift control register (RTC_SHIFTR)
	20.6.13 RTC time stamp time register (RTC_TSTR)
	20.6.14 RTC time stamp date register (RTC_TSDR)
	20.6.15 RTC timestamp sub second register (RTC_TSSSR)
	20.6.16 RTC calibration register (RTC_CALR)
	20.6.17 RTC tamper and alternate function configuration register (RTC_TAFCR)
	20.6.18 RTC alarm A sub second register (RTC_ALRMASSR)
	20.6.19 RTC alarm B sub second register (RTC_ALRMBSSR)
	20.6.20 RTC backup registers (RTC_BKPxR)
	20.6.21 RTC register map
	Table 91. RTC register map and reset values

	21 Independent watchdog (IWDG)
	21.1 IWDG introduction
	21.2 IWDG main features
	21.3 IWDG functional description
	21.3.1 Hardware watchdog
	21.3.2 Register access protection
	21.3.3 Debug mode
	Figure 166. Independent watchdog block diagram
	Table 92. Min/max IWDG timeout period at 37 kHz (LSI)

	21.4 IWDG registers
	21.4.1 Key register (IWDG_KR)
	21.4.2 Prescaler register (IWDG_PR)
	21.4.3 Reload register (IWDG_RLR)
	21.4.4 Status register (IWDG_SR)
	21.4.5 IWDG register map
	Table 93. IWDG register map and reset values

	22 Window watchdog (WWDG)
	22.1 WWDG introduction
	22.2 WWDG main features
	22.3 WWDG functional description
	Figure 167. Watchdog block diagram

	22.4 How to program the watchdog timeout
	Figure 168. Window watchdog timing diagram
	Table 94. Minimum and maximum timeout values @32 MHz (fPCLK1)

	22.5 Debug mode
	22.6 WWDG registers
	22.6.1 Control register (WWDG_CR)
	22.6.2 Configuration register (WWDG_CFR)
	22.6.3 Status register (WWDG_SR)
	22.6.4 WWDG register map
	Table 95. WWDG register map and reset values

	23 Advanced encryption standard hardware accelerator (AES)
	23.1 Introduction
	23.2 AES main features
	23.3 AES functional description
	Figure 169. Block diagram

	23.4 Encryption and derivation keys
	23.5 AES chaining algorithms
	23.5.1 Electronic CodeBook (ECB)
	Figure 170. ECB encryption mode
	Figure 171. ECB decryption mode

	23.5.2 Cipher block chaining (CBC)
	Figure 172. CBC mode encryption
	Figure 173. CBC mode decryption
	Figure 174. Example of suspend mode management

	23.5.3 Counter Mode (CTR)
	Figure 175. CTR mode encryption
	Figure 176. CTR mode decryption
	Figure 177. 32-bit counter + nonce organization

	23.6 Data type
	Figure 178. 128-bit block construction according to the data type
	Figure 179. 128-bit block construction according to the data type (continued)

	23.7 Operating modes
	23.7.1 Mode 1: encryption
	Figure 180. Mode 1: encryption

	23.7.2 Mode 2: key derivation
	Figure 181. Mode 2: key derivation

	23.7.3 Mode 3: decryption
	Figure 182. Mode 3: decryption

	23.7.4 Mode 4: key derivation and decryption
	Figure 183. Mode 4: key derivation and decryption

	23.8 AES DMA interface
	Figure 184. DMA requests and data transfers during Input phase (AES_IN)
	Figure 185. DMA requests during Output phase (AES_OUT)

