
February 2017 DocID028474 Rev 3 1/252

1

PM0253
Programming manual

STM32F7 Series Cortex®-M7 processor programming manual

Introduction

This programming manual provides information for application and system-level software
developers. It gives a full description of the STM32F7 Series Cortex®-M7 processor
programming model, instruction set and core peripherals.

The STM32F7 Series Cortex®-M7 processor is a high performance 32-bit processor
designed for the microcontroller market.

The Cortex®-M7 processor is the ARM®’s highest-performing Cortex®-M processor. It
combines a six-stage, superscalar pipeline with flexible system and memory interfaces
including AXI, AHB, caches and tightly-coupled memories, and delivers high integer,
floating-point and DSP performance in a STM32F7 Series MCU. It supports also dual-issue
of load/load and load/store instruction pairs to multiple memory interfaces.

The Cortex®-M7 processor takes advantage of the same easy-to-use, C friendly
programmer’s model and is 100% binary compatible with the existing Cortex®-M processors
and tools. Along with all Cortex®-M series processors, it enjoys full support from the ARM®
Cortex®-M ecosystem. The software compatibility enables a simple migration from Cortex®-
M3 and Cortex®-M4 processors.

www.st.com

http://www.st.com

Contents PM0253

2/252 DocID028474 Rev 3

Contents

1 About this document . 14

1.1 Typographical conventions . 14

1.2 List of abbreviations for registers . 14

1.3 About the Cortex®-M7 processor and core peripherals 15

1.3.1 System level interface . 16

1.3.2 Integrated configurable debug . 16

1.3.3 Cortex®-M7 processor features and benefits summary 17

1.3.4 Cortex®-M7 processor core peripherals . 17

2 The Cortex-M7 processor . 19

2.1 Programmers model . 19

2.1.1 Processor mode and privilege levels for software execution 19

2.1.2 Stacks . 19

2.1.3 Core registers . 20

2.1.4 Exceptions and interrupts . 28

2.1.5 Data types . 29

2.1.6 The Cortex Microcontroller Software Interface Standard (CMSIS) 29

2.2 Cortex®-M7 configurations . 30

2.3 Memory model . 32

2.3.1 Memory regions, types and attributes . 33

2.3.2 Memory system ordering of memory accesses 33

2.3.3 Behavior of memory accesses . 34

2.3.4 Software ordering of memory accesses . 36

2.3.5 Memory endianness . 36

2.3.6 Synchronization primitives . 37

2.3.7 Programming hints for the synchronization primitives 38

2.4 Exception model . 39

2.4.1 Exception states . 39

2.4.2 Exception types . 39

2.4.3 Exception handlers . 41

2.4.4 Vector table . 42

2.4.5 Exception priorities . 43

2.4.6 Interrupt priority grouping . 43

2.4.7 Exception entry and return . 44

DocID028474 Rev 3 3/252

PM0253 Contents

8

2.5 Fault handling . 47

2.5.1 Fault types . 47

2.5.2 Fault escalation and hard faults . 48

2.5.3 Synchronous and Asynchronous bus faults . 49

2.5.4 Fault status registers and fault address registers 49

2.5.5 Lockup . 49

2.6 Power management . 50

2.6.1 Entering sleep mode . 50

2.6.2 Wakeup from sleep mode . 51

2.6.3 The external event input . 51

2.6.4 Power management programming hints . 51

3 The Cortex-M7 instruction set . 52

3.1 Instruction set summary . 52

3.1.1 Binary compatibility with other Cortex processors 61

3.2 CMSIS functions . 62

3.3 About the instruction descriptions . 63

3.3.1 Operands . 63

3.3.2 Restrictions when using PC or SP . 63

3.3.3 Flexible second operand . 64

3.3.4 Shift operations . 65

3.3.5 Address alignment . 68

3.3.6 PC-relative expressions . 68

3.3.7 Conditional execution . 68

3.3.8 Instruction width selection . 71

3.4 Memory access instructions . 72

3.4.1 ADR . 73

3.4.2 LDR and STR, immediate offset . 73

3.4.3 LDR and STR, register offset . 76

3.4.4 LDR and STR, unprivileged . 77

3.4.5 LDR, PC-relative . 78

3.4.6 LDM and STM . 79

3.4.7 PLD . 81

3.4.8 PUSH and POP . 82

3.4.9 LDREX and STREX . 83

3.4.10 CLREX . 84

Contents PM0253

4/252 DocID028474 Rev 3

3.5 General data processing instructions . 85

3.5.1 ADD, ADC, SUB, SBC, and RSB . 87

3.5.2 AND, ORR, EOR, BIC, and ORN . 89

3.5.3 ASR, LSL, LSR, ROR, and RRX . 90

3.5.4 CLZ . 91

3.5.5 CMP and CMN . 92

3.5.6 MOV and MVN . 93

3.5.7 MOVT . 94

3.5.8 REV, REV16, REVSH, and RBIT . 95

3.5.9 SADD16 and SADD8 . 96

3.5.10 SHADD16 and SHADD8 . 97

3.5.11 SHASX and SHSAX . 98

3.5.12 SHSUB16 and SHSUB8 . 99

3.5.13 SSUB16 and SSUB8 . 100

3.5.14 SASX and SSAX . 101

3.5.15 TST and TEQ . 102

3.5.16 UADD16 and UADD8 . 103

3.5.17 UASX and USAX . 104

3.5.18 UHADD16 and UHADD8 . 105

3.5.19 UHASX and UHSAX . 106

3.5.20 UHSUB16 and UHSUB8 . 107

3.5.21 SEL . 108

3.5.22 USAD8 . 108

3.5.23 USADA8 . 109

3.5.24 USUB16 and USUB8 . 110

3.6 Multiply and divide instructions .111

3.6.1 MUL, MLA, and MLS . 112

3.6.2 UMULL, UMAAL, UMLAL . 113

3.6.3 SMLA and SMLAW . 115

3.6.4 SMLAD . 116

3.6.5 SMLAL and SMLALD . 117

3.6.6 SMLSD and SMLSLD . 119

3.6.7 SMMLA and SMMLS . 121

3.6.8 SMMUL . 122

3.6.9 SMUAD and SMUSD . 123

3.6.10 SMUL and SMULW . 124

3.6.11 UMULL, UMLAL, SMULL, and SMLAL . 126

DocID028474 Rev 3 5/252

PM0253 Contents

8

3.6.12 SDIV and UDIV . 127

3.7 Saturating instructions . 128

3.7.1 SSAT and USAT . 129

3.7.2 SSAT16 and USAT16 . 130

3.7.3 QADD and QSUB . 131

3.7.4 QASX and QSAX . 132

3.7.5 QDADD and QDSUB . 133

3.7.6 UQASX and UQSAX . 134

3.7.7 UQADD and UQSUB . 136

3.8 Packing and unpacking instructions . 137

3.8.1 PKHBT and PKHTB . 138

3.8.2 SXT and UXT . 139

3.8.3 SXTA and UXTA . 140

3.9 Bit field instructions . 141

3.9.1 BFC and BFI . 142

3.9.2 SBFX and UBFX . 143

3.9.3 SXT and UXT . 144

3.10 Branch and control instructions . 145

3.10.1 B, BL, BX, and BLX . 145

3.10.2 CBZ and CBNZ . 147

3.10.3 IT . 148

3.10.4 TBB and TBH . 150

3.11 Floating-point instructions . 151

3.11.1 VABS . 153

3.11.2 VADD . 153

3.11.3 VCMP, VCMPE . 154

3.11.4 VCVT, VCVTR between floating-point and integer 155

3.11.5 VCVT between floating-point and fixed-point 156

3.11.6 VCVTB, VCVTT . 157

3.11.7 VDIV . 157

3.11.8 VFMA, VFMS . 158

3.11.9 VFNMA, VFNMS . 159

3.11.10 VLDM . 159

3.11.11 VLDR . 160

3.11.12 VMLA, VMLS . 161

3.11.13 VMOV Immediate . 162

Contents PM0253

6/252 DocID028474 Rev 3

3.11.14 VMOV Register . 162

3.11.15 VMOV Scalar to ARM core register . 163

3.11.16 VMOV ARM core register to single-precision 163

3.11.17 VMOV two ARM core registers to two single-precision registers 164

3.11.18 VMOV two ARM core registers and a double-precision register 164

3.11.19 VMOV ARM core register to scalar . 165

3.11.20 VMRS . 165

3.11.21 VMSR . 166

3.11.22 VMUL . 166

3.11.23 VNEG . 167

3.11.24 VNMLA, VNMLS, VNMUL . 167

3.11.25 VPOP . 168

3.11.26 VPUSH . 169

3.11.27 VSQRT . 169

3.11.28 VSTM . 170

3.11.29 VSTR . 170

3.11.30 VSUB . 171

3.11.31 VSEL . 172

3.11.32 VMAXNM, VMINNM . 172

3.11.33 VCVTA, VCVTN, VCVTP, VCVTM . 173

3.11.34 VRINTR, VRINTX . 173

3.11.35 VRINTA, VRINTN, VRINTP, VRINTM, VRINTZ 174

3.12 Miscellaneous instructions . 175

3.12.1 BKPT . 175

3.12.2 CPS . 176

3.12.3 DMB . 177

3.12.4 DSB . 177

3.12.5 ISB . 178

3.12.6 MRS . 178

3.12.7 MSR . 179

3.12.8 NOP . 180

3.12.9 SEV . 180

3.12.10 SVC . 181

3.12.11 WFE . 181

3.12.12 WFI . 182

4 Cortex-M7 Peripherals . 183

DocID028474 Rev 3 7/252

PM0253 Contents

8

4.1 About the Cortex-M7 peripherals . 183

4.2 Nested Vectored Interrupt Controller . 184

4.2.1 Accessing the Cortex®-M7 NVIC registers using CMSIS 185

4.2.2 Interrupt Set-enable registers . 185

4.2.3 Interrupt clear-enable registers . 186

4.2.4 Interrupt set-pending registers . 186

4.2.5 Interrupt clear-pending registers . 187

4.2.6 Interrupt Active Bit registers . 188

4.2.7 Interrupt Priority registers . 188

4.2.8 Software Trigger Interrupt register . 189

4.2.9 Level-sensitive and pulse interrupts . 190

4.2.10 NVIC design hints and tips . 191

4.3 System control block . 192

4.3.1 Auxiliary Control register . 193

4.3.2 CPUID Base register . 194

4.3.3 Interrupt Control and State register . 194

4.3.4 Vector Table Offset register . 197

4.3.5 Application Interrupt and Reset Control register 197

4.3.6 System Control register . 199

4.3.7 Configuration and Control register . 200

4.3.8 System Handler Priority registers . 202

4.3.9 System Handler Control and State register . 204

4.3.10 Configurable Fault Status register . 205

4.3.11 HardFault Status register . 210

4.3.12 MemManage Fault Address register . 211

4.3.13 BusFault Address register . 212

4.3.14 System control block design hints and tips . 212

4.4 System timer, SysTick . 212

4.4.1 SysTick Control and Status register . 213

4.4.2 SysTick Reload Value register . 214

4.4.3 SysTick Current Value register . 214

4.4.4 SysTick Calibration Value register . 215

4.4.5 SysTick design hints and tips . 216

4.5 Processor features . 217

4.5.1 Cache Level ID register . 217

4.5.2 Cache Type register . 218

Contents PM0253

8/252 DocID028474 Rev 3

4.5.3 Cache Size ID register . 219

4.5.4 Cache Size Selection register . 220

4.6 Memory Protection Unit . 221

4.6.1 MPU Type register . 223

4.6.2 MPU Control register . 223

4.6.3 MPU Region Number register . 225

4.6.4 MPU Region Base Address register . 225

4.6.5 MPU Region Attribute and Size register . 226

4.6.6 MPU access permission attributes . 228

4.6.7 MPU mismatch . 230

4.6.8 Updating an MPU region . 230

4.6.9 MPU design hints and tips . 232

4.7 Floating-point unit . 233

4.7.1 Coprocessor Access Control register . 233

4.7.2 Floating-point Context Control register . 234

4.7.3 Floating-point Context Address register . 236

4.7.4 Floating-point Status Control register . 236

4.7.5 Floating-point Default Status Control register 237

4.7.6 Enabling the FPU . 238

4.8 Cache maintenance operations . 238

4.8.1 Full instruction cache operation . 239

4.8.2 Instruction and data cache operations by address 239

4.8.3 Data cache operations by set-way . 239

4.8.4 Cortex®-M7 cache maintenance operations using CMSIS 240

4.8.5 Initializing and enabling the L1-cache . 240

4.8.6 Faults handling considerations . 242

4.8.7 Cache maintenance design hints and tips . 242

4.9 Access control . 243

4.9.1 Instruction and Data Tightly-Coupled Memory Control Registers 244

4.9.2 AHBP Control register . 246

4.9.3 Auxiliary Cache Control register . 247

4.9.4 AHB Slave Control register . 248

4.9.5 Auxiliary Bus Fault Status register . 249

5 Revision history . 251

DocID028474 Rev 3 9/252

PM0253 List of tables

11

List of tables

Table 1. Summary of processor mode, execution privilege level, and stack use options. 20
Table 2. Core register set summary . 21
Table 3. PSR register combinations . 22
Table 4. APSR bit assignments . 23
Table 5. IPSR bit assignments . 24
Table 6. EPSR bit assignments . 24
Table 7. PRIMASK register bit assignments. 26
Table 8. FAULTMASK register bit assignments . 26
Table 9. BASEPRI register bit assignments . 27
Table 10. Control register bit assignments . 27
Table 11. STM32F746xx/STM32F756xx Cortex®-M7 configuration. 30
Table 12. STM32F76xxx/STM32F77xxx Cortex®-M7 configuration . 30
Table 13. STM32F72xxx/STM32F73xxx Cortex®-M7 configuration . 31
Table 14. Ordering of memory accesses . 34
Table 15. Memory access behavior . 34
Table 16. Memory region shareability and cache policies . 35
Table 17. CMSIS functions for exclusive access instructions. 38
Table 18. Properties of the different exception types . 40
Table 19. Exception return behavior . 46
Table 20. Faults . 47
Table 21. Fault status and fault address registers . 49
Table 22. Cortex®-M7 instructions . 52
Table 23. CMSIS functions to generate some Cortex®-M7 processor instructions 62
Table 24. CMSIS functions to access the special registers . 63
Table 25. Condition code suffixes. 70
Table 26. Memory access instructions . 72
Table 27. Offset ranges . 75
Table 28. Offset ranges . 78
Table 29. Data processing instructions. 85
Table 30. Multiply and divide instructions . 111
Table 31. Saturating instructions . 128
Table 32. Packing and unpacking instructions . 137
Table 33. Packing and unpacking instructions . 141
Table 34. Branch and control instructions . 145
Table 35. Branch ranges . 146
Table 36. Floating-point instructions. 151
Table 37. Miscellaneous instructions . 175
Table 38. Core peripheral register regions . 183
Table 39. NVIC register summary . 184
Table 40. CMSIS access NVIC functions . 185
Table 41. ISER bit assignments . 185
Table 42. ICER bit assignments . 186
Table 43. ISPR bit assignments . 187
Table 44. ICPR bit assignments . 187
Table 45. IABR bit assignments . 188
Table 46. IPR bit assignments . 189
Table 47. STIR bit assignments . 189
Table 48. CMSIS functions for NVIC control . 191

List of tables PM0253

10/252 DocID028474 Rev 3

Table 49. Summary of the system control block registers . 192
Table 50. ACTLR bit assignments . 193
Table 51. CPUID bit assignments. 194
Table 52. ICSR bit assignments . 195
Table 53. VTOR bit assignments . 197
Table 54. AIRCR bit assignments. 198
Table 55. Priority grouping . 198
Table 56. SCR bit assignments . 199
Table 57. CCR bit assignments . 201
Table 58. System fault handler priority fields . 202
Table 59. SHPR1 register bit assignments . 203
Table 60. SHPR2 register bit assignments . 203
Table 61. SHPR3 register bit assignments . 203
Table 62. SHCSR bit assignments . 204
Table 63. MMFSR bit assignments. 206
Table 64. BFSR bit assignments . 208
Table 65. UFSR bit assignments . 209
Table 66. HFSR bit assignments . 211
Table 67. MMFAR bit assignments. 211
Table 68. BFAR bit assignments . 212
Table 69. CMSIS function for system control . 212
Table 70. System timer registers summary . 213
Table 71. SysTick SYST_CSR bit assignments . 213
Table 72. SYST_RVR bit assignments . 214
Table 73. SYST_CVR bit assignments . 215
Table 74. SYST_CALIB bit assignments . 215
Table 75. CMSIS functions for SysTick control . 216
Table 76. Identification space summary . 217
Table 77. CLIDR bit assignments . 217
Table 78. CTR bit assignments . 218
Table 79. CCSIDR bit assignments . 219
Table 80. CCSIDR encodings. 220
Table 81. CSSELR bit assignments . 220
Table 82. Memory attributes summary . 221
Table 83. MPU registers summary . 222
Table 84. TYPE bit assignments . 223
Table 85. MPU_CTRL bit assignments . 224
Table 86. MPU_RNR bit assignments . 225
Table 87. MPU_RBAR bit assignments . 226
Table 88. MPU_RASR bit assignments . 227
Table 89. Example SIZE field values . 228
Table 90. TEX, C, B, and S encoding. 228
Table 91. Cache policy for memory attribute encoding . 229
Table 92. AP encoding . 229
Table 93. Cortex®-M7 floating-point system registers . 233
Table 94. CPACR bit assignments . 234
Table 95. FPCCR bit assignments . 234
Table 96. FPCAR bit assignments . 236
Table 97. FPSCR bit assignments . 236
Table 98. FPDSCR bit assignments . 237
Table 99. Cache maintenance space register summary . 238
Table 100. Cache operation registers bit assignments. 239

DocID028474 Rev 3 11/252

PM0253 List of tables

11

Table 101. Cache operations by set-way bit assignments . 239
Table 102. CMSIS access cache maintenance operations . 240
Table 103. Access control register summary . 243
Table 104. ITCMCR and DTCMCR bit assignments . 244
Table 105. AHBPCR bit assignments . 246
Table 106. CACR bit assignments . 247
Table 107. AHBSCR bit assignments . 248
Table 108. ABFSR bit assignments . 249
Table 109. Document revision history . 251

List of figures PM0253

12/252 DocID028474 Rev 3

List of figures

Figure 1. STM32 Cortex®-M7 implementation processor . 15
Figure 2. Processor core registers. 20
Figure 3. APSR, IPSR and EPSR bit assignments . 22
Figure 4. PRIMASK bit assignments:. 26
Figure 5. FAULTMASK bit assignments . 26
Figure 6. BASEPRI bit assignments . 27
Figure 7. Control bit assignments . 27
Figure 8. Processor memory map . 32
Figure 9. Little-endian format . 37
Figure 10. Vector table. 42
Figure 11. Exception stack frame . 45
Figure 12. ASR . 66
Figure 13. LSR. 66
Figure 14. LSL . 67
Figure 15. ROR . 67
Figure 16. RRX . 67
Figure 17. ISER bit assignments . 185
Figure 18. ICER bit assignment . 186
Figure 19. ISPR bit assignments . 186
Figure 20. ICPR bit assignments . 187
Figure 21. IABR bit assignments . 188
Figure 22. IPR bit assignments . 188
Figure 23. STIR bit assignments . 189
Figure 24. ACTLR bit assignments . 193
Figure 25. CPUID bit assignments. 194
Figure 26. ICSR bit assignments . 195
Figure 27. VTOR bit assignments . 197
Figure 28. AIRCR bit assignments. 197
Figure 29. SCR bit assignments: . 199
Figure 30. CCR bit assignments . 200
Figure 31. SHPR1 bit assignements . 202
Figure 32. SHPR2 bit assignments . 203
Figure 33. SHPR3 bit assignments . 203
Figure 34. SHCSR bit assignments . 204
Figure 35. CFSR bit assignments . 205
Figure 36. MMFSR bit assignments. 206
Figure 37. BFSR bit assignments . 207
Figure 38. UFSR bit assignments . 209
Figure 39. HFSR bit assignments . 210
Figure 40. SysTick SYST_CSR bit assignments . 213
Figure 41. SYST_RVR bit assignments . 214
Figure 42. SYST_CVR bit assignments: . 214
Figure 43. SYST_CALIB bit assignments . 215
Figure 44. CLIDR bit assignments . 217
Figure 45. CTR bit assignments . 218
Figure 46. CCSIDR bit assignments . 219
Figure 47. CSSELR bit assignments . 220
Figure 48. TYPE bit assignments . 223

DocID028474 Rev 3 13/252

PM0253 List of figures

13

Figure 49. MPU_CTRL bit assignments . 223
Figure 50. MPU_RNR bit assignments . 225
Figure 51. MPU_RBAR bit assignments: . 225
Figure 52. MPU_RASR bit assignments . 227
Figure 53. Example of disabling subregion . 232
Figure 54. CPACR bit assignments . 233
Figure 55. FPCCR bit assignments . 234
Figure 56. FPCAR bit assignments . 236
Figure 57. FPSCR bit assignments . 236
Figure 58. FPDSCR bit assignments . 237
Figure 59. Cache operation bit assignments . 239
Figure 60. ITCMR and DTCMR bit assignments . 244
Figure 61. AHBPCR bit assignments . 246
Figure 62. CACR bit assignments . 247
Figure 63. AHBSCR bit assignments . 248
Figure 64. ABFSR bit assignments . 249

About this document PM0253

14/252 DocID028474 Rev 3

1 About this document

This document provides information required for application and system-level software
development. It does not provide information on debug components, features, or operation.

This material is for microcontroller software and hardware engineers, including those who
have no experience of ARM products.

1.1 Typographical conventions

The typographical conventions used in this document are:

1.2 List of abbreviations for registers

The following abbreviations are used in register descriptions:

italic Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

bold Highlights interface elements, such as menu names. Denotes signal
names. Also used for terms in descriptive lists, where appropriate.

monospace Denotes text that the user can enter at the keyboard, such as com-
mands, file and program names, and source code.

monospace Denotes a permitted abbreviation for a command or option. core can
enter the underlined text instead of the full command or option name.

monospace italic Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

monospace bold Denotes language keywords when used outside example code.

 < and > Enclose replaceable terms for assembler syntax where they appear in
code or code fragments. For example:
LDRSB<cond> <Rt>, [<Rn>, #<offset>]

read/write (rw) Software can read and write to these bits.

read-only (r) Software can only read these bits.

write-only (w) Software can only write to this bit.
Reading the bit returns the reset value.

read/clear (rc_w) Software can read as well as clear this bit by writing any value.

read/clear (rc_w1) Software can read as well as clear this bit by writing 1.
Writing ‘0’ has no effect on the bit value.

read/clear (rc_w0) Software can read as well as clear this bit by writing 0.
Writing ‘1’ has no effect on the bit value.

toggle (t) Software can only toggle this bit by writing ‘1’. Writing ‘0’ has no effect.

Reserved (Res.) Reserved bit, must be kept at reset value.

DocID028474 Rev 3 15/252

PM0253 About this document

18

1.3 About the Cortex®-M7 processor and core peripherals

The Cortex®-M7 processor is a high performance 32-bit processor designed for the
microcontroller market. It offers significant benefits to developers, including:

• Outstanding processing performance combined with fast interrupt handling.

• Enhanced system debug with extensive breakpoint and trace capabilities.

• Efficient processor core, system and memories.

• Low-power consumption with integrated sleep modes.

• Platform security robustness, with integrated Memory Protection Unit (MPU).

Figure 1. STM32 Cortex®-M7 implementation processor

The Cortex®-M7 processor is built on a high-performance processor core, with a 6-stage
pipeline Harvard architecture, making it ideal for demanding embedded applications. The in-
order superscalar processor delivers exceptional power efficiency through an efficient
instruction set and extensively optimized design, providing high-end processing hardware
including IEEE754-compliant single-precision and double-precision floating-point
computation, a range of single-cycle and SIMD multiplication and multiply-with-accumulate
capabilities, saturating arithmetic and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex®-M7 processor implements
tightly-coupled system components that reduce processor area while significantly improving
interrupt handling and system debug capabilities. The Cortex®-M7 processor implements a
version of the Thumb

®
 instruction set based on Thumb-2 technology, ensuring high code

About this document PM0253

16/252 DocID028474 Rev 3

density and reduced program memory requirements. The Cortex®-M7 instruction set
provides the exceptional performance expected of a modern 32-bit architecture, with the
high code density of 8-bit and 16-bit microcontrollers.

The Cortex®-M7 processor closely integrates a configurable NVIC, to deliver industry-
leading interrupt performance. The NVIC includes a Non Maskable Interrupt (NMI), and
provides up to 256 interrupt priority levels. The tight integration of the processor core and
NVIC provides fast execution of interrupt service routines (ISRs), dramatically reducing the
interrupt latency. This is achieved through the hardware stacking of registers, and the ability
to suspend load-multiple and store-multiple operations. Interrupt handlers do not require
wrapping in assembler code, removing any code overhead from the ISRs. A tail-chain
optimization also significantly reduces the overhead when switching from one ISR to
another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a
deep sleep function that enables the entire device to be rapidly powered down while still
retaining program state.

The reliability is increased with automatic fault detection and handling built-in. The
Cortex®-M7 processor uses ECC and SECDED on accesses to memory and has Memory
Build-in Self Test (MBIST) capability. The Cortex®-M7 processor is dual-redundant, which
means it can operate in lock-step. The MCU vendor determines the reliability features
configuration and therefore this can differ across different devices and families.

To increase instruction throughput, the Cortex®-M7 processor can execute certain pairs of
instructions simultaneously. This is called dual issue.

1.3.1 System level interface

The Cortex®-M7 processor provides multiple interfaces using AMBA
®

 technology to provide
high speed, low latency memory accesses. It supports unaligned data accesses.

The Cortex®-M7 processor has an MPU that provides fine grain memory control, enabling
applications to utilize multiple privilege levels, separating and protecting code, data and
stack on a task-by-task basis. Such requirements are becoming critical in many embedded
applications such as automotive.

1.3.2 Integrated configurable debug

The Cortex®-M7 processor implements a complete hardware debug solution. This provides
high system visibility of the processor and memory through either a traditional JTAG port or
a 2-pin Serial Wire Debug (SWD) port that is ideal for microcontrollers and other small
package devices. The MCU vendor determines the debug feature configuration and
therefore this can differ across different devices and families.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM)
together with data watchpoints and a profiling unit. To enable simple and cost-effective
profiling of the system events these generate, a Serial Wire Viewer (SWV) can export a
stream of software-generated messages, data trace, and profiling information through a
single pin.

The optional CoreSight technology components, Embedded Trace Macrocell
™

 (ETM),
delivers unrivalled instruction trace and data trace capture in an area far smaller than
traditional trace units, enabling many low cost MCUs to implement full instruction trace for
the first time.

DocID028474 Rev 3 17/252

PM0253 About this document

18

The Breakpoint Unit provides up to eight hardware breakpoint comparators that debuggers
can use.

1.3.3 Cortex®-M7 processor features and benefits summary

• Tight integration of system peripherals reduces area and development costs.

• Thumb instruction set combines high code density with 32-bit performance.

• IEEE754-compliant single-precision and double-precision Floating-Point Unit (FPU).

• Power control optimization of system components.

• Integrated sleep modes for low-power consumption.

• Fast code execution permits slower processor clock or increases sleep mode time.

• Hardware division and fast digital-signal-processing orientated multiply accumulate.

• Saturating arithmetic for signal processing.

• Deterministic, high-performance interrupt handling for time-critical applications.

• MPU for safety-critical applications.

• ARM Cortex®-M7 with instruction cache and data cache

• Memory system features such as caches, Tightly-Coupled Memory (TCM) with DMA
port, and a high performance AXI external memory interface.

• Dedicated AHB slave (AHBS) interface for system access to TCMs

• Extensive debug and trace capabilities:

– Serial Wire Debug and Serial Wire Trace reduce the number of pins required for
debugging, tracing, and code profiling.

1.3.4 Cortex®-M7 processor core peripherals

The Cortex®-M7 processor core peripherals are:

Nested Vectored Interrupt Controller

The NVIC is an embedded interrupt controller that supports low latency interrupt
processing.

System Control Block

The System Control Block (SCB) is the programmers model interface to the
processor. It provides system implementation information and system control,
including configuration, control, and reporting of system exceptions.

Integrated instruction and data caches

The instruction and data caches provide fast access to frequently accessed data
and instructions, providing support for increased average performance when using
system based memory.

System timer

The system timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time
Operating System (RTOS) tick timer or as a simple counter.

Memory Protection Unit

The Memory Protection Unit (MPU) improves system reliability by defining the
memory attributes for different memory regions. It provides up to 8 different
regions, and an optional predefined background region.

About this document PM0253

18/252 DocID028474 Rev 3

Floating-point unit

The FPU provides IEEE754-compliant operations on 32-bit single-precision and
64-bit double-precision floating-point values.

DocID028474 Rev 3 19/252

PM0253 The Cortex-M7 processor

51

2 The Cortex-M7 processor

2.1 Programmers model

This section describes the Cortex®-M7 programmers model. In addition to the individual
core register descriptions, it contains information about the processor modes and privilege
levels for software execution and stacks.

2.1.1 Processor mode and privilege levels for software execution

The processor modes are:

The privilege levels for software execution are:

In Thread mode, the CONTROL register controls whether software execution is privileged or
unprivileged, see CONTROL register on page 27. In Handler mode, software execution is
always privileged.

Only privileged software can write to the CONTROL register to change the privilege level for
software execution in Thread mode. Unprivileged software can use the SVC instruction to
make a supervisor call to transfer control to privileged software.

2.1.2 Stacks

The processor uses a full descending stack. This means the stack pointer holds the address
of the last stacked item in memory. When the processor pushes a new item onto the stack, it
decrements the stack pointer and then writes the item to the new memory location. The
processor implements two stacks, the main stack and the process stack, with a pointer for
each held in independent registers, see Stack Pointer on page 21.

In Thread mode, the CONTROL register controls whether the processor uses the main
stack or the process stack, see CONTROL register on page 27. In Handler mode, the
processor always uses the main stack. The options for processor operations are:

Thread mode Executes application software. The processor enters Thread mode
when it comes out of reset.

Handler mode Handles exceptions. The processor returns to Thread mode when it has
finished all exception processing.

Unprivileged The software:

• Has limited access to system registers using the MSR and MRS
instructions, and cannot use the CPS instruction to mask interrupts.

• Cannot access the system timer, NVIC, or system control block.

• Might have restricted access to memory or peripherals.

Unprivileged software executes at the unprivileged level.

Privileged The software can use all the instructions and has access to all
resources.

Privileged software executes at the privileged level.

The Cortex-M7 processor PM0253

20/252 DocID028474 Rev 3

2.1.3 Core registers

The processor core registers are

Figure 2. Processor core registers

Table 1. Summary of processor mode, execution privilege level, and stack use
options

Processor mode Used to execute
Privilege level for

software execution
Stack used

Thread Applications Privileged or unprivileged(1)

1. See CONTROL register on page 27.

Main stack or process stack(1)

Handler Exception handlers Always privileged Main stack

DocID028474 Rev 3 21/252

PM0253 The Cortex-M7 processor

51

General-purpose registers

R0-R12 are 32-bit general-purpose registers for data operations.

Stack Pointer

The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register
indicates the stack pointer to use:

• 0 = Main Stack Pointer (MSP). This is the reset value.

• 1 = Process Stack Pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

Link register

The Link Register (LR) is register R14. It stores the return information for subroutines,
function calls, and exceptions. On reset, the processor sets the LR value to 0xFFFFFFFF.

Table 2. Core register set summary

Register Name Type(1) Required
privilege (2) Reset value Description

General-purpose registers R0-R12 RW Either Unknown
General-purpose registers on
page 21.

Stack pointer MSP RW Either
See
description

Stack Pointer on page 21.

Stack pointer PSP RW Either Unknown Stack Pointer on page 21

Link register LR RW Either 0xFFFFFFFF Link register on page 21

Program Counter PC RW Either
See
description

Program Counter on page 22

Program Status Register PSR RW Either 0x01000000(3)
Program Status register on
page 22

Application Program Status
register

APSR RW Either Unknown
Application Program Status
register on page 23

Interrupt Program Status
register

IPSR RO Privileged 0x00000000
Interrupt Program Status register
on page 23

Execution Program Status
register

EPSR RO Privileged 0x01000000(3) Execution Program Status
register on page 24

Priority Mask register PRIMASK RW Privileged 0x00000000
Priority Mask register on
page 25

Fault Mask register FAULTMASK RW Privileged 0x00000000 Fault Mask register on page 26

Base Priority Mask register BASEPRIS RW Privileged 0x00000000
Priority Mask register on
page 25

Control register CONTROL RW Privileged 0x00000000 CONTROL register on page 27

1. Describes access type during program execution in Thread mode and Handler mode. Debug access can differ.

2. An entry of Either means privileged and unprivileged software can access the register.

3. The EPSR reads as zero when executing an MRS instruction.

The Cortex-M7 processor PM0253

22/252 DocID028474 Rev 3

Program Counter

The Program Counter (PC) is register R15. It contains the current program address. On
reset, the processor loads the PC with the value of the reset vector, which is at address
0x00000004. Bit[0] of the value is loaded into the EPSR T-bit at reset and must be 1.

Program Status register

The Program Status register (PSR) combines:

• Application Program Status register (APSR).

• Interrupt Program Status register (IPSR).

• Execution Program Status register (EPSR).

These registers are mutually exclusive bit fields in the 32-bit PSR. The bit assignments are

Figure 3. APSR, IPSR and EPSR bit assignments

Access these registers individually or as a combination of any two or all three registers,
using the register name as an argument to the MSR or MRS instructions. For example:

• Read all of the registers using PSR with the MRS instruction.

• Write to the APSR N, Z, C, V, and Q bits using APSR_nzcvq with the MSR instruction.

The PSR combinations and attributes are:

See the instruction descriptions MRS on page 178 and MSR on page 179 for more
information about how to access the program status registers.

Table 3. PSR register combinations

Register Type Combination

PSR RW(1),(2)

1. The processor ignores writes to the IPSR bits.

2. Reads of the EPSR bits return zero, and the processor ignores writes to these bits.

APSR, EPSR, and IPSR.

IEPSR RO EPSR and IPSR.

IAPSR RW(1) APSR and IPSR.

EAPSR RW(2) APSR and EPSR.

DocID028474 Rev 3 23/252

PM0253 The Cortex-M7 processor

51

Application Program Status register

The APSR contains the current state of the condition flags from previous instruction
executions. See the register summary in Table 4 on page 23 for its attributes. The bit
assignments are:

Interrupt Program Status register

The IPSR contains the exception type number of the current Interrupt Service Routine
(ISR). See the register summary in Table 5 on page 24 for its attributes. The bit assignments
are:

Table 4. APSR bit assignments

Bits Name Description

[31] N Negative flag.

[30] Z Zero flag.

[29] C Carry or borrow flag.

[28] V Overflow flag.

[27] Q DSP overflow and saturation flag

[26:20] - Reserved

[19:16] GE[3:0]
Greater than or Equal flags. See SEL on page 108 for more
information.

[15:0] - Reserved

The Cortex-M7 processor PM0253

24/252 DocID028474 Rev 3

Execution Program Status register

The EPSR contains the Thumb state bit, and the execution state bits for either the:

• If-Then (IT) instruction.

• Interruptible-Continuable Instruction (ICI) field for an interrupted load multiple or store
multiple instruction.

See the register summary in Table 6 on page 24 for the EPSR attributes. The bit
assignments are

Table 5. IPSR bit assignments

Bits Name Function

[31:9] - Reserved

[8:0] ISR_NUMBER

This is the number of the current exception:

0 = Thread mode.

1 = Reserved.

2 = NMI.

3 = HardFault.

4 = MemManage.

5 = BusFault

6 = UsageFault

7-10 = Reserved

11 = SVCall.

12 = Reserved for debug

13 = Reserved

14 = PendSV.

15 = SysTick.

16 = IRQ0.

.

.

256 = IRQ239.

see Exception types on page 39 for more information.

Table 6. EPSR bit assignments

Bits Name Function

[31:27] - Reserved.

[26:25], [15:10] ICI
Interruptible-continuable instruction bits, see Interruptible-continuable
instructions on page 25.

[26:25], [15:10] IT
Indicates the execution state bits of the IT instruction, see IT on
page 148.

[24] T Thumb state bit, see Thumb state.

[23:16] - Reserved.

[9:0] - Reserved.

DocID028474 Rev 3 25/252

PM0253 The Cortex-M7 processor

51

The attempts to read the EPSR directly through application software using the MSR
instruction always return zero. The attempts to write the EPSR using the MSR instruction in
application software are ignored.

Interruptible-continuable instructions

When an interrupt occurs during the execution of an LDM, STM, PUSH, POP, VLDM,
VSTM, VPUSH, or VPOP instruction, the processor:

• Stops the load multiple or store multiple instruction operation temporarily.

• Stores the next register operand in the multiple operation to EPSR bits[15:12].

After servicing the interrupt, the processor:

• Returns to the register pointed to by bits[15:12].

• Resumes execution of the multiple load or store instruction.

When the EPSR holds ICI execution state, bits[26:25,11:10] are zero.

If-Then block

The If-Then block contains up to four instructions following an IT instruction. Each
instruction in the block is conditional. The conditions for the instructions are either all the
same, or some can be the inverse of others. See IT on page 148 for more information.

Thumb state

The Cortex®-M7 processor only supports execution of instructions in Thumb state. The
following can clear the T bit to 0:

• Instructions BLX, BX and POP{PC}.

• Restoration from the stacked xPSR value on an exception return.

• Bit[0] of the vector value on an exception entry or reset.

Attempting to execute instructions when the T bit is 0 results in a fault or lockup. See Lockup
on page 49 for more information.

Exception mask registers

The exception mask registers disable the handling of exceptions by the processor. Disable
exceptions where they might impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS
instruction to change the value of PRIMASK or FAULTMASK. See MRS on page 178, MSR
on page 179, and CPS on page 176 for more information.

Priority Mask register

The PRIMASK register prevents the activation of all exceptions with a configurable priority.
See the register summary in Table 7 for its attributes. The bit assignments are

The Cortex-M7 processor PM0253

26/252 DocID028474 Rev 3

Figure 4. PRIMASK bit assignments:

Fault Mask register

The FAULTMASK register prevents activation of all exceptions except for Non Maskable
Interrupt (NMI). See the register summary in Table 8 on page 26 for its attributes. The bit
assignments are

Figure 5. FAULTMASK bit assignments

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except
the NMI handler.

Base Priority Mask register

The BASEPRI register defines the minimum priority for exception processing. When
BASEPRI is set to a nonzero value, it prevents the activation of all exceptions with the same
or lower priority level as the BASEPRI value. See the register summary in Table 9 on
page 27 for its attributes. The bit assignments are:

Table 7. PRIMASK register bit assignments

Bits Name Function

[31:1] - Reserved.

[0] PRIMASK
Prioritizable interrupt mask:

0 = No effect.
1 = Prevents the activation of all exceptions with configurable priority.

Table 8. FAULTMASK register bit assignments

Bits Name Function

[31:1] - Reserved.

[0] FAULTMASK
Prioritizable interrupt mask:

0 = No effect.
1 = Prevents the activation of all exceptions except for NMI.

DocID028474 Rev 3 27/252

PM0253 The Cortex-M7 processor

51

Figure 6. BASEPRI bit assignments

CONTROL register

The CONTROL register controls the stack used and the privilege level for software
execution when the processor is in Thread mode and indicates whether the FPU state is
active. See the register summary in Table 10 on page 27 for its attributes. The bit
assignments are:

Figure 7. Control bit assignments

Table 9. BASEPRI register bit assignments

Bits Name Function

[31:8] - Reserved.

[7:0] BASEPRI (1)

1. This field is similar to the priority fields in the interrupt priority registers. The device implements only
bits[7:M] of this field, bits[M-1:0] read as zero and ignore writes. See Interrupt Program Status register on
page 23 for more information. Remember that higher priority field values correspond to lower exception
priorities.

Priority mask bits:

0x00 No effect
Nonzero: Defines the base priority for exception processing.
The processor does not process any exception with a priority value
greater than or equal to BASEPRI.

Table 10. Control register bit assignments

Bits Name Function

[31:3] - Reserved.

[2] FPCA

Indicates whether floating-point context is currently active:

0: No floating-point context active.
1: Floating-point context active.
This bit is used to determine whether to preserve floating-point state
when processing an exception.

The Cortex-M7 processor PM0253

28/252 DocID028474 Rev 3

Handler mode always uses the MSP, so the processor ignores explicit writes to the active
stack pointer bit of the CONTROL register when in Handler mode. The exception entry and
return mechanisms automatically update the CONTROL register based on the
EXC_RETURN value, see Table 19 on page 46.

In an OS environment, ARM recommends that threads running in Thread mode use the
process stack and the kernel and exception handlers use the main stack.

By default, Thread mode uses the MSP. To switch the stack pointer used in Thread mode to
the PSP, either:

• Use the MSR instruction to set the CONTROL.SPSELbit, the current active stack
pointer bit, to 1, see MSR on page 179.

• Perform an exception return to Thread mode with the appropriate EXC_RETURN
value, see Table 19 on page 46.

 When changing the stack pointer, software must use an ISB instruction immediately after
the MSR instruction. This ensures that instructions after the ISB instruction execute using
the new stack pointer. See ISB on page 178.

2.1.4 Exceptions and interrupts

The Cortex®-M7 processor supports interrupts and system exceptions. The processor and
the NVIC prioritize and handle all exceptions. An exception changes the normal flow of
software control. The processor uses Handler mode to handle all exceptions except for
reset. See Exception entry on page 44 and Exception return on page 46 for more
information.

The NVIC registers control interrupt handling. See Nested Vectored Interrupt Controller on
page 184 for more information.

[1] SPSEL

Defines the currently active stack pointer:

0 = MSP is the current stack pointer.
1 = PSP is the current stack pointer.
In Handler mode this bit reads as zero and ignores writes. The
Cortex®-M7 processor updates this bit automatically on exception
return.

[0] nPRIV
Defines the Thread mode privilege level:

0 = Privileged.
1 = Unprivileged.

Table 10. Control register bit assignments (continued)

Bits Name Function

DocID028474 Rev 3 29/252

PM0253 The Cortex-M7 processor

51

2.1.5 Data types

The processor:

– Supports the following data types:

– 32-bit words.

– 16-bit halfwords.

– 8-bit bytes.

– 32-bit single-precision floating point numbers.

– 64-bit double-precision floating point numbers.

• Manages all data memory accesses as little-endian. See Memory regions, types and
attributes on page 33 for more information.

2.1.6 The Cortex Microcontroller Software Interface Standard (CMSIS)

For a Cortex®-M7 microcontroller system, the Cortex Microcontroller Software Interface
Standard (CMSIS) defines:

• A common way to:

– Access peripheral registers.

– Define exception vectors.

• The names of:

– The registers of the core peripherals.

– The core exception vectors.

• A device-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the
Cortex®-M7 processor.

CMSIS simplifies software development by enabling the reuse of template code and the
combination of CMSIS-compliant software components from various middleware vendors.
Software vendors can expand the CMSIS to include their peripheral definitions and access
functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short
descriptions of the CMSIS functions that address the processor core and the core
peripherals.

 This document uses the register short names defined by the CMSIS. In a few cases these
differ from the architectural short names that might be used in other documents.

The following sections give more information about the CMSIS:

• Power management programming hints on page 51.

• CMSIS functions on page 62.

• SysTick design hints and tips on page 216

• Accessing the Cortex®-M7 NVIC registers using CMSIS on page 185.

• NVIC programming hints on page 191.

• Cortex®-M7 cache maintenance operations using CMSIS on page 240

The Cortex-M7 processor PM0253

30/252 DocID028474 Rev 3

2.2 Cortex®-M7 configurations

Table 11, Table 12 and Table 13 show the configurations for STM32F7 Cortex-M7.

Table 11. STM32F746xx/STM32F756xx Cortex®-M7 configuration

Features STM32F746xx/STM32F756xx

Floating Point Unit Single precision floating point unit

MPU 8 regions

Instruction TCM size
Flash TCM: 1 Mbyte

RAM ITCM: 16 Kbytes

Data TCM size 64 Kbytes

Instruction cache size 4 Kbytes

Data cache size 4 Kbytes

Cache ECC Not implemented

Interrupt priority levels 16 priority levels

Number of IRQ 98

WIC, CTI Not implemented

Debug
JTAG & Serial-Wire Debug Ports
8 breakpoints and 4 watchpoints.

ITM support Data Trace (DWT), and instrumentation trace (ITM)

ETM support Instruction Trace interface

Table 12. STM32F76xxx/STM32F77xxx Cortex®-M7 configuration

Features STM32F76xxx/STM32F77xxx

Floating Point Unit Double and single precision floating point unit

MPU 8 regions

Instruction TCM size
Flash TCM: 2 Mbytes

RAM ITCM: 16 Kbytes

Data TCM size 128 Kbytes

Instruction cache size 16 Kbytes

Data cache size 16 Kbytes

Cache ECC Not implemented

Interrupt priority levels 16 priority levels

Number of IRQ 110

WIC, CTI Not implemented

Debug
JTAG & Serial-Wire Debug Ports
8 breakpoints and 4 watchpoints.

ITM support Data Trace (DWT), and instrumentation trace (ITM)

ETM support Instruction Trace interface

DocID028474 Rev 3 31/252

PM0253 The Cortex-M7 processor

51

Table 13. STM32F72xxx/STM32F73xxx Cortex®-M7 configuration

Features STM32F72xxx/STM32F73xxx

Floating Point Unit Single precision floating point unit

MPU 8 regions

Instruction TCM size
Flash TCM: 512 Kbytes

RAM ITCM: 16 Kbytes

Data TCM size 64 Kbytes

Instruction cache size 8 Kbytes

Data cache size 8 Kbytes

Cache ECC Not implemented

Interrupt priority levels 16 priority levels

Number of IRQ 104

WIC, CTI Not implemented

Debug
JTAG & Serial-Wire Debug Ports
8 breakpoints and 4 watchpoints.

ITM support Data Trace (DWT), and instrumentation trace (ITM)

ETM support Instruction Trace interface

The Cortex-M7 processor PM0253

32/252 DocID028474 Rev 3

2.3 Memory model

This section describes the processor memory map and the behavior of memory accesses.
The processor has a fixed default memory map that provides up to 4 Gbytes of addressable
memory. The memory map is:

Figure 8. Processor memory map

The processor reserves regions of the Private peripheral bus (PPB) address range for core
peripheral registers, see About the Cortex-M7 peripherals on page 183.

DocID028474 Rev 3 33/252

PM0253 The Cortex-M7 processor

51

2.3.1 Memory regions, types and attributes

The memory map and the programming of the MPU split the memory map into regions.
Each region has a defined memory type, and some regions have additional memory
attributes. The memory type and attributes determine the behavior of accesses to the
region.

The memory types are:

The different ordering requirements for Device and Strongly-ordered memory mean that the
memory system can buffer a write to Device memory, but must not buffer a write to Strongly-
ordered memory.

The additional memory attributes include.

2.3.2 Memory system ordering of memory accesses

For most of memory accesses caused by explicit memory access instructions, the memory
system does not guarantee that the order in which the accesses complete, matches the pro-
gram order of the instructions. Providing any re-ordering does not affect the behavior of the
instruction sequence. Normally, if a correct program execution depends on two memory
accesses completing in the program order, the software must insert a memory barrier
instruction between the memory access instructions, see 2.3.4: Software ordering of mem-
ory accesses on page 36.

However, the memory system does guarantee some ordering of accesses to Device and
Strongly-ordered memory. For two memory access instructions A1 and A2, if A1 occurs
before A2 in the program order, the ordering of the memory accesses caused by two
instructions is:

Normal The processor can re-order transactions for efficiency, or
perform speculative reads.

Device and Strongly-
ordered

The processor preserves transaction order relative to other
transactions to Device or Strongly-ordered memory.

Shareable For a shareable memory region, the memory system provides
data synchronization between bus masters in a system with
multiple bus masters, for example, a processor with a DMA
controller.

Strongly-ordered memory is always shareable.

If multiple bus masters can access a non-shareable memory
region, software must ensure data coherency between the
bus masters.

Execute Never (XN) Means the processor prevents instruction accesses. A
HardFault exception is generated on executing an instruction
fetched from an XN region of memory.

The Cortex-M7 processor PM0253

34/252 DocID028474 Rev 3

2.3.3 Behavior of memory accesses

The behavior of accesses to each region in the memory map is:

The Code, SRAM, and external RAM regions can hold programs.

Table 14. Ordering of memory accesses(1)

1. - means that the memory system does not guarantee the ordering of the accesses.
< means that accesses are observed in program order, that is, A1 is always observed before A2.

A1

A2

Normal access
Device access Strongly

ordered
accessNon-shareable Shareable

Normal access - - - -

Device access, non-shareable - < - <

Device access, shareable - - < <

Strongly ordered access - < < <

Table 15. Memory access behavior(1)

1. See Memory regions, types and attributes on page 33 for more information.

Address range Memory region
Memory

type
XN Description

0x00000000-
0x1FFFFFFF

Code Normal -

Executable region for program code. The user
can also put data here.
Instruction fetches and data accesses are
performed over the ITCM or AXIM interface.

0x20000000-
0x3FFFFFFF

SRAM Normal -

Executable region for data. The user can also
put code here.

Instruction fetches and data accesses are
performed over the DTCM or AXIM interface.

0x40000000-
0x5FFFFFFF

Peripheral Device XN
External device memory.
Data accesses are performed over the AHBP
or AXIM interface.

0x60000000-
0x9FFFFFFF

External RAM Normal -
Executable region for data.

Instruction fetches and data accesses are
performed over the AXIM interface.

0xA0000000-
0xDFFFFFFF

External device  Device XN
External device memory.
Instruction fetches and data accesses are
performed over the AXIM interface.

0xE0000000-
0xE00FFFFF

Private
Peripheral Bus

Strongly-
ordered

XN

This region includes the NVIC, System timer,
and System Control Block.

Only word accesses can be used in this
region.

0xE0100000-
0xFFFFFFFF

Vendor-specific
device

Device XN
Accesses to this region are to vendor-specific
peripherals.

DocID028474 Rev 3 35/252

PM0253 The Cortex-M7 processor

51

The MPU can override the default memory access behavior described in this section. For
more information, see Memory Protection Unit on page 221.

