F life.augmented PM0253

Programming manual
STM32F7 Series Cortex®-M7 processor programming manual

Introduction

This programming manual provides information for application and system-level software
developers. It gives a full description of the STM32F7 Series Cortex™-M7 processor
programming model, instruction set and core peripherals.

The STM32F7 Series Cortex®-M7 processor is a high performance 32-bit processor
designed for the microcontroller market.

The Cortex®-M7 processor is the ARM®'s highest-performing Cortex®-M processor. It
combines a six-stage, superscalar pipeline with flexible system and memory interfaces
including AXI, AHB, caches and tightly-coupled memories, and delivers high integer,
floating-point and DSP performance in a STM32F7 Series MCU. It supports also dual-issue
of load/load and load/store instruction pairs to multiple memory interfaces.

The Cortex®-M7 processor takes advantage of the same easy-to-use, C friendly
programmer’s model and is 100% binary compatible with the existing Cortex®-M processors
and tools. Along with all Cortex®-M series processors, it enjoys full support from the ARM®
Cortex®-M ecosystem. The software compatibility enables a simple migration from Cortex®-
M3 and Cortex®-M4 processors.

February 2017 DoclD028474 Rev 3 1/252

www.st.com

http://www.st.com

Contents PM0253
Contents

1 Aboutthisdocument i 14

1.1 Typographical conventions 14

1.2 List of abbreviations forregisters 14

1.3 About the Cortex®-M7 processor and core peripherals 15

1.3.1 System levelinterface 16

1.3.2 Integrated configurabledebug L. 16

1.3.3 Cortex®-M7 processor features and benefits summary 17

1.34 Cortex®-M7 processor core peripherals 17

2 The Cortex-M7 processorcciiiiiiii ittt ieannnnnnnns 19

2.1 Programmers model e 19

211 Processor mode and privilege levels for software execution 19

21.2 StaCKS ... 19

213 Coreregisters 20

214 Exceptions and interrupts 28

215 Datatypes e 29

21.6 The Cortex Microcontroller Software Interface Standard (CMSIS) 29

22 Cortex®-M7 configurations 30

23 Memory model 32

2.31 Memory regions, types and attributes 33

2.3.2 Memory system ordering of memory accesses 33

233 Behaviorof memory accesses i 34

234 Software ordering of memory accesses 36

2.3.5 Memory endianness 36

2.3.6 Synchronization primitives 37

237 Programming hints for the synchronization primitives 38

24 Exceptionmodel e 39

241 Exceptionstates 39

242 Exceptiontypes 39

24.3 Exceptionhandlers 41

244 Vectortable 42

245 Exception priorities 43

246 Interrupt priority grouping 43

247 Exceptionentryandreturn 44

2/252 DoclD028474 Rev 3 m

PM0253 Contents
2.5 Faulthandling i e 47
2.5.1 Faulttypes 47

252 Fault escalationand hard faults 48

253 Synchronous and Asynchronous busfaults 49

254 Fault status registers and fault address registers 49

255 LoCKUD . .o 49

26 Power management 50
2.6.1 Enteringsleepmode 50

26.2 Wakeup fromsleepmode 51

2.6.3 The external eventinput 51

264 Power management programming hints 51

3 The Cortex-M7 instructionset 52
3.1 Instruction setsummary 52
3.1.1 Binary compatibility with other Cortex processors 61

3.2 CMSISfunctions 62
3.3 About the instruction descriptions L. 63
3.3.1 Operands 63

3.3.2 Restrictions whenusingPCorSP 63

3.3.3 Flexible secondoperand 64

3.34 Shiftoperations 65

3.3.5 Address alignment 68

3.3.6 PC-relative expressions i 68

3.3.7 Conditional execution 68

3.3.8 Instruction width selection 71

3.4 Memory access instructions 72
3.4.1 ADR . 73

34.2 LDR and STR, immediate offset 73

3.4.3 LDR and STR, registeroffset 76

3.4.4 LDR and STR, unprivileged i 77

3.4.5 LDR, PC-relative 78

3.4.6 LDMand STM e 79

3.4.7 PLD 81

3.4.8 PUSHand POP e 82

349 LDREX and STREX e 83

3410 CLREX ..o e 84

m DoclD028474 Rev 3 3/252

Contents PM0253
3.5 General data processing instructions 85
3.5.1 ADD, ADC, SUB,SBC,and RSB 87
3.5.2 AND, ORR, EOR,BIC,andORN 89
3.5.3 ASR, LSL,LSR,ROR,andRRX 90
3.54 CLZ 91
3.5.5 CMP and CMN e e e e 92
3.5.6 MOV and MVN e 93
3.5.7 MOV T 94
3.5.8 REV, REV16, REVSH,andRBIT 95
3.5.9 SADD16 and SADDS8 96
3.5.10 SHADD16and SHADDS8 97
3.511 SHASX and SHSAX 98
3.512 SHSUB16and SHSUBS8 99
3.513 SSUB16and SSUBS8 100
3.5.14 SASX and SSAX ... 101
3515 TSTand TEQo e e 102
3.516 UADD16 and UADDS8 103
3.517 UASX and USAX e 104
3.518 UHADD16and UHADDS i, 105
3.519 UHASX and UHSAX 106
3.520 UHSUB16andUHSUBS8 107
3.5.21 SEL .o 108
3.5.22 USADS 108
3.5.23 USADAS ... 109
3.524 USUB16andUSUBS8 i, 110
3.6 Multiply and divide instructions 111
3.6.1 MUL, MLA,and MLS 112
3.6.2 UMULL, UMAAL, UMLAL e 113
3.6.3 SMLA and SMLAW 115
3.6.4 SMLAD .. 116
3.6.5 SMLAL and SMLALD e e 117
3.6.6 SMLSD and SMLSLD 119
3.6.7 SMMLA and SMMLS 121
3.6.8 SMMUL . .. 122
3.6.9 SMUAD and SMUSD 123
3.6.10 SMULand SMULW e 124
3.6.11 UMULL, UMLAL, SMULL,and SMLAL 126