	23.9 Error flags
	23.10 Processing time
	Table 96. Processing time (in clock cycle)

	23.11 AES interrupts
	Table 97. AES interrupt requests

	23.12 AES registers
	23.12.1 AES control register (AES_CR)
	23.12.2 AES status register (AES_SR)
	23.12.3 AES data input register (AES_DINR)
	23.12.4 AES data output register (AES_DOUTR)
	23.12.5 AES key register 0(AES_KEYR0) (LSB: key [31:0])
	23.12.6 AES key register 1 (AES_KEYR1) (Key[63:32])
	23.12.7 AES key register 2 (AES_KEYR2) (Key [95:64])
	23.12.8 AES key register 3 (AES_KEYR3) (MSB: key[127:96])
	23.12.9 AES initialization vector register 0 (AES_IVR0) (LSB: IVR[31:0])
	23.12.10 AES initialization vector register 1 (AES_IVR1) (IVR[63:32])
	23.12.11 AES initialization vector register 2 (AES_IVR2) (IVR[95:64])
	23.12.12 AES initialization vector register 3 (AES_IVR3) (MSB: IVR[127:96])
	23.12.13 AES register map
	Table 98. AES register map

	24 Universal serial bus full-speed device interface (USB)
	24.1 USB introduction
	24.2 USB main features
	24.3 USB functional description
	Figure 186. USB peripheral block diagram
	24.3.1 Description of USB blocks

	24.4 Programming considerations
	24.4.1 Generic USB device programming
	24.4.2 System and power-on reset
	Figure 187. Packet buffer areas with examples of buffer description table locations

	24.4.3 Double-buffered endpoints
	Table 99. Double-buffering buffer flag definition
	Table 100. Bulk double-buffering memory buffers usage

	24.4.4 Isochronous transfers
	Table 101. Isochronous memory buffers usage

	24.4.5 Suspend/Resume events
	Table 102. Resume event detection

	24.5 USB registers
	24.5.1 Common registers
	24.5.2 Endpoint-specific registers
	Table 103. Reception status encoding
	Table 104. Endpoint type encoding
	Table 105. Endpoint kind meaning
	Table 106. Transmission status encoding

	24.5.3 Buffer descriptor table
	Table 107. Definition of allocated buffer memory

	24.5.4 USB register map
	Table 108. USB register map and reset values

	25 Flexible static memory controller (FSMC)
	25.1 FSMC main features
	25.2 Block diagram
	Figure 188. FSMC block diagram

	25.3 AHB interface
	25.3.1 Supported memories and transactions

	25.4 External device address mapping
	Figure 189. FSMC memory banks
	25.4.1 NOR/PSRAM address mapping
	Table 109. NOR/PSRAM bank selection
	Table 110. External memory address

	25.5 NOR Flash/PSRAM controller
	Table 111. Programmable NOR/PSRAM access parameters
	25.5.1 External memory interface signals
	Table 112. Nonmultiplexed I/O NOR Flash
	Table 113. Multiplexed I/O NOR Flash
	Table 114. Nonmultiplexed I/Os PSRAM/SRAM
	Table 115. Multiplexed I/O PSRAM

	25.5.2 Supported memories and transactions
	Table 116. NOR Flash/PSRAM controller: example of supported memories and transactions

	25.5.3 General timing rules
	25.5.4 NOR Flash/PSRAM controller asynchronous transactions
	Figure 190. Mode1 read accesses
	Figure 191. Mode1 write accesses
	Table 117. FSMC_BCRx bit fields
	Table 118. FSMC_BTRx bit fields
	Figure 192. ModeA read accesses
	Figure 193. ModeA write accesses
	Table 119. FSMC_BCRx bit fields
	Table 120. FSMC_BTRx bit fields
	Table 121. FSMC_BWTRx bit fields
	Figure 194. Mode2 and mode B read accesses
	Figure 195. Mode2 write accesses
	Figure 196. Mode B write accesses
	Table 122. FSMC_BCRx bit fields
	Table 123. FSMC_BTRx bit fields
	Table 124. FSMC_BWTRx bit fields
	Figure 197. Mode C read accesses
	Figure 198. Mode C write accesses
	Table 125. FSMC_BCRx bit fields
	Table 126. FSMC_BTRx bit fields
	Table 127. FSMC_BWTRx bit fields
	Figure 199. Mode D read accesses
	Figure 200. Mode D write accesses
	Table 128. FSMC_BCRx bit fields
	Table 129. FSMC_BTRx bit fields
	Table 130. FSMC_BWTRx bit fields
	Figure 201. Multiplexed read accesses
	Figure 202. Multiplexed write accesses
	Table 131. FSMC_BCRx bit fields
	Table 132. FSMC_BTRx bit fields
	Figure 203. Asynchronous wait during a read access
	Figure 204. Asynchronous wait during a write access