Additional memory access constraints for caches and shared memory

When a system includes caches or shared memory, some memory regions have additional
access constraints, and some regions are subdivided, as Table 16 shows:

Instruction prefetch and branch prediction

The Cortex®-M7 processor:

• Prefetches instructions ahead of execution.

• Speculatively prefetches from branch target addresses.

Table 16. Memory region shareability and cache policies

Address range Memory region Memory type(1)

1. See Section 2.3.1: Memory regions, types and attributes on page 33 for more information.

Shareability(1) Cache policy(2)

2. WT = Write through, no write allocate. WBWA = Write back, write allocate.

0x00000000-
0x1FFFFFFF

Code Normal Non-shareable WT

0x20000000-
0x3FFFFFFF

SRAM Normal Non-shareable WBWA

0x40000000-
0x5FFFFFFF

Peripheral  Device Non-shareable -

0x60000000-
0x7FFFFFFF

External RAM Normal Non-shareable

-

0x80000000-
0x9FFFFFFF

WT

0xA0000000-
0xBFFFFFFF

External device  Device

Shareable

-
0xC0000000-
0xDFFFFFFF

Non-shareable

0xE0000000-
0xE00FFFFF

Private Peripheral
Bus

Strongly- ordered Shareable -

0xE0100000-
0xFFFFFFFF

Vendor-specific
device

Device Non-shareable -

The Cortex-M7 processor PM0253

36/252 DocID028474 Rev 3

2.3.4 Software ordering of memory accesses

The order of instructions in the program flow does not always guarantee the order of the
corresponding memory transactions. This is because:

• The processor can reorder some memory accesses to improve efficiency, providing this
does not affect the behavior of the instruction sequence.

• The processor has multiple bus interfaces.

• Memory or devices in the memory map have different wait states.

• Some memory accesses are buffered or speculative.

Memory system ordering of memory accesses on page 33 describes the cases where the
memory system guarantees the order of memory accesses. Otherwise, if the order of mem-
ory accesses is critical, software must include memory barrier instructions to force that
ordering. The processor provides the following memory barrier instructions:

MPU programming

Use a DSB, followed by an ISB instruction or exception return to ensure that the new MPU
configuration is used by subsequent instructions.

2.3.5 Memory endianness

The processor views memory as a linear collection of bytes numbered in ascending order
from zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second
stored word. Little-endian format on page 36 describes how words of data are stored in
memory.

Little-endian format

In little-endian format, the processor stores the least significant byte of a word at the lowest-
numbered byte, and the most significant byte at the highest-numbered byte. For example:

DMB The Data Memory Barrier (DMB) instruction ensures that outstanding
memory transactions complete before subsequent memory transactions.
See DMB on page 177.

DSB The Data Synchronization Barrier (DSB) instruction ensures that
outstanding memory transactions complete before subsequent
instructions execute. See DSB on page 177.

ISB The Instruction Synchronization Barrier (ISB) ensures that the effect of all
completed memory transactions is recognizable by subsequent
instructions. See ISB on page 178.

DocID028474 Rev 3 37/252

PM0253 The Cortex-M7 processor

51

Figure 9. Little-endian format

2.3.6 Synchronization primitives

The instruction set support for the Cortex®-M7 processor includes pairs of synchronization
primitives. These provide a non-blocking mechanism that a thread or process can use to
obtain exclusive access to a memory location. Software can use them to perform a
guaranteed read-modify-write memory update sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises:

A Load-Exclusive instruction

Used to read the value of a memory location, requesting exclusive access to that
location.

A Store-Exclusive instruction

Used to attempt to write to the same memory location, returning a status bit to a
register. If this bit is:

0 it indicates that the thread or process gained exclusive access to the memory, and
the write succeeds,

1 it indicates that the thread or process did not gain exclusive access to the memory,
and no write was performed.

The pairs of Load-Exclusive and Store-Exclusive instructions are:

• The word instructions LDREX and STREX.

• The halfword instructions LDREXH and STREXH.

• The byte instructions LDREXB and STREXB.

Software must use a Load-Exclusive instruction with the corresponding Store-Exclusive
instruction.

To perform an exclusive read-modify-write of a memory location, software must:

1. Use a Load-Exclusive instruction to read the value of the location.

2. Modify the value, as required.

3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory
location.

4. Test the returned status bit. If this bit is:

0: The read-modify-write completed successfully.

1: No write was performed. This indicates that the value returned at step 1 might be out
of date. The software must retry the entire read-modify-write sequence.

The Cortex-M7 processor PM0253

38/252 DocID028474 Rev 3

Software can use the synchronization primitives to implement a semaphore as follows:

1. Use a Load-Exclusive instruction to read from the semaphore address to check
whether the semaphore is free.

2. If the semaphore is free, use a Store-Exclusive to write the claim value to the
semaphore address.

3. If the returned status bit from step 2 indicates that the Store-Exclusive succeeded then
the software has claimed the semaphore. However, if the Store-Exclusive failed,
another process might have claimed the semaphore after the software performed step
1.

The Cortex®-M7 processor includes an exclusive access monitor, that tags the fact that the
processor has executed a Load-Exclusive instruction. If the processor is part of a
multiprocessor system and the address is in a shared region of memory, the system also
globally tags the memory locations addressed by exclusive accesses by each processor.

The processor removes its exclusive access tag if:

• It executes a CLREX instruction.

• It executes a STREX instruction, regardless of whether the write succeeds.

• An exception occurs. This means the processor can resolve semaphore conflicts
between different threads.

In a multiprocessor implementation:

• Executing a CLREX instruction removes only the local exclusive access tag for the
processor.

• Executing a STREX instruction, or an exception, removes the local exclusive access
tags for the processor.

• Executing a STREX instruction to a shared memory region can also remove the global
exclusive access tags for the processor in the system.

For more information about the synchronization primitive instructions, see LDREX and
STREX on page 83 and CLREX on page 84.

2.3.7 Programming hints for the synchronization primitives

ISO/IEC C cannot directly generate the exclusive access instructions. CMSIS provides
intrinsic functions for generation of these instructions:

Table 17. CMSIS functions for exclusive access instructions

Instruction CMSIS function

LDREX uint32_t __LDREXW (uint32_t *addr)

LDREXH uint16_t __LDREXH (uint16_t *addr)

LDREXB uint8_t __LDREXB (uint8_t *addr)

STREX uint32_t __STREXW (uint32_t value, uint32_t *addr)

STREXH uint32_t __STREXH (uint16_t value, uint16_t *addr)

STREXB uint32_t __STREXB (uint8_t value, uint8_t *addr)

CLREX void __CLREX (void)

DocID028474 Rev 3 39/252

PM0253 The Cortex-M7 processor

51

For example:

uint16_t value;

uint16_t *address = 0x20001002;

value = __LDREXH (address); // load 16-bit value from memory address
0x20001002

2.4 Exception model

This section describes the exception model. It describes:

• Exception states.

• Exception types.

• Exception handlers on page 41.

• Vector table on page 42.

• Exception priorities on page 43.

• Interrupt priority grouping on page 43.

• Exception entry and return on page 44.

2.4.1 Exception states

Each exception is in one of the following states:

2.4.2 Exception types

The exception types are:

Inactive The exception is not active and not pending.

Pending The exception is waiting to be serviced by the processor.

An interrupt request from a peripheral or from software can change
the state of the corresponding interrupt to pending.

Active An exception that is being serviced by the processor but has not com-
pleted.
Note: An exception handler can interrupt the execution of another exception

handler. In this case both exceptions are in the active state.

Active and pending The exception is being serviced by the processor and there is a pend-
ing exception from the same source.

Reset Reset is invoked on power up or a warm reset. The exception model
treats reset as a special form of exception. When reset is asserted,
the operation of the processor stops, potentially at any point in an
instruction. When reset is deasserted, execution restarts from the
address provided by the reset entry in the vector table. Execution
restarts as privileged execution in Thread mode.

The Cortex-M7 processor PM0253

40/252 DocID028474 Rev 3

NMI A NonMaskable Interrupt (NMI) can be signalled by a peripheral or
triggered by software. This is the highest priority exception other than
reset. It is permanently enabled and has a fixed priority of -2. NMIs
cannot be:

• Masked or prevented from activation by any other exception.

• Preempted by any exception other than Reset.

HardFault A HardFault is an exception that occurs because of an error during
normal or exception processing. HardFaults have a fixed priority of -1,
meaning they have higher priority than any exception with
configurable priority.

SVCall A Supervisor Call (SVC) is an exception that is triggered by the SVC
instruction. In an OS environment, applications can use SVC
instructions to access OS kernel functions and device drivers.

PendSV PendSV is an interrupt-driven request for system-level service. In an
OS environment, use PendSV for context switching when no other
exception is active.

SysTick A SysTick exception is an exception the system timer generates when
it reaches zero. Software can also generate a SysTick exception. In
an OS environment, the processor can use this exception as system
tick.

Interrupt (IRQ) An interrupt, or IRQ, is an exception signalled by a peripheral, or
generated by a software request. All interrupts are asynchronous to
instruction execution. In the system, peripherals use interrupts to
communicate with the processor.

Table 18. Properties of the different exception types

Exception
number(1)

IRQ
number(1)

Exception
type

Priority
Vector

address(2) Activation

1 - Reset -3, the highest 0x00000004 Asynchronous

2 -14 NMI -2 0x00000008 Asynchronous

3 -13 HardFault -1 0x0000000C Synchronous

4 -12 MemManage Configurable (3) 0x00000010 Synchronous

5 -11 BusFault Configurable (3) 0x00000014
Synchronous when
precise, asynchronous
when imprecise

6 -10 UsageFault Configurable(3) 0x00000018 Synchronous

7-10 - Reserved - - -

11 -5 SVCall Configurable(3) 0x0000002C Synchronous

12-13 - Reserved - - -

14 -2 PendSV Configurable(3) 0x00000038 Asynchronous

DocID028474 Rev 3 41/252

PM0253 The Cortex-M7 processor

51

For an asynchronous exception, other than reset, the processor can execute additional
instructions between when the exception is triggered and when the processor enters the
exception handler.

Privileged software can disable the exceptions that Table 18 on page 40 shows as having
configurable priority, see:
• System Handler Control and State register on page 204

• Interrupt clear-enable registers on page 186.

For more information about HardFaults, MemManage faults, BusFaults, and UsageFaults,
see Section 2.5: Fault handling on page 47

2.4.3 Exception handlers

The processor handles exceptions using:

15 -1 SysTick Configurable(3) 0x0000003C Asynchronous

15 - Reserved - - -

16 and
above

0 and
above

Interrupt (IRQ) Configurable(4) 0x00000040
and
above(5)

Asynchronous

1. To simplify the software layer, the CMSIS only uses IRQ numbers. It uses negative values for exceptions
other than interrupts. The IPSR returns the Exception number, see Interrupt Program Status register on
page 23

2. See Figure 10: Vector table on page 42 for more information.

3. See System Handler Priority registers on page 202.

4. See Interrupt Priority registers on page 188

5. Increasing in step of 4.

Table 18. Properties of the different exception types (continued)

Exception
number(1)

IRQ
number(1)

Exception
type

Priority
Vector

address(2) Activation

Interrupt Service Routines (ISRs) Interrupts IRQ0 to IRQ239 are the exceptions handled
by ISRs

Fault handler HardFault, MemManage fault, UsageFault, and
BusFault are fault exceptions handled by the fault
handler.s

System handlers NMI, PendSV, SVCall SysTick, and the fault exceptions
are all system exceptions handled by system handlers.

The Cortex-M7 processor PM0253

42/252 DocID028474 Rev 3

2.4.4 Vector table

The vector table contains the reset value of the stack pointer, and the start addresses, also
called exception vectors, for all exception handlers. Figure 10 on page 42 shows the order
of the exception vectors in the vector table. The least-significant bit of each vector must be
1, indicating that the exception handler is Thumb code, see Thumb state on page 25.

Figure 10. Vector table

On system reset, the vector table is at address 0x00000000. Privileged software can write to
the VTOR to relocate the vector table start address to a different memory location, in the
range 0x00000000 to 0xFFFFFF80.

The silicon vendor must configure the top range value, which is dependent on the number of
interrupts implemented. The minimum alignment is 32 words, enough for up to 16 interrupts.
For more interrupts, adjust the alignment by rounding up to the next power of two. For
example, if the user requires 21 interrupts, the alignment must be on a 64-word boundary
because the required table size is 37 words, and the next power of two is 64, see Vector
Table Offset register on page 197.

ARM recommends that the user locates the vector table in either the CODE, SRAM,
External RAM, or External Device areas of the system memory map, see Cortex®-M7
configurations on page 30. Using the Peripheral, Private peripheral bus, or Vendor-specific

DocID028474 Rev 3 43/252

PM0253 The Cortex-M7 processor

51

memory areas can lead to unpredictable behavior in some systems. This is because the
processor uses a different interfaces for load/store instructions and vector fetch in these
memory areas. If the vector table is located in a region of memory that is cacheable, core
must treat any load or store to the vector as self-modifying code and use cache
maintenance instructions to synchronize the update to the data and instruction caches, see
Cache maintenance design hints and tips on page 242.

2.4.5 Exception priorities

As Table 18 on page 40 shows, all the exceptions have an associated priority, with:

• A lower priority value indicating a higher priority.

• Configurable priorities for all the exceptions except Reset, HardFault, and NMI.

If the software does not configure any priorities, then all the exceptions with a configurable
priority have a priority of 0. For information about configuring the exception priorities see

• System Handler Priority registers on page 202.

• Interrupt Priority registers on page 188.

 Note: Configurable priority values are in the range 0-255. This means that the Reset, HardFault,
and NMI exceptions, with fixed negative priority values, always have higher priority than any
other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1]
means that IRQ[1] has higher priority than IRQ[0]. If both IRQ[1] and IRQ[0] are asserted,
IRQ[1] is processed before IRQ[0].

If multiple pending exceptions have the same priority, the pending exception with the lowest
exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending
and have the same priority, then IRQ[0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted
if a higher priority exception occurs. If an exception occurs with the same priority as the
exception being handled, the handler is not preempted, irrespective of the exception
number. However, the status of the new interrupt changes to pending.

2.4.6 Interrupt priority grouping

To increase priority control in systems with interrupts, the NVIC supports priority grouping.
This divides each interrupt priority register entry into two fields:

• An upper field that defines the group priority.

• A lower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor
is executing an interrupt exception handler, another interrupt with the same group priority as
the interrupt being handled does not preempt the handler,

If multiple pending interrupts have the same group priority, the subpriority field determines
the order in which they are processed. If multiple pending interrupts have the same group
priority and subpriority, the interrupt with the lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority,
see Application Interrupt and Reset Control register on page 197.

The Cortex-M7 processor PM0253

44/252 DocID028474 Rev 3

2.4.7 Exception entry and return

Descriptions of exception handling use the following terms:

Exception entry

The exception entry occurs when there is a pending exception with sufficient priority and
either:

• The processor is in Thread mode.

• The new exception is of higher priority than the exception being handled, in which case
the new exception preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means the exception has more priority than any limits set by the mask
registers, see Exception mask registers on page 25. An exception with less priority than this
is pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-
arriving exception, the processor pushes information onto the current stack. This operation
is referred to as stacking and the structure of eight data words is referred as the stack frame.

Preemption When the processor is executing an exception handler, an exception
can preempt the exception handler if its priority is higher than the
priority of the exception being handled. See Interrupt priority grouping
on page 43 for more information about preemption by an interrupt.

When one exception preempts another, the exceptions are called
nested exceptions. See Exception entry on page 44 more information.

Return This occurs when the exception handler is completed, and:

• There is no pending exception with sufficient priority to be
serviced.

• The completed exception handler was not handling a late-arriving
exception.

The processor pops the stack and restores the processor state to the
state it had before the interrupt occurred. See Exception return on
page 46 for more information.

Tail-chaining This mechanism speeds up exception servicing. On completion of an
exception handler, if there is a pending exception that meets the
requirements for exception entry, the stack pop is skipped and control
transfers to the new exception handler.

Late-arriving This mechanism speeds up preemption. If a higher priority exception
occurs during state saving for a previous exception, the processor
switches to handle the higher priority exception and initiates the vector
fetch for that exception. State saving is not affected by late arrival
because the state saved is the same for both exceptions. Therefore the
state saving continues uninterrupted. The processor can accept a late
arriving exception until the first instruction of the exception handler of
the original exception enters the execute stage of the processor. On
return from the exception handler of the late-arriving exception, the
normal tail-chaining rules apply.

DocID028474 Rev 3 45/252

PM0253 The Cortex-M7 processor

51

When using floating-point routines, the Cortex®-M7 processor automatically stacks the
architected floating-point state on exception entry. Figure 11 on page 45 shows the Cortex®-
M7 stack frame layout when floating-point state is preserved on the stack as the result of an
interrupt or an exception.

 Note: Where stack space for floating-point state is not allocated, the stack frame is the same as
that of ARMv7-M implementations without an FPU. Figure 11 on page 45 shows this stack
frame also.

Figure 11. Exception stack frame

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame.
The alignment of the stack frame is controlled using the STKALIGN bit of the Configuration
Control register (CCR).

 Note: In the Cortex®-M7 processor CCR.STKALIGN is read-only and has a value of 1. This
means the stack address is always 8-byte aligned.

The stack frame includes the return address. This is the address of the next instruction in
the interrupted program. This value is restored to the PC at exception return so that the
interrupted program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the
exception handler start address from the vector table. When stacking is complete, the

The Cortex-M7 processor PM0253

46/252 DocID028474 Rev 3

processor starts executing the exception handler. At the same time, the processor writes an
EXC_RETURN value to the LR. This indicates which stack pointer corresponds to the stack
frame and what operation mode the processor was in before the entry occurred.

If no higher priority exception occurs during exception entry, the processor starts executing
the exception handler and automatically changes the status of the corresponding pending
interrupt to active.

If another higher priority exception occurs during exception entry, the processor starts
executing the exception handler for this exception and does not change the pending status
of the earlier exception. This is the late arrival case.

Exception return

The exception return occurs when the processor is in Handler mode and executes one of
the following instructions to load the EXC_RETURN value into the PC:

• An LDM or POP instruction that loads the PC.

• An LDR instruction with PC as the destination.

• A BX instruction using any register.

EXC_RETURN is the value loaded into the LR on exception entry. The exception
mechanism relies on this value to detect when the processor has completed an exception
handler. The lowest five bits of this value provide information on the return stack and
processor mode. Table 19 shows the EXC_RETURN values with a description of the
exception return behavior.

All EXC_RETURN values have bits[31:5] set to one. When this value is loaded into the PC it
indicates to the processor that the exception is complete, and the processor initiates the
appropriate exception return sequence

Table 19. Exception return behavior

EXC_RETURN[31:0] Description

0xFFFFFFF1
Return to Handler mode, exception return uses non-floating-point state from
the MSP and execution uses MSP after return.

0xFFFFFFF9
Return to Thread mode, exception return uses non-floating-point state from
MSP and execution uses MSP after return.

0xFFFFFFFD
Return to Thread mode, exception return uses non-floating-point state from
the PSP and execution uses PSP after return.

0xFFFFFFE1
Return to Handler mode, exception return uses floating-point-state from MSP
and execution uses MSP after return.

0xFFFFFFE9
Return to Thread mode, exception return uses floating-point state from MSP
and execution uses MSP after return.

0xFFFFFFED
Return to Thread mode, exception return uses floating-point state from PSP
and execution uses PSP after return.

DocID028474 Rev 3 47/252

PM0253 The Cortex-M7 processor

51

2.5 Fault handling

Faults are a subset of the exceptions, see Exception model on page 39. Faults are
generated by:

• A bus error on:

– An instruction fetch or vector table load.

– A data access.

• An internally-detected error such as an undefined instruction.

• Attempting to execute an instruction from a memory region marked as Execute Never
(XN).

• A privilege violation or an attempt to access an unmanaged region causing an MPU
fault.

2.5.1 Fault types

Table 20 shows the types of fault, the handler used for the fault, the corresponding fault
status register, and the register bit that indicates that the fault has occurred. See
Configuration and Control register on page 200 for more information about the fault status
registers

Table 20. Faults

Fault Handler Bit name Fault status register

Bus error on a vector read
HardFault

VECTTBL HardFault Status register on
page 210Fault escalated to a hard fault FORCED

MPU or default memory map mismatch:

MemManage

- -

On instruction access IACCVIOL (1)

MemManage Fault Status register on
page 206

On data access DACCVIOL

During exception stacking MSTKERR

During exception unstacking MUNSKERR

During lazy floating-point state
preservation

MLSPERR

Bus error:

BusFault

- -

During exception stacking STKERR

BusFault Status register on page 207

During exception unstacking UNSTKERR

During instruction prefetch IBUSERR

During lazy floating-point state
preservation

LSPERR

Precise data bus error PRECISERR

Imprecise data bus error IMPRECISERR

The Cortex-M7 processor PM0253

48/252 DocID028474 Rev 3

2.5.2 Fault escalation and hard faults

All the fault exceptions except for HardFault have configurable exception priority, see
System Handler Priority registers on page 202. the software can disable the execution of the
handlers for these faults, see System Handler Control and State register on page 204.

Usually, the exception priority, together with the values of the exception mask registers,
determines whether the processor enters the fault handler, and whether a fault handler can
preempt another fault handler. as described in Exception model on page 39.

In some situations, a fault with configurable priority is treated as a HardFault. This is called
priority escalation, and the fault is described as escalated to HardFault. Escalation to
HardFault occurs when:

• A fault handler causes the same kind of fault as the one it is servicing. This escalation
to HardFault occurs because a fault handler cannot preempt itself because it must
have the same priority as the current priority level.

• A fault handler causes a fault with the same or lower priority as the fault it is servicing.
This is because the handler for the new fault cannot preempt the currently executing
fault handler.

• An exception handler causes a fault for which the priority is the same as or lower than
the currently executing exception.

• A fault occurs and the handler for that fault is not enabled.

If a BusFault occurs during a stack push when entering a BusFault handler, the BusFault
does not escalate to a HardFault. This means that if a corrupted stack causes a fault, the
fault handler executes even though the stack push for the handler failed. The fault handler
operates but the stack contents are corrupted.

 Note: Only Reset and NMI can preempt the fixed priority HardFault. A HardFault can preempt any
exception other than Reset, NMI, or another HardFault.

Attempt to access a coprocessor UsageFault NOCP UsageFault Status register on
page 209

Undefined instruction UNDEFINSTR

Attempt to enter an invalid instruction set
state (2)

INVSTATE

Invalid EXC_RETURN value INVPC

Illegal unaligned load or store UNALIGNED

Divide By 0 DIVBYZERO

1. Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is disabled.

2. Attempting to use an instruction set other than the Thumb instruction set or returns to a non load/store-multiple instruction
with ICI continuation.

Table 20. Faults (continued)

Fault Handler Bit name Fault status register

DocID028474 Rev 3 49/252

PM0253 The Cortex-M7 processor

51

2.5.3 Synchronous and Asynchronous bus faults

In the Cortex®-M7 processor all bus faults triggered by:

• Processor load operations are synchronous.

• Processor store operations are asynchronous, including stores to Device and Strongly-
ordered regions.

• Debugger load or store accesses are synchronous, and are visible to the debugger
interface only.

When an asynchronous bus fault is triggered, the BusFault exception is pended. If the
BusFault handler is not enabled, the HardFault exception is pended instead. The HardFault
caused by the asynchronous BusFault never escalates into lockup.

If an IRQ is triggered after the write, the write buffer might not drain before the ISR is
executed. Therefore an asynchronous BusFault can occur across context boundaries.

A synchronous BusFault can escalate into lockup if it occurs inside a NMI or HardFault
handler.

Cache maintenance operations can also trigger a bus fault. See Faults handling
considerations on page 242 for more information.

2.5.4 Fault status registers and fault address registers

The fault status registers indicate the cause of a fault. For synchronous BusFaults and
MemManage faults, the fault address register indicates the address accessed by the
operation that caused the fault, as shown in Table 21.

2.5.5 Lockup

The processor enters a lockup state if a fault occurs when executing the NMI or HardFault
handlers. When the processor is in lockup state it does not execute any instructions. The
processor remains in lockup state until either:

• It is reset.

• An NMI occurs.

• It is halted by a debugger.

 Note: If a lockup state occurs from the NMI handler a subsequent NMI does not cause the
processor to leave lockup state.

Table 21. Fault status and fault address registers

Handler
Status register

name
Address register

name
Register description

HardFault HFSR - HardFault Status register on page 210

MemManage MMFSR MMFAR

MemManage Fault Status register on
page 206

MemManage Fault Address register on
page 211

BusFault BFSR BFAR
BusFault Status register on page 207

BusFault Address register on page 212

UsageFault UFSR - UsageFault Status register on page 209

The Cortex-M7 processor PM0253

50/252 DocID028474 Rev 3

2.6 Power management

The Cortex®-M7 processor sleep modes reduce power consumption:

• Sleep mode stops the processor clock.

• Deep sleep mode stops the system clock and switches off the PLL and the Flash
memory.

The SLEEPDEEP bit of the SCR selects which sleep mode is used, see System Control
register on page 199.

For more information about the behavior of the sleep modes see specific STM32 product
referene manual.

This section describes the mechanisms for entering sleep mode, and the conditions for
waking up from sleep mode.

2.6.1 Entering sleep mode

This section describes the mechanisms software can use to put the processor into sleep
mode.

The system can generate spurious wakeup events, for example a debug operation wakes
up the processor. Therefore software must be able to put the processor back into sleep
mode after such an event. A program might have an idle loop to put the processor back to
sleep mode.

Wait for interrupt

The wait for interrupt instruction, WFI, causes immediate entry to sleep mode unless the
wakeup condition is true, see Wakeup from WFI or sleep-on-exit on page 51. When the
processor executes a WFI instruction it stops executing instructions and enters sleep mode.
See WFI on page 182 for more information.

Wait for event

The wait for event instruction, WFE, causes entry to sleep mode depending on the value of
a one-bit event register. When the processor executes a WFE instruction, it checks the
value of the event register:

0: The processor stops executing instructions and enters sleep mode.

1: The processor clears the register to 0 and continues executing instructions without
entering sleep mode.

See WFE on page 181 for more information.

If the event register is 1, this indicates that the processor must not enter sleep mode on
execution of a WFE instruction. Typically, this is because an external event signal is
asserted, or a processor in the system has executed an SEV instruction, see SEV on
page 180. Software cannot access this register directly.

Sleep-on-exit

If the SLEEPONEXIT bit of the SCR is set to 1, when the processor completes the execution
of all exception handlers it returns to Thread mode and immediately enters sleep mode. Use
this mechanism in applications that only require the processor to run when an exception
occurs.

DocID028474 Rev 3 51/252

PM0253 The Cortex-M7 processor

51

2.6.2 Wakeup from sleep mode

The conditions for the processor to wakeup depend on the mechanism that cause it to enter
sleep mode.

Wakeup from WFI or sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to
cause exception entry. Some embedded systems might have to execute system restore
tasks after the processor wakes up, and before it executes an interrupt handler. To achieve
this set the PRIMASK bit to 1 and the FAULTMASK bit to 0. If an interrupt arrives that is
enabled and has a higher priority than the current exception priority, the processor wakes up
but does not execute the interrupt handler until the processor sets PRIMASK to zero. For
more information about PRIMASK and FAULTMASK see Exception mask registers on
page 25.

Wakeup from WFE

The processor wakes up if:

• It detects an exception with sufficient priority to cause exception entry.

• It detects an external event signal, see The external event input.

• In a multiprocessor system, another processor in the system executes an SEV
instruction.

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers
an event and wakes up the processor, even if the interrupt is disabled or has insufficient
priority to cause exception entry. For more information about the SCR see System Control
register on page 199.

2.6.3 The external event input

The processor provides an external event input signal. Peripherals can drive this signal,
either to wake the processor from WFE, or to set the internal WFE event register to one to
indicate that the processor must not enter sleep mode on a later WFE instruction. See Wait
for event on page 50 for more information.

2.6.4 Power management programming hints

ISO/IEC C cannot directly generate the WFI and WFE instructions. The CMSIS provides the
following functions for these instructions:

void __WFE(void) // Wait for Event

void __WFI(void) // Wait for Interrupt

The Cortex-M7 instruction set PM0253

52/252 DocID028474 Rev 3

3 The Cortex-M7 instruction set

3.1 Instruction set summary

The processor implements ARMv7-M instruction set and features provided by the
ARMv7E-M architecture profile. Table 22 lists the supported instructions.

 In Table 22:

• Angle brackets, <>, enclose alternative forms of the operand.

• Braces, {}, enclose optional operands.

• The Operands column is not exhaustive.

• Op2 is a flexible second operand that can be either a register or a constant.

• Most instructions can use an optional condition code suffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 22. Cortex®-M7 instructions

Mnemonic Operands Brief description Flags Page

ADC, ADCS {Rd,} Rn, Op2 Add with Carry N,Z,C,V 3.5.1 on page 87

ADD, ADDS {Rd,} Rn, Op2 Add N,Z,C,V 3.5.1 on page 87

ADD, ADDW {Rd,} Rn, #imm12 Add - 3.5.1 on page 87

ADR Rd, label Load PC-relative Address - 3.4.1 on page 73

AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C 3.5.2 on page 89

ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N,Z,C 3.5.3 on page 90

B label Branch - 3.10.1 on page 145

BFC Rd, #lsb, #width Bit Field Clear - 3.9.1 on page 142

BFI Rd, Rn, #lsb, #width Bit Field Insert - 3.9.1 on page 142

BIC, BICS {Rd,} Rn, Op2 Bit Clear N,Z,C 3.5.2 on page 89

BKPT #imm Breakpoint - 3.12.1 on page 175

BL label Branch with Link - 3.10.1 on page 145

BLX Rm Branch indirect with Link - 3.10.1 on page 145

BX Rm Branch indirect - 3.10.1 on page 145

CBNZ
Rn, label Compare and Branch if Non

Zero
- 3.10.2 on page 147

CBZ
Rn, label Compare and Branch if

Zero
- 3.10.2 on page 147

CLREX - Clear Exclusive - 3.4.10 on page 84

CLZ Rd, Rm Count Leading Zeros - 3.5.4 on page 91

CMN Rn, Op2 Compare Negative N,Z,C,V 3.5.5 on page 92

CMP Rn, Op2 Compare N,Z,C,V 3.5.5 on page 92

DocID028474 Rev 3 53/252

PM0253 The Cortex-M7 instruction set

182

CPSID
i Change Processor State,

Disable Interrupts
- 3.12.2 on page 176

CPSIE
i Change Processor State,

Enable Interrupts
- 3.12.2 on page 176

DMB - Data Memory Barrier - 3.12.3 on page 177

DSB
- Data Synchronization

Barrier
- 3.12.4 on page 177

EOR, EORS {Rd,} Rn, Op2 Exclusive OR N,Z,C 3.5.2 on page 89

ISB
- Instruction Synchronization

Barrier
- 3.12.5 on page 178

IT - If-Then condition block - 3.10.3 on page 148

LDM
Rn{!}, reglist Load Multiple registers,

increment after
- 3.4.6 on page 79

LDMDB, LDMEA
Rn{!}, reglist Load Multiple registers,

decrement before
- 3.4.6 on page 79

LDMFD, LDMIA
Rn{!}, reglist Load Multiple registers,

increment after
- 3.4.6 on page 79

LDR Rt, [Rn, #offset] Load register with word - 3.4.2 on page 73

LDRB, LDRBT Rt, [Rn, #offset] Load register with byte - 3.4.2 on page 73

LDRD
Rt, Rt2, [Rn,
#offset]

Load register with two bytes - 3.4.4 on page 77

LDREX Rt, [Rn, #offset] Load register Exclusive - 3.4.9 on page 83

LDREXB
Rt, [Rn] Load register Exclusive with

Byte
- 3.4.9 on page 83

LDREXH
Rt, [Rn] Load register Exclusive with

Halfword
- 3.4.9 on page 83

LDRH, LDRHT Rt, [Rn, #offset] Load register with Halfword - 3.4.2 on page 73

LDRSB, LDRSBT
Rt, [Rn, #offset] Load register with Signed

Byte
- 3.4.2 on page 73

LDRSH, LDRSHT
Rt, [Rn, #offset] Load register with Signed

Halfword
- 3.4.2 on page 73

LDRT Rt, [Rn, #offset] Load register with word - 3.4.2 on page 73

LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,Z,C 3.5.3 on page 90

LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,Z,C 3.5.3 on page 90

MLA
Rd, Rn, Rm, Ra Multiply with Accumulate,

32-bit result
- 3.6.1 on page 112

MLS
Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit

result
- 3.6.1 on page 112

MOV, MOVS Rd, Op2 Move N,Z,C 3.5.6 on page 93

MOVT Rd, #imm16 Move Top - 3.5.7 on page 94

Table 22. Cortex®-M7 instructions (continued)

Mnemonic Operands Brief description Flags Page

The Cortex-M7 instruction set PM0253

54/252 DocID028474 Rev 3

MOVW, MOV Rd, #imm16 Move 16-bit constant N,Z,C 3.5.6 on page 93

MRS
Rd, spec_reg Move from Special register

to general register
- 3.12.6 on page 178

MSR
spec_reg, Rm Move from general register

to Special register
N,Z,C,V 3.12.7 on page 179

MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N,Z 3.6.1 on page 112

MVN, MVNS Rd, Op2 Move NOT N,Z,C 3.5.6 on page 93

NOP - No Operation - 3.12.8 on page 180

ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT N,Z,C 3.5.2 on page 89

ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C 3.5.2 on page 89

PKHTB, PKHBT {Rd,} Rn, Rm, Op2 Pack Halfword - 3.8.1 on page 138

PLD [Rn, #offset] Preload Data - 3.4.7 on page 81

POP reglist Pop registers from stack - 3.4.8 on page 82

PUSH reglist Push registers onto stack - 3.4.8 on page 82

QADD {Rd,} Rn, Rm Saturating double and Add Q 3.7.3 on page 131

QADD16 {Rd,} Rn, Rm Saturating Add 16 - 3.7.3 on page 131

QADD8 {Rd,} Rn, Rm Saturating Add 8 - 3.7.3 on page 131

QASX
{Rd,} Rn, Rm Saturating Add and Subtract

with Exchange
- 3.7.4 on page 132

QDADD {Rd,} Rn, Rm Saturating Add Q 3.7.5 on page 133

QDSUB
{Rd,} Rn, Rm Saturating double and

Subtract
Q 3.7.3 on page 131

QSAX
{Rd,} Rn, Rm Saturating Subtract and Add

with Exchange
- 3.7.4 on page 132

QSUB {Rd,} Rn, Rm Saturating Subtract Q 3.7.3 on page 131

QSUB16 {Rd,} Rn, Rm Saturating Subtract 16 - 3.7.3 on page 131

QSUB8 {Rd,} Rn, Rm Saturating Subtract 8 - 3.7.3 on page 131

RBIT Rd, Rn Reverse Bits - 3.5.8 on page 95

REV
Rd, Rn Reverse byte order in a

word
- 3.5.8 on page 95

REV16
Rd, Rn Reverse byte order in each

halfword
- 3.5.8 on page 95

REVSH
Rd, Rn Reverse byte order in

bottom halfword and sign
extend

- 3.5.8 on page 95

ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,Z,C 3.5.3 on page 90

RRX, RRXS Rd, Rm Rotate Right with Extend N,Z,C 3.5.3 on page 90

RSB, RSBS {Rd,} Rn, Op2 Reverse Subtract N,Z,C,V 3.5.1 on page 87

Table 22. Cortex®-M7 instructions (continued)

Mnemonic Operands Brief description Flags Page

DocID028474 Rev 3 55/252

PM0253 The Cortex-M7 instruction set

182

SADD16 {Rd,} Rn, Rm Signed Add 16 GE 3.5.9 on page 96

SADD8 {Rd,} Rn, Rm Signed Add 8 GE 3.5.9 on page 96

SASX
{Rd,} Rn, Rm Signed Add and Subtract

with Exchange
GE 3.5.14 on page 101

SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,C,V 3.5.1 on page 87

SBFX Rd, Rn, #lsb, #width Signed Bit Field Extract - 3.9.2 on page 143

SDIV {Rd,} Rn, Rm Signed Divide - 3.6.12 on page 127

SEL {Rd,} Rn, Rm Select bytes - 3.5.21 on page 108

SEV - Send Event - 3.12.9 on page 180

SHADD16 {Rd,} Rn, Rm Signed Halving Add 16 - 3.5.10 on page 97

SHADD8 {Rd,} Rn, Rm Signed Halving Add 8 - 3.5.10 on page 97

SHASX
{Rd,} Rn, Rm Signed Halving Add and

Subtract with Exchange
- 3.5.11 on page 98

SHSAX
{Rd,} Rn, Rm Signed Halving Subtract

and Add with Exchange
- 3.5.11 on page 98

SHSUB16 {Rd,} Rn, Rm Signed Halving Subtract 16 - 3.5.12 on page 99

SHSUB8 {Rd,} Rn, Rm Signed Halving Subtract 8 - 3.5.12 on page 99

SMLABB,
SMLABT, SMLATB,
SMLATT

Rd, Rn, Rm, Ra Signed Multiply Accumulate
Long
(halfwords)

Q 3.6.3 on page 115

SMLAD, SMLADX
Rd, Rn, Rm, Ra Signed Multiply Accumulate

Dual
Q 3.6.4 on page 116

SMLAL
RdLo, RdHi, Rn, Rm Signed Multiply with

Accumulate (32 x 32 + 64),
64-bit result

- 3.6.5 on page 117

SMLALBB,
SMLALBT,
SMLALTB,
SMLALTT

RdLo, RdHi, Rn, Rm
Signed Multiply Accumulate
Long,
halfwords

- 3.6.5 on page 117

SMLALD, SMLALDX
RdLo, RdHi, Rn, Rm Signed Multiply Accumulate

Long Dual
- 3.6.5 on page 117

SMLAWB,
SMLAWT

Rd, Rn, Rm, Ra Signed Multiply
Accumulate, word by
halfword

Q 3.6.3 on page 115

SMLSD
Rd, Rn, Rm, Ra Signed Multiply Subtract

Dual
Q 3.6.6 on page 119

SMLSLD
RdLo, RdHi, Rn, Rm Signed Multiply Subtract

Long Dual
3.6.6 on page 119

SMMLA
Rd, Rn, Rm, Ra Signed Most significant

word Multiply Accumulate
- 3.6.7 on page 121

Table 22. Cortex®-M7 instructions (continued)

Mnemonic Operands Brief description Flags Page

The Cortex-M7 instruction set PM0253

56/252 DocID028474 Rev 3

SMMLS, SMMLR
Rd, Rn, Rm, Ra Signed Most significant

word Multiply Subtract
- 3.6.7 on page 121

SMMUL, SMMULR
{Rd,} Rn, Rm Signed Most significant

word Multiply
- 3.6.8 on page 122

SMUAD {Rd,} Rn, Rm Signed dual Multiply Add Q 3.6.9 on page 123

SMULBB,
SMULBT SMULTB,
SMULTT

{Rd,} Rn, Rm
Signed Multiply (halfwords) - 3.6.10 on page 124

SMULL
RdLo, RdHi, Rn, Rm Signed Multiply (32 x 32),

64-bit result
- 3.6.11 on page 126

SMULWB, SMULWT
{Rd,} Rn, Rm Signed Multiply word by

halfword
- 3.6.10 on page 124

SMUSD, SMUSDX
{Rd,} Rn, Rm Signed dual Multiply

Subtract
- 3.6.9 on page 123

SSAT
Rd, #n, Rm {,shift
#s}

Signed Saturate Q 3.7.1 on page 129

SSAT16 Rd, #n, Rm Signed Saturate 16 Q 3.7.2 on page 130

SSAX
{Rd,} Rn, Rm Signed Subtract and Add

with Exchange
GE 3.5.14 on page 101

SSUB16 {Rd,} Rn, Rm Signed Subtract 16 - 3.5.13 on page 100

SSUB8 {Rd,} Rn, Rm Signed Subtract 8 - 3.5.13 on page 100

STM
Rn{!}, reglist Store Multiple registers,

increment after
- 3.4.6 on page 79

STMDB, STMEA
Rn{!}, reglist Store Multiple registers,

decrement before
- 3.4.6 on page 79

STMFD, STMIA
Rn{!}, reglist Store Multiple registers,

increment after
- 3.4.6 on page 79

STR Rt, [Rn, #offset] Store register word - 3.4.2 on page 73

STRB, STRBT Rt, [Rn, #offset] Store register byte - 3.4.2 on page 73

STRD
Rt, Rt2, [Rn,
#offset]

Store register two words - 3.4.2 on page 73

STREX
Rd, Rt, [Rn,
#offset]

Store register Exclusive - 3.4.9 on page 83

STREXB
Rd, Rt, [Rn] Store register Exclusive

Byte
- 3.4.9 on page 83

STREXH
Rd, Rt, [Rn] Store register Exclusive

Halfword
- 3.4.9 on page 83

STRH, STRHT Rt, [Rn, #offset] Store register Halfword - 3.4.2 on page 73

STRT Rt, [Rn, #offset] Store register word - 3.4.2 on page 73

SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C,V 3.5.1 on page 87

Table 22. Cortex®-M7 instructions (continued)

Mnemonic Operands Brief description Flags Page

DocID028474 Rev 3 57/252

PM0253 The Cortex-M7 instruction set

182

SUB, SUBW {Rd,} Rn, #imm12 Subtract - 3.5.1 on page 87

SVC #imm Supervisor Call - 3.5.1 on page 87

SXTAB
{Rd,} Rn, Rm,{,ROR
#}

Extend 8 bits to 32 and add - 3.8.3 on page 140

SXTAB16
{Rd,} Rn, Rm,{,ROR
#}

Dual extend 8 bits to 16 and
add

- 3.8.3 on page 140

SXTAH
{Rd,} Rn, Rm,{,ROR
#}

Extend 16 bits to 32 and
add

- 3.8.3 on page 140

SXTB16 {Rd,} Rm {,ROR #n} Signed Extend Byte 16 - 3.9.3 on page 144

SXTB {Rd,} Rm {,ROR #n} Sign extend a byte - 3.9.3 on page 144

SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword - 3.9.3 on page 144

TBB [Rn, Rm] Table Branch Byte - 3.10.4 on page 150

TBH [Rn, Rm, LSL #1] Table Branch Halfword - 3.10.4 on page 150

TEQ Rn, Op2 Test Equivalence N,Z,C 3.5.15 on page 102

TST Rn, Op2 Test N,Z,C 3.5.15 on page 102

UADD16 {Rd,} Rn, Rm Unsigned Add 16 GE 3.5.16 on page 103

UADD8 {Rd,} Rn, Rm Unsigned Add 8 GE 3.5.16 on page 103

USAX
{Rd,} Rn, Rm Unsigned Subtract and Add

with Exchange
GE 3.5.17 on page 104

UHADD16 {Rd,} Rn, Rm Unsigned Halving Add 16 - 3.5.18 on page 105

UHADD8 {Rd,} Rn, Rm Unsigned Halving Add 8 - 3.5.18 on page 105

UHASX
{Rd,} Rn, Rm Unsigned Halving Add and

Subtract with Exchange
- 3.5.19 on page 106

UHSAX
{Rd,} Rn, Rm Unsigned Halving Subtract

and Add with Exchange
- 3.5.19 on page 106

UHSUB16
{Rd,} Rn, Rm Unsigned Halving Subtract

16
- 3.5.20 on page 107

UHSUB8
{Rd,} Rn, Rm Unsigned Halving Subtract

8
- 3.5.20 on page 107

UBFX Rd, Rn, #lsb, #width Unsigned Bit Field Extract - 3.9.2 on page 143

UDIV {Rd,} Rn, Rm Unsigned Divide - 3.6.12 on page 127

UMAAL

RdLo, RdHi, Rn, Rm Unsigned Multiply
Accumulate Accumulate
Long (32 x 32 + 32 +32), 64-
bit result

- 3.6.2 on page 113

UMLAL
RdLo, RdHi, Rn, Rm Unsigned Multiply with

Accumulate
(32 x 32 + 64), 64-bit result

- 3.6.2 on page 113

UMULL
RdLo, RdHi, Rn, Rm Unsigned Multiply (32 x 32),

64-bit result
- 3.6.2 on page 113

Table 22. Cortex®-M7 instructions (continued)

Mnemonic Operands Brief description Flags Page

The Cortex-M7 instruction set PM0253

58/252 DocID028474 Rev 3

UQADD16 {Rd,} Rn, Rm Unsigned Saturating Add 16 - 3.7.7 on page 136

UQADD8 {Rd,} Rn, Rm Unsigned Saturating Add 8 - 3.7.7 on page 136

UQASX
{Rd,} Rn, Rm Unsigned Saturating Add

and Subtract with Exchange
- 3.7.6 on page 134

UQSAX
{Rd,} Rn, Rm Unsigned Saturating

Subtract and Add with
Exchange

- 3.7.6 on page 134

UQSUB16
{Rd,} Rn, Rm Unsigned Saturating

Subtract 16
- 3.7.7 on page 136

UQSUB8
{Rd,} Rn, Rm Unsigned Saturating

Subtract 8
- 3.7.7 on page 136

USAD8
{Rd,} Rn, Rm Unsigned Sum of Absolute

Differences
- 3.5.22 on page 108

USADA8
{Rd,} Rn, Rm, Ra Unsigned Sum of Absolute

Differences and Accumulate
- 3.5.23 on page 109

USAT
Rd, #n, Rm {,shift
#s}

Unsigned Saturate Q 3.7.1 on page 129

USAT16 Rd, #n, Rm Unsigned Saturate 16 Q 3.7.2 on page 130

UASX
{Rd,} Rn, Rm Unsigned Add and Subtract

with Exchange
GE 3.5.17 on page 104

USUB16 {Rd,} Rn, Rm Unsigned Subtract 16 GE 3.5.24 on page 110

USUB8 {Rd,} Rn, Rm Unsigned Subtract 8 GE 3.5.24 on page 110

UXTAB
{Rd,} Rn, Rm,{,ROR
#}

Rotate, extend 8 bits to 32
and Add

- 3.8.3 on page 140

UXTAB16
{Rd,} Rn, Rm,{,ROR
#}

Rotate, dual extend 8 bits to
16 and Add

- 3.8.3 on page 140

UXTAH
{Rd,} Rn, Rm,{,ROR
#}

Rotate, unsigned extend
and Add Halfword

- 3.8.3 on page 140

UXTB {Rd,} Rm {,ROR #n} Zero extend a Byte - 3.9.3 on page 144

UXTB16 {Rd,} Rm {,ROR #n} Unsigned Extend Byte 16 - 3.9.3 on page 144

UXTH {Rd,} Rm {,ROR #n} Zero extend a Halfword - 3.9.3 on page 144

VABS.F<32|64> <Sd|Dd>, <Sm|Dm> Floating-point Absolute
- 3.11.1 on page 153

VADD.F<32|64>
{<Sd|Dd>,} <Sn|Dn>,
<Sm|Dm>

Floating-point Add - 3.11.2 on page 153

VCMP.F<32|64>
<Sd|Dd>, <<Sm|Dm> |
#0.0>

Compare two floating-point
registers, or one floating-
point register and zero

FPSCR 3.11.3 on page 154

Table 22. Cortex®-M7 instructions (continued)

Mnemonic Operands Brief description Flags Page

DocID028474 Rev 3 59/252

PM0253 The Cortex-M7 instruction set

182

VCMPE.F<32|64>

<Sd|Dd>, <<Sm|Dm> |
#0.0>

Compare two floating-point
registers, or one floating-
point register and zero with
Invalid Operation check

FPSCR 3.11.3 on page 154

VCVT
F<32|64>.<S|U>,
<16|32>

Convert from floating-point
to fixed point

- 3.11.5 on page 156

VCVT
<S|U>,
<16|32>.F<32|64>

Convert from fixed point to
floating-point

3.11.5 on page 156

VCVT.S32.F<32|64>
<Sd|Dd>, <Sm|Dm> Convert from floating-point

to integer
- 3.11.4 on page 155

VCVT<B|T>.F<32|64
>.F16

<Sd|Dd>, Sm Convert half-precision value
to single-precision or
double-precision

- 3.11.6 on page 157

VCVTA.F<32|64>

<Sd|Dd>, <Sm|Dm> Convert from floating-point
to integer with directed
rounding to nearest ties
away

- 3.11.33 on page 173

VCVTM.F<32|64>

<Sd|Dd>, <Sm|Dm> Convert from floating-point
to integer with directed
rounding towards minus
infinity

- 3.11.33 on page 173

VCVTN.F<32|64>
<Sd|Dd>, <Sm|Dm> Convert from floating-point

to integer with directed
rounding to nearest even

- 3.11.33 on page 173

VCVTP.F<32|64>

<Sd|Dd>, <Sm|Dm> Convert from floating-point
to integer with directed
rounding towards plus
infinity

- 3.11.33 on page 173

VCVTR.S32.F<32|64
>

<Sd|Dd>, <Sm|Dm> Convert between floating-
point and integer with
rounding.