4/252

DoclD028474 Rev 3 ‘Yl

PM0253

Contents

3

3.7

3.8

3.9

3.10

3.11

3.6.12 SDIVand UDIV e 127
Saturating instructions 128
3.71 SSAT and USAT 129
3.7.2 SSAT16 and USAT16t 130
3.7.3 QADD and QSUB 131
3.74 QASX and QSAX . .. 132
3.7.5 QDADD and QDSUB 133
3.7.6 UQASX and UQSAX ... i e 134
3.7.7 UQADD and UQSUB 136
Packing and unpacking instructions 137
3.8.1 PKHBT and PKHTB i 138
3.8.2 SXT and UXT ... e e e 139
3.8.3 SXTA and UXTA ... e e 140
Bit field instructions 141
3.91 BFCand BFIl 142
3.9.2 SBFXand UBFX 143
3.9.3 SXT and UXT 144
Branch and control instructions L. 145
3.10.1 B,BL,BX,andBLX 145
3.10.2 CBZand CBNZ 147
3.10.3 I e 148
3104 TBBand TBH 150
Floating-point instructions 151
3111 VABS 153
3112 VADD ... 153
3.11.3 VCMP,VCMPE 154
3.11.4 VCVT, VCVTR between floating-point and integer 155
3.11.5 VCVT between floating-point and fixed-point 156
3116 VCVTB, VCVTT .. e 157
317 VDIV 157
3.11.8 VFEMA, VFEMS . . 158
3.11.9 VFENMA,VENMS . .. 159
31110 VLDM .. 159
31111 VLDR .. e 160
31112 VMLA, VMLS . . e 161
3.11.13 VMOV Immediate 162

DoclD028474 Rev 3 5/252

Contents PM0253
3.11.14 VMOV Register e 162
3.11.15 VMOV Scalarto ARM coreregister 163
3.11.16 VMOV ARM core register to single-precision 163
3.11.17 VMOV two ARM core registers to two single-precision registers 164
3.11.18 VMOV two ARM core registers and a double-precision register 164
3.11.19 VMOV ARM coreregistertoscalar 165
3.11.20 VMRS .. 165
3.11.21 VMSR 166
3.11.22 VMUL . .. 166
3.11.23 VNEG . .. 167
3.11.24 VNMLA, VNMLS,VNMUL 167
3.11.25 VPOP . .. 168
3.11.26 VPUSH 169
3.11.27 VSQRT . 169
3.11.28 VSTM . . 170
3.11.29 VSTR . 170
3.11.30 VSUB ... 171
3.11.31 VSEL .. 172
3.11.32 VMAXNM, VMINNM 172
3.11.33 VCVTA, VCVTN,VCVTP,VCVTM i 173
3.11.34 VRINTR, VRINTX ... e 173
3.11.35 VRINTA, VRINTN, VRINTP, VRINTM, VRINTZ 174

3.12 Miscellaneous instructions 175

3121 BRPT L 175

3.12.2 CPS 176

3.12.3 DMB .. 177

3124 DSB ... 177

3125 ISB . 178

3126 MRS .. 178

3127 MSR . 179

3.12.8 NOP ... 180

3.12.9 SEV . 180

312,10 SVC .o 181

31211 WEE . . 181

31212 W 182

4 Cortex-M7 Peripheralsttt iiannn. 183
6/252 DoclD028474 Rev 3 m

PM0253 Contents
4.1 About the Cortex-M7 peripherals 183
4.2 Nested Vectored Interrupt Controller 184