	25.5.5 Synchronous transactions
	Figure 205. Wait configurations
	Figure 206. Synchronous multiplexed read mode - NOR, PSRAM (CRAM)
	Table 133. FSMC_BCRx bit fields
	Table 134. FSMC_BTRx bit fields
	Figure 207. Synchronous multiplexed write mode - PSRAM (CRAM)
	Table 135. FSMC_BCRx bit fields
	Table 136. FSMC_BTRx bit fields

	25.5.6 NOR/PSRAM control registers
	25.5.7 FSMC register map
	Table 137. FSMC register map

	26 Inter-integrated circuit (I2C) interface
	26.1 I2C introduction
	26.2 I2C main features
	26.3 I2C functional description
	26.3.1 Mode selection
	Figure 208. I2C bus protocol
	Figure 209. I2C block diagram

	26.3.2 I2C slave mode
	Figure 210. Transfer sequence diagram for slave transmitter
	Figure 211. Transfer sequence diagram for slave receiver

	26.3.3 I2C master mode
	Figure 212. Transfer sequence diagram for master transmitter
	Figure 213. Transfer sequence diagram for master receiver

	26.3.4 Error conditions
	26.3.5 SDA/SCL line control
	26.3.6 SMBus
	Table 138. SMBus vs. I2C

	26.3.7 DMA requests
	26.3.8 Packet error checking

	26.4 I2C interrupts
	Table 139. I2C Interrupt requests
	Figure 214. I2C interrupt mapping diagram

	26.5 I2C debug mode
	26.6 I2C registers
	26.6.1 I2C Control register 1 (I2C_CR1)
	26.6.2 I2C Control register 2 (I2C_CR2)
	26.6.3 I2C Own address register 1 (I2C_OAR1)
	26.6.4 I2C Own address register 2 (I2C_OAR2)
	26.6.5 I2C Data register (I2C_DR)
	26.6.6 I2C Status register 1 (I2C_SR1)
	26.6.7 I2C Status register 2 (I2C_SR2)
	26.6.8 I2C Clock control register (I2C_CCR)
	26.6.9 I2C TRISE register (I2C_TRISE)
	26.6.10 I2C register map
	Table 140. I2C register map and reset values

	27 Universal synchronous asynchronous receiver transmitter (USART)
	27.1 USART introduction
	27.2 USART main features
	27.3 USART functional description
	Figure 215. USART block diagram
	27.3.1 USART character description
	Figure 216. Word length programming

	27.3.2 Transmitter
	Figure 217. Configurable stop bits
	Figure 218. TC/TXE behavior when transmitting

	27.3.3 Receiver
	Figure 219. Start bit detection when oversampling by 16 or 8
	Figure 220. Data sampling when oversampling by 16
	Figure 221. Data sampling when oversampling by 8
	Table 141. Noise detection from sampled data

	27.3.4 Fractional baud rate generation
	Table 142. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz, oversampling by 16
	Table 143. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK =12 MHz, oversampling by 8
	Table 144. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz, oversampling by 16
	Table 145. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz, oversampling by 8
	Table 146. Error calculation for programmed baud rates at fPCLK = 1 MHz or fPCLK = 8 MHz), oversampling by 16
	Table 147. Error calculation for programmed baud rates at fPCLK = 1 MHz or fPCLK = 8 MHz), oversampling by 8
	Table 148. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 32 MHz), oversampling by 16
	Table 149. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 32 MHz), oversampling by 8
	Table 150. Error calculation for programmed baud rates at fPCLK = 1 MHz or fPCLK = 8 MHz), oversampling by 8
	Table 151. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 32 MHz), oversampling by 16
	Table 152. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 32 MHz), oversampling by 8