FPSCR 3.11.4 on page 155

VCVT<B|T>.F16.F<3
2|64>

Sd, <Sm|Dm> Convert single-precision or
double precision register to
half-precision

- 3.11.5 on page 156

VDIV.F<32|64>
{<Sd|Dd>,} <Sn|Dn>,
<Sm|Dm>

Floating-point Divide - 3.11.7 on page 157

VFMA.F<32|64>
{<Sd|Dd>,} <Sn|Dn>,
<Sm|Dm>

Floating-point Fused
Multiply Accumulate

- 3.11.8 on page 158

VFMS.F<32|64>
{<Sd|Dd>,} <Sn|Dn>,
<Sm|Dm>

Floating-point Fused
Multiply Subtract

- 3.11.8 on page 158

VFNMA.F<32|64>
{<Sd|Dd>,} <Sn|Dn>,
<Sm|Dm>

Floating-point Fused
Negate Multiply Accumulate

- 3.11.9 on page 159

VFNMS.F<32|64>
{<Sd|Dd>,} <Sn|Dn>,
<Sm|Dm>

Floating-point Fused
Negate Multiply Subtract

- 3.11.9 on page 159

Table 22. Cortex®-M7 instructions (continued)

Mnemonic Operands Brief description Flags Page

The Cortex-M7 instruction set PM0253

60/252 DocID028474 Rev 3

VLDM.F<32|64>
Rn{!}, list Load Multiple extension

registers
- 3.11.10 on page 159

VLDR.F<32|64>
<Sd|Dd>, [<Rn>{,
#+/-<imm>}]

Load an extension register
from memory

- 3.11.11 on page 160

VLDR.F<32|64>
<Sd|Dd>, <label> Load an extension register

from memory
- 3.11.11 on page 160

VLDR.F<32|64>
<Sd|Dd>, [PC,#-0] Load an extension register

from memory
- 3.11.11 on page 160

VMLA.F<32|64>
{<Sd|Dd>,} <Sn|Dn>,
<Sm|Dm>

Floating-point Multiply
Accumulate

- 3.11.12 on page 161

VMLS.F<32|64>
{<Sd|Dd>,} <Sn|Dn>,
<Sm|Dm>

Floating-point Multiply
Subtract

- 3.11.12 on page 161

VMAXNM.F<32|64>

<Sd|Dd>, <Sn|Dn>,
<Sm|Dm>

Maximum of two floating-
point numbers with
IEEE754-2008 NaN
handling

- 3.11.32 on page 172

VMINNM.F<32|64>

<Sd|Dd>, <Sn|Dn>,
<Sm|Dm>

Minimum of two floating-
point numbers with
IEEE754-2008 NaN
handling

- 3.11.32 on page 172

VMOV <Sd|Dd>, <Sm|Dm> Floating-point Move register - 3.11.19 on page 165

VMOV
<Sn|Dn>, Rt Copy ARM core register to

single-precision
- 3.11.19 on page 165

VMOV
<Sm|Dm>, <Sm|Dm>1,
Rt, Rt2

Copy two ARM core
registers to two single-
precision

- 3.11.19 on page 165

VMOV
Dd[x], Rt Copy ARM core register to

scalar
- 3.11.19 on page 165

VMOV
Rt, Dn[x] Copy scalar to ARM core

register
- 3.11.19 on page 165

VMOV.F<32|64>
<Sd|Dd>, #imm Floating-point Move

immediate
- 3.11.19 on page 165

VMUL.F<32|64>
{<Sd|Dd>,} <Sn|Dn>,
<Sm|Dm>

Floating-point Multiply - 3.11.22 on page 166

VNEG.F<32|64> <Sd|Dd>, <Sm|Dm> Floating-point Negate - 3.11.23 on page 167

VNMLA.F<32|64>
<Sd|Dd>, <Sn|Dn>,
<Sm|Dm>

Floating-point Multiply and
Add

- 3.11.24 on page 167

VNMLS.F<32|64>
<Sd|Dd>, <Sn|Dn>,
<Sm|Dm>

Floating-point Multiply and
Subtract

- 3.11.24 on page 167

VNMUL.F<32|64>
{<Sd|Dd>,} <Sn|Dn>,
<Sm|Dm>

Floating-point Multiply - 3.11.24 on page 167

Table 22. Cortex®-M7 instructions (continued)

Mnemonic Operands Brief description Flags Page

DocID028474 Rev 3 61/252

PM0253 The Cortex-M7 instruction set

182

3.1.1 Binary compatibility with other Cortex processors

The processor implements the ARMv7-M instruction set and features provided by the
ARMv7-M architecture profile, and is binary compatible with the instruction sets and
features implemented in other Cortex®-M profile processors. The user cannot move
software from the Cortex®-M7 processor to:

• The Cortex®-M3 processor if it contains floating-point operations or DSP extensions.

• The Cortex®-M4 processor if it contains double-precision floating-point operations.

• The Cortex®-M0 or Cortex®-M0+ processors because these are implementations of the
ARMv6-M Architecture.

The code designed for other Cortex®-M processors is compatible with Cortex®-M7 as long
as it does not rely on bit-banding.

VRINTA.F<32|64>
<Sd|Dd>, <Sm|Dm> Float to integer in floating-

point format conversion with
directed rounding

- 3.11.35 on page 174

VRINTM.F<32|64>
<Sd|Dd>, <Sm|Dm> Float to integer in floating-

point format conversion with
directed rounding

- 3.11.35 on page 174

VRINTN.F<32|64>
<Sd|Dd>, <Sm|Dm> Float to integer in floating-

point format conversion with
directed rounding

- 3.11.35 on page 174

VRINTP.F<32|64>
<Sd|Dd>, <Sm|Dm> Float to integer in floating-

point format conversion with
directed rounding

- 3.11.35 on page 174

VRINTR.F<32|64>
<Sd|Dd>, <Sm|Dm> Float to integer in floating-

point format conversion
- 3.11.34 on page 173

VRINTX.F<32|64>
<Sd|Dd>, <Sm|Dm> Float to integer in floating-

point format conversion
- 3.11.34 on page 173

VRINTZ.F<32|64>
<Sd|Dd>, <Sm|Dm> Float to integer in floating-

point format conversion
- 3.11.35 on page 174

VSEL.F<32|64>
<Sd|Dd>, <Sn|Dn>,
<Sm|Dm>

Select register, alternative
to a pair of conditional VMOV

- 3.11.31 on page 172

VSQRT.F<32|64>
<Sd|Dd>, <Sm|Dm> Calculates floating-point

Square Root
- 3.11.27 on page 169

VSTR.F<32|64>
<Sd|Dd>, [Rn] Stores an extension register

to memory
- 3.11.29 on page 170

VSUB.F<32|64>
{<Sd|Dd>,} <Sn|Dn>,
<Sm|Dm>

Floating-point Subtract - 3.11.30 on page 171

WFE - Wait For Event - 3.12.11 on page 181

WFI - Wait For Interrupt - 3.12.12 on page 182

Table 22. Cortex®-M7 instructions (continued)

Mnemonic Operands Brief description Flags Page

The Cortex-M7 instruction set PM0253

62/252 DocID028474 Rev 3

To ensure a smooth transition, ARM recommends that the code designed to operate on
other Cortex®-M profile processor architectures obey the following rules and that the
Configuration and Control Register (CCR) be appropriately configured:

• Use word transfers only to access registers in the NVIC and System Control Space
(SCS).

• Treat all unused SCS registers and register fields on the processor as Do-Not-Modify.

• Configure the following fields in the CCR register:

– STKALIGN bit to 1.

– UNALIGN_TRP bit to 1.

– Leave all other bits in the CCR register at their original value.

3.2 CMSIS functions

ISO/IEC C code cannot directly access some Cortex®-M7 processor instructions. This
section describes intrinsic functions that can generate these instructions, provided by the
CMSIS and that might be provided by a C compiler. If a C compiler does not support an
appropriate intrinsic function, the user might have to use inline assembler to access some
instructions.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C
code cannot directly access:

The CMSIS also provides a number of functions for accessing the special registers using
MRS and MSR instructions:

Table 23. CMSIS functions to generate some Cortex®-M7 processor instructions

Instruction CMSIS function

CPSIE I void __enable_irq(void)

CPSID I void __disable_irq(void)

CPSIE F void __enable_fault_irq(void)

CPSID F void __disable_fault_irq(void)

ISB void __ISB(void)

DSB void __DSB(void)

DMB void __DMB(void)

REV uint32_t __REV(uint32_t int value)

REV16 uint32_t __REV16(uint32_t int value)

REVSH uint32_t __REVSH(uint32_t int value)

RBIT uint32_t __RBIT(uint32_t int value)

SEV void __SEV(void)

WFE void __WFE(void)

WFI void __WFI(void)

DocID028474 Rev 3 63/252

PM0253 The Cortex-M7 instruction set

182

3.3 About the instruction descriptions

The following sections give more information about using the instructions:

• Operands on page 63.

• Restrictions when using PC or SP on page 63.

• Flexible second operand on page 64.

• Shift operations on page 65.

• Address alignment on page 68.

• PC-relative expressions on page 68.

• Conditional execution on page 68.

• Instruction width selection on page 71.

3.3.1 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific
parameter. Instructions act on the operands and often store the result in a destination
register. When there is a destination register in the instruction, it is usually specified before
the operands.

Operands in some instructions are flexible in that they can either be a register or a constant.
See Flexible second operand on page 64.

3.3.2 Restrictions when using PC or SP

Many instructions have restrictions on whether the user can use the Program Counter (PC)
or Stack Pointer (SP) for the operands or destination register. See instruction descriptions
for more information.

Table 24. CMSIS functions to access the special registers

Special register Access CMSIS function

PRIMASK
Read uint32_t __get_PRIMASK (void)

Write void __set_PRIMASK (uint32_t value)

FAULTMASK
Read uint32_t __get_FAULTMASK (void)

Write void __set_FAULTMASK (uint32_t value)

BASEPRI
Read uint32_t __get_BASEPRI (void)

Write void __set_BASEPRI (uint32_t value)

CONTROL
Read uint32_t __get_CONTROL (void)

Write void __set_CONTROL (uint32_t value)

MSP
Read uint32_t __get_MSP (void)

Write void __set_MSP (uint32_t TopOfMainStack)

PSP
Read uint32_t __get_PSP (void)

Write void __set_PSP (uint32_t TopOfProcStack)

The Cortex-M7 instruction set PM0253

64/252 DocID028474 Rev 3

 Note: Bit[0] of any address written to the PC with a BX, BLX, LDM, LDR, or POP instruction must
be 1 for correct execution, because this bit indicates the required instruction set, and the
Cortex®-M7 processor only supports Thumb instructions.

3.3.3 Flexible second operand

Many general data processing instructions have a flexible second operand. This is shown
as Operand2 in the descriptions of the syntax of each instruction.

Operand2 can be a:

• Constant.

• Register with optional shift on page 64.

Constant

Specify an Operand2 constant in the form:

#constant

where constant can be:

• Any constant that can be produced by shifting an 8-bit value left by any number of bits
within a 32-bit word.

• Any constant of the form 0x00XY00XY.

• Any constant of the form 0xXY00XY00.

• Any constant of the form 0xXYXYXYXY.

 Note: In these constants, X and Y are hexadecimal digits.

In addition, in a small number of instructions, constant can take a wider range of values.
These are described in the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[31] of the constant, if the
constant is greater than 255 and can be produced by shifting an 8-bit value. These
instructions do not affect the carry flag if Operand2 is any other constant.

Instruction substitution

The assembler might be able to produce an equivalent instruction if an unpermitted constant
is specified. For example, the instruction CMP Rd, #0xFFFFFFFE might be assembled as the
equivalent of instruction CMN Rd, #0x2.

Register with optional shift

Specify an Operand2 register in the form:

Rm {, shift}

Where:

Rm Is the register holding the data for the second operand.

shift Is an optional shift to be applied to Rm. It can be one of:

ASR #n Arithmetic shift right n bits, 1 ≤ n ≤ 32.

LSL #n Logical shift left n bits, 1 ≤ n ≤ 31.

LSR #n Logical shift right n bits, 1 ≤ n ≤ 32.

DocID028474 Rev 3 65/252

PM0253 The Cortex-M7 instruction set

182

ROR #n Rotate right n bits, 1 ≤ n ≤ 31.

RRX Rotate right one bit, with extend.

- If omitted, no shift occurs, equivalent to LSL #0.

If the shift is omitted or LSL #0 specified, the instruction uses the value in Rm.

If the shift is specified, it is applied to the value in Rm, and the resulting 32-bit value is used
by the instruction. However, the contents in the register Rm remain unchanged. Specifying a
register with shift also updates the carry flag when used with certain instructions. For
information on the shift operations and how they affect the carry flag, see Shift operations.

3.3.4 Shift operations

Register shift operations move the bits in a register left or right by a specified number of bits,
the shift length. Register shift can be performed:

• Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to
a destination register.

• During the calculation of Operand2 by the instructions that specify the second operand
as a register with shift, see Flexible second operand on page 64. The result is used by
the instruction.

The permitted shift lengths depend on the shift type and the instruction, see the individual
instruction description or Flexible second operand on page 64. If the shift length is 0, no shift
occurs. Register shift operations update the carry flag except when the specified shift length
is 0. The following sub-sections describe the various shift operations and how they affect the
carry flag. In these descriptions, Rm is the register containing the value to be shifted, and n
is the shift length.

ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by
n places, into the right-hand 32-n bits of the result. And it copies the original bit[31] of the
register into the left-hand n bits of the result. See Figure 12 on page 66.

The ASR #n operation can be used to divide the value in the register Rm by 2n, with the
result being rounded towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions
MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated
to the last bit shifted out, bit[n-1], of the register Rm.

 • If n is 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.

• If n is 32 or more and the carry flag is updated, it is updated to the value of bit[31] of
Rm.

The Cortex-M7 instruction set PM0253

66/252 DocID028474 Rev 3

Figure 12. ASR

LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it sets the left-hand n bits of the result
to 0. See Figure 13.

The LSR #n operation can be used to divide the value in the register Rm by 2n, if the value
is regarded as an unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions
MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated
to the last bit shifted out, bit[n-1], of the register Rm.

 • If n is 32 or more, then all the bits in the result are cleared to 0.

• If n is 33 or more and the carry flag is updated, it is updated to 0.

Figure 13. LSR

LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n
places, into the left-hand 32-n bits of the result. And it sets the right-hand n bits of the result
to 0. See Figure 14 on page 67.

The user can use the LSL #n operation to multiply the value in the register Rm by 2n, if the
value is regarded as an unsigned integer or a two’s complement signed integer. Overflow
can occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand2 with the
instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag
is updated to the last bit shifted out, bit[32-n], of the register Rm. These instructions do not
affect the carry flag when used with LSL #0.

 • If n is 32 or more, then all the bits in the result are cleared to 0.

• If n is 33 or more and the carry flag is updated, it is updated to 0.

DocID028474 Rev 3 67/252

PM0253 The Cortex-M7 instruction set

182

Figure 14. LSL

ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it moves the right-hand n bits of the
register into the left-hand n bits of the result. See Figure 15.

When the instruction is RORS or when ROR #n is used in Operand2 with the instructions
MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated
to the last bit rotation, bit[n-1], of the register Rm.

 • If n is 32, then the value of the result is same as the value in Rm, and if the carry flag is
updated, it is updated to bit[31] of Rm.

• ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 15. ROR

RRX

Rotate right with extend moves the bits of the register Rm to the right by one bit. And it
copies the carry flag into bit[31] of the result. See Figure 16 on page 67.

When the instruction is RRXS or when RRX is used in Operand2 with the instructions
MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated
to bit[0] of the register Rm.

Figure 16. RRX

The Cortex-M7 instruction set PM0253

68/252 DocID028474 Rev 3

3.3.5 Address alignment

An aligned access is an operation where a word-aligned address is used for a word, dual
word, or multiple word access, or where a halfword-aligned address is used for a halfword
access. Byte accesses are always aligned.

The Cortex®-M7 processor supports unaligned access only for the following instructions:

• LDR, LDRT.

• LDRH, LDRHT.

• LDRSH, LDRSHT.

• STR, STRT.

• STRH, STRHT.

All other load and store instructions generate a UsageFault exception if they perform an
unaligned access, and therefore their accesses must be address aligned. For more
information about UsageFaults see Fault handling on page 47.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory
regions might not support unaligned accesses. Therefore, ARM recommends that
programmers ensure that accesses are aligned. To trap accidental generation of unaligned
accesses, use the UNALIGN_TRP bit in the Configuration and Control register, see
Configuration and Control register on page 200.

3.3.6 PC-relative expressions

A PC-relative expression or label is a symbol that represents the address of an instruction or
literal data. It is represented in the instruction as the PC value plus or minus a numeric
offset. The assembler calculates the required offset from the label and the address of the
current instruction. If the offset is too big, the assembler produces an error.

 • For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the
current instruction plus 4 bytes.

• For all other instructions that use labels, the value of the PC is the address of the
current instruction plus 4 bytes, with bit[1] of the result cleared to 0 to make it word-
aligned.

• The assembler might permit other syntaxes for PC-relative expressions, such as a
label plus or minus a number, or an expression of the form [PC, #number].

3.3.7 Conditional execution

Most data processing instructions can optionally update the condition flags in the
Application Program Status register (APSR) according to the result of the operation, see
Application Program Status register on page 23. Some instructions update all flags, and
some only update a subset. If a flag is not updated, the original value is preserved. See the
instruction descriptions for the flags they affect.

The user can execute an instruction conditionally, based on the condition flags set in
another instruction, either:

• Immediately after the instruction that updated the flags.

• After any number of intervening instructions that have not updated the flags.

Conditional execution is available by using conditional branches or by adding condition code
suffixes to instructions. See Table 25 on page 70 for a list of the suffixes to add to

DocID028474 Rev 3 69/252

PM0253 The Cortex-M7 instruction set

182

instructions to make them conditional instructions. The condition code suffix enables the
processor to test a condition based on the flags. If the condition test of a conditional
instruction fails, the instruction:

• Does not execute.

• Does not write any value to its destination register.

• Does not affect any of the flags.

• Does not generate any exception.

Conditional instructions, except for conditional branches, must be inside an If-Then
instruction block. See IT on page 148 for more information and restrictions when using the
IT instruction. Depending on the vendor, the assembler might automatically insert an IT
instruction if there are conditional instructions outside the IT block.

Use the CBZ and CBNZ instructions to compare the value of a register against zero and
branch on the result.

This section describes:

• The condition flags on page 69.

• Condition code suffixes on page 70.

The condition flags

The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.

Z Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.

V Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about the APSR see Program Status register on page 22.

The C condition flag is set in one of four ways:

• For an addition, including the comparison instruction CMN, C is set to 1 if the addition
produced a carry (that is, an unsigned overflow), and to 0 otherwise.

• For a subtraction, including the comparison instruction CMP, C is set to 0 if the
subtraction produced a borrow (that is, an unsigned underflow), and to 1 otherwise.

• For non-addition or subtractions that incorporate a shift operation, C is set to the last bit
shifted out of the value by the shifter.

• For other non-addition or subtractions, C is normally left unchanged. See the individual
instruction descriptions for any special cases.

Overflow occurs when the sign of the result, in bit[31], does not match the sign of the result
had the operation been performed at infinite precision, for example:

• If adding two negative values results in a positive value.

• If adding two positive values results in a negative value.

• If subtracting a positive value from a negative value generates a positive value.

• If subtracting a negative value from a positive value generates a negative value.

The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except
that the result is discarded. See the instruction descriptions for more information.

 Most instructions update the status flags only if the S suffix is specified. See the instruction
descriptions for more information.

The Cortex-M7 instruction set PM0253

70/252 DocID028474 Rev 3

Condition code suffixes

The instructions that can be conditional have an optional condition code, shown in syntax
descriptions as {cond}. Conditional execution requires a preceding IT instruction. An
instruction with a condition code is only executed if the condition code flags in the APSR
meet the specified condition. Table 25 shows the condition codes to use.

The conditional execution can be used with the IT instruction to reduce the number of
branch instructions in the code.

Table 25 also shows the relationship between condition code suffixes and the N, Z, C, and V
flags.

Example 3-1: absolute value shows the use of a conditional instruction to find the absolute
value of a number. R0 = abs(R1).

Example 3-1: absolute value

 MOVS R0, R1 ; R0 = R1, setting flags.
 IT MI ; Skipping next instruction if value 0 or
 ; positive.
 RSBMI R0, R0, #0 ; If negative, R0 = -R0.

Table 25. Condition code suffixes

Suffix Flags Meaning

EQ Z = 1 Equal

NE Z = 0 Not equal

CS or HS C = 1 Higher or same, unsigned

CC or LO C = 0 Lower, unsigned

MI N = 1 Negative

PL N = 0 Positive or zero

VS V = 1 Overflow

VC V = 0 No overflow

HI C = 1 and Z = 0 Higher, unsigned

LS C = 0 or Z = 1 Lower or same, unsigned

GE N = V Greater than or equal, signed

LT N != V Less than, signed

GT Z = 0 and N = V Greater than, signed

LE Z = 1 and N != V Less than or equal, signed

AL Can have any value Always. This is the default when no suffix is specified.

DocID028474 Rev 3 71/252

PM0253 The Cortex-M7 instruction set

182

Example 3-2: compare and update value shows the use of conditional instructions to update
the value of R4 if the signed values R0 is greater than R1 and R2 is greater than R3.

Example 3-2: compare and update value

 CMP R0, R1 ; Compare R0 and R1, setting flags.
 ITT GT ; Skip next two instructions unless GT condition
 ; holds.
 CMPGT R2, R3 ; If 'greater than', compare R2 and R3, setting
 ; flags.
 MOVGT R4, R5 ; If still 'greater than', do R4 = R5.

3.3.8 Instruction width selection

There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding
depending on the operands and destination register specified. For some of these
instructions, a specific instruction size can be forced by using an instruction width suffix.
The .W suffix forces a 32-bit instruction encoding. The .N suffix forces a 16-bit instruction
encoding.

If an instruction width suffix is specified and the assembler cannot generate an instruction
encoding of the requested width, it generates an error.

 In some cases it might be necessary to specify the .W suffix, for example if the operand is
the label of an instruction or literal data, as in the case of branch instructions. This is
because the assembler might not automatically generate the right size encoding.

To use an instruction width suffix, place it immediately after the instruction mnemonic and
condition code, if any. Example 3-3: instruction width selection shows instructions with the
instruction width suffix.

Example 3-3: instruction width selection

 BCS.W label ; Creates a 32-bit instruction even for a short
 ; branch.

 ADDS.W R0, R0, R1 ; Creates a 32-bit instruction even though the same
 ; operation can be done by a 16-bit instruction.

The Cortex-M7 instruction set PM0253

72/252 DocID028474 Rev 3

3.4 Memory access instructions

Table 26 shows the memory access instructions:

Table 26. Memory access instructions

Mnemonic Brief description See

ADR Generate PC-relative address ADR on page 73

CLREX Clear Exclusive CLREX on page 84

LDM{mode} Load Multiple registers LDM and STM on page 79

LDR{type} Load register using immediate offset LDR and STR, immediate offset on page 73

LDR{type} Load register using register offset LDR and STR, register offset on page 76

LDR{type}T Load register with unprivileged access LDR and STR, unprivileged on page 77

LDR Load register using PC-relative address LDR, PC-relative on page 78

LDRD Load register Dual LDR and STR, immediate offset on page 73

LDREX{type} Load register Exclusive LDREX and STREX on page 83

PLD Preload Data. PLD on page 81

POP Pop registers from stack PUSH and POP on page 82

PUSH Push registers onto stack PUSH and POP on page 82

STM{mode} Store Multiple registers LDM and STM on page 79

STR{type} Store register using immediate offset LDR and STR, immediate offset on page 73

STR{type} Store register using register offset LDR and STR, register offset on page 76

STR{type}T Store register with unprivileged access LDR and STR, unprivileged on page 77

STREX{type} Store register Exclusive LDREX and STREX on page 83

DocID028474 Rev 3 73/252

PM0253 The Cortex-M7 instruction set

182

3.4.1 ADR

Generate PC-relative address.

Syntax

ADR{cond} Rd, label

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

label Is a PC-relative expression. See PC-relative expressions on page 68.

Operation

ADR generates an address by adding an immediate value to the PC, and writes the result to
the destination register.

ADR provides the means by which position-independent code can be generated, because
the address is PC-relative.

If ADR is used to generate a target address for a BX or BLX instruction, The user must
ensure that bit[0] of the address generated is set to1 for correct execution.

Values of label must be within the range of -4095 to +4095 from the address in the PC.

 The user might have to use the .W suffix to get the maximum offset range or to generate
addresses that are not word-aligned. See Instruction width selection on page 71.

Restrictions

Rd must not be SP and must not be PC.

Condition flags

This instruction does not change the flags.

Examples

 ADR R1, TextMessage ; Write address value of a location labelled
 ; as TextMessage to R1.

3.4.2 LDR and STR, immediate offset

Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed
immediate offset.

Syntax

op{type}{cond} Rt, [Rn {, #offset}] ; immediate offset

op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed

op{type}{cond} Rt, [Rn], #offset ; post-indexed

opD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, two words

opD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, two words

opD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, two words

The Cortex-M7 instruction set PM0253

74/252 DocID028474 Rev 3

Where:

op Is one of:
LDR Load register.
STR Store register.

type Is one of:
B Unsigned byte, zero extend to 32 bits on loads.
SB Signed byte, sign extend to 32 bits (LDR only).
H Unsigned halfword, zero extend to 32 bits on loads.
SH Signed halfword, sign extend to 32 bits (LDR only).
- Omit, for word.

cond Is an optional condition code. See Conditional execution on page 68.

Rt Is the register to load or store.

Rn Is the register on which the memory address is based.

offset Is an offset from Rn. If offset is omitted, the address is the contents of Rn.

Rt2 Is the additional register to load or store for two-word operations.

Operation

LDR instructions load one or two registers with a value from memory.

STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:

Offset addressing

The offset value is added to or subtracted from the address obtained from the
register Rn. The result is used as the address for the memory access. The
register Rn is unaltered. The assembly language syntax for this mode is:

[Rn, #offset]

Pre-indexed addressing

The offset value is added to or subtracted from the address obtained from the
register Rn. The result is used as the address for the memory access and
written back into the register Rn. The assembly language syntax for this mode
is:

[Rn, #offset]!

Post-indexed addressing

The address obtained from the register Rn is used as the address for the
memory access. The offset value is added to or subtracted from the address,
and written back into the register Rn. The assembly language syntax for this
mode is:

[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords
can either be signed or unsigned. See Address alignment on page 68.

Table 27 shows the ranges of offset for immediate, pre-indexed and post-indexed forms

DocID028474 Rev 3 75/252

PM0253 The Cortex-M7 instruction set

182

 .

Restrictions

For load instructions:

• Rt can be SP or PC for word loads only.

• Rt must be different from Rt2 for two-word loads.

• Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

When Rt is PC in a word load instruction:

• Bit[0] of the loaded value must be 1 for correct execution.

• A branch occurs to the address created by changing bit[0] of the loaded value to 0.

• If the instruction is conditional, it must be the last instruction in the IT block.

For store instructions:

• Rt can be SP for word stores only.

• Rt must not be PC.

• Rn must not be PC.

• Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

Condition flags

These instructions do not change the flags.

Examples

 LDR R8, [R10] ; Loads R8 from the address in R10.
 LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 from a word
 ; 960 bytes above the address in R5,
 ; and increments R5 by 960.
 STR R2, [R9,#const-struc] ; const-struc is an expression
 ; evaluating to a constant in the range
 ; 0-4095.
 STRH R3, [R4], #4 ; Store R3 as halfword data into
 ; address in R4, then increment R4 by
 ; 4.
 LDRD R8, R9, [R3, #0x20] ; Load R8 from a word 32 bytes above
 ; the address in R3, and load R9 from a
 ; word 36 bytes above the address in
 ; R3.
 STRD R0, R1, [R8], #-16 ; Store R0 to address in R8, and store
 ; R1 to a word 4 bytes above the
 ; address in R8, and then decrement R8
 ; by 16.

Table 27. Offset ranges

Instruction type Immediate offset Pre-indexed Post-indexed

Word, halfword, signed
halfword, byte, or signed byte

-255 to 4095 -255 to 255 -255 to 255

Two words
multiple of 4 in the
range -1020 to 1020

multiple of 4 in the
range -1020 to 1020

multiple of 4 in the
range -1020 to 1020

The Cortex-M7 instruction set PM0253

76/252 DocID028474 Rev 3

3.4.3 LDR and STR, register offset

Load and Store with register offset.

Syntax

op{type}{cond} Rt, [Rn, Rm {, LSL #n}]

Where:

op Is one of:
LDR Load register.
STR Store register.

type Is one of:
B Unsigned byte, zero extend to 32 bits on loads.
SB Signed byte, sign extend to 32 bits (LDR only).
H Unsigned halfword, zero extend to 32 bits on loads.
SH Signed halfword, sign extend to 32 bits (LDR only).
- omit, for word.

cond Is an optional condition code. See Conditional execution on page 68.

Rt Is the register to load or store.

Rn Is the register on which the memory address is based.

Rm Is a register containing a value to be used as the offset.

LSL #n Is an optional shift, with n in the range 0 to 3.

Operation

LDR instructions load a register with a value from memory.

STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset
is specified by the register Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and
halfwords can either be signed or unsigned. See Address alignment on page 68.

Restrictions

In these instructions:

• Rn must not be PC.

• Rm must not be SP and must not be PC.

• Rt can be SP only for word loads and word stores.

• Rt can be PC only for word loads.

When Rt is PC in a word load instruction:

• Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this
halfword-aligned address.

• If the instruction is conditional, it must be the last instruction in the IT block.

Condition flags

These instructions do not change the flags.

DocID028474 Rev 3 77/252

PM0253 The Cortex-M7 instruction set

182

Examples

 STR R0, [R5, R1] ; Store value of R0 into an address equal
 ; to sum of R5 and R1.
 LDRSB R0, [R5, R1, LSL #1] ; Read byte value from an address equal to
 ; sum of R5 and two times R1, sign
 ; extended it to a word value and put it
 , in R0.
 STR R0, [R1, R2, LSL #2] ; Stores R0 to an address equal to sum of
 ; R1 and four times R2.

3.4.4 LDR and STR, unprivileged

Load and Store with unprivileged access.

Syntax

op{type}T{cond} Rt, [Rn {, #offset}] ; immediate offset

Where:

op Is one of:
LDR Load register.
STR Store register.

type Is one of:
B Unsigned byte, zero extend to 32 bits on loads.
SB Signed byte, sign extend to 32 bits (LDR only).
H Unsigned halfword, zero extend to 32 bits on loads.
SH Signed halfword, sign extend to 32 bits (LDR only).
- Omit, for word.

cond Is an optional condition code. See Conditional execution on page 68.

Rt Is the register to load or store.

Rn Is the register on which the memory address is based.

offset Is an offset from Rn and can be 0 to 255. If offset is omitted, the address is
the value in Rn.

Operation

These load and store instructions perform the same function as the memory access
instructions with immediate offset, see LDR and STR, immediate offset on page 73. The
difference is that these instructions have only unprivileged access even when used in
privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as
normal memory access instructions with immediate offset.

Restrictions

In these instructions:

• Rn must not be PC.

• Rt must not be SP and must not be PC.

The Cortex-M7 instruction set PM0253

78/252 DocID028474 Rev 3

Condition flags

These instructions do not change the flags.

Examples

 STRBTEQ R4, [R7] ; Conditionally store least significant byte
 ; in R4 to an address in R7, with unprivileged
 ; access.
 LDRHT R2, [R2, #8] ; Load halfword value from an address equal to
 ; sum of R2 and 8 into R2, with unprivileged
 ; access.

3.4.5 LDR, PC-relative

Load register from memory.

Syntax

LDR{type}{cond} Rt, label

LDRD{cond} Rt, Rt2, label ; Load two words

Where:

type Is one of:
B Unsigned byte, zero extend to 32 bits.
SB Signed byte, sign extend to 32 bits.
H Unsigned halfword, zero extend to 32 bits.
SH Signed halfword, sign extend to 32 bits.
- Omit, for word.

cond Is an optional condition code. See Conditional execution on page 68.

Rt Is the register to load or store.

Rt2 Is the second register to load or store.

label Is a PC-relative expression. See PC-relative expressions on page 68.

Operation

LDR loads a register with a value from a PC-relative memory address. The memory address
is specified by a label or by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and
halfwords can either be signed or unsigned. See Address alignment on page 68.

label must be within a limited range of the current instruction. Table 28 shows the possible
offsets between label and the PC

Table 28. Offset ranges

Instruction type Offset range

Word, halfword, signed halfword, byte, signed byte −4095 to 4095

Two words −1020 to 1020

DocID028474 Rev 3 79/252

PM0253 The Cortex-M7 instruction set

182

 Note: The user might have to use the .W suffix to get the maximum offset range. See Instruction
width selection on page 71.

Restrictions

In these instructions:

• Rt can be SP or PC only for word loads.

• Rt2 must not be SP and must not be PC.

• Rt must be different from Rt2.

When Rt is PC in a word load instruction:

• Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this
halfword-aligned address.

• If the instruction is conditional, it must be the last instruction in the IT block.

Condition flags

These instructions do not change the flags.

Examples

 LDR R0, LookUpTable ; Load R0 with a word of data from an
 ; address labelled as LookUpTable.
 LDRSB R7, localdata ; Load a byte value from an address labelled
 ; as localdata, sign extend it to a word
 ; value, and put it in R7.

3.4.6 LDM and STM

Load and Store Multiple registers.

Syntax

op{addr_mode}{cond} Rn{!}, reglist

Where:

op Is one of:
LDM Load Multiple registers.
STM Store Multiple registers.

addr_mode Is any one of the following:
IA Increment address After each access. This is the default.
DB Decrement address Before each access.

cond Is an optional condition code. See Conditional execution on page 68.

Rn Is the register on which the memory addresses are based.

! Is an optional writeback suffix. If ! is present the final address, that is loaded
from or stored to, is written back into Rn.

reglist Is a list of one or more registers to be loaded or stored, enclosed in braces. It
can contain register ranges. It must be comma separated if it contains more
than one register or register range, see Examples on page 80.

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from
Full Descending stacks.

The Cortex-M7 instruction set PM0253

80/252 DocID028474 Rev 3

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty
Ascending stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto
Empty Ascending stacks.

STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full
Descending stacks

Operation

LDM instructions load the registers in reglist with word values from memory addresses
based on Rn.

STM instructions store the word values in the registers in reglist to memory addresses
based on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the
accesses are at 4-byte intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of
registers in reglist. The accesses happens in order of increasing register numbers, with the
lowest numbered register using the lowest memory address and the highest number
register using the highest memory address. If the writeback suffix is specified, the value of
Rn + 4 * (n-1) is written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses
are at 4-byte intervals ranging from Rn to Rn - 4 * (n-1), where n is the number of registers
in reglist. The accesses happen in order of decreasing register numbers, with the highest
numbered register using the highest memory address and the lowest number register using
the lowest memory address. If the writeback suffix is specified, the value of
Rn - 4 * (n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See PUSH and POP on
page 82 for details.

Restrictions

In these instructions:

• Rn must not be PC.

• reglist must not contain SP.

• In any STM instruction, reglist must not contain PC.

• In any LDM instruction, reglist must not contain PC if it contains LR.

• reglist must not contain Rn if the writeback suffix is specified.

When PC is in reglist in an LDM instruction:

• Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch
occurs to this halfword-aligned address

• If the instruction is conditional, it must be the last instruction in the IT block.

Condition flags

These instructions do not change the flags.

Examples

 LDM R8,{R0,R2,R9} ; LDMIA is a synonym for LDM.
 STMDB R1!,{R3-R6,R11,R12}

DocID028474 Rev 3 81/252

PM0253 The Cortex-M7 instruction set

182

Incorrect examples

 STM R5!,{R5,R4,R9} ; Value stored for R5 is unpredictable.
 LDM R2, {} ; There must be at least one register in the
 ; list.

3.4.7 PLD

Preload Data.

Syntax

PLD [<Rn>,#<imm12>]

PLD [<Rn>, <Rm> {, LSL #<shift>}]

PLD <label>

where:

<Rn> Is the base register.

<imm> Is the immediate offset used to form the address.

<Rm> Is the optionally shifted offset register.

<shift> Specifies the shift to apply to the value read from <Rm>, in the range 0-3. If this
option is omitted, a shift by 0 is assumed.

<label> The label of the literal item that is likely to be accessed in the near future.

Operation

PLD signals the memory system that data memory accesses from a specified address are
likely in the near future. If the address is cacheable then the memory system responds by
pre-loading the cache line containing the specified address into the data cache. If the
address is not cacheable, or the data cache is disabled, this instruction behaves as no
operation.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

The Cortex-M7 instruction set PM0253

82/252 DocID028474 Rev 3

3.4.8 PUSH and POP

Push registers onto, and pop registers off a full-descending stack.

Syntax

PUSH{cond} reglist

POP{cond} reglist

Where:

cond Is an optional condition code. See Conditional execution on page 68.

reglist Is a non-empty list of registers, enclosed in braces. It can contain register
ranges. It must be comma separated if it contains more than one register or
register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory
addresses for the access based on SP, and with the final address for the access written
back to the SP. PUSH and POP are the preferred mnemonics in these cases.

Operation

PUSH stores registers on the stack, with the lowest numbered register using the lowest
memory address and the highest numbered register using the highest memory address.

POP loads registers from the stack, with the lowest numbered register using the lowest
memory address and the highest numbered register using the highest memory address.

PUSH uses the value in the SP register minus four as the highest memory address, POP
uses the value in the SP register as the lowest memory address, implementing a full-
descending stack. On completion, PUSH updates the SP register to point to the location of
the lowest store value, POP updates the SP register to point to the location above the
highest location loaded.

If a POP instruction includes PC in its reglist, a branch to this location is performed when the
POP instruction has completed. Bit[0] of the value read for the PC is used to update the
APSR T-bit. This bit must be 1 to ensure correct operation.

See LDM and STM on page 79 for more information.

Restrictions

In these instructions:

• reglist must not contain SP.

• For the PUSH instruction, reglist must not contain PC.

• For the POP instruction, reglist must not contain PC if it contains LR.

When PC is in reglist in a POP instruction:

• Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch
occurs to this halfword-aligned address.

• If the instruction is conditional, it must be the last instruction in the IT block.

Condition flags

These instructions do not change the flags.

DocID028474 Rev 3 83/252

PM0253 The Cortex-M7 instruction set

182

Examples

 PUSH {R0,R4-R7} ; Push R0,R4,R5,R6,R7 onto the stack
 PUSH {R2,LR} ; Push R2 and the link-register onto the stack
 POP {R0,R6,PC} ; Pop r0,r6 and PC from the stack, then branch to the
 ; new PC.

3.4.9 LDREX and STREX

Load and Store Register Exclusive.

Syntax

LDREX{cond} Rt, [Rn {, #offset}]

STREX{cond} Rd, Rt, [Rn {, #offset}]

LDREXB{cond} Rt, [Rn]

STREXB{cond} Rd, Rt, [Rn]

LDREXH{cond} Rt, [Rn]

STREXH{cond} Rd, Rt, [Rn]

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register for the returned status.

Rt Is the register to load or store.

Rn Is the register on which the memory address is based.

offset Is an optional offset applied to the value in Rn. If offset is omitted, the address
is the value in Rn.

Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a
memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to
a memory address. The address used in any Store-Exclusive instruction must be the same
as the address in the most recently executed Load-exclusive instruction. The value stored
by the Store-Exclusive instruction must also have the same data size as the value loaded by
the preceding Load-exclusive instruction. This means software must always use a Load-
exclusive instruction and a matching Store-Exclusive instruction to perform a
synchronization operation, see Synchronization primitives on page 37.

If a Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it
does not perform the store, it writes 1 to its destination register. If the Store-Exclusive
instruction writes 0 to the destination register, it is guaranteed that no other process in the
system has accessed the memory location between the Load-exclusive and Store-Exclusive
instructions.

For reasons of performance, keep the number of instructions between corresponding Load-
Exclusive and Store-Exclusive instruction to a minimum.

 The result of executing a Store-Exclusive instruction to an address that is different from that
used in the preceding Load-Exclusive instruction is unpredictable.

The Cortex-M7 instruction set PM0253

84/252 DocID028474 Rev 3

Restrictions

In these instructions:

• Do not use PC.

• Do not use SP for Rd and Rt.

• For STREX, Rd must be different from both Rt and Rn.

• The value of offset must be a multiple of four in the range 0-1020.

Condition flags

These instructions do not change the flags.

Examples

 MOV R1, #0x1 ; Initialize the ‘lock taken’ value try
 LDREX R0, [LockAddr] ; Load the lock value
 CMP R0, #0 ; Is the lock free?
 ITT EQ ; IT instruction for STREXEQ and CMPEQ
 STREXEQ R0, R1, [LockAddr] ; Try and claim the lock
 CMPEQ R0, #0 ; Did this succeed?
 BNE try ; No – try again
 ; Yes – we have the lock.

3.4.10 CLREX

Clear Exclusive.

Syntax

CLREX{cond}

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its
destination register and fail to perform the store. It is useful in exception handler code to
force the failure of the store exclusive if the exception occurs between a load exclusive
instruction and the matching store exclusive instruction in a synchronization operation.

See Synchronization primitives on page 37 for more information.

Condition flags

This instruction does not change the flags.

Examples

CLREX

DocID028474 Rev 3 85/252

PM0253 The Cortex-M7 instruction set

182

3.5 General data processing instructions

Table 29 shows the data processing instructions:

Table 29. Data processing instructions

Mnemonic Brief description See

ADC Add with Carry ADD, ADC, SUB, SBC, and RSB on page 87

ADD Add ADD, ADC, SUB, SBC, and RSB on page 87

ADDW Add ADD, ADC, SUB, SBC, and RSB on page 87

AND Logical AND AND, ORR, EOR, BIC, and ORN on page 89

ASR Arithmetic Shift Right ASR, LSL, LSR, ROR, and RRX on page 90

BIC Bit Clear AND, ORR, EOR, BIC, and ORN on page 89

CLZ Count leading zeros CLZ on page 91

CMN Compare Negative CMP and CMN on page 92

CMP Compare CMP and CMN on page 92

EOR Exclusive OR AND, ORR, EOR, BIC, and ORN on page 89

LSL Logical Shift Left ASR, LSL, LSR, ROR, and RRX on page 90

LSR Logical Shift Right ASR, LSL, LSR, ROR, and RRX on page 90

MOV Move MOV and MVN on page 93

MOVT Move Top MOVT on page 94

MOVW Move 16-bit constant MOV and MVN on page 93

MVN Move NOT MOV and MVN on page 93

ORN Logical OR NOT AND, ORR, EOR, BIC, and ORN on page 89

ORR Logical OR AND, ORR, EOR, BIC, and ORN on page 89

RBIT Reverse Bits REV, REV16, REVSH, and RBIT on page 95

REV Reverse byte order in a word REV, REV16, REVSH, and RBIT on page 95

REV16 Reverse byte order in each halfword REV, REV16, REVSH, and RBIT on page 95

REVSH
Reverse byte order in bottom halfword and sign
extend

REV, REV16, REVSH, and RBIT on page 95

ROR Rotate Right ASR, LSL, LSR, ROR, and RRX on page 90

RRX Rotate Right with Extend ASR, LSL, LSR, ROR, and RRX on page 90

RSB Reverse Subtract ADD, ADC, SUB, SBC, and RSB on page 87

SADD16 Signed Add 16 SADD16 and SADD8 on page 96

SADD8 Signed Add 8 SADD16 and SADD8 on page 96

SASX Signed Add and Subtract with Exchange SASX and SSAX on page 101

SSAX Signed Subtract and Add with Exchange SASX and SSAX on page 101

SBC Subtract with Carry ADD, ADC, SUB, SBC, and RSB on page 87

SHADD16 Signed Halving Add 16 SHADD16 and SHADD8 on page 97

The Cortex-M7 instruction set PM0253

86/252 DocID028474 Rev 3

SHADD8 Signed Halving Add 8 SHADD16 and SHADD8 on page 97

SHASX Signed Halving Add and Subtract with Exchange SHASX and SHSAX on page 98

SHSAX Signed Halving Subtract and Add with Exchange SHASX and SHSAX on page 98

SHSUB16 Signed Halving Subtract 16 SHSUB16 and SHSUB8 on page 99

SHSUB8 Signed Halving Subtract 8 SHSUB16 and SHSUB8 on page 99

SSUB16 Signed Subtract 16 SSUB16 and SSUB8 on page 100

SSUB8 Signed Subtract 8 SSUB16 and SSUB8 on page 100

SUB Subtract ADD, ADC, SUB, SBC, and RSB on page 87

SUBW Subtract ADD, ADC, SUB, SBC, and RSB on page 87

TEQ Test Equivalence TST and TEQ on page 102

TST Test TST and TEQ on page 102

UADD16 Unsigned Add 16 UADD16 and UADD8 on page 103

UADD8 Unsigned Add 8 UADD16 and UADD8 on page 103

UASX Unsigned Add and Subtract with Exchange UASX and USAX on page 104

USAX Unsigned Subtract and Add with Exchange UASX and USAX on page 104

UHADD16 Unsigned Halving Add 16 UHADD16 and UHADD8 on page 105

UHADD8 Unsigned Halving Add 8 UHADD16 and UHADD8 on page 105

UHASX Unsigned Halving Add and Subtract with Exchange UHASX and UHSAX on page 106

UHSAX Unsigned Halving Subtract and Add with Exchange UHASX and UHSAX on page 106

UHSUB16 Unsigned Halving Subtract 16 UHSUB16 and UHSUB8 on page 107

UHSUB8 Unsigned Halving Subtract 8 UHSUB16 and UHSUB8 on page 107

USAD8 Unsigned Sum of Absolute Differences USAD8 on page 108

USADA8
Unsigned Sum of Absolute Differences and
Accumulate

USADA8 on page 109

USUB16 Unsigned Subtract 16 USUB16 and USUB8 on page 110

USUB8 Unsigned Subtract 8 USUB16 and USUB8 on page 110

Table 29. Data processing instructions (continued)

Mnemonic Brief description See

DocID028474 Rev 3 87/252

PM0253 The Cortex-M7 instruction set

182

3.5.1 ADD, ADC, SUB, SBC, and RSB

Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

Syntax

op{S}{cond} {Rd,} Rn, Operand2

op{cond} {Rd,} Rn, #imm12 ; ADD and SUB only

Where:

op Is one of:

ADD Add.

ADC Add with Carry.

SUB Subtract.

SBC Subtract with Carry.

RSB Reverse Subtract.

S Is an optional suffix. If S is specified, the condition code flags are updated on
the result of the operation, see Conditional execution on page 68.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register. If Rd is omitted, the destination register is Rn.

Rn Is the register holding the first operand.

Operand2 Is a flexible second operand. See Flexible second operand on page 64 for
details of the options.

imm12 Is any value in the range 0-4095.

Operation

The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.

The ADC instruction adds the values in Rn and Operand2, together with the carry flag.

The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is
clear, the result is reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful
because of the wide range of options for Operand2.

Use ADC and SBC to synthesize multiword arithmetic, see Multiword arithmetic examples
on page 88.

See also ADR on page 73.

 ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent
to the SUB syntax that uses the imm12 operand.

The Cortex-M7 instruction set PM0253

88/252 DocID028474 Rev 3

Restrictions

In these instructions:

• Operand2 must not be SP and must not be PC

• Rd can be SP only in ADD and SUB, and only with the additional restrictions:

– Rn must also be SP.

– Any shift in Operand2 must be limited to a maximum of 3 bits using LSL.

• Rn can be SP only in ADD and SUB

• Rd can be PC only in the ADD{cond} PC, PC, Rm instruction where:

– The S suffix must not be specified.

– Rm must not be PC and must not be SP.

– If the instruction is conditional, it must be the last instruction in the IT block.

• With the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in
ADD and SUB, and only with the additional restrictions:

– The S suffix must not be specified.

– The second operand must be a constant in the range 0 to 4095.

– When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded
to 0b00 before performing the calculation, making the base address for the
calculation word-aligned.

– If the user wants to generate the address of an instruction, the constant has to be
adjusted based on the value of the PC. ARM recommends using the ADR
instruction instead of ADD or SUB with Rn equal to the PC, because the
assembler automatically calculates the correct constant for the ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:

• Bit[0] of the value written to the PC is ignored.

• A branch occurs to the address created by forcing bit[0] of that value to 0.

Condition flags

If S is specified, these instructions update the N, Z, C and V flags according to the result.

Examples

 ADD R2, R1, R3
 SUBS R8, R6, #240 ; Sets the flags on the result.
 RSB R4, R4, #1280 ; Subtracts contents of R4 from 1280.
 ADCHI R11, R0, R3 ; Only executed if C flag set and Z.
 ; flag clear.

Multiword arithmetic examples

Example 3-4: 64-bit addition shows two instructions that add a 64-bit integer contained in R2
and R3 to another 64-bit integer contained in R0 and R1, and place the result in R4 and R5.

Example 3-4: 64-bit addition

 ADDS R4, R0, R2 ; Add the least significant words.
 ADC R5, R1, R3 ; Add the most significant words with carry.

The multiword values do not have to use consecutive registers. Example 3-5: 96-bit

DocID028474 Rev 3 89/252

PM0253 The Cortex-M7 instruction set

182

subtraction shows instructions that subtract a 96-bit integer contained in R9, R1, and R11
from another contained in R6, R2, and R8. The example stores the result in R6, R9, and R2.

Example 3-5: 96-bit subtraction

 SUBS R6, R6, R9 ; Subtract the least significant words.
 SBCS R9, R2, R1 ; Subtract the middle words with carry.
 SBC R2, R8, R11 ; Subtract the most significant words with

 ; carry.

3.5.2 AND, ORR, EOR, BIC, and ORN

Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

Syntax

op{S}{cond} {Rd,} Rn, Operand2

Where:

op Is one of:

AND Logical AND.

ORR Logical OR, or bit set.

EOR Logical Exclusive OR.

BIC Logical AND NOT, or bit clear.

ORN Logical OR NOT.

S Is an optional suffix. If S is specified, the condition code flags are updated on
the result of the operation, see Conditional execution on page 68.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the register holding the first operand.

Operand2 Is a flexible second operand. See Flexible second operand on page 64 for
details of the options.

Operation

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR
operations on the values in Rn and Operand2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of
the corresponding bits in the value of Operand2.

The ORN instruction performs an OR operation on the bits in Rn with the complements of
the corresponding bits in the value of Operand2.

Restrictions

Do not use SP and do not use PC.

The Cortex-M7 instruction set PM0253

90/252 DocID028474 Rev 3

Condition flags

If S is specified, these instructions:

• Update the N and Z flags according to the result.

• Can update the C flag during the calculation of Operand2, see Example 3-5: 96-bit
subtraction on page 89.

• Do not affect the V flag.

Examples

 AND R9, R2, #0xFF00
 ORREQ R2, R0, R5
 ANDS R9, R8, #0x19
 EORS R7, R11, #0x18181818
 BIC R0, R1, #0xab
 ORN R7, R11, R14, ROR #4
 ORNS R7, R11, R14, ASR #32

3.5.3 ASR, LSL, LSR, ROR, and RRX

Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right
with Extend.

Syntax

op{S}{cond} Rd, Rm, Rs

op{S}{cond} Rd, Rm, #n

RRX{S}{cond} Rd, Rm

Where:

op Is one of:

ASR Arithmetic Shift Right.

LSL Logical Shift Left.

LSR Logical Shift Right.

ROR Rotate Right.

S Is an optional suffix. If S is specified, the condition code flags are updated on
the result of the operation, see Conditional execution on page 68.

Rd Is the destination register.