421 Accessing the Cortex®-M7 NVIC registers using CMSIS 185

422 Interrupt Set-enable registers L 185

423 Interrupt clear-enable registers L. 186

424 Interrupt set-pending registers oL 186

4.2.5 Interrupt clear-pending registers 187

4.2.6 Interrupt Active Bitregisters 188

427 Interrupt Priority registers 188

428 Software Trigger Interruptregister 189

429 Level-sensitive and pulse interrupts L. 190

4210 NVICdesignhintsandtips.......... 191

4.3 Systemcontrol block 192
4.31 Auxiliary Controlregister 193

4.3.2 CPUID Baseregister iin 194

4.3.3 Interrupt Control and State register 194

43.4 Vector Table Offsetregister 197

4.3.5 Application Interrupt and Reset Control register 197

4.3.6 System Controlregister 199

4.3.7 Configuration and Controlregister 200

4.3.8 System Handler Priority registers 202

4.3.9 System Handler Control and State register 204

4.3.10 Configurable Fault Status register 205

4.3.11 HardFault Statusregister 210

4.3.12 MemManage Fault Address register 211

4.3.13 BusFaultAddressregister 212

4.3.14 System control block design hintsand tips 212

4.4 System timer, SysTick 212
441 SysTick Control and Status register 213

442 SysTick Reload Valueregister 214

443 SysTick Current Valueregister 214

444 SysTick Calibration Value register 215

445 SysTick design hintsandtips 216

4.5 Processorfeatures 217
4.5.1 Cache Level IDregister i i i 217

45.2 Cache Typeregister 218

‘W DoclD028474 Rev 3 7/252

Contents PM0253

453 Cache Size IDregister 219

454 Cache Size Selectionregister 220

4.6 Memory Protection Unit, 221
4.6.1 MPU Type register 223

4.6.2 MPU Control register 223

4.6.3 MPU Region Numberregister 225

46.4 MPU Region Base Addressregister 225

4.6.5 MPU Region Attribute and Size register 226

4.6.6 MPU access permission attributes 228

4.6.7 MPU mismatch 230

4.6.8 Updatingan MPU region i, 230

46.9 MPU design hintsand tips 232

4.7 Floating-pointunit 233
4.71 Coprocessor Access Controlregister 233

4.7.2 Floating-point Context Control register 234

4.7.3 Floating-point Context Address register 236

4.7.4 Floating-point Status Control register 236

4.7.5 Floating-point Default Status Control register 237

4.7.6 Enablingthe FPU 238

4.8 Cache maintenance operations 238
4.8.1 Full instruction cache operation 239

4.8.2 Instruction and data cache operations by address 239

4.8.3 Data cache operationsby set-way 239

48.4 Cortex®-M7 cache maintenance operations using CMSIS 240

4.8.5 Initializing and enabling the L1-cache 240

4.8.6 Faults handling considerations 242

4.8.7 Cache maintenance design hintsand tips 242

4.9 Access control 243
491 Instruction and Data Tightly-Coupled Memory Control Registers 244

49.2 AHBP Controlregister 246

493 Auxiliary Cache Control register 247

494 AHB Slave Control register 248

4.9.5 Auxiliary Bus Fault Status register 249

5 Revision history i i ittt 251

8/252 DoclD028474 Rev 3 ‘Yl

PMO0253 List of tables
List of tables

Table 1. Summary of processor mode, execution privilege level, and stack use options. 20
Table 2. Coreregister set summary 21
Table 3. PSR register combinations e 22
Table 4. APSR bit assignments e 23
Table 5. IPSR bitassignments e 24
Table 6. EPSR bitassignments e 24
Table 7. PRIMASK register bit assignments. e 26
Table 8. FAULTMASK register bitassignments. i, 26
Table 9. BASEPRI register bitassignments 27
Table 10. Control register bit assignments e 27
Table 11. STM32F746xx/STM32F756xx Cortex®-M7 configuration. 30
Table 12. STM32F76xxx/STM32F77xxx Cortex®-M7 configuration. 30
Table 13. STM32F72xxx/STM32F73xxx Cortex®-M7 configuration. 31
Table 14. Ordering Of MEMOIY @CCESSES vttt ittt et e e 34
Table 15. Memory access behavior 34
Table 16. Memory region shareability and cache policies 35
Table 17. CMSIS functions for exclusive access instructions. 38
Table 18. Properties of the different exceptiontypes 40
Table 19. Exception return behavior. 46
Table 20. Faults 47
Table 21. Fault status and fault address registers 49
Table 22. Cortex®-M7 iNStrUCHONS\ttt e 52
Table 23. CMSIS functions to generate some Cortex®-M7 processor instructions 62
Table 24. CMSIS functions to access the specialregisters 63
Table 25. Condition code suffixes. 70
Table 26. Memory access inStructions 72
Table 27. Offsetranges e e 75
Table 28. Offsetranges e 78
Table 29. Data processing instructions. 85
Table 30. Multiply and divide instructions. 111
Table 31. Saturating instructions 128
Table 32. Packing and unpacking instructions 137
Table 33. Packing and unpacking instructions 141
Table 34. Branch and controlinstructions e 145
Table 35. BranCh rangest e 146
Table 36. Floating-pointinstructions. 151
Table 37. Miscellaneous instructions e 175
Table 38. Core peripheralregisterregions i e 183
Table 39. NVIC register sUMmMary e e e 184
Table 40. CMSIS access NVIC funClioNS i e e e 185
Table 41. ISER bitassignments 185
Table 42. ICERbitassignments e e e 186
Table 43. ISPR bitassignments e e 187
Table 44. ICPRbitassignments e e e 187
Table 45. IABR bitassignments 188
Table 46. IPRbitassignments 189
Table 47. STIRbitassignments e e e 189
Table 48. CMSIS functions for NVIC control e 191
Kys DoclD028474 Rev 3 9/252

List of tables PM0253

Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Table 54.
Table 55.
Table 56.
Table 57.
Table 58.
Table 59.
Table 60.
Table 61.
Table 62.
Table 63.
Table 64.
Table 65.
Table 66.
Table 67.
Table 68.
Table 69.
Table 70.
Table 71.
Table 72.
Table 73.
Table 74.
Table 75.
Table 76.
Table 77.
Table 78.
Table 79.
Table 80.
Table 81.
Table 82.
Table 83.
Table 84.
Table 85.
Table 86.
Table 87.
Table 88.
Table 89.
Table 90.
Table 91.
Table 92.
Table 93.
Table 94.
Table 95.
Table 96.
Table 97.
Table 98.
Table 99.
Table 100.