	27.3.5 USART receiver tolerance to clock deviation
	Table 153. USART receiver’s tolerance when DIV fraction is 0
	Table 154. USART receiver tolerance when DIV_Fraction is different from 0

	27.3.6 Multiprocessor communication
	Figure 222. Mute mode using Idle line detection
	Figure 223. Mute mode using address mark detection

	27.3.7 Parity control
	Table 155. Frame formats

	27.3.8 LIN (local interconnection network) mode
	Figure 224. Break detection in LIN mode (11-bit break length - LBDL bit is set)
	Figure 225. Break detection in LIN mode vs. Framing error detection

	27.3.9 USART synchronous mode
	Figure 226. USART example of synchronous transmission
	Figure 227. USART data clock timing diagram (M=0)
	Figure 228. USART data clock timing diagram (M=1)
	Figure 229. RX data setup/hold time

	27.3.10 Single-wire half-duplex communication
	27.3.11 Smartcard
	Figure 230. ISO 7816-3 asynchronous protocol
	Figure 231. Parity error detection using the 1.5 stop bits

	27.3.12 IrDA SIR ENDEC block
	Figure 232. IrDA SIR ENDEC- block diagram
	Figure 233. IrDA data modulation (3/16) -Normal mode

	27.3.13 Continuous communication using DMA
	Figure 234. Transmission using DMA
	Figure 235. Reception using DMA

	27.3.14 Hardware flow control
	Figure 236. Hardware flow control between 2 USARTs
	Figure 237. RTS flow control
	Figure 238. CTS flow control

	27.4 USART interrupts
	Table 156. USART interrupt requests
	Figure 239. USART interrupt mapping diagram

	27.5 USART mode configuration
	Table 157. USART mode configuration

	27.6 USART registers
	27.6.1 Status register (USART_SR)
	27.6.2 Data register (USART_DR)
	27.6.3 Baud rate register (USART_BRR)
	27.6.4 Control register 1 (USART_CR1)
	27.6.5 Control register 2 (USART_CR2)
	27.6.6 Control register 3 (USART_CR3)
	27.6.7 Guard time and prescaler register (USART_GTPR)
	27.6.8 USART register map
	Table 158. USART register map and reset values

	28 Serial peripheral interface (SPI)
	28.1 SPI introduction
	28.2 SPI and I2S main features
	28.2.1 SPI features
	28.2.2 I2S features

	28.3 SPI functional description
	28.3.1 General description
	Figure 240. SPI block diagram
	Figure 241. Single master/ single slave application
	Figure 242. Data clock timing diagram

	28.3.2 Configuring the SPI in slave mode
	Figure 243. TI mode - Slave mode, single transfer
	Figure 244. TI mode - Slave mode, continuous transfer

	28.3.3 Configuring the SPI in master mode
	Figure 245. TI mode - master mode, single transfer
	Figure 246. TI mode - master mode, continuous transfer

	28.3.4 Configuring the SPI for half-duplex communication
	28.3.5 Data transmission and reception procedures
	Figure 247. TXE/RXNE/BSY behavior in Master / full-duplex mode (BIDIMODE=0 and RXONLY=0) in case of continuous transfers
	Figure 248. TXE/RXNE/BSY behavior in Slave / full-duplex mode (BIDIMODE=0, RXONLY=0) in case of continuous transfers
	Figure 249. TXE/BSY behavior in Master transmit-only mode (BIDIMODE=0 and RXONLY=0) in case of continuous transfers
	Figure 250. TXE/BSY in Slave transmit-only mode (BIDIMODE=0 and RXONLY=0) in case of continuous transfers
	Figure 251. RXNE behavior in receive-only mode (BIDIRMODE=0 and RXONLY=1) in case of continuous transfers
	Figure 252. TXE/BSY behavior when transmitting (BIDIRMODE=0 and RXONLY=0) in case of discontinuous transfers