Rm Is the register holding the value to be shifted.

Rs Is the register holding the shift length to apply to the value in Rm. Only the least
significant byte is used and can be in the range 0 to 255.

n Is the shift length. The range of shift length depends on the instruction:

ASR Shift length from 1 to 32

LSL Shift length from 0 to 31

LSR Shift length from 1 to 32

ROR Shift length from 1 to 31

 MOVS Rd, Rm is the preferred syntax for LSLS Rd, Rm, #0.

DocID028474 Rev 3 91/252

PM0253 The Cortex-M7 instruction set

182

Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number
of places specified by constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains
unchanged. For details on what result is generated by the different instructions, see Shift
operations on page 65.

Restrictions

Do not use SP and do not use PC.

Condition flags

If S is specified:

• These instructions update the N and Z flags according to the result.

• The C flag is updated to the last bit shifted out, except when the shift length is 0, see
Shift operations on page 65.

Examples

 ASR R7, R8, #9 ; Arithmetic shift right by 9 bits.
 LSLS R1, R2, #3 ; Logical shift left by 3 bits with flag update.
 LSR R4, R5, #6 ; Logical shift right by 6 bits.
 ROR R4, R5, R6 ; Rotate right by the value in the bottom byte of
 ; R6.
 RRX R4, R5 ; Rotate right with extend.

3.5.4 CLZ

Count Leading Zeros.

Syntax

CLZ{cond} Rd, Rm

Where:
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rm Is the operand register.

Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the
result in Rd. The result value is 32 if no bits are set and zero if bit[31] is set.

Restrictions

Do not use SP and do not use PC.

Condition flags

This instruction does not change the flags.

The Cortex-M7 instruction set PM0253

92/252 DocID028474 Rev 3

Examples

 CLZ R4,R9
 CLZNE R2,R3

3.5.5 CMP and CMN

Compare and Compare Negative.

Syntax

CMP{cond} Rn, Operand2

CMN{cond} Rn, Operand2

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Rn Is the register holding the first operand.

Operand2 Is a flexible second operand. See Flexible second operand on page 64 for
details of the options.

Operation

These instructions compare the value in a register with Operand2. They update the
condition flags on the result, but do not write the result to a register.

The CMP instruction subtracts the value of Operand2 from the value in Rn. This is the same
as a SUBS instruction, except that the result is discarded.

The CMN instruction adds the value of Operand2 to the value in Rn. This is the same as an
ADDS instruction, except that the result is discarded.

Restrictions

In these instructions:

• Do not use PC.

• Operand2 must not be SP.

Condition flags

These instructions update the N, Z, C and V flags according to the result.

Examples

 CMP R2, R9
 CMN R0, #6400
 CMPGT SP, R7, LSL #2

DocID028474 Rev 3 93/252

PM0253 The Cortex-M7 instruction set

182

3.5.6 MOV and MVN

Move and Move NOT.

Syntax

MOV{S}{cond} Rd, Operand2

MOV{cond} Rd, #imm16

MVN{S}{cond} Rd, Operand2

Where:

S Is an optional suffix. If S is specified, the condition code flags are updated on
the result of the operation, see Conditional execution on page 68.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Operand2 Is a flexible second operand. See Flexible second operand on page 64 for
details of the options.

imm16 Is any value in the range 0-65535.

Operation

The MOV instruction copies the value of Operand2 into Rd.

When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the
preferred syntax is the corresponding shift instruction:

• ASR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ASR
#n.

• LSL{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSL
#n if n != 0.

• LSR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, LSR
#n.

• ROR{S}{cond} Rd, Rm, #n is the preferred syntax for MOV{S}{cond} Rd, Rm, ROR
#n.

• RRX{S}{cond} Rd, Rm is the preferred syntax for MOV{S}{cond} Rd, Rm, RRX.

Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift
instructions:

• MOV{S}{cond} Rd, Rm, ASR Rs is a synonym for ASR{S}{cond} Rd, Rm, Rs.

• MOV{S}{cond} Rd, Rm, LSL Rs is a synonym for LSL{S}{cond} Rd, Rm, Rs.

• MOV{S}{cond} Rd, Rm, LSR Rs is a synonym for LSR{S}{cond} Rd, Rm, Rs.

• MOV{S}{cond} Rd, Rm, ROR Rs is a synonym for ROR{S}{cond} Rd, Rm, Rs

See ASR, LSL, LSR, ROR, and RRX on page 90.

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation
on the value, and places the result into Rd.

 The MOVW instruction provides the same function as MOV, but is restricted to using the
imm16 operand.

The Cortex-M7 instruction set PM0253

94/252 DocID028474 Rev 3

Restrictions

The user can use SP and PC only in the MOV instruction, with the following restrictions:

• The second operand must be a register without shift.

• The S suffix must not be specified.

When Rd is PC in a MOV instruction:

• Bit[0] of the value written to the PC is ignored.

• A branch occurs to the address created by forcing bit[0] of that value to 0.

 Though it is possible to use MOV as a branch instruction, ARM strongly recommends the
use of a BX or BLX instruction to branch for software portability to the ARM instruction set.

Condition flags

If S is specified, these instructions:

• Update the N and Z flags according to the result.

• Can update the C flag during the calculation of Operand2, see Flexible second operand
on page 64.

• Do not affect the V flag.

Example

 MOVS R11, #0x000B ; Write value of 0x000B to R11, flags get
 ; updated.
 MOV R1, #0xFA05 ; Write value of 0xFA05 to R1, flags are not
 ; updated.
 MOVS R10, R12 ; Write value in R12 to R10, flags get updated.
 MOV R3, #23 ; Write value of 23 to R3.
 MOV R8, SP ; Write value of stack pointer to R8.
 MVNS R2, #0xF ; Write value of 0xFFFFFFF0 (bitwise inverse of
 ; 0xF) to the R2 and update flags.

3.5.7 MOVT

Move Top.

Syntax

MOVT{cond} Rd, #imm16

Where:
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
imm16 Is a 16-bit immediate constant.

Operation

MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its
destination register. The write does not affect Rd[15:0].

The MOV, MOVT instruction pair enables to generate any 32-bit constant.

Restrictions

Rd must not be SP and must not be PC.

DocID028474 Rev 3 95/252

PM0253 The Cortex-M7 instruction set

182

Condition flags

This instruction does not change the flags.

Examples

 MOVT R3, #0xF123 ; Write 0xF123 to upper halfword of R3, lower
 ; halfword and APSR are unchanged.

3.5.8 REV, REV16, REVSH, and RBIT

Reverse bytes and Reverse bits.

Syntax

op{cond} Rd, Rn

Where:

op Is one of:

REV Reverse byte order in a word.

REV16 Reverse byte order in each halfword independently.

REVSH Reverse byte order in the bottom halfword, and sign extend to 32
bits.

RBIT Reverse the bit order in a 32-bit word.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the register holding the operand.

Operation

Use these instructions to change endianness of data:

REV converts either:

• 32-bit big-endian data into little-endian data.

• 32-bit little-endian data into big-endian data.

REV16 converts either:

• 16-bit big-endian data into little-endian data.

• 16-bit little-endian data into big-endian data.

REVSH converts either:

• 16-bit signed big-endian data into 32-bit signed little-endian data.

• 16-bit signed little-endian data into 32-bit signed big-endian data.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

The Cortex-M7 instruction set PM0253

96/252 DocID028474 Rev 3

Examples

 REV R3, R7 ; Reverse byte order of value in R7 and write it to R3.
 REV16 R0, R0 ; Reverse byte order of each 16-bit halfword in R0.
 REVSH R0, R5 ; Reverse Signed Halfword.
 REVHS R3, R7 ; Reverse with Higher or Same condition.
 RBIT R7, R8 ; Reverse bit order of value in R8 and write the result
 ; to R7.

3.5.9 SADD16 and SADD8

Signed Add 16 and Signed Add 8.

Syntax

op{cond}{Rd,} Rn, Rm

Where:

op Is one of:

SADD16 Performs two 16-bit signed integer additions.

SADD8 Performs four 8-bit signed integer additions.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the first register holding the operand.

Rm Is the second register holding the operand.

Operation

Use these instructions to perform a halfword or byte add in parallel.

The SADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second
operand.

2. Writes the result in the corresponding halfwords of the destination register.

The SADD8 instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.

2. Writes the result in the corresponding bytes of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples

SADD16 R1, R0 ; Adds the halfwords in R0 to the corresponding
 ; halfwords of R1 and writes to corresponding halfword
 ; of R1.
SADD8 R4, R0, R5 ; Adds bytes of R0 to the corresponding byte in R5 and
 ; writes to the corresponding byte in R4.

DocID028474 Rev 3 97/252

PM0253 The Cortex-M7 instruction set

182

3.5.10 SHADD16 and SHADD8

Signed Halving Add 16 and Signed Halving Add 8.

Syntax

op{cond}{Rd,} Rn, Rm

Where:

op Is one of:

SHADD16 Signed Halving Add 16

SHADD8 Signed Halving Add 8

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the first operand register.

Rm Is the second operand register.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing
the result to the destination register.

The SHADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second
operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the halfword results in the destination register.

The SHADDB8 instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the byte results in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples

SHADD16 R1, R0 ; Adds halfwords in R0 to corresponding halfword of R1
 ; and writes halved result to corresponding halfword in
 ; R1.
SHADD8 R4, R0, R5 ; Adds bytes of R0 to corresponding byte in R5 and
 ; writes halved result to corresponding byte in R4.

The Cortex-M7 instruction set PM0253

98/252 DocID028474 Rev 3

3.5.11 SHASX and SHSAX

Signed Halving Add and Subtract with Exchange and Signed Halving Subtract and Add with
Exchange.

Syntax

op{cond} {Rd}, Rn, Rm

Where:

op Is one of:

SHASX Add and Subtract with Exchange and Halving.

SHSAX Subtract and Add with Exchange and Halving.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn, Rm Are registers holding the first and second operands.

Operation

The SHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second
operand.

2. Writes the halfword result of the addition to the top halfword of the destination register,
shifted by one bit to the right causing a divide by two, or halving.

3. Subtracts the top halfword of the second operand from the bottom highword of the first
operand.

4. Writes the halfword result of the division in the bottom halfword of the destination
register, shifted by one bit to the right causing a divide by two, or halving.

The SHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first
operand.

2. Writes the halfword result of the addition to the bottom halfword of the destination
register, shifted by one bit to the right causing a divide by two, or halving.

3. Adds the bottom halfword of the first operand with the top halfword of the second
operand.

4. Writes the halfword result of the division in the top halfword of the destination register,
shifted by one bit to the right causing a divide by two, or halving.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

Examples

SHASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of
 ; R2 and writes halved result to top halfword of
 ; R7. Subtracts top halfword of R2 from bottom

DocID028474 Rev 3 99/252

PM0253 The Cortex-M7 instruction set

182

 ; halfword of R4 and writes halved result to
 ; bottom halfword of R7.
SHSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top
 ; halfword of R3 and writes halved result to top
 ; halfword of R0.
 ; Adds top halfword of R5 to bottom halfword of
 ; R3 and writes halved result to bottom halfword
 ; of R0.

3.5.12 SHSUB16 and SHSUB8

Signed Halving Subtract 16 and Signed Halving Subtract 8.

Syntax

op{cond}{Rd,} Rn, Rm

Where:

op Is one of:

SHSUB16 Signed Halving Subtract 16.

SHSUB8 Signed Halving Subtract 8.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the first operand register.

Rm Is the second operand register

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing
the result to the destination register.

The SHSUB16 instruction:

1. Subtracts each halfword of the second operand from the corresponding halfwords of
the first operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the halved halfword results in the destination register.

The SHSUBB8 instruction:

1. Subtracts each byte of the second operand from the corresponding byte of the first
operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the corresponding signed byte results in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

The Cortex-M7 instruction set PM0253

100/252 DocID028474 Rev 3

Examples

SHSUB16 R1, R0 ; Subtracts halfwords in R0 from corresponding
 ; halfword of R1 and writes to corresponding halfword
 ; of R1.
SHSUB8 R4, R0, R5 ; Subtracts bytes of R0 from corresponding byte in R5,
 ; and writes to corresponding byte in R4.

3.5.13 SSUB16 and SSUB8

Signed Subtract 16 and Signed Subtract 8.

Syntax

op{cond}{Rd,} Rn, Rm

Where:

op Is one of:

SSUB16 Performs two 16-bit signed integer subtractions.

SSUB8 Performs four 8-bit signed integer subtractions.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the first operand register.

Rm Is the second operand register.

Operation

Use these instructions to change endianness of data.

The SSUB16 instruction:

1. Subtracts each halfword from the second operand from the corresponding halfword of
the first operand.

2. Writes the difference result of two signed halfwords in the corresponding halfword of
the destination register.

The SSUB8 instruction:

1. Subtracts each byte of the second operand from the corresponding byte of the first
operand.

2. Writes the difference result of four signed bytes in the corresponding byte of the
destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples

SSUB16 R1, R0 ; Subtracts halfwords in R0 from corresponding
halfword of R1

DocID028474 Rev 3 101/252

PM0253 The Cortex-M7 instruction set

182

 ; halfword of R1 and writes to corresponding halfword
 ; of R1.
SSUB8 R4, R0, R5 ; Subtracts bytes of R5 from corresponding byte in
 ; R0, and writes to corresponding byte of R4.

3.5.14 SASX and SSAX

Signed Add and Subtract with Exchange and Signed Subtract and Add with Exchange.

Syntax

op{cond} {Rd}, Rm, Rn

Where:

op Is one of:

SASX Signed Add and Subtract with Exchange.

SSAX Signed Subtract and Add with Exchange.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn, Rm Are registers holding the first and second operands.

Operation

The SASX instruction:

1. Adds the signed top halfword of the first operand with the signed bottom halfword of the
second operand.

2. Writes the signed result of the addition to the top halfword of the destination register.

3. Subtracts the signed bottom halfword of the second operand from the top signed
highword of the first operand.

4. Writes the signed result of the subtraction to the bottom halfword of the destination
register.

The SSAX instruction:

1. Subtracts the signed bottom halfword of the second operand from the top signed
highword of the first operand.

2. Writes the signed result of the addition to the bottom halfword of the destination
register.

3. Adds the signed top halfword of the first operand with the signed bottom halfword of the
second operand.

4. Writes the signed result of the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

Examples

SASX R0, R4, R5 ; Adds top halfword of R4 to bottom halfword of R5

The Cortex-M7 instruction set PM0253

102/252 DocID028474 Rev 3

 ; and writes to top halfword of R0.
 ; Subtracts bottom halfword of R5 from top halfword
 ; of R4 and writes to bottom halfword of R0.
SSAX R7, R3, R2 ; Subtracts top halfword of R2 from bottom halfword
 ; of R3 and writes to bottom halfword of R7.
 ; Adds top halfword of R3 with bottom halfword of R
 ; R2 and writes to top halfword of R7.

3.5.15 TST and TEQ

Test bits and Test Equivalence.

Syntax

TST{cond} Rn, Operand2

TEQ{cond} Rn, Operand2

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Rn Is the register holding the first operand.

Operand2 Is a flexible second operand. See Flexible second operand on page 64 for
details of the options.

Operation

These instructions test the value in a register against Operand2. They update the condition
flags based on the result, but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of
Operand2. This is the same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rn is 0 or 1, use the TST instruction with an Operand2 constant that
has that bit set to 1 and all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the
value of Operand2. This is the same as the EORS instruction, except that it discards the
result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the
logical Exclusive OR of the sign bits of the two operands.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions:

• Update the N and Z flags according to the result.

• Can update the C flag during the calculation of Operand2, see Flexible second operand
on page 64.

• Do not affect the V flag.

DocID028474 Rev 3 103/252

PM0253 The Cortex-M7 instruction set

182

Examples

 TST R0, #0x3F8 ; Perform bitwise AND of R0 value to 0x3F8,
 ; APSR is updated but result is discarded
 TEQEQ R10, R9 ; Conditionally test if value in R10 is equal to
 ; value in R9, APSR is updated but result is
 ; discarded.

3.5.16 UADD16 and UADD8

Unsigned Add 16 and Unsigned Add 8.

Syntax

op{cond}{Rd,} Rn, Rm

Where:

op Is one of:

UADD16 Performs two 16-bit unsigned integer additions.

UADD8 Performs four 8-bit unsigned integer additions.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the first register holding the operand.

Rm Is the second register holding the operand.

Operation

Use these instructions to add 16- and 8-bit unsigned data.

The UADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second
operand.

2. Writes the unsigned result in the corresponding halfwords of the destination register.

The UADD16 instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.

2. Writes the unsigned result in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples

UADD16 R1, R0 ; Adds halfwords in R0 to corresponding halfword of R1,
 ; writes to corresponding halfword of R1.
UADD8 R4, R0, R5 ; Adds bytes of R0 to corresponding byte in R5 and
 ; writes to corresponding byte in R4.

The Cortex-M7 instruction set PM0253

104/252 DocID028474 Rev 3

3.5.17 UASX and USAX

Add and Subtract with Exchange and Subtract and Add with Exchange.

Syntax

op{cond} {Rd}, Rn, Rm

Where:
op Is one of:

UASX Add and Subtract with Exchange.

USAX Subtract and Add with Exchange.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn, Rm Are registers holding the first and second operands.

Operation

The UASX instruction:

1. Subtracts the top halfword of the second operand from the bottom halfword of the first
operand.

2. Writes the unsigned result from the subtraction to the bottom halfword of the
destination register.

3. Adds the top halfword of the first operand with the bottom halfword of the second
operand.

4. Writes the unsigned result of the addition to the top halfword of the destination register.

The USAX instruction:

1. Adds the bottom halfword of the first operand with the top halfword of the second
operand.

2. Writes the unsigned result of the addition to the bottom halfword of the destination
register.

3. Subtracts the bottom halfword of the second operand from the top halfword of the first
operand.

4. Writes the unsigned result from the subtraction to the top halfword of the destination
register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

Examples

UASX R0, R4, R5 ; Adds top halfword of R4 to bottom halfword of R5
 ; and writes to top halfword of R0.
 ; Subtracts bottom halfword of R5 from top halfword
 ; of R0 and writes to bottom halfword of R0.
USAX R7, R3, R2 ; Subtracts top halfword of R2 from bottom halfword
 ; of R3 and writes to bottom halfword of R7.
 ; Adds top halfword of R3 to bottom halfword of R2

DocID028474 Rev 3 105/252

PM0253 The Cortex-M7 instruction set

182

 ; and writes to top halfword of R7.

3.5.18 UHADD16 and UHADD8

Unsigned Halving Add 16 and Unsigned Halving Add 8.

Syntax

op{cond}{Rd,} Rn, Rm

Where:
op Is one of:

UHADD16 Unsigned Halving Add 16.

UHADD8 Unsigned Halving Add 8.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn Is the register holding the first operand.
Rm Is the register holding the second operand.

Operation

Use these instructions to add 16- and 8-bit data and then to halve the result before writing
the result to the destination register.

The UHADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second
operand.

2. Shuffles the halfword result by one bit to the right, halving the data.

3. Writes the unsigned results to the corresponding halfword in the destination register.

The UHADD8 instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.

2. Shuffles the byte result by one bit to the right, halving the data.

3. Writes the unsigned results in the corresponding byte in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples

UHADD16 R7, R3 ; Adds halfwords in R7 to corresponding halfword of R3
 ; and writes halved result to corresponding halfword
 ; in R7.
UHADD8 R4, R0, R5 ; Adds bytes of R0 to corresponding byte in R5 and
 ; writes halved result to corresponding byte in R4.

The Cortex-M7 instruction set PM0253

106/252 DocID028474 Rev 3

3.5.19 UHASX and UHSAX

Unsigned Halving Add and Subtract with Exchange and Unsigned Halving Subtract and Add
with Exchange.

Syntax

op{cond} {Rd}, Rn, Rm

Where:
op Is one of:

UHASX Add and Subtract with Exchange and Halving.

UHSAX Subtract and Add with Exchange and Halving.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn, Rm Are registers holding the first and second operands.

Operation

The UHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second
operand.

2. Shifts the result by one bit to the right causing a divide by two, or halving.

3. Writes the halfword result of the addition to the top halfword of the destination register.

4. Subtracts the top halfword of the second operand from the bottom highword of the first
operand.

5. Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the division in the bottom halfword of the destination
register.

The UHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first
operand.

2. Shifts the result by one bit to the right causing a divide by two, or halving.

3. Writes the halfword result of the subtraction in the top halfword of the destination
register.

4. Adds the bottom halfword of the first operand with the top halfword of the second
operand.

5. Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the addition to the bottom halfword of the destination
register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

Examples

UHASX R7, R4, R2 ; Adds top halfword of R4 with bottom halfword of

DocID028474 Rev 3 107/252

PM0253 The Cortex-M7 instruction set

182

 ; R2 and writes halved result to top halfword of
 ; R7.
 ; Subtracts top halfword of R2 from bottom
 ; halfword of R7 and writes halved result to
 ; bottom halfword of R7.
UHSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top
 ; halfword of R3 and writes halved result to top
 ; halfword of R0.
 ; Adds top halfword of R5 to bottom halfword of R3
 ; and writes halved result to bottom halfword of
 ; R0.

3.5.20 UHSUB16 and UHSUB8

Unsigned Halving Subtract 16 and Unsigned Halving Subtract 8.

Syntax

op{cond}{Rd,} Rn, Rm

Where:
op Is one of:

UHSUB16 Performs two unsigned 16-bit integer additions, halves the results,
and writes the results to the destination register.

UHSUB8 Performs four unsigned 8-bit integer additions, halves the results,
and writes the results to the destination register.

cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn Is the first register holding the operand.
Rm Is the second register holding the operand.

Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing
the result to the destination register.

The UHSUB16 instruction:

1. Subtracts each halfword of the second operand from the corresponding halfword of the
first operand.

2. Shuffles each halfword result to the right by one bit, halving the data.

3. Writes each unsigned halfword result to the corresponding halfwords in the destination
register.

The UHSUB8 instruction:

1. Subtracts each byte of second operand from the corresponding byte of the first
operand.

2. Shuffles each byte result by one bit to the right, halving the data.

3. Writes the unsigned byte results to the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

The Cortex-M7 instruction set PM0253

108/252 DocID028474 Rev 3

Condition flags

These instructions do not change the flags.

Examples

UHSUB16 R1, R0 ; Subtracts halfwords in R0 from corresponding
 ; halfword of R1 and writes halved result to
 ; corresponding halfword in R1.
UHSUB8 R4, R0, R5 ; Subtracts bytes of R5 from corresponding byte in R0
 ; and writes halved result to corresponding byte in
 ; R4.

3.5.21 SEL

Select Bytes. Selects each byte of its result from either its first operand or its second
operand, according to the values of the GE flags.

Syntax

SEL{<c>}{<q>} {<Rd>,} <Rn>, <Rm>

Where:
<c>, <q> Is a standard assembler syntax field.
<Rd> Is the destination register.
<Rn> Is the first operand register.
<Rm> Is the second operand register.

Operation

The SEL instruction:

1. Reads the value of each bit of APSR.GE.

2. Depending on the value of APSR.GE, assigns the destination register the value of
either the first or second operand register.

Restrictions

None.

Condition flags

These instructions do not change the flags.

Examples

SADD16 R0, R1, R2 ; Set GE bits based on result.
SEL R0, R0, R3 ; Select bytes from R0 or R3, based on GE.

3.5.22 USAD8

Unsigned Sum of Absolute Differences.

Syntax

USAD8{cond}{Rd,} Rn, Rm

DocID028474 Rev 3 109/252

PM0253 The Cortex-M7 instruction set

182

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the first operand register.

Rm Is the second operand register.

Operation

The USAD8 instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the
first operand register.

2. Adds the absolute values of the differences together.
1. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples

USAD8 R1, R4, R0 ; Subtracts each byte in R0 from corresponding byte
 ; of R4 adds the differences and writes to R1.
USAD8 R0, R5 ; Subtracts bytes of R5 from corresponding byte in
 ; R0, adds the differences and writes to R0.

3.5.23 USADA8

Unsigned Sum of Absolute Differences and Accumulate.

Syntax

USADA8{cond}{Rd,} Rn, Rm, Ra

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the first operand register.

Rm Is the second operand register.

Ra Is the register that contains the accumulation value.

Operation

The USADA8 instruction:

The Cortex-M7 instruction set PM0253

110/252 DocID028474 Rev 3

1. Subtracts each byte of the second operand register from the corresponding byte of the
first operand register.

2. Adds the unsigned absolute differences together.

3. Adds the accumulation value to the sum of the absolute differences.

4. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples

USADA8 R1, R0, R6 ; Subtracts bytes in R0 from corresponding halfword
 ; of R1 adds differences, adds value of R6, writes
 ; to R1.
USADA8 R4, R0, R5, R2 ; Subtracts bytes of R5 from corresponding byte in
 ; R0 adds differences, adds value of R2 writes to
 ; R4.

3.5.24 USUB16 and USUB8

Unsigned Subtract 16 and Unsigned Subtract 8.

Syntax

op{cond}{Rd,} Rn, Rm

Where:

op Is one of:

USUB16 Unsigned Subtract 16.

USUB8 Unsigned Subtract 8.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the first operand register.

Rm Is the second operand register.

Operation

Use these instructions to subtract 16-bit and 8-bit data before writing the result to the
destination register.

The USUB16 instruction:

1. Subtracts each halfword from the second operand register from the corresponding
halfword of the first operand register.

2. Writes the unsigned result in the corresponding halfwords of the destination register.

The USUB8 instruction:

DocID028474 Rev 3 111/252

PM0253 The Cortex-M7 instruction set

182

1. Subtracts each byte of the second operand register from the corresponding byte of the
first operand register.

2. Writes the unsigned byte result in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples

USUB16 R1, R0 ; Subtracts halfwords in R0 from corresponding halfword
 ; of R1 and writes to corresponding halfword in R1.
USUB8 R4, R0, R5 ; Subtracts bytes of R5 from corresponding byte in R0
 ; and writes to the corresponding byte in R4.

3.6 Multiply and divide instructions

Table 30 shows the multiply and divide instructions:

Table 30. Multiply and divide instructions

Mnemonic Brief description See

MLA Multiply with Accumulate, 32-bit result MUL, MLA, and MLS on page 112

MLS Multiply and Subtract, 32-bit result MUL, MLA, and MLS on page 112

MUL Multiply, 32-bit result MUL, MLA, and MLS on page 112

SDIV Signed Divide SDIV and UDIV on page 127

SMLA[B,T] Signed Multiply Accumulate (halfwords) SMMLA and SMMLS on page 121

SMLAD,
SMLADX

Signed Multiply Accumulate Dual SMLAD on page 116

SMLAL
Signed Multiply with Accumulate (32x32+64),
64-bit result

UMULL, UMLAL, SMULL, and SMLAL on
page 126

SMLAL[B,T] Signed Multiply Accumulate Long (halfwords) SMLAL and SMLALD on page 117

SMLALD,
SMLALDX

Signed Multiply Accumulate Long Dual SMLAL and SMLALD on page 117

SMLAW[B|T]
Signed Multiply Accumulate (word by
halfword)

SMLA and SMLAW on page 115

SMLSD Signed Multiply Subtract Dual SMLSD and SMLSLD on page 119

SMLSLD Signed Multiply Subtract Long Dual SMLSD and SMLSLD on page 119

SMMLA
Signed Most Significant Word Multiply
Accumulate

SMMLA and SMMLS on page 121

SMMLS,
SMMLSR

Signed Most Significant Word Multiply
Subtract

SMMLA and SMMLS on page 121

The Cortex-M7 instruction set PM0253

112/252 DocID028474 Rev 3

3.6.1 MUL, MLA, and MLS

Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and
producing a 32-bit result.

Syntax

MUL{S}{cond} {Rd,} Rn, Rm ; Multiply

MLA{cond} Rd, Rn, Rm, Ra ; Multiply with accumulate

MLS{cond} Rd, Rn, Rm, Ra ; Multiply with subtract

Where:

cond Is an optional condition code. See Conditional execution on page 68.

S Is an optional suffix. If S is specified, the condition code flags are updated on
the result of the operation, see Conditional execution on page 68.

Rd Is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm Are registers holding the values to be multiplied.

Ra Is a register holding the value to be added or subtracted from.

Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant
32 bits of the result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and
places the least significant 32 bits of the result in Rd.

SMUAD,
SMUADX

Signed Dual Multiply Add SMUAD and SMUSD on page 123

SMUL[B,T] Signed Multiply (word by halfword) SMUL and SMULW on page 124

SMMUL,
SMMULR

Signed Most Significant Word Multiply SMMUL on page 122

SMULL Signed Multiply (32x32), 64-bit result
UMULL, UMLAL, SMULL, and SMLAL on
page 126

SMULWB,
SMULWT

Signed Multiply (word by halfword) SMUL and SMULW on page 124

SMUSD,
SMUSDX

Signed Dual Multiply Subtract SMUAD and SMUSD on page 123

UDIV Unsigned Divide SDIV and UDIV on page 127

UMAAL
Unsigned Multiply Accumulate Accumulate
Long (32x32+32+32), 64-bit result

UMULL, UMAAL, UMLAL on page 113

UMLAL
Unsigned Multiply with Accumulate
(32x32+64), 64-bit result

UMULL, UMAAL, UMLAL on page 113

UMULL Unsigned Multiply (32x32), 64-bit result UMULL, UMAAL, UMLAL on page 113

Table 30. Multiply and divide instructions (continued)

Mnemonic Brief description See

DocID028474 Rev 3 113/252

PM0253 The Cortex-M7 instruction set

182

The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the
value from Ra, and places the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or
unsigned.

Restrictions

In these instructions, do not use SP and do not use PC.

If the S suffix is used with the MUL instruction:

• Rd, Rn, and Rm must all be in the range R0 to R7.

• Rd must be the same as Rm.

• The cond suffix must not be used.

Condition flags

If S is specified, the MUL instruction:

• Updates the N and Z flags according to the result.

• Does not affect the C and V flags.

Examples

 MUL R10, R2, R5 ; Multiply, R10 = R2 x R5
 MLA R10, R2, R1, R5 ; Multiply with accumulate, R10 = (R2 x R1) +
 ; R5
 MULS R0, R2, R2 ; Multiply with flag update, R0 = R2 x R2
 MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 x R2
 MLS R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 x R6)

3.6.2 UMULL, UMAAL, UMLAL

Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a
64-bit result.

Syntax

op{cond} RdLo, RdHi, Rn, Rm

Where:

op Is one of:

UMULL Unsigned Long Multiply.

UMAAL Unsigned Long Multiply with Accumulate Accumulate.

UMLAL Unsigned Long Multiply, with Accumulate.

cond Is an optional condition code. See Conditional execution on page 68.

RdHi, RdLo Are the destination registers. For UMAAL, UMLAL and UMLAL they also hold the
accumulating value.

Rn, Rm Are registers holding the first and second operands.

The Cortex-M7 instruction set PM0253

114/252 DocID028474 Rev 3

Operation

These instructions interpret the values from Rn and Rm as unsigned 32-bit integers.
The UMULL instruction:

• Multiplies the two unsigned integers in the first and second operands.

• Writes the least significant 32 bits of the result in RdLo.

• Writes the most significant 32 bits of the result in RdHi.

The UMAAL instruction:

• Multiplies the two unsigned 32-bit integers in the first and second operands.

• Adds the unsigned 32-bit integer in RdHi to the 64-bit result of the multiplication.

• Adds the unsigned 32-bit integer in RdLo to the 64-bit result of the addition.

• Writes the top 32-bits of the result to RdHi.

• Writes the lower 32-bits of the result to RdLo.

The UMLAL instruction:

• Multiplies the two unsigned integers in the first and second operands.

• Adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo.

• Writes the result back to RdHi and RdLo.

Restrictions

In these instructions:

• Do not use SP and do not use PC.

• RdHi and RdLo must be different registers.

Condition flags

These instructions do not affect the condition code flags.

Examples

UMULL R0, R4, R5, R6 ; Multiplies R5 and R6, writes the top 32 bits to
 ; R4 and the bottom 32 bits to R0.
UMAAL R3, R6, R2, R7 ; Multiplies R2 and R7, adds R6, adds R3, writes
 ; the top 32 bits to R6, and the bottom 32 bits
 ; to R3.
UMLAL R2, R1, R3, R5 ; Multiplies R5 and R3, adds R1:R2, writes to
 ; R1:R2.

DocID028474 Rev 3 115/252

PM0253 The Cortex-M7 instruction set

182

3.6.3 SMLA and SMLAW

Signed Multiply Accumulate (halfwords).

Syntax

op{XY}{cond} Rd, Rn, Rm

op{Y}{cond} Rd, Rn, Rm, Ra

Where:

op Is one of:

SMLA Signed Multiply Accumulate Long (halfwords)

X and Y specifies which half of the source registers Rn and Rm are
used as the first and second multiply operand.

If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X is T, then the top halfword, bits [31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMLAW Signed Multiply Accumulate (word by halfword)

Y specifies which half of the source register Rm is used as the second
multiply operand.

If Y is T, then the top halfword, bits [31:16] of Rm is used.

If Y is B, then the bottom halfword, bits [15:0] of Rm is used.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register. If Rd is omitted, the destination register is Rn.

Rn, Rm Are registers holding the values to be multiplied.

Ra Is a register holding the value to be added or subtracted from.

Operation

The SMALBB, SMLABT, SMLATB, SMLATT instructions:

• Multiplies the specified signed halfword, top or bottom, values from Rn and Rm.

• Adds the value in Ra to the resulting 32-bit product.

• Writes the result of the multiplication and addition in Rd.

The non-specified halfwords of the source registers are ignored.

The SMLAWB and SMLAWT instructions:

• Multiply the 32-bit signed values in Rn with:

– The top signed halfword of Rm, T instruction suffix.

– The bottom signed halfword of Rm, B instruction suffix.

• Add the 32-bit signed value in Ra to the top 32 bits of the 48-bit product

• Writes the result of the multiplication and addition in Rd.

The bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag
in the APSR. No overflow can occur during the multiplication.

The Cortex-M7 instruction set PM0253

116/252 DocID028474 Rev 3

Restrictions

In these instructions, do not use SP and do not use PC.

Condition flags

If an overflow is detected, the Q flag is set.

Examples

SMLABB R5, R6, R4, R1 ; Multiplies bottom halfwords of R6 and R4, adds
 ; R1 and writes to R5.
SMLATB R5, R6, R4, R1 ; Multiplies top halfword of R6 with bottom
 ; halfword of R4, adds R1 and writes to R5.
SMLATT R5, R6, R4, R1 ; Multiplies top halfwords of R6 and R4, adds
 ; R1 and writes the sum to R5.
SMLABT R5, R6, R4, R1 ; Multiplies bottom halfword of R6 with top
 ; halfword of R4, adds R1 and writes to R5.
SMLABT R4, R3, R2 ; Multiplies bottom halfword of R4 with top
 ; halfword of R3, adds R2 and writes to R4.
SMLAWB R10, R2, R5, R3 ; Multiplies R2 with bottom halfword of R5, adds
 ; R3 to the result and writes top 32-bits to R10.
SMLAWT R10, R2, R1, R5 ; Multiplies R2 with top halfword of R1, adds R5
 ; and writes top 32-bits to R10.

3.6.4 SMLAD

Signed Multiply Accumulate Long Dual.

Syntax

op{X}{cond} Rd, Rn, Rm, Ra

Where:

op Is one of:

SMLAD Signed Multiply Accumulate Dual.

SMLADX Signed Multiply Accumulate Dual Reverse.

X specifies which halfword of the source register Rn is used as the
multiply operand.
If X is omitted, the multiplications are bottom × bottom and top × top.
If X is present, the multiplications are bottom × top and top × bottom.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the first operand register holding the values to be multiplied.

Rm Is the second operand register.

Ra Is the accumulate value.

DocID028474 Rev 3 117/252

PM0253 The Cortex-M7 instruction set

182

Operation

The SMLAD and SMLADX instructions regard the two operands as four halfword 16-bit
values. The SMLAD and SMLADX instructions:

• If X is not present, multiply the top signed halfword value in Rn with the top signed
halfword of Rm and the bottom signed halfword values in Rn with the bottom signed
halfword of Rm.

• Or if X is present, multiply the top signed halfword value in Rn with the bottom signed
halfword of Rm and the bottom signed halfword values in Rn with the top signed
halfword of Rm.

• Add both multiplication results to the signed 32-bit value in Ra.

• Writes the 32-bit signed result of the multiplication and addition to Rd.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples

SMLAD R10, R2, R1, R5 ; Multiplies two halfword values in R2 with
 ; corresponding halfwords in R1, adds R5 and
 ; writes to R10.
SMLALDX R0, R2, R4, R6 ; Multiplies top halfword of R2 with bottom
 ; halfword of R4, multiplies bottom halfword of R2
 ; with top halfword of R4, adds R6 and writes to
 ; R0.

3.6.5 SMLAL and SMLALD

Signed Multiply Accumulate Long, Signed Multiply Accumulate Long (halfwords) and Signed
Multiply Accumulate Long Dual.

Syntax

op{cond} RdLo, RdHi, Rn, Rm

op{XY}{cond} RdLo, RdHi, Rn, Rm

op{X}{cond} RdLo, RdHi, Rn, Rm

Where:

op Is one of:

SMLAL Signed Multiply Accumulate Long.

SMLALXY Signed Multiply Accumulate Long (halfwords, X and Y).

X and Y specify which halfword of the source registers Rn and Rm are
used as the first and second multiply operand:

If X is B, then the bottom halfword, bits [15:0], of Rn is used.
If X is T, then the top halfword, bits [31:16], of Rn is used.

If Y is B, then the bottom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used.

The Cortex-M7 instruction set PM0253

118/252 DocID028474 Rev 3

SMLALD Signed Multiply Accumulate Long Dual.

SMLALDX Signed Multiply Accumulate Long Dual Reversed.

If the X is omitted, the multiplications are bottom × bottom and top ×
top.

If X is present, the multiplications are bottom × top and top × bottom.

cond Is an optional condition code. See Conditional execution on page 68.

RdHi, RdLo Are the destination registers.
RdLo is the lower 32 bits and RdHi is the upper 32 bits of the 64-bit integer.
For SMLAL, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD and SMLALDX, they
also hold the accumulating value.

Rn, Rm Are registers holding the first and second operands.

Operation

The SMLAL instruction:

• Multiplies the two’s complement signed word values from Rn and Rm.

• Adds the 64-bit value in RdLo and RdHi to the resulting 64-bit product.

• Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The SMLALBB, SMLALBT, SMLALTB and SMLALTT instructions:

• Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.

• Adds the resulting sign-extended 32-bit product to the 64-bit value in RdLo and RdHi.

• Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The non-specified halfwords of the source registers are ignored.

The SMLALD and SMLALDX instructions interpret the values from Rn and Rm as four
halfword two’s complement signed 16-bit integers. These instructions:

• If X is not present, multiply the top signed halfword value of Rn with the top signed
halfword of Rm and the bottom signed halfword values of Rn with the bottom signed
halfword of Rm.

• Or if X is present, multiply the top signed halfword value of Rn with the bottom signed
halfword of Rm and the bottom signed halfword values of Rn with the top signed
halfword of Rm.

• Add the two multiplication results to the signed 64-bit value in RdLo and RdHi to create
the resulting 64-bit product.

• Write the 64-bit product in RdLo and RdHi.

Restrictions

In these instructions:

• Do not use SP and do not use PC.

• RdHi and RdLo must be different registers.

Condition flags

These instructions do not affect the condition code flags.

Examples

SMLAL R4, R5, R3, R8 ; Multiplies R3 and R8, adds R5:R4 and writes

DocID028474 Rev 3 119/252

PM0253 The Cortex-M7 instruction set

182

 ; to R5:R4.
SMLALBT R2, R1, R6, R7 ; Multiplies bottom halfword of R6 with top
 ; halfword of R7, sign extends to 32-bit,
 ; adds R1:R2 and writes to R1:R2.
SMLALTB R2, R1, R6, R7 ; Multiplies top halfword of R6 with bottom
 ; halfword of R7,sign extends to 32-bit, adds
 ; R1:R2 and writes to R1:R2.
SMLALD R6, R8, R5, R1 ; Multiplies top halfwords in R5 and R1 and b
 ; bottom halfwords of R5 and R1, adds R8:R6
 ; and writes to R8:R6.
SMLALDX R6, R8, R5, R1 ; Multiplies top halfword in R5 with bottom
 ; halfword of R1, and bottom halfword of R5
 ; with top halfword of R1, adds R8:R6 and
 ; writes to R8:R6.

3.6.6 SMLSD and SMLSLD

Signed Multiply Subtract Dual and Signed Multiply Subtract Long Dual.

Syntax

op{X}{cond} Rd, Rn, Rm, Ra

Where:

op Is one of:

SMLSD Signed Multiply Subtract Dual.

SMLSDX Signed Multiply Subtract Dual Reversed.

SMLSLD Signed Multiply Subtract Long Dual.

SMLSLDX Signed Multiply Subtract Long Dual Reversed.

If X is present, the multiplications are bottom × top and top × bottom.
If the X is omitted, the multiplications are bottom × bottom and top × top.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn, Rm Are registers holding the first and second operands.

Ra Is the register holding the accumulate value.

Operation

The SMLSD instruction interprets the values from the first and second operands as four
signed halfwords. This instruction:

• Optionally rotates the halfwords of the second operand.

• Performs two signed 16 × 16-bit halfword multiplications.

• Subtracts the result of the upper halfword multiplication from the result of the lower
halfword multiplication.

• Adds the signed accumulate value to the result of the subtraction.

• Writes the result of the addition to the destination register.

The Cortex-M7 instruction set PM0253

120/252 DocID028474 Rev 3

The SMLSLD instruction interprets the values from Rn and Rm as four signed halfwords.
This instruction:

• Optionally rotates the halfwords of the second operand.

• Performs two signed 16 × 16-bit halfword multiplications.

• Subtracts the result of the upper halfword multiplication from the result of the lower
halfword multiplication.

• Adds the 64-bit value in RdHi and RdLo to the result of the subtraction.

• Writes the 64-bit result of the addition to the RdHi and RdLo.

Restrictions

In these instructions:

• Do not use SP and do not use PC.

Condition flags

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur
during the multiplications or subtraction.

For the Thumb instruction set, these instructions do not affect the condition code flags.

Examples

SMLSD R0, R4, R5, R6 ; Multiplies bottom halfword of R4 with
 ; bottom halfword of R5, multiplies top
 ; halfword of R4 with top halfword of R5, sub
 ; substracts second from first, adds R6,
 ; writes to R0.
SMLSDX R1, R3, R2, R0 ; Multiplies bottom halfword of R3 with top
 ; halfword of R2, multiplies top halfword of
 ; R3 with bottom halfword of R2, subtracts se
 ; second from first, adds R0, writes to R1.
SMLSLD R3, R6, R2, R7 ; Multiplies bottom halfword of R6 with
 ; bottom halfword of R2, multiplies top
 ; halfword of R6 with top halfword of R2, sub
 ; substracts second first, adds R6:R3, writes
 ; to R6:R3.
SMLSLDX R3, R6, R2, R7 ; Multiplies bottom halfword of R6 with top
 ; halfword of R2, multiplies top halfword of
 ; R6 with bottom halfword of R2, subtracts
 ; second from first, adds R6:R3, writes to
 ; R6:R3.

DocID028474 Rev 3 121/252

PM0253 The Cortex-M7 instruction set

182

3.6.7 SMMLA and SMMLS

Signed Most Significant Word Multiply Accumulate and Signed Most Significant Word
Multiply Subtract.

Syntax

op{R}{cond} Rd, Rn, Rm, Ra

Where:

op Is one of:

SMMLA Signed Most Significant Word Multiply Accumulate.

SMMLS Signed Most Significant Word Multiply Subtract.

R Is a rounding error flag. If R is specified, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to the product before
the high word is extracted.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn, Rm Are registers holding the first and second multiply operands.

Ra Is the register holding the accumulate value.

Operation

The SMMLA instruction interprets the values from Rn and Rm as signed 32-bit words.

The SMMLA instruction:

• Multiplies the values in Rn and Rm.

• Optionally rounds the result by adding 0x80000000.

• Extracts the most significant 32 bits of the result.

• Adds the value of Ra to the signed extracted value.

• Writes the result of the addition in Rd.

The SMMLS instruction interprets the values from Rn and Rm as signed 32-bit words.

The SMMLS instruction:

• Multiplies the values in Rn and Rm.

• Optionally rounds the result by adding 0x80000000.

• Extracts the most significant 32 bits of the result.

• Subtracts the extracted value of the result from the value in Ra.

• Writes the result of the subtraction in Rd.

Restrictions

In these instructions:

• Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

The Cortex-M7 instruction set PM0253

122/252 DocID028474 Rev 3

Examples

SMMLA R0, R4, R5, R6 ; Multiplies R4 and R5, extracts top 32 bits,
 ; adds R6, truncates and writes to R0.
SMMLAR R6, R2, R1, R4 ; Multiplies R2 and R1, extracts top 32 bits,
 ; adds R4, rounds and writes to R6.
SMMLSR R3, R6, R2, R7 ; Multiplies R6 and R2, extracts top 32 bits,
 ; subtracts R7, rounds and writes to R3.
SMMLS R4, R5, R3, R8 ; Multiplies R5 and R3, extracts top 32 bits,
 ; subtracts R8, truncates and writes to R4.

3.6.8 SMMUL

Signed Most Significant Word Multiply.

Syntax

op{R}{cond} Rd, Rn, Rm

Where:

op Is one of:

SMMUL Signed Most Significant Word Multiply

R Is a rounding error flag. If R is specified, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to the product before
the high word is extracted.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn, Rm Are registers holding the first and second operands.

Operation

The SMMUL instruction interprets the values from Rn and Rm as two’s complement 32-bit
signed integers. The SMMUL instruction:

• Multiplies the values from Rn and Rm.

• Optionally rounds the result, otherwise truncates the result.

• Writes the most significant signed 32 bits of the result in Rd.

Restrictions

In this instruction:

• Do not use SP and do not use PC.

Condition flags

This instruction does not affect the condition code flags.

Examples

SMULL R0, R4, R5 ; Multiplies R4 and R5, truncates top 32 bits
 ; and writes to R0.
SMULLR R6, R2 ; Multiplies R6 and R2, rounds the top 32
 ; bits and writes to R6.

DocID028474 Rev 3 123/252

PM0253 The Cortex-M7 instruction set

182

3.6.9 SMUAD and SMUSD

Signed Dual Multiply Add and Signed Dual Multiply Subtract.

Syntax

op{X}{cond} Rd, Rn, Rm

Where:

op Is one of:

SMUAD Signed Dual Multiply Add.

SMUADX Signed Dual Multiply Add Reversed.

SMUSD Signed Dual Multiply Subtract.

SMUSDX Signed Dual Multiply Subtract Reversed.

If X is present, the multiplications are bottom × top and top × bottom.
If the X is omitted, the multiplications are bottom × bottom and top × top.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn, Rm Are registers holding the first and the second operands.

Operation

The SMUAD instruction interprets the values from the first and second operands as two
signed halfwords in each operand. This instruction:

• Optionally rotates the halfwords of the second operand.

• Performs two signed 16 × 16-bit multiplications.

• Adds the two multiplication results together.

• Writes the result of the addition to the destination register.

The SMUSD instruction interprets the values from the first and second operands as two’s
complement signed integers. This instruction:

• Optionally rotates the halfwords of the second operand.

• Performs two signed 16 × 16-bit multiplications.

• Subtracts the result of the top halfword multiplication from the result of the bottom
halfword multiplication.

• Writes the result of the subtraction to the destination register.

Restrictions

In these instructions:

• Do not use SP and do not use PC.

Condition flags

Sets the Q flag if the addition overflows. The multiplications cannot overflow.

Examples

SMUAD R0, R4, R5 ; Multiplies bottom halfword of R4 with the
 ; bottom halfword of R5, adds multiplication of

The Cortex-M7 instruction set PM0253

124/252 DocID028474 Rev 3

 ; top halfword of R4 with top halfword of R5,
 ; writes to R0.
SMUADX R3, R7, R4 ; Multiplies bottom halfword of R7 with top
 ; halfword of R4, adds multiplication of top
 ; halfword of R7 with bottom halfword of R4,
 ; writes to R3.
SMUSD R3, R6, R2 ; Multiplies bottom halfword of R4 with bottom
 ; halfword of R6, subtracts multiplication of top
 ; halfword of R6 with top halfword of R3, writes
 ; to R3.
SMUSDX R4, R5, R3 ; Multiplies bottom halfword of R5 with top
 ; halfword of R3, subtracts multiplication of top
 ; halfword of R5 with bottom halfword of R3,
 ; writes to R4.

3.6.10 SMUL and SMULW

Signed Multiply (halfwords) and Signed Multiply (word by halfword).

Syntax

op{XY}{cond} Rd,Rn, Rm

op{Y}{cond} Rd. Rn, Rm

For SMULXY only:

op Is one of:

SMUL{XY} Signed Multiply (halfwords)

X and Y specify which halfword of the source registers Rn and Rm is used as the
first and second multiply operand.
If X is B, then the bottom halfword, bits [15:0] of Rn is used.
If X is T, then the top halfword, bits [31:16] of Rn is used.If Y is B, then the
bottom halfword, bits [15:0], of Rm is used.
If Y is T, then the top halfword, bits [31:16], of Rm is used.

SMULW{Y} Signed Multiply (word by halfword)

Y specifies which halfword of the source register Rm is used as the second
multiply operand.
If Y is B, then the bottom halfword (bits [15:0]) of Rm is used.
If Y is T, then the top halfword (bits [31:16]) of Rm is used.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn, Rm Are registers holding the first and second operands.

Operation

The SMULBB, SMULTB, SMULBT and SMULTT instructions interprets the values from Rn
and Rm as four signed 16-bit integers.
These instructions:

• Multiply the specified signed halfword, Top or Bottom, values from Rn and Rm.

• Write the 32-bit result of the multiplication in Rd.

DocID028474 Rev 3 125/252

PM0253 The Cortex-M7 instruction set

182

The SMULWT and SMULWB instructions interprets the values from Rn as a 32-bit signed
integer and Rm as two halfword 16-bit signed integers. These instructions:

• Multiply the first operand and the top, T suffix, or the bottom, B suffix, halfword of the
second operand.

• Write the signed most significant 32 bits of the 48-bit result in the destination register.

Restrictions

In these instructions:

• Do not use SP and do not use PC.