10/252

Summary of the system control block registers 192
ACTLR bit assignments 193
CPUID bit assignments. e 194
ICSR bitassignments 195
VTOR bitassignments 197
AIRCR bit assignments. e 198
Priority groupingo 198
SCRbitassignments e 199
CCRbitassignments 201
System fault handler priority fields 202
SHPR1 register bit assignments. 203
SHPR2 register bit assignments. 203
SHPR3 register bit assignments. 203
SHCSR bitassignments e 204
MMFSR bit assignments. e 206
BFSR bit assignments e 208
UFSR bitassignments 209
HFSR bit assignments 211
MMFAR bit assignments. e 211
BFAR bit assignments 212
CMSIS function for systemcontrol 212
System timer registers summary 213
SysTick SYST_CSR bitassignments 213
SYST_RVRbitassignments. e 214
SYST_CVRbitassignments. e 215
SYST_CALIB bitassignments e 215
CMSIS functions for SysTick control 216
Identification space summary 217
CLIDR bit @assignments e 217
CTR bitassignments 218
CCSIDR bitassignments e 219
CCSIDR €nCOINGS. . . o ottt e e 220
CSSELR bitassignments e 220
Memory attributes summary 221
MPU registers SUMmaryt e 222
TYPE bit assignments e 223
MPU_CTRL bit assignments e 224
MPU_RNR bitassignments e 225
MPU_RBAR bit assignments 226
MPU_RASR bit assignments 227
Example SIZE field values 228
TEX,C,B,and Sencoding. e 228
Cache policy for memory attribute encoding i 229
AP encodingo 229
Cortex®-M7 floating-point systemregisters 233
CPACR bitassignments e 234
FPCCR bitassignments e 234
FPCAR bitassignments 236
FPSCR bitassignments 236
FPDSCR bit assignments. 237
Cache maintenance space registersummary 238
Cache operation registers bit assignments. L 239

DoclD028474 Rev 3 ‘Yl

PM0253 List of tables
Table 101. Cache operations by set-way bitassignments 239
Table 102. CMSIS access cache maintenance operations 240
Table 103. Access control register summary 243
Table 104. ITCMCR and DTCMCR bitassignments 244
Table 105. AHBPCR bitassignments. 246
Table 106. CACRDbitassignments e 247
Table 107. AHBSCR bitassignments. 248
Table 108. ABFSR bit assignments 249
Table 109. Document revision history e 251
IS73 DoclD028474 Rev 3 11/252

List of figures PM0253

List of figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.

12/252

STM32 Cortex®-M7 implementation processor 15
Processor core registers. 20
APSR, IPSR and EPSR bitassignments 22
PRIMASK bit assignments:. e 26
FAULTMASK bitassignments e 26
BASEPRI bitassignments e 27
Control bit assignments e 27
Processor MemOry Map oottt e e e e e e 32
Little-endian format. e 37
Vectortable. 42
Exception stack frame 45
A R L 66
LS R . 66
LS . 67
ROR . 67
RRX 67
ISER bitassignments e 185
ICER bitassignment. e 186
ISPR bitassignments e 186
ICPR bitassignments e e e 187
IABR bit assignments 188
IPRbitassignments e 188
STIR bitassignments 189
ACTLR bitassignments e i e 193
CPUID bit assignments. e 194
ICSR bitassignments 195
VTOR bit assignments e e e 197
AIRCR bitassignments. e 197
SCR bitassignments: 199
CCRbitassignments e 200
SHPR1 bitassignements 202
SHPR2 bitassignments 203
SHPR3 bitassignments 203
SHCSR bitassignments 204
CFSR bitassignments 205
MMFSR bit assignments. 206
BFSR bit assignments 207
UFSR bitassignments 209
HESR bitassignments 210
SysTick SYST _CSR bitassignments. 213
SYST _RVR bitassignments. e 214
SYST _CVR bitassignments: e 214
SYST _CALIB bitassignments e 215
CLIDR bitassignments e 217
CTRbitassignments e e e e 218
CCSIDR bitassignments e 219
CSSELR bitassignments 220
TYPE bit assignments 223

DoclD028474 Rev 3 ‘Yl

PM0253 List of figures
Figure 49. MPU_CTRL bitassignments e e 223
Figure 50. MPU_RNRbitassignments 225
Figure 51. MPU_RBAR bit assignments:. 225
Figure 52. MPU_RASR bitassignments 227
Figure 53. Example of disabling subregion 232
Figure 54. CPACRbitassignments 233
Figure 55. FPCCRbitassignments e 234
Figure 56. FPCARDbit assignments 236
Figure 57. FPSCRbitassignments 236
Figure 58. FPDSCR bitassignments. 237
Figure 59. Cache operation bitassignments 239
Figure 60. ITCMR and DTCMR bitassignments 244
Figure 61. AHBPCRbitassignments. 246
Figure 62. CACRDbitassignments 247
Figure 63. AHBSCR bit assignments. 248
Figure 64. ABFSR bitassignments 249
IS73 DoclD028474 Rev 3 13/252

About this document

PM0253

1.1

1.2

14/252

About this document

This document provides information required for application and system-level software
development. It does not provide information on debug components, features, or operation.

This material is for microcontroller software and hardware engineers, including those who
have no experience of ARM products.

Typographical conventions

The typographical conventions used in this document are:

italic

bold

monospace

monospace

monospace italic

monospace bold

<and >

Highlights important notes, introduces special terminology, denotes
internal cross-references, and citations.

Highlights interface elements, such as menu names. Denotes signal
names. Also used for terms in descriptive lists, where appropriate.

Denotes text that the user can enter at the keyboard, such as com-
mands, file and program names, and source code.

Denotes a permitted abbreviation for a command or option. core can
enter the underlined text instead of the full command or option name.

Denotes arguments to monospace text where the argument is to be
replaced by a specific value.

Denotes language keywords when used outside example code.