	28.3.6 CRC calculation
	28.3.7 Status flags
	28.3.8 Disabling the SPI
	28.3.9 SPI communication using DMA (direct memory addressing)
	Figure 253. Transmission using DMA
	Figure 254. Reception using DMA

	28.3.10 Error flags
	Figure 255. TI mode frame format error detection

	28.3.11 SPI interrupts
	Table 159. SPI interrupt requests

	28.4 I2S functional description
	28.4.1 I2S general description
	Figure 256. I2S block diagram

	28.4.2 Supported audio protocols
	Figure 257. I2S Philips protocol waveforms (16/32-bit full accuracy, CPOL = 0)
	Figure 258. I2S Philips standard waveforms (24-bit frame with CPOL = 0)
	Figure 259. Transmitting 0x8EAA33
	Figure 260. Receiving 0x8EAA33
	Figure 261. I2S Philips standard (16-bit extended to 32-bit packet frame with CPOL = 0)
	Figure 262. Example
	Figure 263. MSB Justified 16-bit or 32-bit full-accuracy length with CPOL = 0
	Figure 264. MSB Justified 24-bit frame length with CPOL = 0
	Figure 265. MSB Justified 16-bit extended to 32-bit packet frame with CPOL = 0
	Figure 266. LSB justified 16-bit or 32-bit full-accuracy with CPOL = 0
	Figure 267. LSB Justified 24-bit frame length with CPOL = 0
	Figure 268. Operations required to transmit 0x3478AE
	Figure 269. Operations required to receive 0x3478AE
	Figure 270. LSB justified 16-bit extended to 32-bit packet frame with CPOL = 0
	Figure 271. Example of LSB justified 16-bit extended to 32-bit packet frame
	Figure 272. PCM standard waveforms (16-bit)
	Figure 273. PCM standard waveforms (16-bit extended to 32-bit packet frame)

	28.4.3 Clock generator
	Figure 274. Audio sampling frequency definition
	Figure 275. I2S clock generator architecture
	Table 160. Audio-frequency precision using standard 8 MHz HSE (Cat.3, Cat.4, Cat.5 and Cat.6 devices only)

	28.4.4 I2S master mode
	28.4.5 I2S slave mode
	28.4.6 Status flags
	28.4.7 Error flags
	28.4.8 I2S interrupts
	Table 161. I2S interrupt requests

	28.5 SPI and I2S registers
	28.5.1 SPI control register 1 (SPI_CR1)(not used in I2S mode)
	28.5.2 SPI control register 2 (SPI_CR2)
	28.5.3 SPI status register (SPI_SR)
	28.5.4 SPI data register (SPI_DR)
	28.5.5 SPI CRC polynomial register (SPI_CRCPR)(not used in I2S mode)
	28.5.6 SPI RX CRC register (SPI_RXCRCR)(not used in I2S mode)
	28.5.7 SPI TX CRC register (SPI_TXCRCR)(not used in I2S mode)
	28.5.8 SPI_I2S configuration register (SPI_I2SCFGR)
	28.5.9 SPI_I2S prescaler register (SPI_I2SPR)
	28.5.10 SPI register map
	Table 162. SPI register map and reset values

	29 Secure digital input/output interface (SDIO)
	29.1 SDIO main features
	29.2 SDIO bus topology
	Figure 276. SDIO “no response” and “no data” operations
	Figure 277. SDIO (multiple) block read operation
	Figure 278. SDIO (multiple) block write operation
	Figure 279. SDIO sequential read operation
	Figure 280. SDIO sequential write operation