• RdHi and RdLo must be different registers.

Examples

SMULBT R0, R4, R5 ; Multiplies the bottom halfword of R4 with
 ; the top halfword of R5, multiplies results
 ; and writes to R0.
SMULBB R0, R4, R5 ; Multiplies the bottom halfword of R4 with
 ; the bottom halfword of R5, multiplies
 ; results and writes to R0.
SMULTT R0, R4, R5 ; Multiplies the top halfword of R4 with the
 ; top halfword of R5, multiplies results and
 ; writes to R0.
SMULTB R0, R4, R5 ; Multiplies the top halfword of R4 with the
 ; bottom halfword of R5, multiplies results
 ; and writes to R0.
SMULWT R4, R5, R3 ; Multiplies R5 with the top halfword of R3,
 ; extracts top 32 bits and writes to R4.
SMULWB R4, R5, R3 ; Multiplies R5 with the bottom halfword of
 ; R3, extracts top 32 bits and writes to R4.

The Cortex-M7 instruction set PM0253

126/252 DocID028474 Rev 3

3.6.11 UMULL, UMLAL, SMULL, and SMLAL

Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and
producing a 64-bit result.

Syntax

op{cond} RdLo, RdHi, Rn, Rm

Where:

op Is one of:

UMULL Unsigned Long Multiply.

UMLAL Unsigned Long Multiply, with Accumulate.

SMULL Signed Long Multiply.

SMLAL Signed Long Multiply, with Accumulate.

cond Is an optional condition code. See Conditional execution on page 68.

RdHi, RdLo Are the destination registers. For UMLAL and SMLAL they also hold the
accumulating value.

Rn, Rm Are registers holding the operands.

Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It
multiplies these integers and places the least significant 32 bits of the result in RdLo, and
the most significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It
multiplies these integers, adds the 64-bit result to the 64-bit unsigned integer contained in
RdHi and RdLo, and writes the result back to RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed
integers. It multiplies these integers and places the least significant 32 bits of the result in
RdLo, and the most significant 32 bits of the result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed
integers. It multiplies these integers, adds the 64-bit result to the 64-bit signed integer
contained in RdHi and RdLo, and writes the result back to RdHi and RdLo.

Restrictions

In these instructions:

• Do not use SP and do not use PC.

• RdHi and RdLo must be different registers.

Condition flags

These instructions do not affect the condition code flags.

Examples

 UMULL R0, R4, R5, R6 ; Unsigned (R4,R0) = R5 x R6
 SMLAL R4, R5, R3, R8 ; Signed (R5,R4) = (R5,R4) + R3 x R8

DocID028474 Rev 3 127/252

PM0253 The Cortex-M7 instruction set

182

3.6.12 SDIV and UDIV

Signed Divide and Unsigned Divide.

Syntax

SDIV{cond} {Rd,} Rn, Rm

UDIV{cond} {Rd,} Rn, Rm

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register. If Rd is omitted, the destination register is Rn.

Rn Is the register holding the value to be divided.

Rm Is a register holding the divisor.

Operation

The SDIV instruction performs a signed integer division of the value in Rn by the value in
Rm.

The UDIV instruction performs an unsigned integer division of the value in Rn by the value
in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is
rounded towards zero.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples

 SDIV R0, R2, R4 ; Signed divide, R0 = R2/R4
 UDIV R8, R8, R1 ; Unsigned divide, R8 = R8/R1

The Cortex-M7 instruction set PM0253

128/252 DocID028474 Rev 3

3.7 Saturating instructions

Table 31 shows the saturating instructions:

For signed n-bit saturation, this means that:

• If the value to be saturated is less than -2n-1, the result returned is -2n-1

• If the value to be saturated is greater than 2n-1-1, the result returned is 2n-1-1

• Otherwise, the result returned is the same as the value to be saturated.

For unsigned n-bit saturation, this means that:

• If the value to be saturated is less than 0, the result returned is 0

• If the value to be saturated is greater than 2n-1, the result returned is 2n-1

• Otherwise, the result returned is the same as the value to be saturated.

If the returned result is different from the value to be saturated, it is called saturation. If the
saturation occurs, the instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q
flag unchanged. To clear the Q flag to 0, the MSR instruction must be used, see MSR on
page 179.

To read the state of the Q flag, use the MRS instruction, see MRS on page 178.

Table 31. Saturating instructions

Mnemonic Brief description See

SSAT Signed Saturate SSAT and USAT on page 129

SSAT16 Signed Saturate Halfword SSAT16 and USAT16 on page 130

USAT Unsigned Saturate SSAT and USAT on page 129

USAT16 Unsigned Saturate Halfword SSAT16 and USAT16 on page 130

QADD Saturating Add QADD and QSUB on page 131

QSUB Saturating Subtract QADD and QSUB on page 131

QSUB16 Saturating Subtract 16 QADD and QSUB on page 131

QASX Saturating Add and Subtract with Exchange QASX and QSAX on page 132

QSAX Saturating Subtract and Add with Exchange QASX and QSAX on page 132

QDADD Saturating Double and Add QDADD and QDSUB on page 133

QDSUB Saturating Double and Subtract QDADD and QDSUB on page 133

UQADD16 Unsigned Saturating Add 16 UQADD and UQSUB on page 136

UQADD8 Unsigned Saturating Add 8 UQADD and UQSUB on page 136

UQASX
Unsigned Saturating Add and Subtract with
Exchange

UQASX and UQSAX on page 134

UQSAX
Unsigned Saturating Subtract and Add with
Exchange

UQASX and UQSAX on page 134

UQSUB16 Unsigned Saturating Subtract 16 UQADD and UQSUB on page 136

UQSUB8 Unsigned Saturating Subtract 8 UQADD and UQSUB on page 136

DocID028474 Rev 3 129/252

PM0253 The Cortex-M7 instruction set

182

3.7.1 SSAT and USAT

Signed Saturate and Unsigned Saturate to any bit position, with optional shift before
saturating.

Syntax

op{cond} Rd, #n, Rm {, shift #s}

Where:

op Is one of:

SSAT Saturates a signed value to a signed range.

USAT Saturates a signed value to an unsigned range.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

n Specifies the bit position to saturate to:

• n ranges from 1 to 32 for SSAT.

• n ranges from 0 to 31 for USAT.

Rm Is the register containing the value to saturate.

shift #s Is an optional shift applied to Rm before saturating. It must be one of the
following:

ASR #s where s is in the range 1 to 31.

LSL #s where s is in the range 0 to 31.

Operation

These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range
−2n–1 ≤ x ≤ 2n–1−1.

The USAT instruction applies the specified shift, then saturates to the unsigned range
0 ≤ x ≤ 2n−1.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

 SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4,
 ; then saturate it as a signed 16-bit
 ; value and write it back to R7.
 USATNE R0, #7, R5 ; Conditionally saturate value in R5 as a
 ; an unsigned 7 bit value and write it to
 ; R0.

The Cortex-M7 instruction set PM0253

130/252 DocID028474 Rev 3

3.7.2 SSAT16 and USAT16

Signed Saturate and Unsigned Saturate to any bit position for two halfwords.

Syntax

op{cond} Rd, #n, Rm

Where:

op Is one of:

SSAT16 Saturates a signed halfword value to a signed range.

USAT16 Saturates a signed halfword value to an unsigned range.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

n Specifies the bit position to saturate to:

• n ranges from 1 to 16 for SSAT.

• n ranges from 0 to 15 for USAT.

Rm Is the register containing the value to saturate.

Operation

The SSAT16 instruction:

1. Saturates two signed 16-bit halfword values of the register with the value to saturate
from selected by the bit position in n.

2. Writes the results as two signed 16-bit halfwords to the destination register.

The USAT16 instruction:

1. Saturates two unsigned 16-bit halfword values of the register with the value to saturate
from selected by the bit position in n.

2. Writes the results as two unsigned halfwords in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

SSAT16 R7, #9, R2 ; Saturates the top and bottom highwords of R2
 ; as 9-bit values, writes to corresponding
 ; halfword of R7.
USAT16NE R0, #13, R5 ; Conditionally saturates the top and bottom
 ; halfwords of R5 as 13-bit values, writes to
 ; corresponding halfword of R0.

DocID028474 Rev 3 131/252

PM0253 The Cortex-M7 instruction set

182

3.7.3 QADD and QSUB

Saturating Add and Saturating Subtract, signed.

Syntax

op{cond} {Rd}, Rn, Rm

op{cond} {Rd}, Rn, Rm

Where:

op Is one of:

QADD Saturating 32-bit add.

QADD8 Saturating four 8-bit integer additions.

QADD16 Saturating two 16-bit integer additions.

QSUB Saturating 32-bit subtraction.

QSUB8 Saturating four 8-bit integer subtraction.

QSUB16 Saturating two 16-bit integer subtraction.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn, Rm Are registers holding the first and second operands.

Operation

These instructions add or subtract two, four or eight values from the first and second
operands and then writes a signed saturated value in the destination register.

The QADD and QSUB instructions apply the specified add or subtract, and then saturate the
result to the signed range −2n–1 ≤ x ≤ 2n–1−1, where x is given by the number of bits applied in
the instruction, 32, 16 or 8.

If the returned result is different from the value to be saturated, it is called saturation. If
saturation occurs, the QADD and QSUB instructions set the Q flag to 1 in the APSR.
Otherwise, it leaves the Q flag unchanged. The 8-bit and 16-bit QADD and QSUB
instructions always leave the Q flag unchanged.

To clear the Q flag to 0, the MSR instruction must be used, see MSR on page 179.

To read the state of the Q flag, use the MRS instruction, see MRS on page 178.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

QADD16 R7, R4, R2 ; Adds halfwords of R4 with corresponding halfword of
 ; R2, saturates to 16 bits and writes to
 ; corresponding halfword of R7.

The Cortex-M7 instruction set PM0253

132/252 DocID028474 Rev 3

QADD8 R3, R1, R6 ; Adds bytes of R1 to the corresponding bytes of R6,
 ; saturates to 8 bits and writes to corresponding
 ; byte of R3.
QSUB16 R4, R2, R3 ; Subtracts halfwords of R3 from corresponding
 ; halfword of R2, saturates to 16 bits, writes to
 ; corresponding halfword of R4.
QSUB8 R4, R2, R5 ; Subtracts bytes of R5 from the corresponding byte
 ; in R2, saturates to 8 bits, writes to corresponding
 ; byte of R4.

3.7.4 QASX and QSAX

Saturating Add and Subtract with Exchange and Saturating Subtract and Add with
Exchange, signed.

Syntax

op{cond} {Rd}, Rm, Rn

Where:

op Is one of:

QASX Add and Subtract with Exchange and Saturate.

QSAX Subtract and Add with Exchange and Saturate.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn, Rm Are registers holding the first and second operands.

Operation

The QASX instruction:

1. Adds the top halfword of the source operand with the bottom halfword of the second
operand.

2. Subtracts the top halfword of the second operand from the bottom highword of the first
operand.

3. Saturates the result of the subtraction and writes a 16-bit signed integer in the range –
215 ≤ x ≤ 215 – 1, where x equals 16, to the bottom halfword of the destination register.

4. Saturates the results of the sum and writes a 16-bit signed integer in the range
–215 ≤ x ≤ 215 – 1, where x equals 16, to the top halfword of the destination register.

The QSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first
operand.

2. Adds the bottom halfword of the source operand with the top halfword of the second
operand.

3. Saturates the results of the sum and writes a 16-bit signed integer in the range
–215 ≤ x ≤ 215 – 1, where x equals 16, to the bottom halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit signed integer in the range –
215 ≤ x ≤ 215 – 1, where x equals 16, to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

DocID028474 Rev 3 133/252

PM0253 The Cortex-M7 instruction set

182

Condition flags

These instructions do not affect the condition code flags.

Examples

QASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2,
 ; saturates to 16 bits, writes to top halfword of
 ; R7, Subtracts top highword of R2 from bottom
 ; halfword of R4, saturates to 16 bits and writes
 ; to bottom halfword of R7
QSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top halfword
 ; of R3, saturates to 16 bits, writes to top
 ; halfword of R0
 ; Adds bottom halfword of R3 to top halfword of R5,
 ; saturates to 16 bits, writes to bottom halfword
 ; of R0.

3.7.5 QDADD and QDSUB

Saturating Double and Add and Saturating Double and Subtract, signed.

Syntax

op{cond} {Rd}, Rm, Rn

Where:

op Is one of:

QDADD Saturating Double and Add.

QDSUB Saturating Double and Subtract.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rm, Rn Are registers holding the first and second operands.

Operation

The QDADD instruction:

• Doubles the second operand value.

• Adds the result of the doubling to the signed saturated value in the first operand.

• Writes the result to the destination register.

The QDSUB instruction:

• Doubles the second operand value.

• Subtracts the doubled value from the signed saturated value in the first operand.

• Writes the result to the destination register.

Both the doubling and the addition or subtraction have their results saturated to the 32-bit
signed integer range –231 ≤ x ≤ 231– 1. If saturation occurs in either operation, it sets the Q
flag in the APSR.

Restrictions

Do not use SP and do not use PC.

The Cortex-M7 instruction set PM0253

134/252 DocID028474 Rev 3

Condition flags

If saturation occurs, these instructions set the Q flag to 1.

Examples

QDADD R7, R4, R2 ; Doubles and saturates R4 to 32 bits, adds R2,
 ; Saturates to 32 bits, writes to R7
QDSUB R0, R3, R5 ; Subtracts R3 doubled and saturated to 32 bits
 ; from R5, saturates to 32 bits, writes to R0.

3.7.6 UQASX and UQSAX

Saturating Add and Subtract with Exchange and Saturating Subtract and Add with
Exchange, unsigned.

Syntax

op{cond} {Rd}, Rm, Rn

Where:

type Is one of:

UQASX Add and Subtract with Exchange and Saturate.

UQSAX Subtract and Add with Exchange and Saturate.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn, Rm Are registers holding the first and second operands.

Operation

The UQASX instruction:

1. Adds the bottom halfword of the source operand with the top halfword of the second
operand.

2. Subtracts the bottom halfword of the second operand from the top highword of the first
operand.

3. Saturates the results of the sum and writes a 16-bit unsigned integer in the range
0 ≤ x ≤ 216 – 1, where x equals 16, to the top halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range
0 ≤ x ≤ 216 – 1, where x equals 16, to the bottom halfword of the destination register.

The UQSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first
operand.

2. Adds the bottom halfword of the first operand with the top halfword of the second
operand.

3. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range
0 ≤ x ≤ 216 – 1, where x equals 16, to the top halfword of the destination register.

4. Saturates the results of the addition and writes a 16-bit unsigned integer in the range 0
≤ x ≤ 216 – 1, where x equals 16, to the bottom halfword of the destination register.

DocID028474 Rev 3 135/252

PM0253 The Cortex-M7 instruction set

182

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

Examples

UQASX R7, R4, R2 ; Adds top halfword of R4 with bottom halfword of R2,
 ; saturates to 16 bits, writes to top halfword of R7
 ; Subtracts top halfword of R2 from bottom halfword of
 ; R4, saturates to 16 bits, writes to bottom halfword
 ; of R7
UQSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top halfword of
 ; R3, saturates to 16 bits, writes to top halfword of
 ; R0
 ; Adds bottom halfword of R4 to top halfword of R5
 ; saturates to 16 bits, writes to bottom halfword of
 ; R0.

The Cortex-M7 instruction set PM0253

136/252 DocID028474 Rev 3

3.7.7 UQADD and UQSUB

Saturating Add and Saturating Subtract Unsigned.

Syntax

op{cond} {Rd}, Rn, Rm

op{cond} {Rd}, Rn, Rm

Where:

op Is one of:

UQADD8 Saturating four unsigned 8-bit integer additions.

UQADD16 Saturating two unsigned 16-bit integer additions.

UDSUB8 Saturating four unsigned 8-bit integer subtractions.

UQSUB16 Saturating two unsigned 16-bit integer subtractions.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn, Rm Are registers holding the first and second operands.

Operation

These instructions add or subtract two or four values and then writes an unsigned saturated
value in the destination register.

The UQADD16 instruction:

• Adds the respective top and bottom halfwords of the first and second operands.

• Saturates the result of the additions for each halfword in the destination register to the
unsigned range 0 ≤ x ≤ 216−1, where x is 16.

The UQADD8 instruction:

• Adds each respective byte of the first and second operands.

• Saturates the result of the addition for each byte in the destination register to the
unsigned range 0 ≤ x ≤ 28−1, where x is 8.

The UQSUB16 instruction:

• Subtracts both halfwords of the second operand from the respective halfwords of the
first operand.

• Saturates the result of the differences in the destination register to the unsigned range
0 ≤ x ≤ 216−1, where x is 16.

The UQSUB8 instructions:

• Subtracts the respective bytes of the second operand from the respective bytes of the
first operand.

• Saturates the results of the differences for each byte in the destination register to the
unsigned range 0 ≤ x ≤ 28−1, where x is 8.

Restrictions

Do not use SP and do not use PC.

DocID028474 Rev 3 137/252

PM0253 The Cortex-M7 instruction set

182

Condition flags

These instructions do not affect the condition code flags.

Examples

UQADD16 R7, R4, R2 ; Adds halfwords in R4 to corresponding halfword in
 ; R2, saturates to 16 bits, writes to corresponding
 ; halfword of R7
UQADD8 R4, R2, R5 ; Adds bytes of R2 to corresponding byte of R5,
 ; saturates to 8 bits, writes to corresponding bytes
 ; of R4
UQSUB16 R6, R3, R0 ; Subtracts halfwords in R0 from corresponding
 ; halfword in R3, saturates to 16 bits, writes to
 ; corresponding halfword in R6
UQSUB8 R1, R5, R6 ; Subtracts bytes in R6 from corresponding byte of
 ; R5, saturates to 8 bits, writes to corresponding
 ; byte of R1.

3.8 Packing and unpacking instructions

Table 32 shows the instructions that operate on packing and unpacking data:

Table 32. Packing and unpacking instructions

Mnemonic Brief description See

PKH Pack Halfword PKHBT and PKHTB on page 138

SXTAB Extend 8 bits to 32 and add SXTA and UXTA on page 140

SXTAB16 Dual extend 8 bits to 16 and add SXTA and UXTA on page 140

SXTAH Extend 16 bits to 32 and add SXTA and UXTA on page 140

SXTB Sign extend a byte SXT and UXT on page 144

SXTB16 Dual extend 8 bits to 16 and add SXT and UXT on page 144

SXTH Sign extend a halfword SXT and UXT on page 144

UXTAB Extend 8 bits to 32 and add SXTA and UXTA on page 140

UXTAB16 Dual extend 8 bits to 16 and add SXTA and UXTA on page 140

UXTAH Extend 16 bits to 32 and add SXTA and UXTA on page 140

UXTB Zero extend a byte SXT and UXT on page 144

UXTB16 Dual zero extend 8 bits to 16 and add SXT and UXT on page 144

UXTH Zero extend a halfword SXT and UXT on page 144

The Cortex-M7 instruction set PM0253

138/252 DocID028474 Rev 3

3.8.1 PKHBT and PKHTB

Pack Halfword.

Syntax

op{cond} {Rd}, Rn, Rm {, LSL #imm}

op{cond} {Rd}, Rn, Rm {, ASR #imm}

Where:

op Is one of:

PKHBT Pack Halfword, bottom and top with shift.

PKHTB Pack Halfword, top and bottom with shift.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the first operand register.

Rm Is the second operand register holding the value to be optionally shifted.

imm Is the shift length. The type of shift length depends on the instruction:

For PKHBT

LSL A left shift with a shift length from 1 to 31, 0 means no shift.

For PKHTB:

ASR An arithmetic shift right with a shift length from 1 to 32,
a shift of 32-bits is encoded as 0b00000.

Operation

The PKHBT instruction:

1. Writes the value of the bottom halfword of the first operand to the bottom halfword of
the destination register.

2. If shifted, the shifted value of the second operand is written to the top halfword of the
destination register.

The PKHTB instruction:

1. Writes the value of the top halfword of the first operand to the top halfword of the
destination register.

2. If shifted, the shifted value of the second operand is written to the bottom halfword of
the destination register.

Restrictions

Rd must not be SP and must not be PC.

Condition flags

This instruction does not change the flags.

DocID028474 Rev 3 139/252

PM0253 The Cortex-M7 instruction set

182

Examples

PKHBT R3, R4, R5 LSL #0 ; Writes bottom halfword of R4 to bottom
 ; halfworfd of R3, writes top halfword of R5,
 ; unshifted, to top halfword of R3
PKHTB R4, R0, R2 ASR #1 ; Writes R2 shifted right by 1 bit to bottom
 ; halfword of R4, and writes top halfword of R0
 ; to top halfword of R4.

3.8.2 SXT and UXT

Sign extend and Zero extend.

Syntax

op{cond} {Rd,} Rm {, ROR #n}

op{cond} {Rd}, Rm {, ROR #n}

Where:

op Is one of:

SXTB Sign extends an 8-bit value to a 32-bit value.

SXTH Sign extends a 16-bit value to a 32-bit value.

SXTB16 Sign extends two 8-bit values to two 16-bit values.

UXTB Zero extends an 8-bit value to a 32-bit value.

UXTH Zero extends a 16-bit value to a 32-bit value.

UXTB16 Zero extends two 8-bit values to two 16-bit values.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rm Is the register holding the value to extend.

ROR #n Is one of:

ROR #8 Value from Rm is rotated right 8 bits.

ROR #16 Value from Rm is rotated right 16 bits.

ROR #24 Value from Rm is rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

Operation

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits from the resulting value:

• SXTB extracts bits[7:0] and sign extends to 32 bits.

• UXTB extracts bits[7:0] and zero extends to 32 bits.

• SXTH extracts bits[15:0] and sign extends to 32 bits.

• UXTH extracts bits[15:0] and zero extends to 32 bits.

• SXTB16 extracts bits[7:0] and sign extends to 16 bits,
and extracts bits [23:16] and sign extends to 16 bits.

• UXTB16 extracts bits[7:0] and zero extends to 16 bits,
and extracts bits [23:16] and zero extends to 16 bits.

The Cortex-M7 instruction set PM0253

140/252 DocID028474 Rev 3

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the flags.

Examples

SXTH R4, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom
 ; halfword of result, sign extends to 32 bits and
 ; writes to R4
UXTB R3, R10 ; Extracts lowest byte of value in R10, zero
 ; extends, and writes to R3.

3.8.3 SXTA and UXTA

Signed and Unsigned Extend and Add.

Syntax

op{cond} {Rd,} Rn, Rm {, ROR #n}

op{cond} {Rd,} Rn, Rm {, ROR #n}

Where:

op Is one of:

SXTAB Sign extends an 8-bit value to a 32-bit value and add.

SXTAH Sign extends a 16-bit value to a 32-bit value and add.

SXTAB16 Sign extends two 8-bit values to two 16-bit values and add.

UXTAB Zero extends an 8-bit value to a 32-bit value and add.

UXTAH Zero extends a 16-bit value to a 32-bit value and add.

UXTAB16 Zero extends two 8-bit values to two 16-bit values and add.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the first operand register.

Rm Is the register holding the value to rotate and extend.

ROR #n Is one of:

ROR #8 Value from Rm is rotated right 8 bits.

ROR #16 Value from Rm is rotated right 16 bits.

ROR #24 Value from Rm is rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

Operation

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits from the resulting value:

• SXTAB extracts bits[7:0] from Rm and sign extends to 32 bits.

• UXTAB extracts bits[7:0] from Rm and zero extends to 32 bits.

DocID028474 Rev 3 141/252

PM0253 The Cortex-M7 instruction set

182

• SXTAH extracts bits[15:0] from Rm and sign extends to 32 bits.

• UXTAH extracts bits[15:0] from Rm and zero extends to 32 bits.

• SXTAB16 extracts bits[7:0] from Rm and sign extends to 16 bits,
and extracts bits [23:16] from Rm and sign extends to 16 bits.

• UXTAB16 extracts bits[7:0] from Rm and zero extends to 16 bits,
and extracts bits [23:16] from Rm and zero extends to 16 bits.

3. Adds the signed or zero extended value to the word or corresponding halfword of Rn
and writes the result in Rd.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the flags.

Examples

SXTAH R4, R8, R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom
 ; halfword, sign extends to 32 bits, adds
 ; R8, and writes to R4
UXTAB R3, R4, R10 ; Extracts bottom byte of R10 and zero extends
 ; to 32 bits, adds R4, and writes to R3.

3.9 Bit field instructions

Table 33 shows the instructions that operate on adjacent sets of bits in registers or bit fields:

Table 33. Packing and unpacking instructions

Mnemonic Brief description See

BFC Bit Field Clear BFC and BFI on page 142

BFI Bit Field Insert BFC and BFI on page 142

SBFX Signed Bit Field Extract SBFX and UBFX on page 143

SXTB Sign extend a byte SXT and UXT on page 144

SXTH Sign extend a halfword SXT and UXT on page 144

UBFX Unsigned Bit Field Extract SBFX and UBFX on page 143

UXTB Zero extend a byte SXT and UXT on page 144

UXTH Zero extend a halfword SXT and UXT on page 144

The Cortex-M7 instruction set PM0253

142/252 DocID028474 Rev 3

3.9.1 BFC and BFI

Bit Field Clear and Bit Field Insert.

Syntax

BFC{cond} Rd, #lsb, #width

BFI{cond} Rd, Rn, #lsb, #width

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the source register.

lsb Is the position of the least significant bit of the bit field. lsb must be in the range
0 to 31.

width Is the width of the bit field and must be in the range 1 to 32−lsb.

Operation

BFC clears a bit field in a register. It clears width bits in Rd, starting at the low bit position
lsb. Other bits in Rd are unchanged.

BFI copies a bit field into one register from another register. It replaces width bits in Rd
starting at the low bit position lsb, with width bits from Rn starting at bit[0]. Other bits in Rd
are unchanged.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the flags.

Examples

 BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to 0
 BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of R9 with
 ; bit 0 to bit 11 from R2.

DocID028474 Rev 3 143/252

PM0253 The Cortex-M7 instruction set

182

3.9.2 SBFX and UBFX

Signed Bit Field Extract and Unsigned Bit Field Extract.

Syntax

SBFX{cond} Rd, Rn, #lsb, #width

UBFX{cond} Rd, Rn, #lsb, #width

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the source register.

lsb Is the position of the least significant bit of the bit field. lsb must be in the range
0 to 31.

width Is the width of the bit field and must be in the range 1 to 32−lsb.

Operation

SBFX extracts a bit field from one register, sign extends it to 32 bits, and writes the result to
the destination register.

UBFX extracts a bit field from one register, zero extends it to 32 bits, and writes the result to
the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the flags.

Examples

 SBFX R0, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) from R1 and
 ; sign extend to 32 bits and then write the
 ; result to R0.
 UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from R11 and
 ; zero extend to 32 bits and then write the
 ; result to R8.

The Cortex-M7 instruction set PM0253

144/252 DocID028474 Rev 3

3.9.3 SXT and UXT

Sign extend and Zero extend.

Syntax

SXTextend{cond} {Rd,} Rm {, ROR #n}

UXTextend{cond} {Rd}, Rm {, ROR #n}

Where:

extend Is one of:

B Extends an 8-bit value to a 32-bit value.

H Extends a 16-bit value to a 32-bit value.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rm Is the register holding the value to extend.

ROR #n Is one of:

ROR #8 Value from Rm is rotated right 8 bits.

ROR #16 Value from Rm is rotated right 16 bits.

ROR #24 Value from Rm is rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

Operation

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits from the resulting value:

• SXTB extracts bits[7:0] and sign extends to 32 bits.

• UXTB extracts bits[7:0] and zero extends to 32 bits.

• SXTH extracts bits[15:0] and sign extends to 32 bits.

• UXTH extracts bits[15:0] and zero extends to 32 bits.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the flags.

Examples

 SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the
 ; lower halfword of the result and then sign
 ; extend to 32 bits and write the result to R4.
 UXTB R3, R10 ; Extract lowest byte of the value in R10 and
 ; zero extend it, and write the result to R3.

DocID028474 Rev 3 145/252

PM0253 The Cortex-M7 instruction set

182

3.10 Branch and control instructions

Table 34 shows the branch and control instructions:

3.10.1 B, BL, BX, and BLX

Branch instructions.

Syntax

B{cond} label

BL{cond} label

BX{cond} Rm

BLX{cond} Rm

Where:

B Is branch (immediate).

BL Is branch with link (immediate).

BX Is branch indirect (register).

BLX Is branch indirect with link (register).

cond Is an optional condition code. See Conditional execution on page 68.

label Is a PC-relative expression. See PC-relative expressions on page 68.

Rm Is a register that indicates an address to branch to. Bit[0] of the value in Rm
must be 1, but the address to branch to is created by changing bit[0] to 0.

Operation

All these instructions cause a branch to label, or to the address indicated in Rm. In addition:

• The BL and BLX instructions write the address of the next instruction to LR (the link
register, R14).

• The BX and BLX instructions result in a UsageFault exception if bit[0] of Rm is 0.

Table 34. Branch and control instructions

Mnemonic Brief description See

B Branch B, BL, BX, and BLX on page 145

BL Branch with Link B, BL, BX, and BLX on page 145

BLX Branch indirect with Link B, BL, BX, and BLX on page 145

BX Branch indirect B, BL, BX, and BLX on page 145

CBNZ Compare and Branch if Non Zero CBZ and CBNZ on page 147

CBZ Compare and Branch if Zero CBZ and CBNZ on page 147

IT If-Then IT on page 148

TBB Table Branch Byte TBB and TBH on page 150

TBH Table Branch Halfword TBB and TBH on page 150

The Cortex-M7 instruction set PM0253

146/252 DocID028474 Rev 3

Bcond label is the only conditional instruction that can be either inside or outside an IT
block. All other branch instructions must be conditional inside an IT block, and must be
unconditional outside the IT block, see IT on page 148.

Table 35 shows the ranges for the various branch instructions

 .

 The user might have to use the .W suffix to get the maximum branch range. See Instruction
width selection on page 71.

Restrictions

The restrictions are:

• Do not use PC in the BLX instruction.

• For BX and BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the
target address created by changing bit[0] to 0.

• When any of these instructions is inside an IT block, it must be the last instruction of the
IT block.

 Bcond is the only conditional instruction that is not required to be inside an IT block.
However, it has a longer branch range when it is inside an IT block.

Condition flags

These instructions do not change the flags.

Examples

 B loopA ; Branch to loopA
 BLE ng ; Conditionally branch to label ng
 B.W target ; Branch to target within 16MB range
 BEQ target ; Conditionally branch to target
 BEQ.W target ; Conditionally branch to target within 1MB
 BL funC ; Branch with link (Call) to function funC, return
 ; address stored in LR
 BX LR ; Return from function call
 BXNE R0 ; Conditionally branch to address stored in R0
 BLX R0 ; Branch with link and exchange (Call) to a address
 ; stored in R0.

Table 35. Branch ranges

Instruction Branch range

B label −16 MB to +16 MB

Bcond label (outside IT block) −1 MB to +1 MB

Bcond label (inside IT block) −16 MB to +16 MB

BL{cond} label −16 MB to +16 MB

BX{cond} Rm Any value in register

BLX{cond} Rm Any value in register

DocID028474 Rev 3 147/252

PM0253 The Cortex-M7 instruction set

182

3.10.2 CBZ and CBNZ

Compare and Branch on Zero, Compare and Branch on Non-Zero.

Syntax

CBZ Rn, label

CBNZ Rn, label

Where:
Rn Is the register holding the operand.
label Is the branch destination.

Operation

Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce
the number of instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to:

 CMP Rn, #0
 BEQ label

CBNZ Rn, label does not change condition flags but is otherwise equivalent to:

 CMP Rn, #0
 BNE label

Restrictions

The restrictions are:

• Rn must be in the range of R0 to R7.

• The branch destination must be within 4 to 130 bytes after the instruction.

• These instructions must not be used inside an IT block.

Condition flags

These instructions do not change the flags.

Examples

 CBZ R5, target ; Forward branch if R5 is zero
 CBNZ R0, target ; Forward branch if R0 is not zero

The Cortex-M7 instruction set PM0253

148/252 DocID028474 Rev 3

3.10.3 IT

If-Then condition instruction.

Syntax

IT{x{y{z}}} cond

Where:
x specifies the condition switch for the second instruction in the IT block.
y Specifies the condition switch for the third instruction in the IT block.
z Specifies the condition switch for the fourth instruction in the IT block.
cond Specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:

T Then. Applies the condition cond to the instruction.

E Else. Applies the inverse condition of cond to the instruction.

 It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all
of the instructions in the IT block must be unconditional, and each of x, y, and z must be T or
omitted but not E.

Operation

The IT instruction makes up to four following instructions conditional. The conditions can be
all the same, or some of them can be the logical inverse of the others. The conditional
instructions following the IT instruction form the IT block.

The instructions in the IT block, including any branches, must specify the condition in the
{cond} part of their syntax.

 The assembler might be able to generate the required IT instructions for conditional
instructions automatically, so it is not needed to write them yourself. See the assembler
documentation for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within
an IT block. Such an exception results in entry to the appropriate exception handler, with
suitable return information in LR and stacked PSR.

Instructions designed for use for exception returns can be used as normal to return from the
exception, and execution of the IT block resumes correctly. This is the only way that a
PC-modifying instruction is permitted to branch to an instruction in an IT block.

Restrictions

The following instructions are not permitted in an IT block:

• IT.

• CBZ and CBNZ.

• CPSID and CPSIE.

DocID028474 Rev 3 149/252

PM0253 The Cortex-M7 instruction set

182

Other restrictions when using an IT block are:

• A branch or any instruction that modifies the PC must either be outside an IT block or
must be the last instruction inside the IT block. These are:

– ADD PC, PC, Rm.

– MOV PC, Rm.

– B, BL, BX, BLX.

– Any LDM, LDR, or POP instruction that writes to the PC.

– TBB and TBH.

• Do not branch to any instruction inside an IT block, except when returning from an
exception handler

• All conditional instructions except Bcond must be inside an IT block. Bcond can be
either outside or inside an IT block but has a larger branch range if it is inside one

• Each instruction inside the IT block must specify a condition code suffix that is either
the same or logical inverse as for the other instructions in the block.

 The assembler might place extra restrictions on the use of IT blocks, such as prohibiting the
use of assembler directives within them.

Condition flags

This instruction does not change the flags.

Example

 ITTE NE ; Next 3 instructions are conditional
 ANDNE R0, R0, R1 ; ANDNE does not update condition flags
 ADDSNE R2, R2, #1 ; ADDSNE updates condition flags
 MOVEQ R2, R3 ; Conditional move

 CMP R0, #9 ; Convert R0 hex value (0 to 15) into ASCII
 ; ('0'-'9', 'A'-'F')
 ITE GT ; Next 2 instructions are conditional
 ADDGT R1, R0, #55 ; Convert 0xA -> 'A'
 ADDLE R1, R0, #48 ; Convert 0x0 -> '0'

 IT GT ; IT block with only one conditional instruction
 ADDGT R1, R1, #1 ; Increment R1 conditionally

 ITTEE EQ ; Next 4 instructions are conditional
 MOVEQ R0, R1 ; Conditional move
 ADDEQ R2, R2, #10 ; Conditional add
 ANDNE R3, R3, #1 ; Conditional AND
 BNE.W dloop ; Branch instruction can only be used in the last
 ; instruction of an IT block

 IT NE ; Next instruction is conditional
 ADD R0, R0, R1 ; Syntax error: no condition code used in IT block

The Cortex-M7 instruction set PM0253

150/252 DocID028474 Rev 3

3.10.4 TBB and TBH

Table Branch Byte and Table Branch Halfword.

Syntax

TBB [Rn, Rm]

TBH [Rn, Rm, LSL #1]

Where:

Rn Is the register containing the address of the table of branch lengths.

If Rn is PC, then the address of the table is the address of the byte immediately
following the TBB or TBH instruction.

Rm Is the index register. This contains an index into the table. For halfword tables,
LSL #1 doubles the value in Rm to form the right offset into the table.

Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets for
TBB, or halfword offsets for TBH. Rn provides a pointer to the table, and Rm supplies an
index into the table. For TBB the branch offset is twice the unsigned value of the byte
returned from the table, and for TBH the branch offset is twice the unsigned value of the
halfword returned from the table. The branch occurs to the address at that offset from the
address of the byte immediately after the TBB or TBH instruction.

Restrictions

The restrictions are:

• Rn must not be SP.

• Rm must not be SP and must not be PC.

• When any of these instructions is used inside an IT block, it must be the last instruction
of the IT block.

Condition flags

These instructions do not change the flags.

Examples

 ADR.W R0, BranchTable_Byte
 TBB [R0, R1] ; R1 is the index, R0 is the base address of
 ; the branch table
Case1
; an instruction sequence follows
Case2
; an instruction sequence follows
Case3
; an instruction sequence follows
BranchTable_Byte
 DCB 0 ; Case1 offset calculation
 DCB ((Case2-Case1)/2) ; Case2 offset calculation
 DCB ((Case3-Case1)/2) ; Case3 offset calculation

 TBH [PC, R1, LSL #1] ; R1 is the index, PC is used as base of the

DocID028474 Rev 3 151/252

PM0253 The Cortex-M7 instruction set

182

 ; branch table
BranchTable_H
 DCW ((CaseA - BranchTable_H)/2) ; CaseA offset calculation
 DCW ((CaseB - BranchTable_H)/2) ; CaseB offset calculation
 DCW ((CaseC - BranchTable_H)/2) ; CaseC offset calculation

CaseA
; an instruction sequence follows
CaseB
; an instruction sequence follows
CaseC
; an instruction sequence follows

3.11 Floating-point instructions

This section provides the instruction set that the single-precision and double-precision FPU
uses.

Table 36 shows the floating-point instructions.

 These instructions are only available if the FPU is included, and enabled, in the system. See
Enabling the FPU on page 238 for information about enabling the floating-point unit.

Table 36. Floating-point instructions

Mnemonic Brief description See

VABS Floating-point Absolute VABS on page 153

VADD Floating-point Add VADD on page 153

VCMP
Compares two floating-point registers, or one
floating-point register and zero

VCMP, VCMPE on page 154

VCMPE
Compares two floating-point registers, or one
floating-point register and zero with Invalid
Operation check

VCMP, VCMPE on page 154

VCVT Converts between floating-point and integer
VCVT between floating-point and fixed-point on
page 156

VCVT Converts between floating-point and fixed point
VCVT between floating-point and fixed-point on
page 156

VCVTR
Converts between floating-point and integer with
rounding

VCVT, VCVTR between floating-point and
integer on page 155

VCVTB Converts half-precision value to single-precision VCVTB, VCVTT on page 157

VCVTT Converts single-precision register to half-precision VCVTB, VCVTT on page 157

VDIV Floating-point Divide VDIV on page 157

VFMA Floating-point Fused Multiply Accumulate VFMA, VFMS on page 158

VFNMA Floating-point Fused Negate Multiply Accumulate VFNMA, VFNMS on page 159

VFMS Floating-point Fused Multiply Subtract VFMA, VFMS on page 158

VFNMS Floating-point Fused Negate Multiply Subtract VFNMA, VFNMS on page 159

VLDM Loads Multiple extension registers VLDM on page 159

The Cortex-M7 instruction set PM0253

152/252 DocID028474 Rev 3

VLDR Loads an extension register from memory VLDR on page 160

VMLA Floating-point Multiply Accumulate VMLA, VMLS on page 161

VMLS Floating-point Multiply Subtract VMLA, VMLS on page 161

VMOV Floating-point Move Immediate VMOV Immediate on page 162

VMOV Floating-point Move register VMOV Register on page 162

VMOV Copies ARM core register to single-precision
VMOV ARM core register to single-precision on
page 163

VMOV Copies 2 ARM core registers to 2 single-precision
VMOV two ARM core registers to two single-
precision registers on page 164

VMOV Copies between ARM core register to scalar VMOV ARM core register to scalar on page 165

VMOV Copies between Scalar to ARM core register VMOV Scalar to ARM core register on page 163

VMRS
Moves to ARM core register from floating-point
System register

VMRS on page 165

VMSR
Moves to floating-point System register from ARM
core register

VMSR on page 166

VMUL Multiplies floating-point VMUL on page 166

VNEG Floating-point negate VNEG on page 167

VNMLA Floating-point multiply and add VNMLA, VNMLS, VNMUL on page 167

VNMLS Floating-point multiply and subtract VNMLA, VNMLS, VNMUL on page 167

VNMUL Floating-point multiply VNMLA, VNMLS, VNMUL on page 167

VPOP Pop extension registers VPOP on page 168

VPUSH Pushes extension registers VPUSH on page 169

VSQRT Floating-point square root VSQRT on page 169

VSTM Stores Multiple extension registers VSTM on page 170

VSTR Stores an extension register to memory VSTR on page 170

VSUB Floating-point Subtract VSUB on page 171

VSEL
Selects register, alternative to a pair of conditional
VMOV

VSEL on page 172

VMAXNM,
VMINNM

Maximum, Minimum with IEEE754-2008 NaN
handling

VMAXNM, VMINNM on page 172

VCVTA,
VCVTN,
VCVTP,
VCVTM

Float to integer conversion with directed rounding VCVTA, VCVTN, VCVTP, VCVTM on page 173

Table 36. Floating-point instructions (continued)

Mnemonic Brief description See

DocID028474 Rev 3 153/252

PM0253 The Cortex-M7 instruction set

182

3.11.1 VABS

Floating-point Absolute.

Syntax

VABS{cond}.F<32|64> <Sd|Dd>, <Sm|Dm>

Where:

cond Is an optional condition code. See Conditional execution on page 68.

<Sd|Dd>, <Sm|Dm>

Are the destination floating-point value and the operand floating-point value.

Operation

This instruction:

1. Takes the absolute value of the operand floating-point register.

2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

VABS.F32 S4, S6

3.11.2 VADD

Floating-point Add.

Syntax

VADD{cond}.F<32|64> {<Sd|Dd>,} <Sn|Dn>, <Sm|Dm>

VADD{cond}.F64 {Dd,} Dn, Dm

Where:
cond Is an optional condition code. See Conditional execution on page 68.
<Sd|Dd> Is the destination floating-point value.

VRINTR,
VRINTX

Float to integer (in floating-point format)
conversion

VRINTR, VRINTX on page 173

VRINTA,
VRINTN,
VRINTP,
VRINTM

Float to integer (in floating-point format)
conversion with directed rounding

VRINTA, VRINTN, VRINTP, VRINTM, VRINTZ
on page 174

Table 36. Floating-point instructions (continued)

Mnemonic Brief description See

The Cortex-M7 instruction set PM0253

154/252 DocID028474 Rev 3

<Sn|Dn>, <Sm|Dm>

Are the operand floating-point values.

Operation

This instruction:

1. Adds the values in the two floating-point operand registers.

2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

VADD.F32 S4, S6, S7

3.11.3 VCMP, VCMPE

Compares two floating-point registers, or one floating-point register and zero.

Syntax

VCMP{E}{cond}.F<32|64> <Sd|Dd>, <Sm|Dm>

VCMP{E}{cond}.F<32|64> <Sd|Dd>, #0.0

Where:
cond Is an optional condition code. See Conditional execution on page 68.
E If present, any NaN operand causes an Invalid Operation exception.

Otherwise, only a signaling NaN causes the exception.
<Sd|Dd> Is the floating-point operand to compare.
<Sm|Dm> Is the floating-point operand that is compared with.

Operation

This instruction:

1. Compares either:

• Two floating-point registers.

• Or one floating-point register and zero.

2. Writes the result to the FPSCR flags.

Restrictions

This instruction can optionally raise an Invalid Operation exception if either operand is any
type of NaN. It always raises an Invalid Operation exception if either operand is a signaling
NaN.

Condition flags

When this instruction writes the result to the FPSCR flags, the values are normally
transferred to the ARM flags by a subsequent VMRS instruction, see VMRS on page 165.

DocID028474 Rev 3 155/252

PM0253 The Cortex-M7 instruction set

182

Examples

VCMP.F32 S4, #0.0VCMP.F32 S4, S2

3.11.4 VCVT, VCVTR between floating-point and integer

Converts a value in a register from floating-point to and from a 32-bit integer.

Syntax

VCVT{R}{cond}.Tm.F<32|64> <Sd|Dd>, <Sm|Dm>

VCVT{cond}.F<32|64>.Tm <Sd|Dd>, <Sm|Dm>

Where:
R If R is specified, the operation uses the rounding mode specified by the FPSCR.

If R is omitted. the operation uses the Round towards Zero rounding mode.
cond Is an optional condition code. See Conditional execution on page 68.
Tm Is the data type for the operand. It must be one of:

• S32 signed 32-bit value.

• U32 unsigned 32-bit value.
<Sd|Dd>, <Sm|Dm>

Are the destination register and the operand register.

Operation

These instructions:

1. Either:

• Convert a value in a register from floating-point value to a 32-bit integer.

• Convert from a 32-bit integer to floating-point value.

2. Place the result in a second register.

The floating-point to integer operation normally uses the Round towards Zero rounding
mode, but can optionally use the rounding mode specified by the FPSCR.

The integer to floating-point operation uses the rounding mode specified by the FPSCR.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

The Cortex-M7 instruction set PM0253

156/252 DocID028474 Rev 3

3.11.5 VCVT between floating-point and fixed-point

Converts a value in a register from floating-point to and from fixed-point.

Syntax

VCVT{cond}.Td.F<32|64> <Sd|Dd>, <Sd|Dd>, #fbits

VCVT{cond}.F<32|64>.Td <Sd|Dd>, <Sd|Dd>, #fbits

Where:
cond Is an optional condition code. See Conditional execution on page 68.
Td Is the data type for the fixed-point number. It must be one of:

• S16 signed 16-bit value.

• U16 unsigned 16-bit value.

• S32 signed 32-bit value.

• U32 unsigned 32-bit value.
<Sd|Dd> Is the destination register and the operand register.
fbits Is the number of fraction bits in the fixed-point number:

• If Td is S16 or U16, fbits must be in the range 0-16.

• If Td is S32 or U32, fbits must be in the range 1-32.

Operation

This instruction:

1. Either

• Converts a value in a register from floating-point to fixed-point.

• Converts a value in a register from fixed-point to floating-point.

2. Places the result in a second register.

The floating-point values are single-precision or double-precision.

The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their
operand from the low-order bits of the source register and ignore any remaining bits.

Signed conversions to fixed-point values sign-extend the result value to the destination
register width.

Unsigned conversions to fixed-point values zero-extend the result value to the destination
register width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode.
The fixed-point to floating-point operation uses the Round to Nearest rounding mode.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

DocID028474 Rev 3 157/252

PM0253 The Cortex-M7 instruction set

182

3.11.6 VCVTB, VCVTT

Converts between half-precision and single-precision or double-precision without
intermediate rounding.

Syntax

VCVT{y}{cond}.F<32|64>.F16 <Sd|Dd>, Sm

VCVT{y}{cond}.F16.F<32|64> Sd, <Sm|Dm>

Where:
y Specifies which half of the operand register Sm or destination register Sd is

used for the operand or destination:

• If y is B, then the bottom half, bits [15:0], of Sm or Sd is used.

• If y is T, then the top half, bits [31:16], of Sm or Sd is used.
cond Is an optional condition code. See Conditional execution on page 68.
<Sd|Dd> Is the destination register.
<Sm|Dm> Is the operand register.

Operation

This instruction with the .F16.F<32|64> suffix:

1. Converts the half-precision value in the top or bottom half of a single-precision register
to single-precision or double-precision value.

2. Writes the result to a single-precision or double-precision register.

This instruction with the .F<32|64>.F16 suffix:

1. Converts the value in a double-precision or single-precision register to half-precision
value.

2. Writes the result into the top or bottom half of a single-precision register, preserving the
other half of the target register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3.11.7 VDIV

Divides floating-point values.

Syntax

VDIV{cond}.F<32|64> {<Sd|Dd>,} <Sn|Dn>, <Sm|Dm>

Where:
cond Is an optional condition code. See Conditional execution on page 68.
<Sd|Dd> Is the destination register.
<Sn|Dn>, <Sm|Dm>

Are the operand registers.

The Cortex-M7 instruction set PM0253

158/252 DocID028474 Rev 3

Operation

This instruction:

1. Divides one floating-point value by another floating-point value.

2. Writes the result to the floating-point destination register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3.11.8 VFMA, VFMS

Floating-point Fused Multiply Accumulate and Subtract.

Syntax

VFMA{cond}.F<32|64> {<Sd|Dd>,} <Sn|Dn>, <Sm|Dm>

VFMS{cond}.F<32|64> {<Sd|Dd>,} <Sn|Dn>, <Sm|Dm>

Where:
cond Is an optional condition code. See Conditional execution on page 68.
<Sd|Dd> Is the destination register.
<Sn|Dn>, <Sm|Dm>

Are the operand registers.

Operation

The VFMA instruction:

1. Multiplies the floating-point values in the operand registers.

2. Accumulates the results into the destination register.

The result of the multiply is not rounded before the accumulation.

The VFMS instruction:

1. Negates the first operand register.

2. Multiplies the floating-point values of the first and second operand registers.

3. Adds the products to the destination register.

4. Places the results in the destination register.

The result of the multiply is not rounded before the addition.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

DocID028474 Rev 3 159/252

PM0253 The Cortex-M7 instruction set

182

3.11.9 VFNMA, VFNMS

Floating-point Fused Negate Multiply Accumulate and Subtract.

Syntax

VFNMA{cond}.F<32|64> {<Sd|Dd>,} <Sn|Dn>, <Sm|Dm>

VFNMS{cond}.F<32|64> {<Sd|Dd>,} <Sn|Dn>, <Sm|Dm>

Where:
cond Is an optional condition code. See Conditional execution on page 68.
<Sd|Dd> Is the destination register.
<Sn|Dn>, <Sm|Dm>

Are the operand registers.

Operation

The VFNMA instruction:

1. Negates the first floating-point operand register.

2. Multiplies the first floating-point operand with second floating-point operand.

3. Adds the negation of the floating -point destination register to the product

4. Places the result into the destination register.

The result of the multiply is not rounded before the addition.

The VFNMS instruction:

1. Multiplies the first floating-point operand with second floating-point operand.

2. Adds the negation of the floating-point value in the destination register to the product.

3. Places the result in the destination register.

The result of the multiply is not rounded before the addition.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3.11.10 VLDM

Floating-point Load Multiple.