Enclose replaceable terms for assembler syntax where they appear in
code or code fragments. For example:
LDRSB<cond> <Rt>, [<Rn>, #<offset>]

List of abbreviations for registers

The following abbreviations are used in register descriptions:

read/write (rw)
read-only (r)

write-only (w)

read/clear (rc_w)

read/clear (rc_w1)

read/clear (rc_wO0)

toggle (1)
Reserved (Res.)

Software can read and write to these bits.
Software can only read these bits.

Software can only write to this bit.
Reading the bit returns the reset value.

Software can read as well as clear this bit by writing any value.

Software can read as well as clear this bit by writing 1.
Writing ‘0’ has no effect on the bit value.

Software can read as well as clear this bit by writing 0.
Writing ‘1’ has no effect on the bit value.

Software can only toggle this bit by writing ‘1. Writing ‘0’ has no effect.

Reserved bit, must be kept at reset value.

DoclD028474 Rev 3 ‘Yl

PM0253

About this document

1.3 About the Cortex®-M7 processor and core peripherals
The Cortex®-M7 processor is a high performance 32-bit processor designed for the
microcontroller market. It offers significant benefits to developers, including:
e Outstanding processing performance combined with fast interrupt handling.
e Enhanced system debug with extensive breakpoint and trace capabilities.
e Efficient processor core, system and memories.
e Low-power consumption with integrated sleep modes.
e Platform security robustness, with integrated Memory Protection Unit (MPU).
Figure 1. STM32 Cortex®-M7 implementation processor
Cortex-M7 Processor
Cortex-M7 < » Breakpoint Unit |«
processor
core < » External PPB
P P - Memory
FPU A Protection Unit |
Cross Trigger
Interrupts » NVIC = > Interfagg
Debugger <« AHBD—M—p < > ETM-M7 < » ATB Data
Peripherals «—F——AHBP——— < » ATB Instruction
<« DOTCM—————»
Memory <« D1TCM—— > Data
<+« F———ITCM——» <«—>» Watchpoint |«
DMA o AHBS——» and Trace Unit
Instrumentation | . ATB
Trace Macrocell " Instrumentation
| Processor ROM table |<+—s
| PPBROMtable |«
[y
AXIM
v
External memory system
MSv39635V1

3

The Cortex®-M7 processor is built on a high-performance processor core, with a 6-stage
pipeline Harvard architecture, making it ideal for demanding embedded applications. The in-
order superscalar processor delivers exceptional power efficiency through an efficient
instruction set and extensively optimized design, providing high-end processing hardware
including IEEE754-compliant single-precision and double-precision floating-point
computation, a range of single-cycle and SIMD multiplication and multiply-with-accumulate
capabilities, saturating arithmetic and dedicated hardware division.

To facilitate the design of cost-sensitive devices, the Cortex®-M7 processor implements
tightly-coupled system components that reduce processor area while significantly improving
interrupt handling anq@system debug capabilities. The Cortex®-M7 processor implements a
version of the Thumb instruction set based on Thumb-2 technology, ensuring high code

DoclD028474 Rev 3 15/252

About this document PM0253

1.3.1

1.3.2

16/252

density and reduced program memory requirements. The Cortex®-M7 instruction set
provides the exceptional performance expected of a modern 32-bit architecture, with the
high code density of 8-bit and 16-bit microcontrollers.

The Cortex®-M7 processor closely integrates a configurable NVIC, to deliver industry-
leading interrupt performance. The NVIC includes a Non Maskable Interrupt (NMI), and
provides up to 256 interrupt priority levels. The tight integration of the processor core and
NVIC provides fast execution of interrupt service routines (ISRs), dramatically reducing the
interrupt latency. This is achieved through the hardware stacking of registers, and the ability
to suspend load-multiple and store-multiple operations. Interrupt handlers do not require
wrapping in assembler code, removing any code overhead from the ISRs. A tail-chain
optimization also significantly reduces the overhead when switching from one ISR to
another.

To optimize low-power designs, the NVIC integrates with the sleep modes, that include a
deep sleep function that enables the entire device to be rapidly powered down while still
retaining program state.

The reliability is increased with automatic fault detection and handling built-in. The
Cortex®-M7 processor uses ECC and SECDED on accesses to memory and has Memory
Build-in Self Test (MBIST) capability. The Cortex®-M7 processor is dual-redundant, which
means it can operate in lock-step. The MCU vendor determines the reliability features
configuration and therefore this can differ across different devices and families.

To increase instruction throughput, the Cortex®-M7 processor can execute certain pairs of
instructions simultaneously. This is called dual issue.

System level interface

The Cortex®-M7 processor provides multiple interfaces using AMBA® technology to provide
high speed, low latency memory accesses. It supports unaligned data accesses.

The Cortex®-M7 processor has an MPU that provides fine grain memory control, enabling
applications to utilize multiple privilege levels, separating and protecting code, data and
stack on a task-by-task basis. Such requirements are becoming critical in many embedded
applications such as automotive.

Integrated configurable debug

The Cortex®-M7 processor implements a complete hardware debug solution. This provides
high system visibility of the processor and memory through either a traditional JTAG port or
a 2-pin Serial Wire Debug (SWD) port that is ideal for microcontrollers and other small
package devices. The MCU vendor determines the debug feature configuration and
therefore this can differ across different devices and families.

For system trace the processor integrates an Instrumentation Trace Macrocell (ITM)
together with data watchpoints and a profiling unit. To enable simple and cost-effective
profiling of the system events these generate, a Serial Wire Viewer (SWV) can export a
stream of software-generated messages, data trace, and profiling information through a
single pin.