	29.3 SDIO functional description
	Figure 281. SDIO block diagram
	Table 163. SDIO I/O definitions
	29.3.1 SDIO adapter
	Figure 282. SDIO adapter
	Figure 283. Control unit
	Figure 284. SDIO adapter command path
	Figure 285. Command path state machine (CPSM)
	Figure 286. SDIO command transfer
	Table 164. Command format
	Table 165. Short response format
	Table 166. Long response format
	Table 167. Command path status flags
	Figure 287. Data path
	Figure 288. Data path state machine (DPSM)
	Table 168. Data token format
	Table 169. Transmit FIFO status flags
	Table 170. Receive FIFO status flags

	29.3.2 SDIO APB2 interface

	29.4 Card functional description
	29.4.1 Card identification mode
	29.4.2 Card reset
	29.4.3 Operating voltage range validation
	29.4.4 Card identification process
	29.4.5 Block write
	29.4.6 Block read
	29.4.7 Stream access, stream write and stream read (MultiMediaCard only)
	29.4.8 Erase: group erase and sector erase
	29.4.9 Wide bus selection or deselection
	29.4.10 Protection management
	29.4.11 Card status register
	Table 171. Card status

	29.4.12 SD status register
	Table 172. SD status
	Table 173. Speed class code field
	Table 174. Performance move field
	Table 175. AU_SIZE field
	Table 176. Maximum AU size
	Table 177. Erase size field
	Table 178. Erase timeout field
	Table 179. Erase offset field

	29.4.13 SD I/O mode
	29.4.14 Commands and responses
	Table 180. Block-oriented write commands
	Table 181. Block-oriented write protection commands
	Table 182. Erase commands
	Table 183. I/O mode commands
	Table 184. Lock card
	Table 185. Application-specific commands

	29.5 Response formats
	29.5.1 R1 (normal response command)
	Table 186. R1 response

	29.5.2 R1b
	29.5.3 R2 (CID, CSD register)
	Table 187. R2 response

	29.5.4 R3 (OCR register)
	Table 188. R3 response

	29.5.5 R4 (Fast I/O)
	Table 189. R4 response

	29.5.6 R4b
	Table 190. R4b response

	29.5.7 R5 (interrupt request)
	Table 191. R5 response

	29.5.8 R6
	Table 192. R6 response

	29.6 SDIO I/O card-specific operations
	29.6.1 SDIO I/O read wait operation by SDIO_D2 signaling
	29.6.2 SDIO read wait operation by stopping SDIO_CK
	29.6.3 SDIO suspend/resume operation
	29.6.4 SDIO interrupts

	29.7 CE-ATA specific operations
	29.7.1 Command completion signal disable
	29.7.2 Command completion signal enable
	29.7.3 CE-ATA interrupt
	29.7.4 Aborting CMD61

	29.8 HW flow control
	29.9 SDIO registers
	29.9.1 SDIO power control register (SDIO_POWER)
	29.9.2 SDI clock control register (SDIO_CLKCR)
	29.9.3 SDIO argument register (SDIO_ARG)
	29.9.4 SDIO command register (SDIO_CMD)
	29.9.5 SDIO command response register (SDIO_RESPCMD)
	29.9.6 SDIO response 1..4 register (SDIO_RESPx)
	Table 193. Response type and SDIO_RESPx registers

	29.9.7 SDIO data timer register (SDIO_DTIMER)
	29.9.8 SDIO data length register (SDIO_DLEN)
	29.9.9 SDIO data control register (SDIO_DCTRL)
	29.9.10 SDIO data counter register (SDIO_DCOUNT)
	29.9.11 SDIO status register (SDIO_STA)
	29.9.12 SDIO interrupt clear register (SDIO_ICR)
	29.9.13 SDIO mask register (SDIO_MASK)
	29.9.14 SDIO FIFO counter register (SDIO_FIFOCNT)
	29.9.15 SDIO data FIFO register (SDIO_FIFO)
	29.9.16 SDIO register map
	Table 194. SDIO register map