Syntax

VLDM{mode}{cond}{.size} Rn{!}, list

Where:
mode Is the addressing mode:

IA Increment after. The consecutive addresses start at the address
specified in Rn.

DB Decrement before. The consecutive addresses end just before

the address specified in Rn.
cond Is an optional condition code. See Conditional execution on page 68.

The Cortex-M7 instruction set PM0253

160/252 DocID028474 Rev 3

size Is an optional data size specifier.
Rn Is the base register. The SP can be used.
! Is the command to the instruction to write a modified value back to Rn. This is

required if mode == DB, and is optional if mode == IA.
list Is the list of extension registers to be loaded, as a list of consecutively

numbered doubleword or singleword registers, separated by commas and
surrounded by brackets.

Operation

This instruction loads multiple extension registers from consecutive memory locations using
an address from an ARM core register as the base address.

Restrictions

The restrictions are:

• If size is present, it must be equal to the size in bits, 32 or 64, of the registers in list.

• For the base address, the SP can be used. In the ARM instruction set, if ! is not
specified the PC can be used.

• list must contain at least one register. If it contains doubleword registers, it must not
contain more than 16 registers.

• If using the Decrement Before addressing mode, the write back flag, !, must be
appended to the base register specification.

Condition flags

These instructions do not change the flags.

Example

VLDMIA.F64 r1, {d3,d4,d5}

3.11.11 VLDR

Loads a single extension register from memory.

Syntax

VLDR{cond}{.F<32|64>} <sd|Dd>, [Rn{#imm}]

VLDR{cond}{.F<32|64>} <sd|Dd>, label

VLDR{cond}{.F<32|64>} <sd|Dd>, [PC, #imm}]

Where:
cond Is an optional condition code. See Conditional execution on page 68.
32, 64 Are the optional data size specifiers.
Dd Is the destination register for a doubleword load.
Sd Is the destination register for a singleword load.
Rn Is the base register. The SP can be used.
imm Is the + or - immediate offset used to form the address. Permitted address

values are multiples of 4 in the range 0 to 1020.
label Is the label of the literal data item to be loaded.

DocID028474 Rev 3 161/252

PM0253 The Cortex-M7 instruction set

182

Operation

This instruction loads a single extension register from memory, using a base address from
an ARM core register, with an optional offset.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3.11.12 VMLA, VMLS

Multiplies two floating-point values, and accumulates or subtracts the result.

Syntax

VMLA{cond}.F<32|64> <Sd|Dd>, <Sn|Dn>, <Sm|Dm>

VMLS{cond}.F<32|64> <Sd|Dd>, <Sn|Dn>, <Sm|Dm>

Where:
cond Is an optional condition code. See Conditional execution on page 68.
<Sd|Dd> Is the destination floating-point value.
<Sn|Dn>, <Sm|Dm>

Are the operand floating-point values.

Operation

The floating-point Multiply Accumulate instruction:

1. Multiplies two floating-point values.

2. Adds the results to the destination floating-point value.

The floating-point Multiply Subtract instruction:

1. Multiplies two floating-point values.

2. Subtracts the products from the destination floating-point value.

3. Places the results in the destination register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

The Cortex-M7 instruction set PM0253

162/252 DocID028474 Rev 3

3.11.13 VMOV Immediate

Moves floating-point Immediate.

Syntax

VMOV{cond}.F<32|64> <Sd|Dd>, #imm

Where:
cond Is an optional condition code. See Conditional execution on page 68.
<Sd|Dd> Is the destination register.
imm Is a floating-point constant.

Operation

This instruction copies a constant value to a floating-point register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3.11.14 VMOV Register

Copies the contents of one register to another.

Syntax

VMOV{cond}.F<32|64> <Sd|Dd>, <Sm|Dm>

Where:
cond Is an optional condition code. See Conditional execution on page 68.
Dd Is the destination register, for a doubleword operation.
Dm Is the source register, for a doubleword operation.
Sd Is the destination register, for a singleword operation.
Sm Is the source register, for a singleword operation.

Operation

This instruction copies the contents of one floating-point register to another.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

DocID028474 Rev 3 163/252

PM0253 The Cortex-M7 instruction set

182

3.11.15 VMOV Scalar to ARM core register

Transfers one word of a doubleword floating-point register to an ARM core register.

Syntax

VMOV{cond} Rt, Dn[x]

Where:
cond Is an optional condition code. See Conditional execution on page 68.
Rt Is the destination ARM core register.
Dn Is the 64-bit doubleword register.
x Specifies which half of the doubleword register to use:

• If x is 0, use lower half of doubleword register

• If x is 1, use upper half of doubleword register.

Operation

This instruction transfers one word from the upper or lower half of a doubleword floating-
point register to an ARM core register.

Restrictions

Rt cannot be PC or SP.

Condition flags

These instructions do not change the flags.

3.11.16 VMOV ARM core register to single-precision

Transfers a single-precision register to and from an ARM core register.

Syntax

VMOV{cond} Sn, Rt

VMOV{cond} Rt, Sn

Where:
cond Is an optional condition code. See Conditional execution on page 68.
<Sn> Is the single-precision floating-point register.
Rt Is the ARM core register.

Operation

This instruction transfers:

• The contents of a single-precision register to an ARM core register.

• The contents of an ARM core register to a single-precision register.

Restrictions

Rt cannot be PC or SP.

Condition flags

These instructions do not change the flags.

The Cortex-M7 instruction set PM0253

164/252 DocID028474 Rev 3

3.11.17 VMOV two ARM core registers to two single-precision registers

Transfers two consecutively numbered single-precision registers to and from two ARM core
registers.

Syntax

VMOV{cond} Sm, Sm1, Rt, Rt2

VMOV{cond} Rt, Rt2, Sm, Sm1

Where:
cond Is an optional condition code. See Conditional execution on page 68.
Sm Is the first single-precision register.
Sm1 Is the second single-precision register. This is the next single-precision register

after <Sm>.
Rt Is the ARM core register that <Sm> is transferred to or from.
Rt2 Is the The ARM core register that <Sm1> is transferred to or from.

Operation

This instruction transfers:

• The contents of two consecutively numbered single-precision registers to two ARM
core registers.

• The contents of two ARM core registers to a pair of single-precision registers.

Restrictions

The restrictions are:

• The floating-point registers must be contiguous, one after the other.

• The ARM core registers do not have to be contiguous.

• Rt cannot be PC or SP.

Condition flags

These instructions do not change the flags.

3.11.18 VMOV two ARM core registers and a double-precision register

Transfers two words from two ARM core registers to a doubleword register, or from a
doubleword register to two ARM core registers.

Syntax

VMOV{cond} Dm, Rt, Rt2

VMOV{cond} Rt, Rt2, Dm

Where:
cond Is an optional condition code. See Conditional execution on page 68.
Dm Is the double-precision register.
Rt, Rt2 Are the two ARM core registers.

DocID028474 Rev 3 165/252

PM0253 The Cortex-M7 instruction set

182

Operation

This instruction:

• Transfers two words from two ARM core registers to a doubleword register.

• Transfers a doubleword register to two ARM core registers.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3.11.19 VMOV ARM core register to scalar

Transfers one word to a floating-point register from an ARM core register.

Syntax

VMOV{cond}{.32} Dd[x], Rt

Where:
cond Is an optional condition code. See Conditional execution on page 68.
32 Is an optional data size specifier.
Dd[x] Is the destination, where [x] defines which half of the doubleword is transferred,

as follows:

• If x is 0, the lower half is extracted.

• If x is 1, the upper half is extracted.
Rt Is the source ARM core register.

Operation

This instruction transfers one word to the upper or lower half of a doubleword floating-point
register from an ARM core register.

Restrictions

Rt cannot be PC or SP.

Condition flags

These instructions do not change the flags.

3.11.20 VMRS

Moves to ARM core register from floating-point System register.

Syntax

VMRS{cond} Rt, FPSCR

VMRS{cond} APSR_nzcv, FPSCR

Where:
cond Is an optional condition code. See Conditional execution on page 68.
Rt Is the destination ARM core register. This register can be R0-R14.

The Cortex-M7 instruction set PM0253

166/252 DocID028474 Rev 3

APSR_nzcv Transfer floating-point flags to the APSR flags.

Operation

This instruction performs one of the following actions:

• Copies the value of the FPSCR to a general-purpose register.

• Copies the value of the FPSCR flag bits to the APSR N, Z, C, and V flags.

Restrictions

Rt cannot be PC or SP.

Condition flags

These instructions optionally change the N, Z, C, and V flags.

3.11.21 VMSR

Moves to floating-point System register from ARM core register.

Syntax

VMSR{cond} FPSCR, Rt

Where:
cond Is an optional condition code. See Conditional execution on page 68.
Rt Is the general-purpose register to be transferred to the FPSCR.

Operation

This instruction moves the value of a general-purpose register to the FPSCR. See Floating-
point Status Control register on page 236 for more information.

Restrictions

Rt cannot be PC or SP.

Condition flags

This instruction updates the FPSCR.

3.11.22 VMUL

Floating-point Multiply.

Syntax

VMUL{cond}.F<32|64> {<Sd|Dd>,} <Sn|Dn>, <Sm|Dm>

Where:
cond Is an optional condition code. See Conditional execution on page 68.
<Sd|Dd> Is the destination floating-point value.
<Sn|Dn>, <Sm|Dm>

Are the operand floating-point values.

DocID028474 Rev 3 167/252

PM0253 The Cortex-M7 instruction set

182

Operation

This instruction:

1. Multiplies two floating-point values.

2. Places the results in the destination register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3.11.23 VNEG

Floating-point Negate.

Syntax

VNEG{cond}.F<32|64> <Sd|Dd>, <Sm|Dm>

Where:
cond Is an optional condition code. See Conditional execution on page 68.
<Sd|Dd> Is the destination floating-point value.
<Sm|Dm> Is the operand floating-point value.

Operation

This instruction:

1. Negates a floating-point value.

2. Places the results in a second floating-point register.

The floating-point instruction inverts the sign bit.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3.11.24 VNMLA, VNMLS, VNMUL

Floating-point multiply with negation followed by add or subtract.

Syntax

VNMLA{cond}.F<32|64> <Sd|Dd>, <Sn|Dn>, <Sm|Dm>

VNMLS{cond}.F<32|64> <Sd|Dd>, <Sn|Dn>, <Sm|Dm>

VNMUL{cond}.F<32|64> {<Sd|Dd>,} <Sn|Dn>, <Sm|Dm>

Where:
cond Is an optional condition code. See Conditional execution on page 68.
<Sd|Dd> Is the destination floating-point register.

The Cortex-M7 instruction set PM0253

168/252 DocID028474 Rev 3

<Sn|Dn>, <Sm|Dm> Are the operand floating-point registers.

Operation

The VNMLA instruction:

1. Multiplies two floating-point register values.

2. Adds the negation of the floating-point value in the destination register to the negation
of the product.

3. Writes the result back to the destination register.

The VNMLS instruction:

1. Multiplies two floating-point register values.

2. Adds the negation of the floating-point value in the destination register to the product.

3. Writes the result back to the destination register.

The VNMUL instruction:

1. Multiplies together two floating-point register values.

2. Writes the negation of the result to the destination register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3.11.25 VPOP

Floating-point extension register Pop.

Syntax

VPOP{cond}{.size} list

Where:
cond Is an optional condition code. See Conditional execution on page 68.
size Is an optional data size specifier. If present, it must be equal to the size in bits,

32 or 64, of the registers in list.
list Is a list of extension registers to be loaded, as a list of consecutively numbered

doubleword or singleword registers, separated by commas and

surrounded by brackets.

Operation

This instruction loads multiple consecutive extension registers from the stack.

Restrictions

The list must contain at least one register, and not more than sixteen registers.

Condition flags

These instructions do not change the flags.

DocID028474 Rev 3 169/252

PM0253 The Cortex-M7 instruction set

182

3.11.26 VPUSH

Floating-point extension register Push.

Syntax

VPUSH{cond}{.size} list

Where:
cond Is an optional condition code. See Conditional execution on page 68.
size Is an optional data size specifier. If present, it must be equal to the size in bits,

32 or 64, of the registers in list.
list Is a list of the extension registers to be stored, as a list of consecutively

numbered doubleword or singleword registers, separated by commas and
surrounded by brackets.

Operation

This instruction stores multiple consecutive extension registers to the stack.

Restrictions

list must contain at least one register, and not more than sixteen.

Condition flags

These instructions do not change the flags.

3.11.27 VSQRT

Floating-point Square Root.

Syntax

VSQRT{cond}.F<32|64> <Sd|Dd>, <Sm|Dm>

Where:
cond Is an optional condition code. See Conditional execution on page 68.
<Sd|Dd> Is the destination floating-point value.
<Sm|Dm> Is the operand floating-point value.

Operation

This instruction:

• Calculates the square root of the value in a floating-point register.

• Writes the result to another floating-point register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

The Cortex-M7 instruction set PM0253

170/252 DocID028474 Rev 3

3.11.28 VSTM

Floating-point Store Multiple.

Syntax

VSTM{mode}{cond}{.size} Rn{!}, list

Where:
mode Is the addressing mode:

• IA Increment After. The consecutive addresses start at the address
specified in Rn. This is the default and can be omitted.

• DB Decrement Before. The consecutive addresses end just before the
address specified in Rn.

cond Is an optional condition code. See Conditional execution on page 68.
size Is an optional data size specifier. If present, it must be equal to the size in bits,

32 or 64, of the registers in list.
Rn Is the base register. The SP can be used.
! Is the function that causes the instruction to write a modified value back to Rn.

Required if mode == DB.
list Is a list of the extension registers to be stored, as a list of consecutively

numbered doubleword or singleword registers, separated by commas and
surrounded by brackets.

Operation

This instruction stores multiple extension registers to consecutive memory locations using a
base address from an ARM core register.

Restrictions

The restrictions are:

• list must contain at least one register. If it contains doubleword registers it must not
contain more than 16 registers.

• Use of the PC as Rn is deprecated.

Condition flags

These instructions do not change the flags.

3.11.29 VSTR

Floating-point Store.

Syntax

VSTR{cond}{.32} Sd, [Rn{, #imm}]

VSTR{cond}{.64} Dd, [Rn{, #imm}]

Where:
cond Is an optional condition code. See Conditional execution on page 68.
32, 64 Are the optional data size specifiers.
Sd Is the source register for a singleword store.
Dd Is the source register for a doubleword store.

DocID028474 Rev 3 171/252

PM0253 The Cortex-M7 instruction set

182

Rn Is the base register. The SP can be used.
imm Is the + or - immediate offset used to form the address. Values are multiples of

4 in the range 0-1020. imm can be omitted, meaning an offset of +0.

Operation

This instruction stores a single extension register to memory, using an address from an
ARM core register, with an optional offset, defined in imm:

Restrictions

The use of PC for Rn is deprecated.

Condition flags

These instructions do not change the flags.

3.11.30 VSUB

Floating-point Subtract.

Syntax

VSUB{cond}.F<32|64> {<Sd|Dd>,} <Sn|Dn>, <Sm|Dm>

Where:
cond Is an optional condition code. See Conditional execution on page 68.
<Sd|Dd> Is the destination floating-point value.
<Sn|Dn>, <Sm|Dm>

Are the operand floating-point values.

Operation

This instruction:

1. Subtracts one floating-point value from another floating-point value.

2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

The Cortex-M7 instruction set PM0253

172/252 DocID028474 Rev 3

3.11.31 VSEL

Provides an alternative to a pair of conditional VMOV instructions.

Encoding

VSEL{cond}.F<32|64> <Sd|Dd>, <Sn|Dn>, <Sm|Dm>

Where:
cond Is an optional condition code. See Conditional execution on page 68. VSEL has

a subset of the condition codes. The condition codes for VSEL are limited to GE,
GT, EQ and VS, with the effect that LT, LE, NE and VC is achievable by exchanging
the source operands.

<Sd|Dd> Is the destination single-precision or double-precision floating-point value.
<Sn|Dn>, <Sm|Dm>

Are the operand single-precision or double-precision floating-point values.

Operation

Depending on the result of the condition code, this instruction moves either:

• <Sn|Dn> source register to the destination register.

• <Sm|Dm> source register to the destination register.

Restrictions

The VSEL instruction must not occur inside an IT block.

Condition flags

These instructions do not change the flags.

3.11.32 VMAXNM, VMINNM

Return the minimum or the maximum of two floating-point numbers with NaN handling as
specified by IEEE754-2008.

Encoding

VMAXNM.F<32|64> <Sd|Dd>, <Sn|Dn>, <Sm|Dm>

VMINNM.F<32|64> <Sd|Dd>, <Sn|Dn>, <Sm|Dm>

Where:
<Sd|Dd> Is the destination single-precision or double-precision floating-point value.
<Sn|Dn>, <Sm|Dm>

Are the operand single-precision or double-precision floating-point values.

Operation

The VMAXNM instruction compares two source registers, and moves the largest to the
destination register.

The VMINNM instruction compares two source registers, and moves the lowest to the
destination register.

DocID028474 Rev 3 173/252

PM0253 The Cortex-M7 instruction set

182

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3.11.33 VCVTA, VCVTN, VCVTP, VCVTM

Floating-point to integer conversion with directed rounding.

Syntax

VCVT<rmode>.S32.F<32|64> <Sd>, <Sm|Dm>

VCVT<rmode>.U32.F<32|64> <Sd>, <Sm|Dm>

Where:
<Sd|Dd> Is the destination single-precision or double-precision floating-point value.
<Sn|Dn>, <Sm|Dm>

Are the operand single-precision or double-precision floating-point values.

<rmode> Is one of:

A Round to nearest ties away.

M Round to nearest even.

N Round towards plus infinity.

P Round towards minus infinity.

Operation

These instructions:

1. Read the source register.

2. Convert to integer with directed rounding.

3. Write to the destination register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3.11.34 VRINTR, VRINTX

Round a floating-point value to an integer in floating-point format.

Encoding

VRINT{R,X}{cond}.F<32|64> <Sd|Dd>, <Sm|Dm>

Where:
cond Is an optional condition code. See Conditional execution on page 68.
<Sd|Dd> Is the destination floating-point value.
<Sm|Dm> Are the operand floating-point values.

The Cortex-M7 instruction set PM0253

174/252 DocID028474 Rev 3

Operation

These instructions:

1. Read the source register.

2. Round to the nearest integer value in floating-point format using the rounding mode
specified by the FPSCR.

3. Write the result to the destination register.

4. For the VRINTZX instruction only. Generate a floating-point exception if the result is not
exact.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3.11.35 VRINTA, VRINTN, VRINTP, VRINTM, VRINTZ

Round a floating-point value to an integer in floating-point format using directed rounding.

Encoding

VRINT<rmode>.F<32|64> <Sd|Dd>, <Sm|Dm>

Where:
<Sd|Dd> Is the destination single-precision or double-precision floating-point value.
<Sn|Dn>, <Sm|Dm>

Are the operand single-precision or double-precision floating-point values.

<rmode> Is one of:

A Round to nearest ties away.

M Round to Nearest Even.

N Round towards Plus Infinity.

P Round towards Minus Infinity.

Z Round towards Zero.

Operation

These instructions:

1. Read the source register.

2. Round to the nearest integer value with a directed rounding mode specified by the
instruction.

3. Write the result to the destination register.

Restrictions

These instructions cannot be conditional. These instructions cannot generate an inexact
exception even if the result is not exact.

DocID028474 Rev 3 175/252

PM0253 The Cortex-M7 instruction set

182

Condition flags

These instructions do not change the flags.

3.12 Miscellaneous instructions

Table 37 shows the remaining Cortex®-M7 instructions:

3.12.1 BKPT

Breakpoint.

Syntax

BKPT #imm

Where:

imm Is an expression evaluating to an integer in the range 0-255 (8-bit value).

Operation

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this
to investigate system state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional
information about the breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally,
unaffected by the condition specified by the IT instruction.

Table 37. Miscellaneous instructions

Mnemonic Brief description See

BKPT Breakpoint BKPT on page 175

CPSID Change Processor State, Disable Interrupts CPS on page 176

CPSIE Change Processor State, Enable Interrupts CPS on page 176

DMB Data Memory Barrier DMB on page 177

DSB Data Synchronization Barrier DSB on page 177

ISB Instruction Synchronization Barrier ISB on page 178

MRS Move from special register to register MRS on page 178

MSR Move from register to special register MSR on page 179

NOP No Operation NOP on page 180

SEV Send Event SEV on page 180

SVC Supervisor Call SVC on page 181

WFE Wait For Event WFE on page 181

WFI Wait For Interrupt WFI on page 182

The Cortex-M7 instruction set PM0253

176/252 DocID028474 Rev 3

Condition flags

This instruction does not change the flags.

Examples

 BKPT #0x3 ; Breakpoint with immediate value set to 0x3 (debugger can
 ; extract the immediate value by locating it using the PC)

 ARM does not recommend the use of the BKPT instruction with an immediate value set to
0xAB for any purpose other than Semi-hosting.

3.12.2 CPS

Change Processor State.

Syntax

CPSeffect iflags

Where:

effect Is one of:

IE Clears the special purpose register.

ID Sets the special purpose register.

iflags Is a sequence of one or more flags:

i Set or clear PRIMASK.

f Set or clear FAULTMASK.

Operation

CPS changes the PRIMASK and FAULTMASK special register values. See Exception mask
registers on page 25 for more information about these registers.

Restrictions

The restrictions are:

• Use CPS only from privileged software. It has no effect if used in unprivileged software.

• CPS cannot be conditional and so must not be used inside an IT block.

Condition flags

This instruction does not change the condition flags.

Examples

 CPSID i ; Disable interrupts and configurable fault handlers (set
 ; PRIMASK)
 CPSID f ; Disable interrupts and all fault handlers (set FAULTMASK)
 CPSIE i ; Enable interrupts and configurable fault handlers (clear
 ; PRIMASK)
 CPSIE f ; Enable interrupts and fault handlers (clear FAULTMASK)

DocID028474 Rev 3 177/252

PM0253 The Cortex-M7 instruction set

182

3.12.3 DMB

Data Memory Barrier.

Syntax

DMB{cond}

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Operation

DMB acts as a data memory barrier. It ensures that all explicit memory accesses that
appear, in program order, before the DMB instruction are completed before any explicit
memory accesses that appear, in program order, after the DMB instruction. DMB does not
affect the ordering or execution of instructions that do not access memory.

Condition flags

This instruction does not change the flags.

Examples

 DMB ; Data Memory Barrier

3.12.4 DSB

Data Synchronization Barrier.

Syntax

DSB{cond}

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Operation

DSB acts as a special data synchronization memory barrier. Instructions that come after the
DSB, in program order, do not execute until the DSB instruction completes. The DSB
instruction completes when all explicit memory accesses before it complete.

Condition flags

This instruction does not change the flags.

Examples

 DSB ; Data Synchronisation Barrier

The Cortex-M7 instruction set PM0253

178/252 DocID028474 Rev 3

3.12.5 ISB

Instruction Synchronization Barrier.

Syntax

ISB{cond}

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so
that all instructions following the ISB are fetched from cache or memory again, after the ISB
instruction has been completed.

Condition flags

This instruction does not change the flags.

Examples

 ISB ; Instruction Synchronisation Barrier

3.12.6 MRS

Move the contents of a special register to a general-purpose register.

Syntax

MRS{cond} Rd, spec_reg

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

spec_reg Can be any of: APSR, IPSR, EPSR, IEPSR, IAPSR, EAPSR, PSR, MSP, PSP, PRIMASK,
BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

 All the EPSR and IPSR fields are zero when read by the MRS instruction.

Operation

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a
PSR, for example to clear the Q flag.

In process swap code, the programmers model state of the process being swapped out
must be saved, including relevant PSR contents. Similarly, the state of the process being
swapped in must also be restored. These operations use MRS in the state-saving
instruction sequence and MSR in the state-restoring instruction sequence.

 BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.

See MSR on page 179.

DocID028474 Rev 3 179/252

PM0253 The Cortex-M7 instruction set

182

Restrictions

Rd must not be SP and must not be PC.

Condition flags

This instruction does not change the flags.

Examples

 MRS R0, PRIMASK ; Read PRIMASK value and write it to R0

3.12.7 MSR

Move the contents of a general-purpose register into the specified special register.

Syntax

MSR{cond} spec_reg, Rn

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Rn Is the source register.

spec_reg Can be any of: APSR_nzcvq, APSR_g, APSR_nzcvqg, MSP, PSP, PRIMASK,
BASEPRI, BASEPRI_MAX, FAULTMASK, or CONTROL.

 APSR can be used to refer to APSR_nzcvq.

Operation

The register access operation in MSR depends on the privilege level. Unprivileged software
can only access the APSR, see Table 4 on page 23. Privileged software can access all
special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

 When writing to BASEPRI_MAX, the instruction writes to BASEPRI only if either:

• Rn is non-zero and the current BASEPRI value is 0.

• Rn is non-zero and less than the current BASEPRI value.

See MRS on page 178.

Restrictions

Rn must not be SP and must not be PC.

Condition flags

This instruction updates the flags explicitly based on the value in Rn.

Examples

MSR CONTROL, R1 ; Read R1 value and write it to the CONTROL register

The Cortex-M7 instruction set PM0253

180/252 DocID028474 Rev 3

3.12.8 NOP

No Operation.

Syntax

NOP{cond}

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Operation

NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might
remove it from the pipeline before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64-bit boundary.

Condition flags

This instruction does not change the flags.

Examples

 NOP ; No operation

3.12.9 SEV

Send Event.

Syntax

SEV{cond}

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a
multiprocessor system. It also sets the local event register to 1, see Power management on
page 50.

Condition flags

This instruction does not change the flags.

Examples

 SEV ; Send Event

DocID028474 Rev 3 181/252

PM0253 The Cortex-M7 instruction set

182

3.12.10 SVC

Supervisor Call.

Syntax

SVC{cond} #imm

Where:

cond Is an optional condition code. See Conditional execution on page 68.

imm Is an expression evaluating to an integer in the range 0-255 (8-bit value).

Operation

The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to
determine what service is being requested.

Condition flags

This instruction does not change the flags.

Examples

 SVC #0x32 ; Supervisor Call (SVCall handler can extract the immediate
 ; value by locating it through the stacked PC)

3.12.11 WFE

Wait For Event.

Syntax

WFE{cond}

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Operation

WFE is a hint instruction.

If the event register is 0, WFE suspends execution until one of the following events occurs:

• An exception, unless masked by the exception mask registers or the current priority
level.

• An exception enters the Pending state, if SEVONPEND in the System Control register
is set.

• A Debug Entry request, if Debug is enabled.

• An event signaled by a peripheral or another processor in a multiprocessor system
using the SEV instruction.

If the event register is 1, WFE clears it to 0 and returns immediately.

For more information see Power management on page 50.

The Cortex-M7 instruction set PM0253

182/252 DocID028474 Rev 3

Condition flags

This instruction does not change the flags.

Examples

 WFE ; Wait for event

3.12.12 WFI

Wait for Interrupt.

Syntax

WFI{cond}

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Operation

WFI is a hint instruction that suspends execution until one of the following events occurs:

• A non-masked interrupt occurs and is taken.

• An interrupt masked by PRIMASK becomes pending.

• A Debug Entry request.

Condition flags

This instruction does not change the flags.

Examples

 WFI ; Wait for interrupt

DocID028474 Rev 3 183/252

PM0253 Cortex-M7 Peripherals

251

4 Cortex-M7 Peripherals

4.1 About the Cortex-M7 peripherals

The address map of the Private peripheral bus (PPB) is:

In the register descriptions:

• the register type is described as follows:

RW Read and write.

RO Read-only.

WO Write-only.

• the required privilege gives the privilege level required to access the register, as
follows:

Privileged

Only privileged software can access the register.

Unprivileged

Both unprivileged and privileged software can access the register.

 Attempting to access a privileged register from unprivileged software results in a BusFault.

Table 38. Core peripheral register regions

Address Core peripheral Description

0xE000E008-0xE000E00F System control block Table 49 on page 192

0xE000E010-0xE000E01F System timer Table 70 on page 213

0xE000E100-0xE000E4EF Nested Vectored Interrupt Controller Table 39 on page 184

0xE000ED00-0xE000ED3F System control block Table 49 on page 192

0xE000ED78- 0xE000ED84 Processor features Table 76 on page 217

0xE000ED90-0xE000EDB8 Memory Protection Unit Table 83 on page 222

0xE000EF00-0xE000EF03 Nested Vectored Interrupt Controller Table 39 on page 184

0xE000EF30-0xE000EF44 Floating-Point Unit Table 93 on page 233

0xE000EF50-0xE000EF78 Cache maintenance operations Table 99 on page 238

0xE000EF90-0xE000EFA8 Access control Table 103 on page 243

Cortex-M7 Peripherals PM0253

184/252 DocID028474 Rev 3

4.2 Nested Vectored Interrupt Controller

This section describes the NVIC and the registers it uses. The NVIC supports:

• 1 to 240 interrupts.

• A programmable priority level of 0-255 for each interrupt. A higher level corresponds to
a lower priority, so level 0 is the highest interrupt priority.

• Level and pulse detection of interrupt signals.

• Dynamic reprioritization of interrupts.

• Grouping of priority values into group priority and subpriority fields.

• Interrupt tail-chaining.

• An external Non Maskable Interrupt (NMI)

The processor automatically stacks its state on exception entry and unstacks this state on
exception exit, with no instruction overhead. This provides low latency exception handling.
The hardware implementation of the NVIC registers is:

Table 39. NVIC register summary

Address Name Type
Required

privilege

Reset

value
Description

0xE000E100-
0xE000E11C

NVIC_ISER0-
NVIC_ISER7

RW Privileged 0x00000000
Interrupt Set-enable registers on

page 185

0XE000E180-
0xE000E19C

NVIC_ICER0-
NVIC_ICER7

RW Privileged 0x00000000
Interrupt clear-enable registers on

page 186

0XE000E200-
0xE000E21C

NVIC_ISPR0-
NVIC_ISPR7

RW Privileged 0x00000000
Interrupt set-pending registers on

page 186

0XE000E280-
0xE000E29C

NVIC_ICPR0-
NVIC_ICPR7

RW Privileged 0x00000000
Interrupt clear-pending registers on

page 187

0xE000E300-
0xE000E31C

NVIC_IABR0-
NVIC_IABR7

RW Privileged 0x00000000
Interrupt Active Bit registers on

page 188

0xE000E400-
0xE000E4EF

NVIC_IPR0-
NVIC_IPR59

RW Privileged 0x00000000 Interrupt Priority registers on page 188

0xE000EF00 STIR WO Configurable(1) 0x00000000
Software Trigger Interrupt register on

page 189

1. See the register description for more information.

DocID028474 Rev 3 185/252

PM0253 Cortex-M7 Peripherals

251

4.2.1 Accessing the Cortex®-M7 NVIC registers using CMSIS

CMSIS functions enable the software portability between different Cortex®-M profile
processors. To access the NVIC registers when using CMSIS, use the following functions:

4.2.2 Interrupt Set-enable registers

The NVIC_ISER0-NVIC_ISER7 registers enable interrupts, and show which interrupts are
enabled. See the register summary in Table 39 on page 184 for the register attributes.

The bit assignments are:

Figure 17. ISER bit assignments

Table 40. CMSIS access NVIC functions

CMSIS function Description

void NVIC_EnableIRQ(IRQn_Type IRQn)(1)

1. The input parameter IRQn is the IRQ number, see Table 18 on page 40 for more information.

Enables an interrupt or exception.

void NVIC_DisableIRQ(IRQn_Type IRQn)(1) Disables an interrupt or exception.

void NVIC_SetPendingIRQ(IRQn_Type
IRQn)(1)

Sets the pending status of interrupt or
exception to 1.

void NVIC_ClearPendingIRQ(IRQn_Type
IRQn)(1)

Clears the pending status of interrupt or
exception to 0.

uint32_t NVIC_GetPendingIRQ(IRQn_Type
IRQn)(1)

Reads the pending status of interrupt or
exception. This function returns non-zero value
if the pending status is set to 1.

void NVIC_SetPriority(IRQn_Type IRQn,
uint32_t priority)(1)

Sets the priority of an interrupt or exception
with configurable priority level to 1.

uint32_t NVIC_GetPriority(IRQn_Type
IRQn)(1)

Reads the priority of an interrupt or exception
with configurable priority level. This function
return the current priority level.

Table 41. ISER bit assignments

Bits Name Function

[31:0] SETENA

Interrupt set-enable bits.

Write:

0: No effect.
1: Enable interrupt.

Read:

0: Interrupt disabled.
1: Interrupt enabled.

Cortex-M7 Peripherals PM0253

186/252 DocID028474 Rev 3

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an
interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending,
but the NVIC never activates the interrupt, regardless of its priority.

4.2.3 Interrupt clear-enable registers

The NVIC_ICER0-NVIC_ICER7 registers disable interrupts, and show which interrupts are
enabled. See the register summary in Table 39 on page 184 for the register attributes.

The bit assignments are:

Figure 18. ICER bit assignment

4.2.4 Interrupt set-pending registers

The NVIC_ISPR0-NVIC_ISPR7 registers force interrupts into the pending state, and show
which interrupts are pending. See the register summary in Table 39 on page 184 for the
register attributes.

The bit assignments are:

Figure 19. ISPR bit assignments

Table 42. ICER bit assignments

Bits Name Function

[31:0] CLRENA

Interrupt clear-enable bits.

Write:

0: No effect.
1: Disable interrupt.

Read:

0: Interrupt disabled.
1: Interrupt enabled.

DocID028474 Rev 3 187/252

PM0253 Cortex-M7 Peripherals

251

 Writing 1 to the ISPR bit corresponding to:

• An interrupt that is pending has no effect.

• A disabled interrupt sets the state of that interrupt to pending.

4.2.5 Interrupt clear-pending registers

The NVIC_ICPR0-NCVIC_ICPR7 registers remove the pending state from interrupts, and
show which interrupts are pending. See the register summary in Table 39 on page 184 for
the register attributes.

The bit assignments are:

Figure 20. ICPR bit assignments

 Writing 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

Table 43. ISPR bit assignments

Bits Name Function

[31:0] SETPEND

Interrupt set-pending bits.

Write:

0: No effect.
1: Changes interrupt state to pending.

Read:

0: Interrupt is not pending.
1: Interrupt is pending.

Table 44. ICPR bit assignments

Bits Name Function

[31:0] CLRPEND

Interrupt clear-pending bits.

Write:

0: No effect.
1: Removes pending state an interrupt.

Read:

0: Interrupt is not pending.
1: Interrupt is pending.

Cortex-M7 Peripherals PM0253

188/252 DocID028474 Rev 3

4.2.6 Interrupt Active Bit registers

The NVIC_IABR0-NVIC_IABR7 registers indicate which interrupts are active. See the
register summary in Table 39 on page 184 for the register attributes.

The bit assignments are:

Figure 21. IABR bit assignments

A bit is read as one if the status of the corresponding interrupt is active or active and
pending.

4.2.7 Interrupt Priority registers

The NVIC_IPR0-NVIC_IPR59 registers provide an 8-bit priority field for each interrupt.
These registers are byte-accessible. See the register summary in Table 39 on page 184 for
their attributes. Each register holds four priority fields as shown:

Figure 22. IPR bit assignments

Table 45. IABR bit assignments

Bits Name Function

[31:0] ACTIVE
Interrupt active flags:

0: Interrupt not active.
1: Interrupt active.

DocID028474 Rev 3 189/252

PM0253 Cortex-M7 Peripherals

251

See Accessing the Cortex®-M7 NVIC registers using CMSIS on page 185 for more
information about the access to the interrupt priority array, which provides the software view
of the interrupt priorities.

Find the IPR number and byte offset for interrupt m as follows:

• the corresponding IPR number, see Table 45 on page 188 n is given by n = m DIV 4

• the byte offset of the required Priority field in this register is m MOD 4, where:

– Byte offset 0 refers to register bits[7:0].

– Byte offset 1 refers to register bits[15:8].

– Byte offset 2 refers to register bits[23:16].

– Byte offset 3 refers to register bits[31:24].

4.2.8 Software Trigger Interrupt register

Write to the STIR to generate an interrupt from software. See the register summary in
Table 39 on page 184 for the STIR attributes.

When the USERSETMPEND bit in the SCR is set to 1, unprivileged software can access
the STIR, see System Control register on page 199.

 Only privileged software can enable unprivileged access to the STIR.

The bit assignments are:

Figure 23. STIR bit assignments

Table 46. IPR bit assignments

Bits Name Function

[31:24] Priority, byte offset 3

Each priority field holds a priority value, 0-255. The lower the
value, the greater the priority of the corresponding interrupt. The
processor implements only bits[7:n] of each field, bits[n-1:0] read
as zero and ignore writes.

[23:16] Priority, byte offset 2

[15:8] Priority, byte offset 1

[7:0] Priority, byte offset 0

Table 47. STIR bit assignments

Bits Field Function

[31:9] - Reserved.

[8:0] INTID
Interrupt ID of the interrupt to trigger, in the range 0-239. For
example, a value of 0x03 specifies interrupt IRQ3.

Cortex-M7 Peripherals PM0253

190/252 DocID028474 Rev 3

4.2.9 Level-sensitive and pulse interrupts

The processor supports both level-sensitive and pulse interrupts. The pulse interrupts are
also described as edge-triggered interrupts.

A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal.
Typically this happens because the ISR accesses the peripheral, causing it to clear the
interrupt request. A pulse interrupt is an interrupt signal sampled synchronously on the
rising edge of the processor clock. To ensure the NVIC detects the interrupt, the peripheral
must assert the interrupt signal for at least one clock cycle, during which the NVIC detects
the pulse and latches the interrupt.

When the processor enters the ISR, it automatically removes the pending state from the
interrupt, see Hardware and software control of interrupts on page 190. For a level-sensitive
interrupt, if the signal is not deasserted before the processor returns from the ISR, the
interrupt becomes pending again, and the processor must execute its ISR again. This
means that the peripheral can hold the interrupt signal asserted until it no longer requires
servicing.

Hardware and software control of interrupts

• The Cortex®-M7 latches all interrupts. A peripheral interrupt becomes pending for one
of the following reasons:

• The NVIC detects that the interrupt signal is HIGH and the interrupt is not active.

• The NVIC detects a rising edge on the interrupt signal.

• Software writes to the corresponding interrupt set-pending register bit, see Interrupt
set-pending registers on page 186, or to the STIR to make an interrupt pending, see
Software Trigger Interrupt register on page 189.

A pending interrupt remains pending until one of the following:

• The processor enters the ISR for the interrupt. This changes the state of the interrupt
from pending to active. Then:

– For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC
samples the interrupt signal. If the signal is asserted, the state of the interrupt
changes to pending, which might cause the processor to immediately re-enter the
ISR. Otherwise, the state of the interrupt changes to inactive.

– For a pulse interrupt, the NVIC continues to monitor the interrupt signal, and if this
is pulsed the state of the interrupt changes to pending and active. In this case,
when the processor returns from the ISR the state of the interrupt changes to
pending, which might cause the processor to immediately re-enter the ISR.

– If the interrupt signal is not pulsed while the processor is in the ISR, when the
processor returns from the ISR the state of the interrupt changes to inactive.

• The software writes to the corresponding interrupt clear-pending register bit.

For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the
interrupt does not change. Otherwise, the state of the interrupt changes to inactive.

For a pulse interrupt, the state of the interrupt changes to:

– Inactive, if the state was pending.

– Active, if the state was active and pending.

DocID028474 Rev 3 191/252

PM0253 Cortex-M7 Peripherals

251

4.2.10 NVIC design hints and tips

Ensure that the software uses correctly aligned register accesses. The processor does not
support unaligned accesses to NVIC registers. See the individual register descriptions for
the supported access sizes.

An interrupt can enter pending state even if it is disabled. Disabling an interrupt only
prevents the processor from taking that interrupt.

Before programming VTOR to relocate the vector table, ensure the vector table entries of
the new vector table are set up for fault handlers, NMI, and all enabled exception-like
interrupts. For more information see Vector Table Offset register on page 197.

NVIC programming hints

The software uses the CPSIE I and CPSID I instructions to enable and disable interrupts.
The CMSIS provides the following intrinsic functions for these instructions:

void __disable_irq(void) // Disable Interrupts
void __enable_irq(void) // Enable Interrupts

In addition, the CMSIS provides a number of functions for NVIC control, including:

The input parameter IRQn is the IRQ number, see Table 18 on page 40. For more
information about these functions see the CMSIS documentation.

Table 48. CMSIS functions for NVIC control

CMSIS interrupt control function Description

void NVIC_SetPriorityGrouping(uint32_t
priority_grouping)

Set the priority grouping

void NVIC_EnableIRQ(IRQn_t IRQn) Enable IRQn

void NVIC_DisableIRQ(IRQn_t IRQn) Disable IRQn

uint32_t NVIC_GetPendingIRQ (IRQn_t IRQn) Return true (IRQ-Number) if IRQn is
pending

void NVIC_SetPendingIRQ (IRQn_t IRQn) Set IRQn pending

void NVIC_ClearPendingIRQ (IRQn_t IRQn) Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQn) Return the IRQ number of the active
interrupt

void NVIC_SetPriority (IRQn_t IRQn,
uint32_t priority)

Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQn) Read priority of IRQn

Cortex-M7 Peripherals PM0253

192/252 DocID028474 Rev 3

4.3 System control block

The System Control Block (SCB) provides system implementation information, and system
control. This includes configuration, control, and reporting of the system exceptions. The
system control block registers are:

Table 49. Summary of the system control block registers

Address Name Type
Required

privilege

Reset

value
Description

0xE000E008 ACTLR RW Privileged 0x00000000 Auxiliary Control register on page 193

0xE000ED00 CPUID RO Privileged 0x410FC270 CPUID Base register on page 194

0xE000ED04 ICSR RW(1) Privileged 0x00000000 Interrupt Control and State register on page 194

0xE000ED08 VTOR RW Privileged Unknown Vector Table Offset register on page 197

0xE000ED0C AIRCR RW(1) Privileged 0xFA050000
Application Interrupt and Reset Control register on
page 197

0xE000ED10 SCR RW Privileged 0x00000000 System Control register on page 199

0xE000ED14 CCR RW Privileged 0x00000200 Configuration and Control register on page 200

0xE000ED18 SHPR1 RW Privileged 0x00000000 System Handler Priority register 1 on page 202

0xE000ED1C SHPR2 RW Privileged 0x00000000 System Handler Priority register 2 on page 203

0xE000ED20 SHPR3 RW Privileged 0x00000000 System Handler Priority register 3 on page 203

0xE000ED24 SHCRS RW Privileged 0x00000000
System Handler Control and State register on
page 204

0xE000ED28 CFSR RW Privileged 0x00000000 Configurable Fault Status register on page 205

0xE000ED28 MMSR(2) RW Privileged 0x00 MemManage Fault Address register on page 211

0xE000ED29 BFSR(2) RW Privileged 0x00 BusFault Status register on page 207

0xE000ED2A UFSR(2) RW Privileged 0x0000 Auxiliary Control register on page 193

0xE000ED2C HFSR RW Privileged 0x00000000 HardFault Status register on page 210

0xE000ED34 MMAR RW Privileged Unknown MemManage Fault Address register on page 211

0xE000ED38 BFAR RW Privileged Unknown BusFault Address register on page 212

0xE000ED3C AFSR RAZ/WI Privileged - Auxiliary Fault Status register not implemented

1. See the register description for more information.

2. A subregister of the CFSR.

DocID028474 Rev 3 193/252

PM0253 Cortex-M7 Peripherals

251

4.3.1 Auxiliary Control register

The ACTLR provides disable bits for the following processor functions:

• FPU exception outputs.

• Dual-issue functionality.

• Flushing of the trace output from the ITM and DWT.

• Dynamic read allocate mode.

By default this register is set to provide optimum performance from the Cortex®-M7
processor, and does not normally require modification.

See the register summary in Table 49 on page 192 for the ACTLR attributes. The bit
assignments are:

Figure 24. ACTLR bit assignments

Table 50. ACTLR bit assignments

Bits Name Function

[31:13] - Reserved

[12] DISITMATBFLUSH

Disables ITM and DWT ATB flush:

0: Normal operation.
1: ITM and DWT ATB flush disabled.

[11] DISRAMODE

Disables dynamic read allocate mode for Write-Back Write-Allocate
memory regions:

0: Normal operation.
1: Dynamic read allocate mode disabled.

[10] FPEXCODIS

Disables FPU exception outputs:

0: Normal operation.
1: FPU exception outputs are disabled.

[9:3] - Reserved.

[2] DISFOLD

Disables dual-issue functionality:

0: Normal operation.
1: Dual-issue functionality is disabled. Setting this bit decreases
performance.

[1:0] - Reserved.

Cortex-M7 Peripherals PM0253

194/252 DocID028474 Rev 3

4.3.2 CPUID Base register

The CPUID register contains the processor part number, version, and implementation
information. See the register summary in Table 49 on page 192 for its attributes. The bit
assignments are:

Figure 25. CPUID bit assignments

4.3.3 Interrupt Control and State register

The ICSR:

• provides:

– A set-pending bit for the Non Maskable Interrupt (NMI) exception.

– Set-pending and clear-pending bits for the PendSV and SysTick exceptions.

• indicates:

– The exception number of the exception being processed.

– Whether there are preempted active exceptions.

– The exception number of the highest priority pending exception

– Whether any interrupts are pending.

See the register summary in Table 49 on page 192, and the type descriptions in Table 52 on
page 195, for the ICSR attributes. The bit assignments are:

Table 51. CPUID bit assignments

Bits Name Function

[31:24] Implementer
Implementer code:

0x41 ARM

[23:20] Variant
Variant number, the r value in the rnpn product revision identifier:

0x0 Revision 0

[19:16] Constant Reads as 0xF

[15:4] PartNo
Part number of the processor:

0xC27: Cortex®-M7

[3:0] Revision
Revision number, the p value in the rnpn product revision identifier:

0x0: Patch 0

DocID028474 Rev 3 195/252

PM0253 Cortex-M7 Peripherals

251

Figure 26. ICSR bit assignments

Table 52. ICSR bit assignments

Bits Name Type Function

[31] NMIPENDSET RW

NMI set-pending bit.

Write:

0: No effect.
1: Changes NMI exception state to pending.

Read:

0: NMI exception is not pending.
1: NMI exception is pending.

Because NMI is the highest-priority exception, normally the processor
enters the NMI exception handler as soon as it registers a write of 1 to this
bit, and entering the handler clears this bit to 0. A read of this bit by the
NMI exception handler returns 1 only if the NMI signal is reasserted while
the processor is executing that handler.

[30:29] - - Reserved.

[28] PENDSVSET RW

PendSV set-pending bit.

Write:

0: No effect.
1: Changes PendSV exception state to pending.

Read:

0: PendSV exception is not pending.
1: PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV exception state to
pending.

[27] PENDSVCLR WO

PendSV clear-pending bit.

Write:

0: No effect.
1: Removes the pending state from the PendSV exception.

[26] PENDSTSET RW

SysTick exception set-pending bit.

Write:

0: No effect.
1: Changes SysTick exception state to pending.

Read:

0: SysTick exception is not pending.
1: SysTick exception is pending.

Cortex-M7 Peripherals PM0253

196/252 DocID028474 Rev 3

When writing to the ICSR, the effect is unpredictable if the user:

• Writes 1 to the PENDSVSET bit and writes 1 to the PENDSVCLR bit.

• Writes 1 to the PENDSTSET bit and writes 1 to the PENDSTCLR bit.

[25] PENDSTCLR WO

SysTick exception clear-pending bit.

Write:

0: No effect.
1: Removes the pending state from the SysTick exception.

This bit is WO. On a register read its value is Unknown.

[24] - - Reserved.

[23]
Reserved for Debug
use

RO
This bit is reserved for Debug use and reads-as-zero when the processor
is not in Debug.

[22] ISRPENDING RO
Interrupt pending flag, excluding NMI and Faults:

0: Interrupt not pending.
1: Interrupt pending.

[21] - - Reserved.

[20:12] VECTPENDING RO

Indicates the exception number of the highest priority pending enabled
exception:

0: No pending exceptions.
Nonzero: The exception number of the highest priority pending enabled
exception.

The value indicated by this field includes the effect of the BASEPRI and
FAULTMASK registers, but not any effect of the PRIMASK register.

[11] RETTOBASE RO

Indicates whether there are preempted active exceptions:

0: There are preempted active exceptions to execute.
1: There are no active exceptions, or the currently-executing exception
is the only active exception.

[10:9] - - Reserved.

[8:0] VECTACTIVE(1) RO

Contains the active exception number:

0: Thread mode
1: The exception number(1) of the currently active exception.

Subtract 16 from this value to obtain the CMSIS IRQ number required to
index into the Interrupt Clear-Enable, Set-Enable, Clear-Pending, Set-
Pending, or Priority Registers, see Table 5 on page 24.

1. This is the same value as IPSR bits[8:0], see Interrupt Program Status register on page 23.

Table 52. ICSR bit assignments (continued)

Bits Name Type Function

DocID028474 Rev 3 197/252

PM0253 Cortex-M7 Peripherals

251

4.3.4 Vector Table Offset register

The VTOR indicates the offset of the vector table base address from memory address
0x00000000. See the register summary in Table 49 on page 192 for its attributes. The bit
assignments are:

Figure 27. VTOR bit assignments

When setting TBLOFF, the user must align the offset to the number of exception entries in
the vector table.

The table alignment requirements mean that bits [8:0] of the table offset are always zero.

4.3.5 Application Interrupt and Reset Control register

The AIRCR provides priority grouping control for the exception model, endian status for data
accesses, and reset control of the system. See the register summary in Table 49 on
page 192 and Table 54 on page 198 for its attributes.

To write to this register, the user must write 0x5FA to the VECTKEY field, otherwise the
processor ignores the write.

The bit assignments are:

Figure 28. AIRCR bit assignments

Table 53. VTOR bit assignments

Bits Name Function

[31:9] TBLOFF
Vector table base offset field. It contains bits [29:7] of the offset of the table base
from the bottom of the memory map.

[8:0] - Reserved.

Cortex-M7 Peripherals PM0253

198/252 DocID028474 Rev 3

Binary point

The PRIGROUP field indicates the position of the binary point that splits the PRI_n fields in
the Interrupt Priority Registers into separate group priority and subpriority fields. Table 55
shows how the PRIGROUP value controls this split.

If the user implements fewer than 8 priority bits he might require more explanation here, and
want to remove invalid rows from the table, and modify the entries in the number of
columns.