The optional CoreSight technology components, Embedded Trace Macrocell (ETM),
delivers unrivalled instruction trace and data trace capture in an area far smaller than
traditional trace units, enabling many low cost MCUs to implement full instruction trace for
the first time.

DoclD028474 Rev 3 ‘Yl

PM0253

About this document

1.3.3

1.3.4

3

The Breakpoint Unit provides up to eight hardware breakpoint comparators that debuggers
can use.

Cortex®-M7 processor features and benefits summary

e Tight integration of system peripherals reduces area and development costs.

e Thumb instruction set combines high code density with 32-bit performance.

e |IEEE754-compliant single-precision and double-precision Floating-Point Unit (FPU).
e Power control optimization of system components.

e Integrated sleep modes for low-power consumption.

e Fast code execution permits slower processor clock or increases sleep mode time.
e Hardware division and fast digital-signal-processing orientated multiply accumulate.
e Saturating arithmetic for signal processing.

e Deterministic, high-performance interrupt handling for time-critical applications.

e MPU for safety-critical applications.

e ARM Cortex®-M7 with instruction cache and data cache

e Memory system features such as caches, Tightly-Coupled Memory (TCM) with DMA
port, and a high performance AXI external memory interface.

e Dedicated AHB slave (AHBS) interface for system access to TCMs
e Extensive debug and trace capabilities:

— Serial Wire Debug and Serial Wire Trace reduce the number of pins required for
debugging, tracing, and code profiling.

Cortex®-M7 processor core peripherals

The Cortex®-M7 processor core peripherals are:

Nested Vectored Interrupt Controller
The NVIC is an embedded interrupt controller that supports low latency interrupt
processing.

System Control Block
The System Control Block (SCB) is the programmers model interface to the
processor. It provides system implementation information and system control,
including configuration, control, and reporting of system exceptions.

Integrated instruction and data caches
The instruction and data caches provide fast access to frequently accessed data
and instructions, providing support for increased average performance when using
system based memory.

System timer
The system timer, SysTick, is a 24-bit count-down timer. Use this as a Real Time
Operating System (RTOS) tick timer or as a simple counter.

Memory Protection Unit

The Memory Protection Unit (MPU) improves system reliability by defining the
memory attributes for different memory regions. It provides up to 8 different
regions, and an optional predefined background region.

DoclD028474 Rev 3 17/252

About this document PM0253

Floating-point unit

The FPU provides IEEE754-compliant operations on 32-bit single-precision and
64-bit double-precision floating-point values.

3

18/252 DoclD028474 Rev 3

PM0253

The Cortex-M7 processor

2

2.1

211

2.1.2

3

The Cortex-M7 processor

Programmers model

This section describes the Cortex®-M7 programmers model. In addition to the individual
core register descriptions, it contains information about the processor modes and privilege
levels for software execution and stacks.

Processor mode and privilege levels for software execution

The processor modes are:

Thread mode Executes application software. The processor enters Thread mode
when it comes out of reset.

Handler mode Handles exceptions. The processor returns to Thread mode when it has
finished all exception processing.

The privilege levels for software execution are:
Unprivileged The software:
e Has limited access to system registers using the MSR and MRS
instructions, and cannot use the CPS instruction to mask interrupts.
e Cannot access the system timer, NVIC, or system control block.

e Might have restricted access to memory or peripherals.
Unprivileged software executes at the unprivileged level.

Privileged The software can use all the instructions and has access to all
resources.

Privileged software executes at the privileged level.

In Thread mode, the CONTROL register controls whether software execution is privileged or
unprivileged, see CONTROL register on page 27. In Handler mode, software execution is
always privileged.

Only privileged software can write to the CONTROL register to change the privilege level for
software execution in Thread mode. Unprivileged software can use the SVC instruction to
make a supervisor call to transfer control to privileged software.

Stacks

The processor uses a full descending stack. This means the stack pointer holds the address
of the last stacked item in memory. When the processor pushes a new item onto the stack, it
decrements the stack pointer and then writes the item to the new memory location. The
processor implements two stacks, the main stack and the process stack, with a pointer for
each held in independent registers, see Stack Pointer on page 21.

In Thread mode, the CONTROL register controls whether the processor uses the main
stack or the process stack, see CONTROL register on page 27. In Handler mode, the
processor always uses the main stack. The options for processor operations are:

DoclD028474 Rev 3 19/252

The Cortex-M7 processor

PM0253

Table 1. Summary of processor mode, execution privilege level, and stack use

options

Processor mode

Used to execute

Privilege level for
software execution

Stack used

Thread

Applications

Privileged or unprivilegedm

Main stack or process stack(®)

Handler

Exception handlers

Always privileged

Main stack

1. See CONTROL register on page 27.

213 Core registers

The processor core registers are

Figure 2. Processor core registers

Low registers

High registers

Stack Pointer
Link Register

Program Counter

RO

R1

R2

R3

R4

R5

R6

General-purpose
registers

R7

R8

R9

R10

R11

R12

SP (R13)

pspt || wsP*

LR (R14)

PC (R15)