	30 Debug support (DBG)
	30.1 Overview
	Figure 289. Block diagram of STM32 MCU and Cortex®-M3-level debug support

	30.2 Reference ARM® documentation
	30.3 SWJ debug port (serial wire and JTAG)
	Figure 290. SWJ debug port
	30.3.1 Mechanism to select the JTAG-DP or the SW-DP

	30.4 Pinout and debug port pins
	30.4.1 SWJ debug port pins
	Table 195. SWJ debug port pins

	30.4.2 Flexible SWJ-DP pin assignment
	Table 196. Flexible SWJ-DP pin assignment

	30.4.3 Internal pull-up and pull-down on JTAG pins
	30.4.4 Using serial wire and releasing the unused debug pins as GPIOs

	30.5 STM32L1xxxx JTAG TAP connection
	Figure 291. JTAG TAP connections

	30.6 ID codes and locking mechanism
	30.6.1 MCU device ID code
	30.6.2 Boundary scan TAP
	30.6.3 Cortex®-M3 TAP
	30.6.4 Cortex®-M3 JEDEC-106 ID code

	30.7 JTAG debug port
	Table 197. JTAG debug port data registers
	Table 198. 32-bit debug port registers addressed through the shifted value A[3:2]

	30.8 SW debug port
	30.8.1 SW protocol introduction
	30.8.2 SW protocol sequence
	Table 199. Packet request (8-bits)
	Table 200. ACK response (3 bits)
	Table 201. DATA transfer (33 bits)

	30.8.3 SW-DP state machine (reset, idle states, ID code)
	30.8.4 DP and AP read/write accesses
	30.8.5 SW-DP registers
	Table 202. SW-DP registers

	30.8.6 SW-AP registers

	30.9 AHB-AP (AHB access port) - valid for both JTAG-DP and SW-DP
	Table 203. Cortex®-M3 AHB-AP registers

	30.10 Core debug
	Table 204. Core debug registers

	30.11 Capability of the debugger host to connect under system reset
	30.12 FPB (Flash patch breakpoint)
	30.13 DWT (data watchpoint trigger)
	30.14 ITM (instrumentation trace macrocell)
	30.14.1 General description
	30.14.2 Time stamp packets, synchronization and overflow packets
	Table 205. Main ITM registers

	30.15 ETM (Embedded trace macrocell)
	30.15.1 ETM general description
	30.15.2 ETM signal protocol and packet types
	30.15.3 Main ETM registers
	Table 206. Main ETM registers

	30.15.4 ETM configuration example

	30.16 MCU debug component (DBGMCU)
	30.16.1 Debug support for low-power modes
	30.16.2 Debug support for timers, watchdog and I2C
	30.16.3 Debug MCU configuration register
	30.16.4 Debug MCU APB1 freeze register (DBGMCU_APB1_FZ)
	30.16.5 Debug MCU APB2 freeze register (DBGMCU_APB2_FZ)

	30.17 TPIU (trace port interface unit)
	30.17.1 Introduction
	Figure 292. TPIU block diagram

	30.17.2 TRACE pin assignment
	Table 207. Asynchronous TRACE pin assignment
	Table 208. Synchronous TRACE pin assignment
	Table 209. Flexible TRACE pin assignment

	30.17.3 TPUI formatter
	30.17.4 TPUI frame synchronization packets
	30.17.5 Transmission of the synchronization frame packet
	30.17.6 Synchronous mode
	30.17.7 Asynchronous mode
	30.17.8 TRACECLKIN connection inside the STM32L1xxxx
	30.17.9 TPIU registers
	Table 210. Important TPIU registers

	30.17.10 Example of configuration

	30.18 DBG register map
	Table 211. DBG register map and reset values

	31 Device electronic signature
	31.1 Memory size register
	31.1.1 Flash size register

	31.2 Unique device ID registers (96 bits)

	32 Revision history
	Table 212. Document revision history