Table 54. AIRCR bit assignments

Bits Name Type Function

[31:16]
Read:
VECTKEYSTAT

Write: VECTKEY
RW

Register key:

Reads as 0xFA05

On writes, write 0x5FA to VECTKEY, otherwise the write is
ignored.

[15] ENDIANNESS RO
Data endianness bit:

0: Little-endian.

[14:11] - - Reserved

[10:8] PRIGROUP RW
Interrupt priority grouping field. This field determines the split
of group priority from subpriority, see Binary point.

[7:3] - - Reserved.

[2] SYSRESETREQ WO

System reset request:

0: No system reset request.
1: Asserts a signal to the outer system that requests a reset.

This is intended to force a large system reset of all major
components except for debug.

This bit reads as 0.

[1] VECTCLRACTIVE WO
Reserved for Debug use. This bit reads as 0. When writing to
the register the user must write 0 to this bit, otherwise
behavior is Unpredictable.

[0] VECTRESET WO
Reserved for Debug use. This bit reads as 0. When writing to
the register the user must write 0 to this bit, otherwise
behavior is Unpredictable.

Table 55. Priority grouping

Interrupt priority level value, PRI_N[7:0] Number of

PRIGROUP Binary point(1) Group priority
bits

Subpriority
bits

Group
priorities

Subpriorities

0b000 bxxxxxxx.y [7:1] [0] 128 2

0b001 bxxxxxx.yy [7:2] [1:0] 64 4

0b010 bxxxxx.yyy [7:3] [2:0] 32 8

0b011 bxxxx.yyyy [7:4] [3:0] 16 16

0b100 bxxx.yyyyy [7:5] [4:0] 8 32

DocID028474 Rev 3 199/252

PM0253 Cortex-M7 Peripherals

251

Note: Determining preemption of an exception uses only the group priority field, see Interrupt
priority grouping on page 43.

4.3.6 System Control register

The SCR controls features of entry to and exit from Low-power state. See the register
summary in Table 49 on page 192 for its attributes. The bit assignments are

Figure 29. SCR bit assignments:

0b101 bxx.yyyyyy [7:6] [5:0] 4 64

0b110 bx.yyyyyyy [7] [6:0] 2 128

0b111 b.yyyyyyyy None [7:0] 1 256

1. PRI_n[7:0] field showing the binary point. x denotes a group priority field bit, and y denotes a subpriority
field bit.

Table 55. Priority grouping (continued)

Interrupt priority level value, PRI_N[7:0] Number of

PRIGROUP Binary point(1) Group priority
bits

Subpriority
bits

Group
priorities

Subpriorities

Table 56. SCR bit assignments

Bits Name Function

[31:5] - Reserved.

[4] SEVONPEND

Send Event on Pending bit:

0: Only enabled interrupts or events can wakeup the processor,
disabled interrupts are excluded.
1: Enabled events and all interrupts, including disabled interrupts, can
wakeup the processor.

When an event or interrupt enters pending state, the event signal wakes
up the processor from WFE. If the processor is not waiting for an event,
the event is registered and affects the next WFE.

The processor also wakes up on execution of an SEV instruction or an
external event.

[3] - Reserved.

Cortex-M7 Peripherals PM0253

200/252 DocID028474 Rev 3

4.3.7 Configuration and Control register

The CCR controls entry to Thread mode and enables:

• The handlers for NMI, hard fault and faults escalated by FAULTMASK to ignore
BusFaults.

• Trapping of divide by zero and unaligned accesses.

• Access to the STIR by unprivileged software, see Software Trigger Interrupt register on
page 189.

• Instruction and data cache enable control.

See the register summary in Table 49 on page 192 for the CCR attributes.

The bit assignments are:

Figure 30. CCR bit assignments

[2] SLEEPDEEP

Controls whether the processor uses sleep or deep sleep as its Low-
power mode:

0: Sleep.
1: Deep sleep.

[1] SLEEPONEXIT

Indicates sleep-on-exit when returning from Handler mode to Thread
mode:

0: Do not sleep when returning to Thread mode.
1: Enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt driven application to avoid
returning to an empty main application.

[0] - Reserved.

Table 56. SCR bit assignments (continued)

Bits Name Function

DocID028474 Rev 3 201/252

PM0253 Cortex-M7 Peripherals

251

Table 57. CCR bit assignments

Bits Name Type Function

[31:19] - - Reserved.

[18] BP RO Always reads-as-one. It indicates branch prediction is enabled.

[17] IC RW
Enables L1 instruction cache:

0: L1 instruction cache disabled.
1: L1 instruction cache enabled.

[16] DC RW
Enables L1data cache:

0: L1 data cache disabled.
1: L1 data cache enabled.

[15:10] - - Reserved.

[9] STKALIGN RO

Always reads-as-one. It indicates stack alignment on
exception entry is 8-byte aligned.

On exception entry, the processor uses bit[9] of the stacked
PSR to indicate the stack alignment. On return from the
exception it uses this stacked bit to restore the correct stack
alignment.

[8] BFHFNMIGN RW

Enables handlers with priority -1 or -2 to ignore data BusFaults
caused by load and store instructions. This applies to the hard
fault, NMI, and FAULTMASK escalated handlers:

0:Data bus faults caused by load and store instructions
cause a lock-up.
1: Handlers running at priority -1 and -2 ignore data bus
faults caused by load and store instructions.

Set this bit to 1 only when the handler and its data are in
absolutely safe memory. The normal use of this bit is to probe
system devices and bridges to detect control path problems
and fix them.

[7:5] - - Reserved.

[4] DIV_0_TRP RW

Enables faulting or halting when the processor executes an
SDIV or UDIV instruction with a divisor of 0:

0: Do not trap divide by 0.
1: Trap divide by 0.

When this bit is set to 0, a divide by zero returns a quotient of
0.

[3] UNALIGN_TRP RW

Enables unaligned access traps:

0: Do not trap unaligned halfword and word accesses.
1: Trap unaligned halfword and word accesses.

If this bit is set to 1, an unaligned access generates a
UsageFault.

Unaligned LDM, STM, LDRD, and STRD instructions always
fault irrespective of whether UNALIGN_TRP is set to 1.

[2] - - Reserved.

Cortex-M7 Peripherals PM0253

202/252 DocID028474 Rev 3

4.3.8 System Handler Priority registers

The SHPR1-SHPR3 registers set the priority level, 0 to 255 of the exception handlers that
have configurable priority.

SHPR1-SHPR3 are byte accessible. See the register summary in Table 49 on page 192 for
their attributes.

The system fault handlers and the priority field and register for each handler are:

Each PRI_n field is 8 bits wide, but the processor implements only bits[7:M] of each field,
and bits[M-1:0] read as zero and ignore writes.

System Handler Priority register 1

The bit assignments are:

Figure 31. SHPR1 bit assignements

[1] USERSETMPEND RW

Enables unprivileged software access to the STIR, see
Software Trigger Interrupt register on page 189:

0: Disable.
1: Enable.

[0]
NONBASETHRDE
NA

RW

Indicates how the processor enters Thread mode:

0: Processor can enter Thread mode only when no
exception is active.
1: Processor can enter Thread mode from any level under
the control of an EXC_RETURN value, see Exception
return on page 46.

Table 57. CCR bit assignments (continued)

Bits Name Type Function

Table 58. System fault handler priority fields

Handler Field Register description

MemManage PRI_4

System Handler Priority register 1BusFault PRI_5

UsageFault PRI_6

SVCall PRI_11 System Handler Priority register 2

PendSV PRI_14
System Handler Priority register 3

SysTick PRI_15

DocID028474 Rev 3 203/252

PM0253 Cortex-M7 Peripherals

251

System Handler Priority register 2

The bit assignments are:

Figure 32. SHPR2 bit assignments

System Handler Priority register 3

The bit assignments are:

Figure 33. SHPR3 bit assignments

Table 59. SHPR1 register bit assignments

Bits Name Function

[31:24] PRI_7 Reserved

[23:16] PRI_6 Priority of system handler 6, UsageFault

[15:8] PRI_5 Priority of system handler 5, BusFault

[7:0] PRI_4 Priority of system handler 4, MemManage

Table 60. SHPR2 register bit assignments

Bits Name Function

[31:24] PRI_11 Priority of system handler 11, SVCall

[23:0] - Reserved

Table 61. SHPR3 register bit assignments

Bits Name Function

[31:24] PRI_15 Priority of system handler 15, SysTick exception

[23:16] PRI_14 Priority of system handler 14, PendSV

[15:0] - Reserved

Cortex-M7 Peripherals PM0253

204/252 DocID028474 Rev 3

4.3.9 System Handler Control and State register

The SHCSR enables the system handlers, and indicates:

• The pending status of the BusFault, MemManage fault, and SVC exceptions.

• The active status of the system handlers.

See the register summary in Table 49 on page 192 for the SHCSR attributes. The bit
assignments are:

Figure 34. SHCSR bit assignments

Table 62. SHCSR bit assignments

Bits Name Function

[31:19] - Reserved

[18] USGFAULTENA UsageFault enable bit, set to 1 to enable(1)

[17] BUSFAULTENA BusFault enable bit, set to 1 to enable(1)

[16] MEMFAULTENA MemManage enable bit, set to 1 to enable(1)

[15] SVCALLPENDED SVCall pending bit, reads as 1 if exception is pending(2)

[14] BUSFAULTPENDED
BusFault exception pending bit, reads as 1 if exception is
pending(2)

[13] MEMFAULTPENDED
MemManage exception pending bit, reads as 1 if exception is
pending(2)

[12] USGFAULTPENDED
UsageFault exception pending bit, reads as 1 if exception is
pending(2)

[11] SYSTICKACT SysTick exception active bit, reads as 1 if exception is active(3)

[10] PENDSVACT PendSV exception active bit, reads as 1 if exception is active

[9] - Reserved

[8] MONITORACT Debug monitor active bit, reads as 1 if Debug monitor is active

[7] SVCALLACT SVCall active bit, reads as 1 if SVC call is active

[6:4] - Reserved

[3] USGFAULTACT UsageFault exception active bit, reads as 1 if exception is active

DocID028474 Rev 3 205/252

PM0253 Cortex-M7 Peripherals

251

If the user disables a system handler and the corresponding fault occurs, the processor
treats the fault as a hard fault.

The user can write to this register to change the pending or active status of system
exceptions. An OS kernel can write to the active bits to perform a context switch that
changes the current exception type.

 • A software that changes the value of an active bit in this register without correct
adjustment to the stacked content can cause the processor to generate a fault
exception. Ensure a software that writes to this register retains and subsequently
restores the current active status.

• After having enabled the system handlers, if the user has to change the value of a bit in
this register he must use a read-modify-write procedure to ensure that only the required
bit is changed.

4.3.10 Configurable Fault Status register

The CFSR indicates the cause of a MemManage fault, BusFault, or UsageFault. See the
register summary in Table 49 on page 192 for its attributes. The bit assignments are:

Figure 35. CFSR bit assignments

The following subsections describe the subregisters that make up the CFSR:

• MemManage Fault Status register on page 206.

• BusFault Status register on page 207.

• UsageFault Status register on page 209.

[2] - Reserved

[1] BUSFAULTACT BusFault exception active bit, reads as 1 if exception is active

[0] MEMFAULTACT MemManage exception active bit, reads as 1 if exception is active

1. Enable bits, set to 1 to enable the exception, or set to 0 to disable the exception.

2. Pending bits, read as 1 if the exception is pending, or as 0 if it is not pending. The user can write to these
bits to change the pending status of the exceptions.

3. Active bits, read as 1 if the exception is active, or as 0 if it is not active. The user can write to these bits to
change the active status of the exceptions, but see the Caution in this section.

Table 62. SHCSR bit assignments (continued)

Bits Name Function

Cortex-M7 Peripherals PM0253

206/252 DocID028474 Rev 3

The CFSR is byte accessible. The CFSR or its subregisters can be accessed as follows:

• Access the complete CFSR with a word access to 0xE000ED28.

• Access the MMFSR with a byte access to 0xE000ED28.

• Access the MMFSR and BFSR with a halfword access to 0xE000ED28.

• Access the BFSR with a byte access to 0xE000ED29.

• Access the UFSR with a halfword access to 0xE000ED2A.

MemManage Fault Status register

The flags in the MMFSR indicate the cause of memory access faults. The bit assignments
are:

Figure 36. MMFSR bit assignments

Table 63. MMFSR bit assignments

Bits Name Function

[7] MMARVALID

MemManage Fault Address register (MMFAR) valid flag:

0: Value in MMAR is not a valid fault address.
1: MMAR holds a valid fault address.

If a MemManage fault occurs and is escalated to a HardFault because of
priority, the HardFault handler must set this bit to 0. This prevents problems
on return to a stacked active MemManage fault handler whose MMAR value
has been overwritten.

[6] - Reserved.

[5] MLSPERR

0: No MemManage fault occurred during floating-point lazy state
preservation.
1: A MemManage fault occurred during floating-point lazy state
preservation.

[4] MSTKERR

MemManage fault on stacking for exception entry:

0: No stacking fault.
1: Stacking for an exception entry has caused one or more access
violations.

When this bit is 1, the SP is still adjusted but the values in the context area
on the stack might be incorrect. The processor has not written a fault address
to the MMAR.

DocID028474 Rev 3 207/252

PM0253 Cortex-M7 Peripherals

251

 The MMFSR bits are sticky. This means as one or more fault occurs, the associated bits are
set to 1. A bit that is set to 1 is cleared to 0 only by writing 1 to that bit, or by a reset.

BusFault Status register

The flags in the BFSR indicate the cause of a bus access fault. The bit assignments are:

Figure 37. BFSR bit assignments

[3] MUNSTKERR

MemManage fault on unstacking for a return from exception:

0: No unstacking fault.
1: Unstack for an exception return has caused one or more access
violations.

This fault is chained to the handler. This means that when this bit is 1, the
original return stack is still present. The processor has not adjusted the SP
from the failing return, and has not performed a new save. The processor
has not written a fault address to the MMAR.

[2] - Reserved

[1] DACCVIOL

Data access violation flag:

0: No data access violation fault.
1: The processor attempted a load or store at a location that does not
permit the operation.

When this bit is 1, the PC value stacked for the exception return points to the
faulting instruction. The processor has loaded the MMAR with the address of
the attempted access.

[0] IACCVIOL

Instruction access violation flag:

0: No instruction access violation fault.
1: The processor attempted an instruction fetch from a location that does
not permit execution.

This fault occurs on any access to an XN region, even when the MPU is
disabled or not present.

When this bit is 1, the PC value stacked for the exception return points to the
faulting instruction. The processor has not written a fault address to the
MMAR.

Table 63. MMFSR bit assignments (continued)

Bits Name Function

Cortex-M7 Peripherals PM0253

208/252 DocID028474 Rev 3

Table 64. BFSR bit assignments

Bits Name Function

[7] BFARVALID

BusFault Address register (BFAR) valid flag:

0: Value in BFAR is not a valid fault address.
1: BFAR holds a valid fault address.

The processor sets this bit to 1 after a BusFault where the address is known. Other
faults can set this bit to 0, such as a MemManage fault occurring later.

If a BusFault occurs and is escalated to a hard fault because of priority, the hard fault
handler must set this bit to 0. This prevents problems if returning to a stacked active
BusFault handler whose BFAR value has been overwritten.

[6] - Reserved.

[5] LSPERR
0: No bus fault occurred during floating-point lazy state preservation.
1: A bus fault occurred during floating-point lazy state preservation.

[4] STKERR

BusFault on stacking for exception entry:

0: No stacking fault.
1: Stacking for an exception entry has caused one or more BusFaults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the
context area on the stack might be incorrect. The processor does not write a fault
address to the BFAR.

[3] UNSTKERR

BusFault on unstacking for a return from exception:

0: No unstacking fault.
1: Unstack for an exception return has caused one or more BusFaults.

This fault is chained to the handler. This means that when the processor sets this bit
to 1, the original return stack is still present. The processor does not adjust the SP
from the failing return, does not performed a new save, and does not write a fault
address to the BFAR.

[2] IMPRECISERR

Imprecise data bus error:

0: No imprecise data bus error.
1: A data bus error has occurred, but the return address in the stack frame is not
related to the instruction that caused the error.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

This is an asynchronous fault. Therefore, if it is detected when the priority of the
current process is higher than the BusFault priority, the BusFault becomes pending
and becomes active only when the processor returns from all higher priority
processes. If a precise fault occurs before the processor enters the handler for the
imprecise BusFault, the handler detects both IMPRECISERR set to 1 and one of the
precise fault status bits set to 1.

[1] PRECISERR

Precise data bus error:

0: No precise data bus error.
1: A data bus error has occurred, and the PC value stacked for the exception return
points to the instruction that caused the fault.

When the processor sets this bit to 1, it writes the faulting address to the BFAR.

[0] IBUSERR

Instruction bus error:

0: No instruction bus error.
1: Instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it
sets the IBUSERR flag to 1 only if it attempts to issue the faulting instruction.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

DocID028474 Rev 3 209/252

PM0253 Cortex-M7 Peripherals

251

 The BFSR bits are sticky. This means as one or more fault occurs, the associated bits are
set to 1. A bit that is set to 1 is cleared to 0 only by writing 1 to that bit, or by a reset.

UsageFault Status register

The UFSR indicates the cause of a UsageFault. The bit assignments are:

Figure 38. UFSR bit assignments

Table 65. UFSR bit assignments

Bits Name Function

[15:10] - Reserved.

[9] DIVBYZERO

Divide by zero UsageFault:

0: No divide by zero fault, or divide by zero trapping not enabled.
1: The processor has executed an SDIV or UDIV instruction with a
divisor of 0.

When the processor sets this bit to 1, the PC value stacked for the
exception return points to the instruction that performed the divide by zero.

Enable trapping of divide by zero by setting the DIV_0_TRP bit in the CCR
to 1, see Configuration and Control register on page 200.

[8] UNALIGNED

Unaligned access UsageFault:

0: No unaligned access fault, or unaligned access trapping not enabled.
1: The processor has made an unaligned memory access.

Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit
in the CCR to 1, see Configuration and Control register on page 200.

Unaligned LDM, STM, LDRD, and STRD instructions always fault
irrespective of the setting of UNALIGN_TRP.

[7:4] - Reserved.

[3] NOCP

No coprocessor UsageFault:

0: No UsageFault caused by attempting to access a coprocessor.
1: The processor has attempted to access a coprocessor.

The processor does not support coprocessor instructions:

[2] INVPC

Invalid PC load UsageFault, caused by an invalid PC load by
EXC_RETURN:

0: No invalid PC load UsageFault.
1: The processor has attempted an illegal load of EXC_RETURN to the
PC, as a result of an invalid context, or an invalid EXC_RETURN value.

When this bit is set to 1, the PC value stacked for the exception return
points to the instruction that tried to perform the illegal load of the PC.

Cortex-M7 Peripherals PM0253

210/252 DocID028474 Rev 3

 The UFSR bits are sticky. This means as one or more fault occurs, the associated bits are
set to 1. A bit that is set to 1 is cleared to 0 only by writing 1 to that bit, or by a reset.

4.3.11 HardFault Status register

The HFSR gives information about events that activate the HardFault handler. See the
register summary in Table 49 on page 192 for its attributes.

This register is read, write to clear. This means that bits in the register read normally, but
writing 1 to any bit clears that bit to 0. The bit assignments are:

Figure 39. HFSR bit assignments

[1] INVSTATE

Invalid state UsageFault:

0: No invalid state UsageFault.
1: The processor has attempted to execute an instruction that makes
illegal use of the EPSR.

When this bit is set to 1, the PC value stacked for the exception return
points to the instruction that attempted the illegal use of the EPSR.

This bit is not set to 1 if an undefined instruction uses the EPSR.

[0] UNDEFINSTR

Undefined instruction UsageFault:

0: No undefined instruction UsageFault.
1: The processor has attempted to execute an undefined instruction.

When this bit is set to 1, the PC value stacked for the exception return
points to the undefined instruction.

An undefined instruction is an instruction that the processor cannot
decode.

Table 65. UFSR bit assignments (continued)

Bits Name Function

DocID028474 Rev 3 211/252

PM0253 Cortex-M7 Peripherals

251

 The HFSR bits are sticky. This means as one or more fault occurs, the associated bits are
set to 1. A bit that is set to 1 is cleared to 0 only by writing 1 to that bit, or by a reset.

4.3.12 MemManage Fault Address register

The MMFAR contains the address of the location that generated a MemManage fault. See
the register summary in Table 49 on page 192 for its attributes. The bit assignments are:

When an unaligned access faults, the address is the actual address that faulted. Because a
single read or write instruction can be split into multiple aligned accesses, the fault address
can be any address in the range of the requested access size.

Flags in the MMFSR indicate the cause of the fault, and whether the value in the MMFAR is
valid. See Configuration and Control register on page 200.

Table 66. HFSR bit assignments

Bits Name Function

[31] DEBUGEVT
Reserved for Debug use. When writing to the register the user must write 1 to
this bit, otherwise behavior is UNPREDICTABLE.

[30] FORCED

Indicates a forced hard fault, generated by escalation of a fault with
configurable priority that cannot be handled, either because of priority or
because it is disabled:

0: No forced HardFault.
1: Forced HardFault.

When this bit is set to 1, the HardFault handler must read the other fault status
registers to find the cause of the fault.

[29:2] - Reserved.

[1] VECTTBL

Indicates a BusFault on a vector table read during exception processing:

0: No BusFault on vector table read.
1: BusFault on vector table read.

This error is always handled by the hard fault handler.

When this bit is set to 1, the PC value stacked for the exception return points
to the instruction that was preempted by the exception.

[0] - Reserved.

Table 67. MMFAR bit assignments

Bits Name Function

[31:0] ADDRESS
When the MMARVALID bit of the MMFSR is set to 1, this field holds the
address of the location that generated the MemManage fault

Cortex-M7 Peripherals PM0253

212/252 DocID028474 Rev 3

4.3.13 BusFault Address register

The BFAR contains the address of the location that generated a BusFault. See the register
summary in Table 49 on page 192 for its attributes. The bit assignments are:

When an unaligned access faults the address in the BFAR is the one requested by the
instruction, even if it is not the address of the fault.

Flags in the BFSR indicate the cause of the fault, and whether the value in the BFAR is
valid. See Table 49 on page 192.

4.3.14 System control block design hints and tips

Ensure software uses aligned accesses of the correct size to access the system control
block registers:

• Except for the CFSR and SHPR1-SHPR3, it must use aligned word accesses.

• For the CFSR and SHPR1-SHPR3 it can use byte or aligned halfword or word
accesses.

The processor does not support unaligned accesses to system control block registers.

In a fault handler, to determine the true faulting address:

1. Read and save the MMFAR or BFAR value.

2. Read the MMARVALID bit in the MMFSR, or the BFARVALID bit in the BFSR. The
MMFAR or BFAR address is valid only if this bit is 1.

The software must follow this sequence because another higher priority exception might
change the MMFAR or BFAR value. For example, if a higher priority handler preempts the
current fault handler, the other fault might change the MMFAR or BFAR value.

In addition, the CMSIS provides a number of functions for system control, including:

4.4 System timer, SysTick

The processor has a 24-bit system timer, SysTick, that counts down from the reload value to
zero, reloads, that is wraps to, the value in the SYST_RVR register on the next clock edge,
then counts down on subsequent clocks.

 When the processor is halted for debugging the counter does not decrement.

The system timer registers are:

Table 68. BFAR bit assignments

Bits Name Function

[31:0] ADDRESS
When the BFARVALID bit of the BFSR is set to 1, this field holds the address of
the location that generated the BusFault

Table 69. CMSIS function for system control

CMSIS system control function Description

void NVIC_SystemReset (void) Reset the system

DocID028474 Rev 3 213/252

PM0253 Cortex-M7 Peripherals

251

4.4.1 SysTick Control and Status register

The SysTick SYST_CSR register enables the SysTick features. See the register summary
in Table 70 for its attributes. The bit assignments are:

Figure 40. SysTick SYST_CSR bit assignments

Table 70. System timer registers summary

Address Name Type
Required

privilege

Reset

value
Description

0xE000E010 SYST_CSR RW Privileged 0x00000004
SysTick Control and Status
register

0xE000E014 SYST_RVR RW Privileged UNKNOWN SysTick Reload Value register

0xE000E018 SYST_CVR RW Privileged UNKNOWN SysTick Current Value register

0xE000E01C SYST_CALIB RO Privileged 0xC0000000
SysTick Calibration Value
register

Table 71. SysTick SYST_CSR bit assignments

Bits Name Function

[31:17] - Reserved.

[16] COUNTFLAG Returns 1 if timer counted to 0 since last time this was read.

[15:3] - Reserved.

[2] CLKSOURCE

Indicates the clock source:

– 0: External clock.

– 1: Processor clock.

[1] TICKINT

Enables SysTick exception request:

0: Counting down to zero does not assert the SysTick exception
request.
1: Counting down to zero asserts the SysTick exception request.

Software can use COUNTFLAG to determine if SysTick has ever counted
to zero.

[0] ENABLE
Enables the counter:

0: Counter disabled.
1: Counter enabled.

Cortex-M7 Peripherals PM0253

214/252 DocID028474 Rev 3

When ENABLE is set to 1, the counter loads the RELOAD value from the SYST_RVR
register and then counts down. On reaching 0, it sets the COUNTFLAG to 1 and optionally
asserts the SysTick depending on the value of TICKINT. It then loads the RELOAD value
again, and begins counting.

4.4.2 SysTick Reload Value register

The SYST_RVR register specifies the start value to load into the SYST_CVR register. See
the register summary in Table 70 on page 213 for its attributes. The bit assignments are:

Figure 41. SYST_RVR bit assignments

Calculating the RELOAD value

The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. A start value
of 0 is possible, but has no effect because the SysTick exception request and COUNTFLAG
are activated when counting from 1 to 0.

The RELOAD value is calculated according to its use. For example, to generate a multi-shot
timer with a period of N processor clock cycles, use a RELOAD value of N-1. If the SysTick
interrupt is required every 100 clock pulses, set RELOAD to 99.

4.4.3 SysTick Current Value register

The SYST_CVR register contains the current value of the SysTick counter. See the register
summary in Table 70 on page 213 for its attributes. The bit assignments are

Figure 42. SYST_CVR bit assignments:

Table 72. SYST_RVR bit assignments

Bits Name Function

[31:24] - Reserved.

[23:0] RELOAD
Value to load into the SYST_CVR register when the counter is enabled and
when it reaches 0, see Calculating the RELOAD value.

DocID028474 Rev 3 215/252

PM0253 Cortex-M7 Peripherals

251

4.4.4 SysTick Calibration Value register

The SYST_CALIB register indicates the SysTick calibration properties. See the register
summary in Table 70 on page 213 for its attributes. The bit assignments are:

Figure 43. SYST_CALIB bit assignments

If the calibration information is not known, calculate the calibration value required from the
frequency of the processor clock or external clock.

Table 73. SYST_CVR bit assignments

Bits Name Function

[31:24] - Reserved.

[23:0] CURRENT
Reads return the current value of the SysTick counter.

A write of any value clears the field to 0, and also clears the SYST_CSR
COUNTFLAG bit to 0.

Table 74. SYST_CALIB bit assignments

Bits Name Function

[31] NOREF

Indicates whether the device provides a reference clock to the processor:

0: Reference clock provided.
1: No reference clock provided.

If the device does not provide a reference clock, the SYST_CSR.CLKSOURCE bit
reads-as-one and ignores writes.

[30] SKEW

Indicates whether the TENMS value is exact:

0: TENMS value is exact.
1: TENMS value is inexact, or not given.

An inexact TENMS value can affect the suitability of SysTick as a software real
time clock.

[29:24] - Reserved.

[23:0] TENMS
Reload value for 10ms (100Hz) timing, subject to system clock skew errors. If the
value reads as zero, the calibration value is not known.

Cortex-M7 Peripherals PM0253

216/252 DocID028474 Rev 3

4.4.5 SysTick design hints and tips

The SysTick counter runs on the processor clock. If this clock signal is stopped for Low-
power mode, the SysTick counter stops.

Ensure the software uses aligned word accesses to access the SysTick registers.

The SysTick counter reload and current value are undefined at reset, the correct
initialization sequence for the SysTick counter is:

1. Program reload value.

2. Clear current value.

3. Program Control and Status register.

In addition, the CMSIS provides a number of functions for SysTick control, including:

Table 75. CMSIS functions for SysTick control

CMSIS SysTick control function Description

uint32_t
SysTick_Config(uint32_t ticks)

Creates a periodic SysTick interrupt using the SysTick
timer, with a interval defined by the ticks parameter.

DocID028474 Rev 3 217/252

PM0253 Cortex-M7 Peripherals

251

4.5 Processor features

The processor features registers provide a software with cache configuration information.
The identification space registers are:

All the registers are only accessible by privileged loads and stores. Unprivileged accesses
to these registers result in a BusFault.

4.5.1 Cache Level ID register

The CLIDR identifies the type of cache, or caches, implemented at each level, and the level
of coherency and unification. See the register summary in Table 76 on page 217 for its
attributes. The bit assignments are:

Figure 44. CLIDR bit assignments

Table 76. Identification space summary

Address Name Type
Required

privilege

Reset

value
Description

0xE000ED78 CLIDR RO Privileged 0x09000003 Cache Level ID register

0xE000ED7C CTR RO Privileged 0x8303C003 Cache Type register on page 218

0xE000ED80 CCSIDR RO Privileged Unknown
Cache Size ID register on
page 219

0xE000ED84 CSSELR RW Privileged Unknown
Cache Size Selection register on
page 220

Table 77. CLIDR bit assignments

Bits Name Function

[31:30] - SBZ.

[29:27] LoU
Level of Unification.

0b001: Level 2, if either cache is implemented.
0b000:Level 1, if neither instruction nor data cache is implemented.

[26:24] LoC
Level of Coherency.

0b001: Level 2, if either cache is implemented.
0b000: Level 1, if neither instruction nor data cache is implemented.

[23:21] LoUIS RAZ.

[20:18] CL 7 0b000: No cache at CL 7.

[17:15] CL 6 0b000: No cache at CL 6.

Cortex-M7 Peripherals PM0253

218/252 DocID028474 Rev 3

4.5.2 Cache Type register

The CTR provides information about the cache architecture. See the register summary in
Table 76 on page 217 for its attributes. The bit assignments are:

Figure 45. CTR bit assignments

[14:12] CL 5 0b000: No cache at CL 5.

[11:9] CL 4 0b000: No cache at CL 4.

[8:6] CL 3 0b000: No cache at CL 3.

[5:3] CL 2 0b000: No cache at CL 2.

[2] CL 1 RAZ: Indicates no unified cache at CL1.

[1] CL 1
1: Data cache is implemented.
0: No data cache is implemented.

[0] CL 1
1: An instruction cache is implemented.
0: No instruction cache is implemented.

Table 77. CLIDR bit assignments (continued)

Bits Name Function

Table 78. CTR bit assignments

Bits Name Description

[31:29] Format
Register format.

0b100: ARMv7 register format.

[28] - Reserved, RAZ.

[27:24] CWG
Cache Writeback Granule.

0b0011: 8 word granularity for the Cortex®-M7 processor.

[23:20] ERG

Exclusives Reservation Granule.

0b0000: The local monitor within the processor does not hold any physical
address. It treats any STREX instruction access as matching the address of
the previous LDREX instruction. This means that the implemented exclusive
reservation granule is the entire memory address range.

[19:16] DMinLine
Smallest cache line of all the data and unified caches under the core control.

0b0011: 8 words for the Cortex®-M7 processor.

[15:14] - All bits RAO.

DocID028474 Rev 3 219/252

PM0253 Cortex-M7 Peripherals

251

4.5.3 Cache Size ID register

The CCSIDR identifies the configuration of the cache currently selected by the CSSELR. If
no instruction or data cache is configured, the corresponding CCSIDR is RAZ. See the
register summary in Table 76 on page 217 for its attributes. The bit assignments are:

Figure 46. CCSIDR bit assignments

The LineSize field is encoded as 2 less than log(2) of the number of words in the cache line.
For example, a value of 0x0 indicates there are four words in a cache line, that is the
minimum size for the cache. A value of 0x1 indicates there are eight words in a cache line.

[13:4] - Reserved, RAZ.

[3:0] IminLine
Smallest cache line of all the instruction caches under the control of the
processor.

0b0011: 8 words for the Cortex®-M7 processor.

Table 78. CTR bit assignments (continued)

Bits Name Description

Table 79. CCSIDR bit assignments

Bits Name Function(1)

1. See Table 80 on page 220 for valid bit field encodings.

[31] WT
Indicates support available for Write-Through:

1: Write-Through support available.

[30] WB
Indicates support available for Write-Back:

1: Write-Back support available.

[29] RA
Indicates support available for read allocation:

1: Read allocation support available.

[28] WA
Indicates support available for write allocation:

1: Write allocation support available.

[27:13] NumSets
Indicates the number of sets as:

(number of sets) - 1.

[12:3] Associativity
Indicates the number of ways as:

(number of ways) - 1.

[2:0] LineSize Indicates the number of words in each cache line.

Cortex-M7 Peripherals PM0253

220/252 DocID028474 Rev 3

Table 80 shows the individual bit field and complete register encodings for the CCSIDR. Use
this to determine the cache size for the L1 data or instruction cache selected by the Cache
Size Selection Register (CSSELR). See Cache Size Selection register.

4.5.4 Cache Size Selection register

The CSSELR selects the cache whose configuration is currently visible in the CCSIDR. See
the register summary in Table 76 on page 217 for its attributes The bit assignments are:

Figure 47. CSSELR bit assignments

Table 80. CCSIDR encodings

CSSELR Cache Size
Complete
register

encoding

Register bit field encoding

WT WB RA WA NumSets
Assoc
iativit

y
LineSize

0x0
Data
cache

4 Kbytes 0xF003E019

1 1 1 1

0x001F

0x3 0x1

8 Kbytes 0xF007E019 0x003F

16 Kbytes 0xF00FE019 0x007F

32 Kbytes 0xF01FE019 0x00FF

64 Kbytes 0xF03FE019 0x01FF

0x1
Instruction
cache

4 Kbytes 0xF007E009

1 1 1 1

0x003F

0x1 0x1

8 Kbytes 0xF00FE009 0x007F

16 Kbytes 0xF01FE009 0x00FF

32 Kbytes 0xF03FE009 0x01FF

64 Kbytes 0xF07FE009 0x03FF

Table 81. CSSELR bit assignments

Bit Name Description

[31:4] - RESERVED

[3:1] Level

Identifies the cache level selected.

0b000: Level 1 cache.

This field is read only, writes are ignored.

[0] InD
Enables selection of instruction or data cache:

0: Data cache.
1: Instruction cache.

DocID028474 Rev 3 221/252

PM0253 Cortex-M7 Peripherals

251

4.6 Memory Protection Unit

The Memory Protection Unit (MPU) divides the memory map into a number of regions, and
defines the location, size, access permissions, and memory attributes of each region. It
supports:

• Independent attribute settings for each region.

• Overlapping regions.

• Export of memory attributes to the system.

The memory attributes affect the behavior of memory accesses to the region. The Cortex®-
M7 MPU defines:

• 8 or 16 separate memory regions, 0-7 or 0-15.

• A background region.

When memory regions overlap, a memory access is affected by the attributes of the region
with the highest number. For example, the attributes for region 7 take precedence over the
attributes of any region that overlaps region 7.

The background region has the same memory access attributes as the default memory
map, but is accessible from privileged software only.

The Cortex®-M7 MPU memory map is unified. This means instruction accesses and data
accesses have same region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor
generates a MemManage fault. This causes a fault exception, and might cause termination
of the process in an OS environment. In an OS environment, the kernel can update the MPU
region setting dynamically based on the process to be executed. Typically, an embedded
OS uses the MPU for memory protection.

The configuration of MPU regions is based on memory types, see Memory regions, types
and attributes on page 33.

Table 82 shows the possible MPU region attributes. These include Shareability and cache
behavior attributes that are generally only relevant when the processor is configured with
caches.

Table 82. Memory attributes summary

Memory
type

Shareability Other attributes Description

Strongly-
ordered

- -
All accesses to Strongly-ordered memory occur
in program order. All Strongly-ordered regions
are assumed to be shared.

Device Shared -
Memory-mapped peripherals that several
processors share.

- Non-shared -
Memory-mapped peripherals that only a single
processor uses.

Cortex-M7 Peripherals PM0253

222/252 DocID028474 Rev 3

Use the MPU registers to define the MPU regions and their attributes. The MPU registers
are:

Normal Shared
Non-cacheable Write-
through Cacheable
Write-back Cacheable

Normal memory that is shared between several
processors.

- Non-shared
Non-cacheable Write-
through Cacheable
Write-back Cacheable

Normal memory that only a single processor
uses.

Table 82. Memory attributes summary (continued)

Memory
type

Shareability Other attributes Description

Table 83. MPU registers summary

Address Name Type
Required

privilege

Reset

value
Description

0xE000ED90 MPU_TYPE RO Privileged 0x00000800 MPU Type register on page 223

0xE000ED94 MPU_CTRL RW Privileged 0x00000000 MPU Control register on page 223

0xE000ED98 MPU_RNR RW Privileged Unknown MPU Region Number register on page 225

0xE000ED9C MPU_RBAR RW Privileged Unknown
MPU Region Base Address register on
page 225

0xE000EDA0 MPU_RASR RW Privileged -(1) MPU Region Attribute and Size register on
page 226

0xE000EDA4 MPU_RBAR_A1 RW Privileged Unknown
Alias of RBAR, see MPU Region Base
Address register on page 225

0xE000EDA8 MPU_RASR_A1 RW Privileged -(1) Alias of RASR, see MPU Region Attribute
and Size register on page 226

0xE000EDAC MPU_RBAR_A2 RW Privileged Unknown
Alias of RBAR, see MPU Region Base
Address register on page 225

0xE000EDB0 MPU_RASR_A2 RW Privileged -(1) Alias of RASR, see MPU Region Attribute
and Size register on page 226

0xE000EDB4 MPU_RBAR_A3 RW Privileged Unknown
Alias of RBAR, see MPU Region Base
Address register on page 225

0xE000EDB8 MPU_RASR_A3 RW Privileged -(1) Alias of RASR, see MPU Region Attribute
and Size register on page 226

1. Unknown apart from the ENABLE field, which is reset to 0.

DocID028474 Rev 3 223/252

PM0253 Cortex-M7 Peripherals

251

4.6.1 MPU Type register

The MPU_TYPE register indicates whether the MPU is present, and if so, how many
regions it supports. If the MPU is not present the MPU_TYPE register is RAZ. See the
register summary in Table 83 for its attributes. The bit assignments are:

Figure 48. TYPE bit assignments

4.6.2 MPU Control register

The MPU_CTRL register:

• Enables the MPU.

• Enables the default memory map background region.

• Enables use of the MPU when in the hard fault, Non Maskable Interrupt (NMI), and
FAULTMASK escalated handlers.

See the register summary in Table 83 on page 222 for the MPU_CTRL attributes. The bit
assignments are:

Figure 49. MPU_CTRL bit assignments

Table 84. TYPE bit assignments

Bits Name Function

[31:24] - Reserved.

[23:16] IREGION
Indicates the number of supported MPU instruction regions.

Always contains 0x00. The MPU memory map is unified and is described
by the DREGION field.

[15:8] DREGION
Indicates the number of supported MPU data regions:

0x08: 8 MPU regions.
0x0F: 16 MPU regions.

[7:1] - Reserved.

[0] SEPARATE
Indicates support for unified or separate instruction and date memory maps:

0: Unified.

Cortex-M7 Peripherals PM0253

224/252 DocID028474 Rev 3

When ENABLE and PRIVDEFENA are both set to 1:

• For privileged accesses, the default memory map is as described in Cortex®-M7
configurations on page 30. Any access by privileged software that does not address an
enabled memory region behaves as defined by the default memory map.

• Any access by unprivileged software that does not address an enabled memory region
causes a MemManage fault.

XN and Strongly-ordered rules always apply to the System Control Space regardless of the
value of the ENABLE bit.

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled
for the system to function unless the PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is
set to 1 and no regions are enabled, then only privileged software can operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the
same memory attributes as if the MPU is not implemented, see Table 76 on page 217. The
default memory map applies to accesses from both privileged and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are
always permitted. Other areas are accessible based on regions and whether PRIVDEFENA
is set to 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the
handler for an exception with priority –1 or –2. These priorities are only possible when
handling a hard fault or NMI exception, or when FAULTMASK is enabled. Setting the
HFNMIENA bit to 1 enables the MPU when operating with these two priorities.

Table 85. MPU_CTRL bit assignments

Bits Name Function

[31:3] - Reserved.

[2] PRIVDEFENA

Enables privileged software access to the default memory map:

0: If the MPU is enabled, disables use of the default memory map. Any
memory access to a location not covered by any enabled region causes a
fault.
1: If the MPU is enabled, enables use of the default memory map as a
background region for privileged software accesses.

When enabled, the background region acts as if it is region number -1. Any
region that is defined and enabled has priority over this default map.

If the MPU is disabled, the processor ignores this bit.

[1] HFNMIENA

Enables the operation of MPU during hard fault, NMI, and FAULTMASK
handlers.

When the MPU is enabled:

0: MPU is disabled during hard fault, NMI, and FAULTMASK handlers,
regardless of the value of the ENABLE bit.
1: The MPU is enabled during hard fault, NMI, and FAULTMASK handlers.
When the MPU is disabled, if this bit is set to 1 the behavior is
Unpredictable.

[0] ENABLE
Enables the MPU:

0: MPU disabled.
1: MPU enabled.

DocID028474 Rev 3 225/252

PM0253 Cortex-M7 Peripherals

251

4.6.3 MPU Region Number register

The MPU_RNR selects which memory region is referenced by the MPU_RBAR and
MPU_RASR registers. See the register summary in Table 76 on page 217 for its attributes.
The bit assignments are:

Figure 50. MPU_RNR bit assignments

Normally, the user writes the required region number to this register before accessing the
MPU_RBAR or MPU_RASR. However the region number can be changed by writing to the
MPU RBAR with the VALID bit set to 1, see MPU Region Base Address register. This write
updates the value of the REGION field.

4.6.4 MPU Region Base Address register

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR,
and can update the value of the MPU_RNR. See the register summary in Table 83 on
page 222 for its attributes.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and
update the MPU_RNR. See the register summary in Table 83 on page 222 for its attributes.
The bit assignments are

Figure 51. MPU_RBAR bit assignments:

Table 86. MPU_RNR bit assignments

Bits Name Function

[31:8] - Reserved.

[7:0] REGION

Indicates the MPU region referenced by the MPU_RBAR and MPU_RASR
registers.

The MPU supports 8 or 16 memory regions, so the permitted values of this field
are 0-7 or 0-15.

Cortex-M7 Peripherals PM0253

226/252 DocID028474 Rev 3

The ADDR field

The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified by the SIZE
field in the MPU_RASR, defines the value of N:

 N = Log2(Region size in bytes),

If the region size is configured to 4 Gbytes, in the MPU_RASR, there is no valid ADDR field.
In this case, the region occupies the complete memory map, and the base address is
0x00000000.

The base address is aligned to the size of the region. For example, a 64KB region must be
aligned on a multiple of 64KB, for example, at 0x00010000 or 0x00020000.

4.6.5 MPU Region Attribute and Size register

The MPU_RASR defines the region size and memory attributes of the MPU region specified
by the MPU_RNR, and enables that region and any subregions. See the register summary
in Table 83 on page 222 for its attributes.

MPU_RASR is accessible using word accesses:

• The most significant halfword holds the region attributes.

• The least significant halfword holds the region size and the region and subregion
enable bits.

The bit assignments are:

Table 87. MPU_RBAR bit assignments

Bits Name Function

[31:N] ADDR
Region base address field. The value of N depends on the region size. For
more information see The ADDR field.

[(N-1):5] - Reserved.

[4] VALID

MPU Region Number valid bit:

Write:

0: MPU_RNR not changed, and the processor:
Updates the base address for the region specified in the MPU_RNR
Ignores the value of the REGION field
1: The processor:
Updates the value of the MPU_RNR to the value of the REGION field
Updates the base address for the region specified in the REGION field.
Always reads as zero.

[3:0] REGION

MPU region field:

For the behavior on writes, see the description of the VALID field.

On reads, returns the current region number, as specified by the RNR.

DocID028474 Rev 3 227/252

PM0253 Cortex-M7 Peripherals

251

Figure 52. MPU_RASR bit assignments

For information about access permission, see MPU access permission attributes on page 228.

SIZE field values

The SIZE field defines the size of the MPU memory region specified by the RNR. as follows:

 (Region size in bytes) = 2(SIZE+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. Table 89
gives example SIZE values, with the corresponding region size and value of N in the
MPU_RBAR.

Table 88. MPU_RASR bit assignments

Bits Name Function

[31:29] - Reserved.

[28] XN
Instruction access disable bit:

0: Instruction fetches enabled.
1: Instruction fetches disabled.

[27] - Reserved.

[26:24] AP Access permission field, see Table 92 on page 229.

[23:22] - Reserved.

[21:19, 17, 16] TEX, C, B Memory access attributes, see Table 90 on page 228.

[18] S Shareable bit, see Table 90 on page 228.

[15:8] SRD

Subregion disable bits. For each bit in this field:

0: Corresponding sub-region is enabled.
1: Corresponding sub-region is disabled.

See Subregions on page 231 for more information.

Region sizes of 128 bytes and less do not support subregions. When
writing the attributes for such a region, write the SRD field as 0x00.

[7:6] - Reserved.

[5:1] SIZE
Specifies the size of the MPU protection region. The minimum
permitted value is 4 (0b00100), see SIZE field values for more
information.

[0] ENABLE Region enable bit.

Cortex-M7 Peripherals PM0253

228/252 DocID028474 Rev 3

4.6.6 MPU access permission attributes

This section describes the MPU access permission attributes. The access permission bits,
TEX, C, B, S, AP, and XN, of the RASR, control access to the corresponding memory
region. If an access is made to an area of memory without the required permissions, then
the MPU generates a permission fault. Table 90 shows encodings for the TEX, C, B, and S
access permission bits.

Table 89. Example SIZE field values

SIZE value Region size Value of N(1)

1. In the MPU_RBAR, see MPU Region Base Address register on page 225.

Note

0b00100 (4) 32 Bytes 5 Minimum permitted size

0b01001 (9) 1 Kbyte 10 -

0b10011 (19) 1 Mbyte 20 -

0b11101 (29) 1 Gbyte 30 -

0b11111 (31) 4 Gbytes 32 Maximum possible size

Table 90. TEX, C, B, and S encoding

TEX C B S Memory type Shareability Other attributes

0b000

0
0 x(1) Strongly-

ordered
Shareable -

1 x(1) Device Shareable -

1

0
0

Normal

Not
shareable Outer and inner write-through. No write

allocate.
1 Shareable

1
0

Normal

Not
shareable Outer and inner write-back. No write

allocate.
1 Shareable

0b001

0
0

0
Normal

Not
shareable Outer and inner noncacheable.

1 Shareable

1 x(1) Reserved encoding -

1

0 x(1) Implementation defined
attributes.

-

1
0

Normal

Not
shareable Outer and inner write-back. Write and

read allocate.
1 Shareable

0b010
0

0 x(1) Device
Not
shareable

Nonshared Device.

1 x(1) Reserved encoding -

1 x(1) x(1) Reserved encoding -

DocID028474 Rev 3 229/252

PM0253 Cortex-M7 Peripherals

251

Table 91 shows the cache policy for memory attribute encodings with a TEX value is in the
range 4-7.

Table 92 shows the AP encodings that define the access permissions for privileged and
unprivileged software.

0b1BB A A
0

Normal

Not
shareable

Cached memory, BB = outer policy,
AA = inner policy. See Table 91 on
page 229 for the encoding of the AA and
BB bits.1 Shareable

1. The MPU ignores the value of this bit.

Table 91. Cache policy for memory attribute encoding

Encoding, AA or BB Corresponding cache policy

00 Non-cacheable

01 Write back, write and read allocate

10 Write through, no write allocate

11 Write back, no write allocate

Table 92. AP encoding

AP[2:0]
Privileged

permissions

Unprivileged

permissions
Description

000 No access No access All accesses generate a permission fault

001 RW No access Access from privileged software only

010 RW RO
Writes by unprivileged software generate a permission
fault

011 RW RW Full access

100 Unpredictable Unpredictable Reserved

101 RO No access Reads by privileged software only

110 RO RO Read only, by privileged or unprivileged software

111 RO RO Read only, by privileged or unprivileged software

Table 90. TEX, C, B, and S encoding (continued)

TEX C B S Memory type Shareability Other attributes

Cortex-M7 Peripherals PM0253

230/252 DocID028474 Rev 3

4.6.7 MPU mismatch

When an access violates the MPU permissions, the processor generates a MemManage
fault, see Exceptions and interrupts on page 28. The MMFSR indicates the cause of the
fault. See MemManage Fault Status register on page 206 for more information.

4.6.8 Updating an MPU region

To update the attributes for an MPU region, update the MPU_RNR, MPU_RBAR and
MPU_RASR registers. It is possible to program each register separately, or use a multiple-
word write to program all of these registers. The MPU_RBAR and MPU_RASR aliases can
be used to program up to four regions simultaneously using an STM instruction.

Updating an MPU region using separate words

Simple code to configure one region:

; R1 = region number
; R2 = size/enable
; R3 = attributes
; R4 = address
LDR R0,=MPU_RNR ; 0xE000ED98, MPU region number register
STR R1, [R0, #0x0] ; Region Number
STR R4, [R0, #0x4] ; Region Base Address
STRH R2, [R0, #0x8] ; Region Size and Enable
STRH R3, [R0, #0xA] ; Region Attribute

Disable a region before writing new region settings to the MPU if the region being changed,
has been previously enabled. For example:

; R1 = region number
; R2 = size/enable
; R3 = attributes
; R4 = address
LDR R0,=MPU_RNR ; 0xE000ED98, MPU region number register
STR R1, [R0, #0x0] ; Region Number
BIC R2, R2, #1 ; Disable
STRH R2, [R0, #0x8] ; Region Size and Enable
STR R4, [R0, #0x4] ; Region Base Address
STRH R3, [R0, #0xA] ; Region Attribute
ORR R2, #1 ; Enable
STRH R2, [R0, #0x8] ; Region Size and Enable

The software must use memory barrier instructions:

• Before MPU setup if there might be outstanding memory transfers, such as buffered
writes, that might be affected by the change in MPU settings.