PSR

Program status register

PRIMASK

FAULTMASK

BASEPRI

CONTROL

CONTROL register

Exception mask registers

*Banked version of SP

Special registers

MSv39636V1

20/252

DoclD028474 Rev 3

3

PMO0253 The Cortex-M7 processor
Table 2. Core register set summary
. (1)| Required e
Register Name Type privilege(z) Reset value Description
General-purpose registers | R0-R12 RwW Either Unknown General-purpose registers on
page 21.
Stack pointer MSP RW Either See i Stack Pointer on page 21.
description
Stack pointer PSP RW Either Unknown Stack Pointer on page 21
Link register LR RW Either OxFFFFFFFF | Link register on page 21
Program Counter PC RW Either See i Program Counter on page 22
description
Program Status Register | PSR RW |Either 0x01000000(3) | Pregram Status register on
page 22
Appllcatlon Program Status APSR RW Either Unknown Appllcat/on Program Status
register register on page 23
Inte_rrupt Program Status IPSR RO Privileged | 0x00000000 Interrupt Program Status register
register on page 23
Exgcutlon Program Status EPSR RO Privileged | 0x0 10000003 Exqcut/on Program Status
register register on page 24
o . L Priority Mask register on
Priority Mask register PRIMASK RW Privileged |0x00000000
page 25
Fault Mask register FAULTMASK | RW Privileged | 0x00000000 | Fault Mask register on page 26
Base Priority Mask register | BASEPRIS |RW Privileged | 0x00000000 ZgggthMask register on
Control register CONTROL (RW Privileged | 0x00000000 | CONTROL register on page 27

1. Describes access type during program execution in Thread mode and Handler mode. Debug access can differ.

2. An entry of Either means privileged and unprivileged software can access the register.

3. The EPSR reads as zero when executing an MRS instruction.

General-purpose registers

R0-R12 are 32-bit general-purpose registers for data operations.

Stack Pointer

The Stack Pointer (SP) is register R13. In Thread mode, bit[1] of the CONTROL register
indicates the stack pointer to use:
e 0= Main Stack Pointer (MSP). This is the reset value.
e 1= Process Stack Pointer (PSP).

On reset, the processor loads the MSP with the value from address 0x00000000.

Link register

The Link Register (LR) is register R14. It stores the return information for subroutines,
function calls, and exceptions. On reset, the processor sets the LR value to OXFFFFFFFF.

3

DoclD028474 Rev 3

21/252

The Cortex-M7 processor PMO0253

22/252

Program Counter

The Program Counter (PC) is register R15. It contains the current program address. On
reset, the processor loads the PC with the value of the reset vector, which is at address
0x00000004. Bit[0] of the value is loaded into the EPSR T-bit at reset and must be 1.

Program Status register

The Program Status register (PSR) combines:

e Application Program Status register (APSR).
e Interrupt Program Status register (IPSR).

e Execution Program Status register (EPSR).

These registers are mutually exclusive bit fields in the 32-bit PSR. The bit assignments are

Figure 3. APSR, IPSR and EPSR bit assignments

313029 28 27 26 25 24 23 2019 16 15 10 9 8 0
APSR |[Nfz[C|V|Q Reserved GE[3:0] Reserved
IPSR Reserved ISR_NUMBER
EPSR Reserved [ICUIT| T Reserved ICINT Reserved
MSv39637V1

Access these registers individually or as a combination of any two or all three registers,
using the register name as an argument to the MSR or MRS instructions. For example:

e Read all of the registers using PSR with the MRS instruction.
e Write to the APSR N, Z, C, V, and Q bits using APSR_nzcvqg with the MSR instruction.

The PSR combinations and attributes are:

Table 3. PSR register combinations

Register Type Combination
PSR Rw(1:2) APSR, EPSR, and IPSR.
IEPSR RO EPSR and IPSR.
IAPSR Rw(") APSR and IPSR.
EAPSR Rw®) APSR and EPSR.

1. The processor ignores writes to the IPSR bits.

2. Reads of the EPSR bits return zero, and the processor ignores writes to these bits.

See the instruction descriptions MRS on page 178 and MSR on page 179 for more
information about how to access the program status registers.

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 processor

3

Application Program Status register

The APSR contains the current state of the condition flags from previous instruction
executions. See the register summary in Table 4 on page 23 for its attributes. The bit
assignments are:

Table 4. APSR bit assignments

Bits Name Description
[31] N Negative flag.
[30] V4 Zero flag.
[29] C Carry or borrow flag.
[28] \% Overflow flag.
[27] Q DSP overflow and saturation flag
[26:20] - Reserved
[19:16] GE[3:0] i(i;g;ar;earﬁt(l;\r?n or Equal flags. See SEL on page 108 for more
[15:0] - Reserved

Interrupt Program Status register

The IPSR contains the exception type number of the current Interrupt Service Routine
(ISR). See the register summary in Table 5 on page 24 for its attributes. The bit assignments

are:

DoclD028474 Rev 3 23/252

The Cortex-M7 processor

PM0253

Table 5. IPSR bit assignments

Bits

Name

Function

[31:9]

Reserved

8:0]

ISR_NUMBER

This is the number of the current exception:
0 = Thread mode.

1 = Reserved.

2 = NMI.

3 = HardFault.

4 = MemManage.

5 = BusFault

6 = UsageFault

7-10 = Reserved

11 = SVCall.

12 = Reserved for debug
13 = Reserved

14 = PendSV.

15 = SysTick.

16 = IRQO.

256 = IRQ239.
see Exception types on page 39 for more information.

Execution Program Status register

The EPSR contains the Thumb state bit, and the execution state bits for either the:

multiple instruction.

If-Then (IT) instruction.
Interruptible-Continuable Instruction (ICl) field for an interrupted load multiple or store

See the register summary in Table 6 on page 24 for the EPSR attributes. The bit

assignments are

Table 6. EPSR bit assignments

Bits Name Function

[31:27] - Reserved.