• After MPU setup if it includes memory transfers that must use the new MPU settings.

The software does not require any memory barrier instructions during MPU setup, because
it accesses the MPU through the PPB, which is a Strongly-ordered memory region.

For example, if it is required that all of the memory access behavior to take effect
immediately after the programming sequence, use a DSB instruction and an ISB instruction.
A DSB is required after changing MPU settings, such as at the end of context switch. An ISB
is required if the code that programs the MPU region or regions is entered using a branch or
call. If the programming sequence is entered by taking an exception and the programming
sequence is exited by using a return from exception then an ISB instruction is not required.

DocID028474 Rev 3 231/252

PM0253 Cortex-M7 Peripherals

251

Updating an MPU region using multi-word writes

The user can program directly using multi-word writes, depending on how the information is
divided. Consider the following reprogramming:

; R1 = region number
; R2 = address
; R3 = size, attributes in one
LDR R0, =MPU_RNR ; 0xE000ED98, MPU region number register
STR R1, [R0, #0x0] ; Region Number
STR R2, [R0, #0x4] ; Region Base Address
STR R3, [R0, #0x8] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:

; R1 = region number
; R2 = address
; R3 = size, attributes in one
LDR R0, =MPU_RNR ; 0xE000ED98, MPU region number register
STM R0, {R1-R3} ; Region Number, address, attribute, size and enable

The user can do this in two words for pre-packed information. This means that the
MPU_RBAR contains the required region number and had the VALID bit set to 1, see MPU
Region Base Address register on page 225. Use this when the data is statically packed, for
example in a boot loader:

; R1 = address and region number in one
; R2 = size and attributes in one
LDR R0, =MPU_RBAR ; 0xE000ED9C, MPU Region Base register.
STR R1, [R0, #0x0] ; Region base address and region number combined
 ; with VALID (bit 4) set to 1.
STR R2, [R0, #0x4] ; Region Attribute, Size and Enable.

Subregions

Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the
corresponding bit in the SRD field of the MPU_RASR to disable a subregion, see MPU
Region Attribute and Size register on page 226. The least significant bit of SRD controls the
first subregion, and the most significant bit controls the last subregion. Disabling a
subregion means another region overlapping the disabled range matches instead. If no
other enabled region overlaps the disabled subregion, and the access is unprivileged or the
background region is disabled, the MPU issues a fault.

Regions of 32, 64, and 128 bytes do not support subregions, With regions of these sizes,
The user must set the SRD field to 0x00, otherwise the MPU behavior is Unpredictable.

Example of SRD use

Two regions with the same base address overlap. Region one is 128 KB, and region two is
512 KB. To ensure the attributes from region one apply to the first 128 KB region, set the
SRD field for region two to 0b00000011 to disable the first two subregions, as the figure
shows.

Cortex-M7 Peripherals PM0253

232/252 DocID028474 Rev 3

Figure 53. Example of disabling subregion

4.6.9 MPU design hints and tips

To avoid an unexpected behavior, disable the interrupts before updating the attributes of a
region that the interrupt handlers might access.

The processor does not support unaligned accesses to MPU registers.

 The MPU registers support aligned word accesses only. The byte and halfword accesses
are unpredictable.

When setting up the MPU, and if the MPU has previously been programmed, disable the
unused regions to prevent any previous region settings from affecting the new MPU setup.

DocID028474 Rev 3 233/252

PM0253 Cortex-M7 Peripherals

251

4.7 Floating-point unit

The Cortex®-M7 Floating-Point Unit (FPU) implements the FPv5 floating-point extensions.

The FPU fully supports single-precision and double-precision add, subtract, multiply, divide,
multiply and accumulate, and square root operations. It also provides conversions between
fixed-point and floating-point data formats, and floating-point constant instructions.

The FPU provides floating-point computation functionality that is compliant with the
ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-Point Arithmetic, referred to as
the IEEE 754 standard.

The silicon vendor should also include the following text when implementations support
single-precision FPU only. The FPU contains 32 single-precision extension registers, which
can be also accessed as 16 doubleword registers for load, store, and move operations.

Table 93 shows the floating-point system registers in the Cortex®-M7 processor with FPU.

The following sections describe the floating-point system registers whose implementation is
specific to this processor.

4.7.1 Coprocessor Access Control register

The CPACR register specifies the access privileges for coprocessors. See the register
summary in Table 93 on page 233 for its attributes. The bit assignments are:

Figure 54. CPACR bit assignments

Table 93. Cortex®-M7 floating-point system registers

Address Name Type
Required

privilege
Reset Description

0xE000ED88 CPACR RW Privileged 0x00000000
Coprocessor Access Control register
on page 233

0xE000EF34 FPCCR RW Privileged 0xC0000000
Floating-point Context Control register
on page 234

0xE000EF38 FPCAR RW Privileged -
Floating-point Context Address
register on page 236

-
FPSCR
(1)

1. The FPSCR register is not memory-mapped, it can bee accessed using the VMSR and VMRS instructions,
see VMRS on page 165 and VMSR on page 166. the software can only access the FPSCR when the FPU
is enabled, see Enabling the FPU on page 238.

RW Unprivileged -
Floating-point Status Control register
on page 236

0xE000EF3C
FPDSC
R

RW Privileged 0x00000000
Floating-point Default Status Control
register on page 237

Cortex-M7 Peripherals PM0253

234/252 DocID028474 Rev 3

4.7.2 Floating-point Context Control register

The FPCCR register sets or returns FPU control data. See the register summary in Table 93
on page 233 for its attributes. The bit assignments are:

Figure 55. FPCCR bit assignments

Table 94. CPACR bit assignments

Bits Name Function

[31:24] - Reserved. Read as Zero, Write Ignore.

[2n+1:2n] for n
values10 and
11

CPn

Access privileges for coprocessor n. The possible values of each field
are:

0b00: Access denied. Any attempted access generates a NOCP
UsageFault.
0b01: Privileged access only. An unprivileged access generates a
NOCP fault.
0b10: Reserved. The result of any access is Unpredictable.
0b11: Full access.

[19:0] - Reserved. Read as Zero, Write Ignore.

Table 95. FPCCR bit assignments

Bits Name Function

[31] ASPEN

Enables CONTROL.FPCA setting on execution of a floating-point instruction.
This results in automatic hardware state preservation and restoration, for
floating-point context, on exception entry and exit.

0: Disable CONTROL.FPCA setting on execution of a floating-point
instruction.
1: Enable CONTROL.FPCA setting on execution of a floating-point
instruction.

[30] LSPEN
0: Disable automatic lazy state preservation for floating-point context.
1: Enable automatic lazy state preservation for floating-point context.

[29:9] - Reserved.

DocID028474 Rev 3 235/252

PM0253 Cortex-M7 Peripherals

251

[8] MONRDY

0: DebugMonitor is disabled or priority did not permit setting MON_PEND
when the floating-point stack frame was allocated.
1: DebugMonitor is enabled and priority permits setting MON_PEND when
the floating-point stack frame was allocated.

[7] - Reserved.

[6] BFRDY

0: BusFault is disabled or priority did not permit setting the BusFault handler
to the pending state when the floating-point stack frame was allocated.
1: BusFault is enabled and priority permitted setting the BusFault handler to
the pending state when the floating-point stack frame was allocated.

[5] MMRDY

0: MemManage is disabled or priority did not permit setting the MemManage
handler to the pending state when the floating-point stack frame was
allocated.
1: MemManage is enabled and priority permitted setting the MemManage
handler to the pending state when the floating-point stack frame was
allocated.

[4] HFRDY

0: Priority did not permit setting the HardFault handler to the pending state
when the floating-point stack frame was allocated.
1: Priority permitted setting the HardFault handler to the pending state when
the floating-point stack frame was allocated.

[3] THREAD

0: Mode was not Thread Mode when the floating-point stack frame was
allocated.
1: Mode was Thread Mode when the floating-point stack frame was
allocated.

[2] - Reserved.

[1] USER
0: Privilege level was not user when the floating-point stack frame was
allocated.
1: Privilege level was user when the floating-point stack frame was allocated.

[0] LSPACT
0: Lazy state preservation is not active.
1: Lazy state preservation is active. Floating-point stack frame has been
allocated but saving state to it has been deferred.

Table 95. FPCCR bit assignments (continued)

Bits Name Function

Cortex-M7 Peripherals PM0253

236/252 DocID028474 Rev 3

4.7.3 Floating-point Context Address register

The FPCAR register holds the location of the unpopulated floating-point register space
allocated on an exception stack frame. See the register summary in Table 93 on page 233
for its attributes. The bit assignments are:

Figure 56. FPCAR bit assignments

4.7.4 Floating-point Status Control register

The FPSCR register provides all necessary User level control of the floating-point system.
The bit assignments are:

Figure 57. FPSCR bit assignments

Table 96. FPCAR bit assignments

Bits Name Function

[31:3] ADDRESS
The location of the unpopulated floating-point register space
allocated on an exception stack frame.

[2:0] - Reserved. Read as Zero, Writes Ignored.

Table 97. FPSCR bit assignments

Bits Name Function

[31] N Condition code flags. Floating-point comparison operations update these flags.

N: Negative condition code flag.
Z: Zero condition code flag.
C: Carry condition code flag.
V: Overflow condition code flag.

[30] Z

[29] C

[28] V

[27] - Reserved.

[26] AHP
Alternative half-precision control bit:

0: IEEE half-precision format selected.
1: Alternative half-precision format selected.

DocID028474 Rev 3 237/252

PM0253 Cortex-M7 Peripherals

251

4.7.5 Floating-point Default Status Control register

The FPDSCR register holds the default values for the floating-point status control data. See
the register summary in Table 93 on page 233 for its attributes. The bit assignments are:

Figure 58. FPDSCR bit assignments

[25] DN
Default NaN mode control bit:

0: NaN operands propagate through to the output of a floating-point operation.
1: Any operation involving one or more NaNs returns the Default NaN.

[24] FZ

Flush-to-zero mode control bit:

0: Flush-to-zero mode disabled. Behavior of the floating-point system is fully
compliant with the IEEE 754 standard.
1: Flush-to-zero mode enabled.

[23:22] RMode

Rounding Mode control field. The encoding of this field is:

0b00: Round to Nearest (RN) mode
0b01: Round towards Plus Infinity (RP) mode
0b10: Round towards Minus Infinity (RM) mode
0b11: Round towards Zero (RZ) mode.

The specified rounding mode is used by almost all floating-point instructions.

[21:8] - Reserved.

[7] IDC Input Denormal cumulative exception bit, see bits [4:0].

[6:5] - Reserved.

[4] IXC Cumulative exception bits for floating-point exceptions, see also bit [7]. Each of
these bits is set to 1 to indicate that the corresponding exception has occurred
since 0 was last written to it.

IDC, bit[7]: Input Denormal cumulative exception bit.
IXC: Inexact cumulative exception bit.
UFC: Underflow cumulative exception bit.
OFC: Overflow cumulative exception bit.
DZC: Division by Zero cumulative exception bit.
IOC: Invalid Operation cumulative exception bit.

[3] UFC

[2] OFC

[1] DZC

[0] IOC

Table 97. FPSCR bit assignments (continued)

Bits Name Function

Table 98. FPDSCR bit assignments

Bits Name Function

[31:27] - Reserved

[26] AHP Default value for FPSCR.AHP

Cortex-M7 Peripherals PM0253

238/252 DocID028474 Rev 3

4.7.6 Enabling the FPU

The FPU is disabled from reset. The user must enable it before using any floating-point
instructions. Example 4-1: Enabling the FPU shows an example code sequence for enabling
the FPU in privileged mode. The processor must be in privileged mode to read from and
write to the CPACR.

Example 4-1: Enabling the FPU

CPACR EQU 0xE000ED88
LDR R0, =CPACR ; Read CPACR
LDR r1, [R0] ; Set bits 20-23 to enable CP10 and CP11
 ; coprocessors
ORR R1, R1, #(0xF << 20)
STR R1, [R0] ; Write back the modified value to the CPACR
DSB

ISB ; Reset pipeline now the FPU is enabled.

4.8 Cache maintenance operations

The cache maintenance operations are only accessible by privileged loads and stores.
Unprivileged accesses to these registers always generate a BusFault.

[25] DN Default value for FPSCR.DN

[24] FZ Default value for FPSCR.FZ

[23:22] RMode Default value for FPSCR.RMode

[21:0] - Reserved

Table 98. FPDSCR bit assignments (continued)

Bits Name Function

Table 99. Cache maintenance space register summary

Address Name Type
Required

privilege

Reset

value
Description

0xE000EF50 ICIALLU WO Privileged Unknown
Instruction cache invalidate all to the Point of
Unification (PoU)(1)

0xE000EF54 - - - - Reserved

0xE000EF58 ICIMVAU WO Privileged Unknown Instruction cache invalidate by address to the PoU(1)

0xE000EF5C DCIMVAC WO Privileged Unknown
Data cache invalidate by address to the Point of
Coherency (PoC)(2)

0xE000EF60 DCISW WO Privileged Unknown Data cache invalidate by set/way

0xE000EF64 DCCMVAU WO Privileged Unknown Data cache by address to the PoU(1)

0xE000EF68 DCCMVAC WO Privileged Unknown Data cache clean by address to the PoC(2)

0xE000EF6C DCCSW WO Privileged Unknown Data cache clean by set/way

0xE000EF70 DCCIMVAC WO Privileged Unknown
Data cache clean and invalidate by address to the
PoC(2)

DocID028474 Rev 3 239/252

PM0253 Cortex-M7 Peripherals

251

4.8.1 Full instruction cache operation

The ICIALLU is WO and write data is ignored and reads return 0. Writes to this register
perform the requested cache maintenance operation. The BPIALL register is not
implemented in the Cortex-M7 processor as branch predictor maintenance is not required.
The register is RAZ/WI.

4.8.2 Instruction and data cache operations by address

The cache maintenance operations registers are ICIMVAU, DCIMVAC, DCCMVAU,
DCCMVAC, and DCCIMVAC. These registers are WO, reads return 0. See the register
summary in Table 99 for their attributes. The bit assignments are:

4.8.3 Data cache operations by set-way

The DCISW, DCCSW and DCCISW registers are WO. Reads return 0. See the register
summary in Table 99 on page 238 for their attributes. The bit assignments are:

Figure 59. Cache operation bit assignments

0xE000EF74 DCCISW WO Privileged Unknown Data cache clean and invalidate by set/way

0xE000EF78 BPIALL RAZ/WI Privileged - The BPIALL register is not implemented

1. Cache maintenance operations by PoU can be used to synchronize data between the Cortex®-M7 data and instruction
Caches, for example when the software uses self-modifying code.

2. Cache maintenance operations by PoC can be used to synchronize data between the Cortex®-M7 data cache and an
external agent such as a system DMA.

Table 99. Cache maintenance space register summary (continued)

Address Name Type
Required

privilege

Reset

value
Description

Table 100. Cache operation registers bit assignments

Bit Name Type Function

[31:0] MVA WO MVA of requested operation

Table 101. Cache operations by set-way bit assignments

Bit Name Type Function

[31:30] Way WO
Way that operation applies to.

For the data cache, values 0, 1, 2 and 3 are supported.

[29:14] - - Reserved

Cortex-M7 Peripherals PM0253

240/252 DocID028474 Rev 3

4.8.4 Cortex®-M7 cache maintenance operations using CMSIS

CMSIS functions enable the software portability between different Cortex®-M profile
processors. To access cache maintenance operations when using CMSIS, use the following
functions:

4.8.5 Initializing and enabling the L1-cache

The user can use cache maintenance operations for:

• Cache startup type operations.

• Manipulating the caches so that shared data is visible to other bus masters.

• Enabling data changed by an external DMA agent to be made visible to the Cortex®-
M7 processor.

After enabling or disabling the instruction cache, the user must issue an ISB instruction to
flush the pipeline. This ensures that all subsequent instruction fetches see the effect of
enabling or disabling the instruction cache.

After reset, the user must invalidate each cache before enabling it.

When disabling the data cache, the user must clean the entire cache to ensure that any dirty
data is flushed to external memory.

Before enabling the data cache, the user must invalidate the entire data cache if external
memory might have changed since the cache was disabled.

[13:5] Set WO

Set/index that operation applies to. The number of indices in a cache
depends on the configured cache size. When this is less than the
maximum, use the LSB of this field. The number of sets in the cache can be
determined by reading the Cache Size ID register on page 219.

[4:1] - - Reserved

[0] - - Always reads as zero.

Table 101. Cache operations by set-way bit assignments (continued)

Bit Name Type Function

Table 102. CMSIS access cache maintenance operations

CMSIS function Descriptions

void SCB_EnableICache(void) Invalidate and then enable instruction cache

void SCB_DisableICache(void) Disable instruction cache and invalidate its
contents

void SCB_InvalidateICache(void) Invalidate instruction cache

void SCB_EnableDCache(void) Invalidate and then enable data cache

void SCB_DisableDCache(void) Disable data cache and then clean and
invalidate its contents

void SCB_InvalidateDCache(void) Invalidate data cache

void SCB_CleanDCache(void) Clean data cache

void SCB_CleanInvlaidateDCache(void) Clean and invalidate data cache

DocID028474 Rev 3 241/252

PM0253 Cortex-M7 Peripherals

251

Before enabling the instruction cache, the user must invalidate the entire instruction cache if
external memory might have changed since the cache was disabled.

L1 data and instruction cache must be invalidated before they are enabled in the software,
otherwise unpredictable behavior can occur.

Invalidate the entire data cache

The software can use the following code example to invalidate the entire data cache, if it has
been included in the processor. The operation is carried out by iterating over each line of the
cache and using the DCISW register in the Private Peripheral Bus (PPB) memory region to
invalidate the line. The number of cache ways and sets is determined by reading the
CCSIDR register.

CCSIDR EQU 0xE000ED80

CSSELR EQU 0xE000ED84

DCISW EQU 0xE000EF60

 MOV r0, #0x0

 LDR r11, =CSSELR

 STR r0, [r11] ; Select Data Cache size

 DSB

 LDR r11, =CCSIDR

 LDR r2, [r11] ; Cache size identification

 AND r1, r2, #0x7 ; Number of words in a cache line

 ADD r7, r1, #0x4

 MOV r1, #0x3ff

 ANDS r4, r1, r2, LSR #3

 MOV r1, #0x7fff

 ANDS r2, r1, r2, LSR #13

 CLZ r6, r4

 LDR r11, =DCISW

inv_loop1

 MOV r1, r4

inv_loop2

 LSL r3, r1, r6

 LSL r8, r2, r7

 ORRr 3, r3, r8

 STR r3, [r11] ; Invalidate D-cache line

 SUBS r1, r1, #0x1

 BGE inv_loop2

 SUBS r2, r2, #0x1

 BGE inv_loop1

 DSB

 ISB

Invalidate instruction cache

The user can use the following code example to invalidate the entire instruction cache, if it
has been included in the processor. The operation is carried out by writing to the ICIALLU
register in the PPB memory region.

Cortex-M7 Peripherals PM0253

242/252 DocID028474 Rev 3

ICIALLU EQU 0xE000EF50

 MOV r0, #0x0

 LDR r11, =ICIALLU

 STR r0, [r11]

 DSB

 ISB

Enabling data and instruction caches

The user can use the following code example to enable the data and instruction cache after
they have been initialized. The operation is carried out by modifying the CCR.IC and
CCR.DC fields in the PPB memory region.

CCR EQU 0xE000ED14

 LDR r11, =CCR

 LDR r0, [r11]

 ORR r0, r0, #0x1:SHL:16 ; Set CCR.DC field

 ORR r0, r0, #0x1:SHL:17 ; Set CCR.IC field

 STR r0, [r11]

 DSB

 ISB

4.8.6 Faults handling considerations

Cache maintenance operations can result in a BusFault. Such fault events are
asynchronous.

This type of BusFault:

• Does not cause escalation to HardFault where a BusFault handler is enabled.

• Never causes lockup.

Because the fault event is asynchronous, the software code for cache maintenance
operations should use memory barrier instructions, such as DSB, on completion so that the
fault event can be observed immediately.

4.8.7 Cache maintenance design hints and tips

The user must always place a DSB and ISB instruction sequence after a cache
maintenance operation to ensure that the effect is observed by any following instructions in
the software.

When using a cache maintenance operation by address or set/way a DSB instruction must
be executed after any previous load or store, and before the maintenance operation, to
guarantee that the effect of the load or store is observed by the operation. For example, if a
store writes to the address accessed by a DCCMVAC the DSB instruction guarantees that
the dirty data is correctly cleaned from the data cache.

When one or more maintenance operations have been executed, use of a DSB instruction
guarantees that they have completed and that any following load or store operations
executes in order after the maintenance operations.

Cache maintenance operations always complete in-order with respect to each other. This
means only one DSB instruction is required to guarantee the completion of a set of
maintenance operations.

DocID028474 Rev 3 243/252

PM0253 Cortex-M7 Peripherals

251

The following code sequence shows how to use cache maintenance operations to
synchronize the data and instruction caches for self-modifying code. The sequence is
entered with <Rx> containing the new 32-bit instruction. Use STRH in the first line instead of
STR for a 16-bit instruction:

STR <Rx>, <inst_address1>
DSB ; Ensure the data has been written to the
 ; cache.
STR <inst_address1>, DCCMVAU ; Clean data cache by MVA to point of
 ; unification (PoU).
STR <inst_address1>, ICIMVAU ; Invalidate instruction cache by MVA to
 ; PoU.
DSB ; Ensure completion of the invalidations.
ISB ; Synchronize fetched instruction stream.

4.9 Access control

Control of the L1-cache ECC and attribute override, the priority of AHB slave traffic, and
whether an access is mapped to TCM interfaces or AXI master interface, is defined by the
access control registers. The access control registers are:

Table 103. Access control register summary

Address Name Type
Required

privilege

Reset

value
Description

0xE000EF90 ITCMCR RW Privileged 0x00000000 Instruction and Data Tightly-Coupled Memory
Control Registers on page 2440xE000EF94 DTCMCR RW Privileged 0x00000000

0xE000EF98 AHBPCR RW Privileged 0x00000000 AHBP Control register on page 246

0xE000EF9C CACR RW Privileged -(1) Auxiliary Cache Control register on page 247

0xE000EFA0 AHBSCR RW Privileged 0x00000800 AHB Slave Control register on page 248

0xE000EFA8 ABFSR RW Privileged 0x00000000 Auxiliary Bus Fault Status register on page 249

1. The reset value is implementation and configuration dependent and the silicon vendor changes this. If cache ECC is
configured the reset value is 0x00000000, if cache ECC is not configured the reset value is 0x00000002.

Cortex-M7 Peripherals PM0253

244/252 DocID028474 Rev 3

4.9.1 Instruction and Data Tightly-Coupled Memory Control Registers

The ITCMCR and DTCMCR control whether access is mapped to the TCM interfaces or the
AXI master interface. The bit assignments are:

Figure 60. ITCMR and DTCMR bit assignments

Table 104. ITCMCR and DTCMCR bit assignments

Bits Name Type Function

[31:7] - - Reserved, RAZ/WI.

[6:3] SZ RO

TCM size. Indicates the size of the relevant TCM:

0b0000: No TCM implemented.
0b0011: 4KB.
0b0100: 8KB.
0b0101: 16KB.
0b0110: 32KB.
0b0111: 64KB.
0b1000: 128KB.
0b1001: 256KB.
0b1010: 512KB.
0b1011: 1MB.
0b1100: 2MB.
0b1101: 4MB.
0b1110: 8MB.
0b1111: 16MB.

All other encodings are reserved.

[2] RETEN(1)

1. The RETEN field in the ITCMCR and DTCMCR is used to support error detection and correction in the
TCM.

RW

Retry phase enable. When enabled the processor guarantees to honor
the retry output on the corresponding TCM interface:

0: Retry phase disabled.
1: Retry phase enabled.

[1] RMW(2)

2. The RMW field in the ITCMCR and DTCMCR is used to support error detection and correction in the TCM.

RW

Read-Modify-Write (RMW) enable. Indicates that all sub-chunk writes to
a given TCM use a RMW sequence:

0: RMW disabled.
1: RMW enabled.

[0] EN RW

TCM enable. When a TCM is disabled all accesses are made to the AXI
master.

0: TCM disabled.
1: TCM enabled.

DocID028474 Rev 3 245/252

PM0253 Cortex-M7 Peripherals

251

Enabling the TCM

The TCM interfaces can be enabled at reset in the system by an external signal on the
processor. If they are disabled at reset then the following code example can be used to
enable both the instruction and data TCM interfaces in software:

ITCMCR EQU 0xE000EF90
DTCMCR EQU 0xE000EF94

 LDR r11, =ITCMCR
 LDR r0, [r11]
 ORR r0, r0, #0x1 ; Set ITCMCR.EN field
 STR r0, [r11]

 LDR r11, =DTCMCR
 LDR r0, [r11]
 ORR r0, r0, #0x1 ; Set DTCMCR.EN field
 STR r0, [r11]

 DSB
 ISB

Enabling the TCM retry and read-modify-write

If the TCM connected to the processor supports error detection and correction, the TCM
interface should be configured to support the retry and read-modify-write features. These
can be enabled at reset in the system by external signals on the processor. If they are
disabled at reset then the following code example can be used to enable them in software:

ITCMCR EQU 0xE000EF90
DTCMCR EQU 0xE000EF94

 LDR r11, =ITCMCR
 LDR r0, [r11]
 ORR r0, r0, #0x1:SHL:1 ; Set ITCMCR.RMW field
 ORR r0, r0, #0x1:SHL:2 ; Set ITCMCR.RETEN field
 STR r0, [r11]

 LDR r11, =DTCMCR
 LDR r0, [r11]
 ORR r0, r0, #0x1:SHL:1 ; Set DTCMCR.RMW field
 ORR r0, r0, #0x1:SHL:2 ; Set DTCMCR.RETEN field
 STR r0, [r11]

 DSB
 ISB

Cortex-M7 Peripherals PM0253

246/252 DocID028474 Rev 3

4.9.2 AHBP Control register

The AHBPCR controls accesses to the device on the AHBP or AXI master interface. The bit
assignments are:

Figure 61. AHBPCR bit assignments

Enabling the AHBP interface

The AHBP interface can be enabled at reset in the system by an external signal on the
processor. If it is disabled at reset then the following code example can be used to enable
the AHPB interface from software:

AHBPCR EQU 0xE000EF98

 LDR r11, =AHBPCR
 LDR r0, [r11]
 ORR r0, r0, #0x1 ; Set AHBPCR.EN field
 STR r0, [r11]

 DSB
 ISB

Table 105. AHBPCR bit assignments

Bits Name Type Function

[31:4] - - Reserved, RAZ/WI.

[3:1] SZ RO

AHBP size:

0b001: 64 MBytes.
0b010: 128 MBytes.
0b011: 256 MBytes.
0b100: 512 MBytes.

[0] EN RW

AHBP enable:

0: AHBP disabled. When disabled all accesses are made to the AXI
master.
1: AHBP enabled.

DocID028474 Rev 3 247/252

PM0253 Cortex-M7 Peripherals

251

4.9.3 Auxiliary Cache Control register

The CACR controls the L1-cache ECC and attribute override. The bit assignments are:

Figure 62. CACR bit assignments

Table 106. CACR bit assignments

Bits Name Type Function

[31:3] - - Reserved, RAZ/WI.

[2] FORCEWT RW

Enables Force Write-through in the data cache:

0: Disables Force Write-Through.
1: Enables Force Write-Through. Cacheable Write-Back memory regions are
treated as Write-Through.

This bit is RAZ if the data cache is excluded.

[1] ECCEN RW

Enables ECC in the instruction and data cache:

0: Enables ECC in the instruction and data cache.
1: Disables ECC in the instruction and data cache.

This bit is WI if both data cache and instruction cache are excluded or if ECC is not
configured. If ECC is included in the processor the reset value of ECCEN is 0. If ECC
is excluded the reset value of ECCEN is 1

[0] SIWT RW

Enables cache coherency usage:

0: Normal Cacheable Shared locations are treated as being Non-cacheable.
Programmed inner cacheability attributes are ignored. This is the default mode of
operation for Shared memory. Caches are transparent to software for these
locations and therefore no software maintenance is required to maintain
coherency.
1: For the data cache, Normal Cacheable shared locations are treated as Write-
through. For the instruction cache, shared locations are treated as being Non-
cacheable. Programmed inner cacheability attributes are ignored. All writes are
globally visible. Other memory agent updates are not visible to Cortex®-M7
software without suitable cache maintenance.
Useful for heterogeneous MP-systems where, for example, Cortex®-M7 processor
is integrated on the Accelerator Coherency Port (ACP) interface on an MP-capable
processor.

This bit is RAZ if the data cache is excluded.

Cortex-M7 Peripherals PM0253

248/252 DocID028474 Rev 3

Disabling cache error checking and correction

If the cache error checking and correction is included in the processor it is enabled by
default from reset. The following code example can be used to disable the feature. The
operation is carried out by modifying the CACR.ECCEN field in the PPB memory region.

CACR EQU 0xE000EF9C
 LDR r11, =CACR
 LDR r0, [r11]
 BFC r0, #0x1, #0x1 ; Clear CACR.ECCEN
 STR r0, [r11]

 DSB
 ISB

Care must be taken when the software changes CACR.ECCEN. If CACR.ECCEN changes
when the caches contain data, ECC information in the caches might not be correct for the
new setting, resulting in unexpected errors and data loss. Therefore the software must only
change CACR.ECCEN when both caches are turned off and both caches must be
invalidated after the change.

4.9.4 AHB Slave Control register

The AHBSCR is used by software to control the priority of AHB slave traffic. The bit
assignments are:

Figure 63. AHBSCR bit assignments

Table 107. AHBSCR bit assignments

Bits Name Type Function

[31:16] - - Reserved.

[15:11] INITCOUNT RW

Fairness counter initialization value. Use to demote access priority of the
requestor selected by the AHBSCR.CTL field. The reset value is 0b01.

For round-robin mode set INITCOUNT to 0b01 and AHBSCR.CTL to 0b00 or
0b01.

INITCOUNT must not be set to 0b00 because the demoted requestor always
takes priority when contention occurs, which can lead to livelock.

INITCOUNT is not used when AHBSCR.CTL is 0b11.

DocID028474 Rev 3 249/252

PM0253 Cortex-M7 Peripherals

251

4.9.5 Auxiliary Bus Fault Status register

The ABFSR stores information on the source of asynchronous bus faults. The ASBFSR bit
assignments are:

Figure 64. ABFSR bit assignments

[10:2] TPRI RW

Threshold execution priority for AHBS traffic demotion.

0b0xxxxxxx: Priority is TPRI[7:0]. This is the same as the NVIC register
encodings.
0b11111111: Priority of -1. This is the priority of the HardFault exception.
0b11111110: Priority of -2. This is the priority of the NMI exception.

[1:0] CTL RW

AHBS prioritization control:

0b00: AHBS access priority demoted. This is the reset value.
0b01: Software access priority demoted.
0b10: AHBS access priority demoted by initializing the fairness counter to the
AHBSCR.INITCOUNT value when the software execution priority is higher
than or equal to the threshold level programmed in AHBSCR.TPRI. When the
software execution priority is below this value, the fairness counter is initialized
with 1 (round-robin).
The threshold level encoding matches the NVIC encoding and uses
arithmetically larger numbers to represent lower priority.
0b11: AHBSPRI signal has control of access priority.

Table 107. AHBSCR bit assignments (continued)

Bits Name Type Function

Table 108. ABFSR bit assignments

Bits Name Function

[31:10] - Reserved

[9:8] AXIMTYPE

Indicates the type of fault on the AXIM interface:

b00: OKAY
b01: EXOKAY
b10: SLVERR
b11: DECERR

Only valid when AXIM is 1.

[7:5] - Reserved

[4] EPPB Asynchronous fault on EPPB interface.

Cortex-M7 Peripherals PM0253

250/252 DocID028474 Rev 3

In the bus-fault handler, the software reads the BFSR, and if an asynchronous fault occurs,
the ABFSR is read to determine which interfaces are affected. The ABFSR[4:0] fields
remains valid until cleared by writing to the ABFSR with any value.

For more information about the BFSR, see BusFault Status register on page 207.

[3] AXIM Asynchronous fault on AXIM interface.

[2] AHBP Asynchronous fault on AHBP interface.

[1] DTCM Asynchronous fault on DTCM interface.

[0] ITCM Asynchronous fault on ITCM interface

Table 108. ABFSR bit assignments (continued)

Bits Name Function

DocID028474 Rev 3 251/252

PM0253 Revision history

251

5 Revision history

Table 109. Document revision history

Date Revision Changes

18-Dec-2015 1 Initial release.

22-Apr-2016 2

Updated Table 11: STM32F746xx/STM32F756xx Cortex®-M7
configuration title.

Added Table 12: STM32F76xxx/STM32F77xxx Cortex®-M7
configuration.

In Section 2.3.2: Memory system ordering of memory accesses
updated link to section 2.3.4: software ordering of memory
accesses.

02-Feb-2017 3
Added Table 13: STM32F72xxx/STM32F73xxx Cortex®-M7
configuration.

PM0253

252/252 DocID028474 Rev 3

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

	1 About this document
	1.1 Typographical conventions
	1.2 List of abbreviations for registers
	1.3 About the Cortex®-M7 processor and core peripherals
	Figure 1. STM32 Cortex®-M7 implementation processor
	1.3.1 System level interface
	1.3.2 Integrated configurable debug
	1.3.3 Cortex®-M7 processor features and benefits summary
	1.3.4 Cortex®-M7 processor core peripherals

	2 The Cortex-M7 processor
	2.1 Programmers model
	2.1.1 Processor mode and privilege levels for software execution
	2.1.2 Stacks
	Table 1. Summary of processor mode, execution privilege level, and stack use options

	2.1.3 Core registers
	Figure 2. Processor core registers
	Table 2. Core register set summary
	Figure 3. APSR, IPSR and EPSR bit assignments
	Table 3. PSR register combinations
	Table 4. APSR bit assignments
	Table 5. IPSR bit assignments
	Table 6. EPSR bit assignments
	Figure 4. PRIMASK bit assignments:
	Table 7. PRIMASK register bit assignments
	Figure 5. FAULTMASK bit assignments
	Table 8. FAULTMASK register bit assignments
	Figure 6. BASEPRI bit assignments
	Table 9. BASEPRI register bit assignments
	Figure 7. Control bit assignments
	Table 10. Control register bit assignments (continued)

	2.1.4 Exceptions and interrupts
	2.1.5 Data types
	2.1.6 The Cortex Microcontroller Software Interface Standard (CMSIS)

	2.2 Cortex®-M7 configurations
	Table 11. STM32F746xx/STM32F756xx Cortex®-M7 configuration
	Table 12. STM32F76xxx/STM32F77xxx Cortex®-M7 configuration
	Table 13. STM32F72xxx/STM32F73xxx Cortex®-M7 configuration

	2.3 Memory model
	Figure 8. Processor memory map
	2.3.1 Memory regions, types and attributes
	2.3.2 Memory system ordering of memory accesses
	Table 14. Ordering of memory accesses

	2.3.3 Behavior of memory accesses
	Table 15. Memory access behavior
	Table 16. Memory region shareability and cache policies

	2.3.4 Software ordering of memory accesses
	2.3.5 Memory endianness
	Figure 9. Little-endian format

	2.3.6 Synchronization primitives
	2.3.7 Programming hints for the synchronization primitives
	Table 17. CMSIS functions for exclusive access instructions

	2.4 Exception model
	2.4.1 Exception states
	2.4.2 Exception types
	Table 18. Properties of the different exception types

	2.4.3 Exception handlers
	2.4.4 Vector table
	Figure 10. Vector table

	2.4.5 Exception priorities
	2.4.6 Interrupt priority grouping
	2.4.7 Exception entry and return
	Figure 11. Exception stack frame
	Table 19. Exception return behavior

	2.5 Fault handling
	2.5.1 Fault types
	Table 20. Faults

	2.5.2 Fault escalation and hard faults
	2.5.3 Synchronous and Asynchronous bus faults
	2.5.4 Fault status registers and fault address registers
	Table 21. Fault status and fault address registers

	2.5.5 Lockup

	2.6 Power management
	2.6.1 Entering sleep mode
	2.6.2 Wakeup from sleep mode
	2.6.3 The external event input
	2.6.4 Power management programming hints

	3 The Cortex-M7 instruction set
	3.1 Instruction set summary
	Table 22. Cortex®-M7 instructions
	3.1.1 Binary compatibility with other Cortex processors

	3.2 CMSIS functions
	Table 23. CMSIS functions to generate some Cortex®-M7 processor instructions
	Table 24. CMSIS functions to access the special registers

	3.3 About the instruction descriptions
	3.3.1 Operands
	3.3.2 Restrictions when using PC or SP
	3.3.3 Flexible second operand
	3.3.4 Shift operations
	Figure 12. ASR
	Figure 13. LSR
	Figure 14. LSL
	Figure 15. ROR
	Figure 16. RRX

	3.3.5 Address alignment
	3.3.6 PC-relative expressions
	3.3.7 Conditional execution
	Table 25. Condition code suffixes

	3.3.8 Instruction width selection

	3.4 Memory access instructions
	Table 26. Memory access instructions
	3.4.1 ADR
	3.4.2 LDR and STR, immediate offset
	Table 27. Offset ranges

	3.4.3 LDR and STR, register offset
	3.4.4 LDR and STR, unprivileged
	3.4.5 LDR, PC-relative
	Table 28. Offset ranges

	3.4.6 LDM and STM
	3.4.7 PLD
	3.4.8 PUSH and POP
	3.4.9 LDREX and STREX
	3.4.10 CLREX

	3.5 General data processing instructions
	Table 29. Data processing instructions
	3.5.1 ADD, ADC, SUB, SBC, and RSB
	3.5.2 AND, ORR, EOR, BIC, and ORN
	3.5.3 ASR, LSL, LSR, ROR, and RRX
	3.5.4 CLZ
	3.5.5 CMP and CMN
	3.5.6 MOV and MVN
	3.5.7 MOVT
	3.5.8 REV, REV16, REVSH, and RBIT
	3.5.9 SADD16 and SADD8
	3.5.10 SHADD16 and SHADD8
	3.5.11 SHASX and SHSAX
	3.5.12 SHSUB16 and SHSUB8
	3.5.13 SSUB16 and SSUB8
	3.5.14 SASX and SSAX
	3.5.15 TST and TEQ
	3.5.16 UADD16 and UADD8
	3.5.17 UASX and USAX
	3.5.18 UHADD16 and UHADD8
	3.5.19 UHASX and UHSAX
	3.5.20 UHSUB16 and UHSUB8
	3.5.21 SEL
	3.5.22 USAD8
	3.5.23 USADA8
	3.5.24 USUB16 and USUB8

	3.6 Multiply and divide instructions
	Table 30. Multiply and divide instructions
	3.6.1 MUL, MLA, and MLS
	3.6.2 UMULL, UMAAL, UMLAL
	3.6.3 SMLA and SMLAW
	3.6.4 SMLAD
	3.6.5 SMLAL and SMLALD
	3.6.6 SMLSD and SMLSLD
	3.6.7 SMMLA and SMMLS
	3.6.8 SMMUL
	3.6.9 SMUAD and SMUSD
	3.6.10 SMUL and SMULW
	3.6.11 UMULL, UMLAL, SMULL, and SMLAL
	3.6.12 SDIV and UDIV

	3.7 Saturating instructions
	Table 31. Saturating instructions
	3.7.1 SSAT and USAT
	3.7.2 SSAT16 and USAT16
	3.7.3 QADD and QSUB
	3.7.4 QASX and QSAX
	3.7.5 QDADD and QDSUB
	3.7.6 UQASX and UQSAX
	3.7.7 UQADD and UQSUB

	3.8 Packing and unpacking instructions
	Table 32. Packing and unpacking instructions
	3.8.1 PKHBT and PKHTB
	3.8.2 SXT and UXT
	3.8.3 SXTA and UXTA

	3.9 Bit field instructions
	Table 33. Packing and unpacking instructions
	3.9.1 BFC and BFI
	3.9.2 SBFX and UBFX
	3.9.3 SXT and UXT

	3.10 Branch and control instructions
	Table 34. Branch and control instructions
	3.10.1 B, BL, BX, and BLX
	Table 35. Branch ranges

	3.10.2 CBZ and CBNZ
	3.10.3 IT
	3.10.4 TBB and TBH

	3.11 Floating-point instructions
	Table 36. Floating-point instructions
	3.11.1 VABS
	3.11.2 VADD
	3.11.3 VCMP, VCMPE
	3.11.4 VCVT, VCVTR between floating-point and integer
	3.11.5 VCVT between floating-point and fixed-point
	3.11.6 VCVTB, VCVTT
	3.11.7 VDIV
	3.11.8 VFMA, VFMS
	3.11.9 VFNMA, VFNMS
	3.11.10 VLDM
	3.11.11 VLDR
	3.11.12 VMLA, VMLS
	3.11.13 VMOV Immediate
	3.11.14 VMOV Register
	3.11.15 VMOV Scalar to ARM core register
	3.11.16 VMOV ARM core register to single-precision
	3.11.17 VMOV two ARM core registers to two single-precision registers
	3.11.18 VMOV two ARM core registers and a double-precision register
	3.11.19 VMOV ARM core register to scalar
	3.11.20 VMRS
	3.11.21 VMSR
	3.11.22 VMUL
	3.11.23 VNEG
	3.11.24 VNMLA, VNMLS, VNMUL
	3.11.25 VPOP
	3.11.26 VPUSH
	3.11.27 VSQRT
	3.11.28 VSTM
	3.11.29 VSTR
	3.11.30 VSUB
	3.11.31 VSEL
	3.11.32 VMAXNM, VMINNM
	3.11.33 VCVTA, VCVTN, VCVTP, VCVTM
	3.11.34 VRINTR, VRINTX
	3.11.35 VRINTA, VRINTN, VRINTP, VRINTM, VRINTZ

	3.12 Miscellaneous instructions
	Table 37. Miscellaneous instructions
	3.12.1 BKPT
	3.12.2 CPS
	3.12.3 DMB
	3.12.4 DSB
	3.12.5 ISB
	3.12.6 MRS
	3.12.7 MSR
	3.12.8 NOP
	3.12.9 SEV
	3.12.10 SVC
	3.12.11 WFE
	3.12.12 WFI

	4 Cortex-M7 Peripherals
	4.1 About the Cortex-M7 peripherals
	Table 38. Core peripheral register regions

	4.2 Nested Vectored Interrupt Controller
	Table 39. NVIC register summary
	4.2.1 Accessing the Cortex®-M7 NVIC registers using CMSIS
	Table 40. CMSIS access NVIC functions

	4.2.2 Interrupt Set-enable registers
	Figure 17. ISER bit assignments
	Table 41. ISER bit assignments

	4.2.3 Interrupt clear-enable registers
	Figure 18. ICER bit assignment
	Table 42. ICER bit assignments

	4.2.4 Interrupt set-pending registers
	Figure 19. ISPR bit assignments
	Table 43. ISPR bit assignments

	4.2.5 Interrupt clear-pending registers
	Figure 20. ICPR bit assignments
	Table 44. ICPR bit assignments

	4.2.6 Interrupt Active Bit registers
	Figure 21. IABR bit assignments
	Table 45. IABR bit assignments

	4.2.7 Interrupt Priority registers
	Figure 22. IPR bit assignments
	Table 46. IPR bit assignments

	4.2.8 Software Trigger Interrupt register
	Figure 23. STIR bit assignments
	Table 47. STIR bit assignments

	4.2.9 Level-sensitive and pulse interrupts
	4.2.10 NVIC design hints and tips
	Table 48. CMSIS functions for NVIC control

	4.3 System control block
	Table 49. Summary of the system control block registers
	4.3.1 Auxiliary Control register
	Figure 24. ACTLR bit assignments
	Table 50. ACTLR bit assignments

	4.3.2 CPUID Base register
	Figure 25. CPUID bit assignments
	Table 51. CPUID bit assignments

	4.3.3 Interrupt Control and State register
	Figure 26. ICSR bit assignments
	Table 52. ICSR bit assignments

	4.3.4 Vector Table Offset register
	Figure 27. VTOR bit assignments
	Table 53. VTOR bit assignments

	4.3.5 Application Interrupt and Reset Control register
	Figure 28. AIRCR bit assignments
	Table 54. AIRCR bit assignments
	Table 55. Priority grouping

	4.3.6 System Control register
	Figure 29. SCR bit assignments:
	Table 56. SCR bit assignments

	4.3.7 Configuration and Control register
	Figure 30. CCR bit assignments
	Table 57. CCR bit assignments

	4.3.8 System Handler Priority registers
	Table 58. System fault handler priority fields
	Figure 31. SHPR1 bit assignements
	Table 59. SHPR1 register bit assignments
	Figure 32. SHPR2 bit assignments
	Table 60. SHPR2 register bit assignments
	Figure 33. SHPR3 bit assignments
	Table 61. SHPR3 register bit assignments

	4.3.9 System Handler Control and State register
	Figure 34. SHCSR bit assignments
	Table 62. SHCSR bit assignments

	4.3.10 Configurable Fault Status register
	Figure 35. CFSR bit assignments
	Figure 36. MMFSR bit assignments
	Table 63. MMFSR bit assignments
	Figure 37. BFSR bit assignments
	Table 64. BFSR bit assignments
	Figure 38. UFSR bit assignments
	Table 65. UFSR bit assignments

	4.3.11 HardFault Status register
	Figure 39. HFSR bit assignments
	Table 66. HFSR bit assignments

	4.3.12 MemManage Fault Address register
	Table 67. MMFAR bit assignments

	4.3.13 BusFault Address register
	Table 68. BFAR bit assignments

	4.3.14 System control block design hints and tips
	Table 69. CMSIS function for system control

	4.4 System timer, SysTick
	Table 70. System timer registers summary
	4.4.1 SysTick Control and Status register
	Figure 40. SysTick SYST_CSR bit assignments
	Table 71. SysTick SYST_CSR bit assignments

	4.4.2 SysTick Reload Value register
	Figure 41. SYST_RVR bit assignments
	Table 72. SYST_RVR bit assignments

	4.4.3 SysTick Current Value register
	Figure 42. SYST_CVR bit assignments:
	Table 73. SYST_CVR bit assignments

	4.4.4 SysTick Calibration Value register
	Figure 43. SYST_CALIB bit assignments
	Table 74. SYST_CALIB bit assignments

	4.4.5 SysTick design hints and tips
	Table 75. CMSIS functions for SysTick control

	4.5 Processor features
	Table 76. Identification space summary
	4.5.1 Cache Level ID register
	Figure 44. CLIDR bit assignments
	Table 77. CLIDR bit assignments

	4.5.2 Cache Type register
	Figure 45. CTR bit assignments
	Table 78. CTR bit assignments

	4.5.3 Cache Size ID register
	Figure 46. CCSIDR bit assignments
	Table 79. CCSIDR bit assignments
	Table 80. CCSIDR encodings

	4.5.4 Cache Size Selection register
	Figure 47. CSSELR bit assignments
	Table 81. CSSELR bit assignments

	4.6 Memory Protection Unit
	Table 82. Memory attributes summary
	Table 83. MPU registers summary
	4.6.1 MPU Type register
	Figure 48. TYPE bit assignments
	Table 84. TYPE bit assignments

	4.6.2 MPU Control register
	Figure 49. MPU_CTRL bit assignments
	Table 85. MPU_CTRL bit assignments

	4.6.3 MPU Region Number register
	Figure 50. MPU_RNR bit assignments
	Table 86. MPU_RNR bit assignments

	4.6.4 MPU Region Base Address register
	Figure 51. MPU_RBAR bit assignments:
	Table 87. MPU_RBAR bit assignments

	4.6.5 MPU Region Attribute and Size register
	Figure 52. MPU_RASR bit assignments
	Table 88. MPU_RASR bit assignments
	Table 89. Example SIZE field values

	4.6.6 MPU access permission attributes
	Table 90. TEX, C, B, and S encoding
	Table 91. Cache policy for memory attribute encoding
	Table 92. AP encoding

	4.6.7 MPU mismatch
	4.6.8 Updating an MPU region
	Figure 53. Example of disabling subregion

	4.6.9 MPU design hints and tips

	4.7 Floating-point unit
	Table 93. Cortex®-M7 floating-point system registers
	4.7.1 Coprocessor Access Control register
	Figure 54. CPACR bit assignments
	Table 94. CPACR bit assignments

	4.7.2 Floating-point Context Control register
	Figure 55. FPCCR bit assignments
	Table 95. FPCCR bit assignments

	4.7.3 Floating-point Context Address register
	Figure 56. FPCAR bit assignments
	Table 96. FPCAR bit assignments

	4.7.4 Floating-point Status Control register
	Figure 57. FPSCR bit assignments
	Table 97. FPSCR bit assignments

	4.7.5 Floating-point Default Status Control register
	Figure 58. FPDSCR bit assignments
	Table 98. FPDSCR bit assignments

	4.7.6 Enabling the FPU

	4.8 Cache maintenance operations
	Table 99. Cache maintenance space register summary
	4.8.1 Full instruction cache operation
	4.8.2 Instruction and data cache operations by address
	Table 100. Cache operation registers bit assignments

	4.8.3 Data cache operations by set-way
	Figure 59. Cache operation bit assignments
	Table 101. Cache operations by set-way bit assignments

	4.8.4 Cortex®-M7 cache maintenance operations using CMSIS
	Table 102. CMSIS access cache maintenance operations

	4.8.5 Initializing and enabling the L1-cache
	4.8.6 Faults handling considerations
	4.8.7 Cache maintenance design hints and tips

	4.9 Access control
	Table 103. Access control register summary
	4.9.1 Instruction and Data Tightly-Coupled Memory Control Registers
	Figure 60. ITCMR and DTCMR bit assignments
	Table 104. ITCMCR and DTCMCR bit assignments

	4.9.2 AHBP Control register
	Figure 61. AHBPCR bit assignments
	Table 105. AHBPCR bit assignments

	4.9.3 Auxiliary Cache Control register
	Figure 62. CACR bit assignments
	Table 106. CACR bit assignments

	4.9.4 AHB Slave Control register
	Figure 63. AHBSCR bit assignments
	Table 107. AHBSCR bit assignments

	4.9.5 Auxiliary Bus Fault Status register
	Figure 64. ABFSR bit assignments
	Table 108. ABFSR bit assignments

	5 Revision history
	Table 109. Document revision history