[26:25], [15:10] |ICI I'nterrup.tlble-contlnuable instruction bits, see Interruptible-continuable
instructions on page 25.

[26:25], [15:10] | IT Indicates the execution state bits of the IT instruction, see IT on
page 148.

[24] T Thumb state bit, see Thumb state.

[23:16] - Reserved.

[9:0] - Reserved.

24/252

DoclD028474 Rev 3

3

PM0253

The Cortex-M7 processor

3

The attempts to read the EPSR directly through application software using the MSR
instruction always return zero. The attempts to write the EPSR using the MSR instruction in
application software are ignored.

Interruptible-continuable instructions

When an interrupt occurs during the execution of an LDM, STM, PUSH, POP, VLDM,
VSTM, VPUSH, or VPOP instruction, the processor:

e Stops the load multiple or store multiple instruction operation temporarily.

e Stores the next register operand in the multiple operation to EPSR bits[15:12].
After servicing the interrupt, the processor:

e Returns to the register pointed to by bits[15:12].

e Resumes execution of the multiple load or store instruction.

When the EPSR holds ICI execution state, bits[26:25,11:10] are zero.

If-Then block

The If-Then block contains up to four instructions following an IT instruction. Each
instruction in the block is conditional. The conditions for the instructions are either all the
same, or some can be the inverse of others. See IT on page 148 for more information.

Thumb state

The Cortex®-M7 processor only supports execution of instructions in Thumb state. The
following can clear the T bit to 0:

e Instructions BLX, BX and POP{PC}.

e Restoration from the stacked xPSR value on an exception return.

e Bit[0] of the vector value on an exception entry or reset.

Attempting to execute instructions when the T bit is 0 results in a fault or lockup. See Lockup
on page 49 for more information.

Exception mask registers

The exception mask registers disable the handling of exceptions by the processor. Disable
exceptions where they might impact on timing critical tasks.

To access the exception mask registers use the MSR and MRS instructions, or the CPS
instruction to change the value of PRIMASK or FAULTMASK. See MRS on page 178, MSR
on page 179, and CPS on page 176 for more information.

Priority Mask register

The PRIMASK register prevents the activation of all exceptions with a configurable priority.
See the register summary in Table 7 for its attributes. The bit assignments are

DoclD028474 Rev 3 25/252

The Cortex-M7 processor PMO0253

26/252

Figure 4. PRIMASK bit assignments:

31 10

Reserved

PRIMASK]

MSv39638V1

Table 7. PRIMASK register bit assignments

Bits Name Function

[31:1] Reserved.

Prioritizable interrupt mask:
[0] PRIMASK 0 = No effect.
1 = Prevents the activation of all exceptions with configurable priority.

Fault Mask register

The FAULTMASK register prevents activation of all exceptions except for Non Maskable
Interrupt (NMI). See the register summary in Table 8 on page 26 for its attributes. The bit
assignments are

Figure 5. FAULTMASK bit assignments

31 10

Reserved

FAULTMASK]

MSv39639V1

Table 8. FAULTMASK register bit assignments

Bits Name Function

[31:1] Reserved.

Prioritizable interrupt mask:
[0] FAULTMASK 0 = No effect.
1 = Prevents the activation of all exceptions except for NMI.

The processor clears the FAULTMASK bit to 0 on exit from any exception handler except
the NMI handler.

Base Priority Mask register

The BASEPRI register defines the minimum priority for exception processing. When
BASEPRI is set to a nonzero value, it prevents the activation of all exceptions with the same
or lower priority level as the BASEPRI value. See the register summary in Table 9 on

page 27 for its attributes. The bit assignments are:

DoclD028474 Rev 3 ‘Yl

PMO0253 The Cortex-M7 processor

Figure 6. BASEPRI bit assignments

31 8 7 0

Reserved BASEPRI

MSv39640V1

Table 9. BASEPRI register bit assignments

Bits Name Function

[31:8] - Reserved.

Priority mask bits:
0x00 No effect
[7:0] BASEPRI(™ Nonzero: Defines the base priority for exception processing.
The processor does not process any exception with a priority value
greater than or equal to BASEPRI.

1. This field is similar to the priority fields in the interrupt priority registers. The device implements only
bits[7:M] of this field, bits[M-1:0] read as zero and ignore writes. See Interrupt Program Status register on
page 23 for more information. Remember that higher priority field values correspond to lower exception
priorities.

CONTROL register

The CONTROL register controls the stack used and the privilege level for software
execution when the processor is in Thread mode and indicates whether the FPU state is
active. See the register summary in Table 10 on page 27 for its attributes. The bit
assignments are:

Figure 7. Control bit assignments

31 3210

FPCA
SPSEL
nPRIV

MSv39641V1

Reserved

Table 10. Control register bit assignments

Bits Name Function

[31:3] - Reserved.

Indicates whether floating-point context is currently active:
0: No floating-point context active.
(2] FPCA 1: Floating-point context active.
This bit is used to determine whether to preserve floating-point state
when processing an exception.

3

DoclD028474 Rev 3 271252

The Cortex-M7 processor PMO0253

214

28/252

Table 10. Control register bit assignments (continued)

Bits Name Function

Defines the currently active stack pointer:
0 = MSP is the current stack pointer.
1 = PSP is the current stack pointer.
In Handler mode this bit reads as zero and ignores writes. The
Cortex®-M7 processor updates this bit automatically on exception
return.

[1] SPSEL

Defines the Thread mode privilege level:
[0] nPRIV 0 = Privileged.
1 = Unprivileged.

Handler mode always uses the MSP, so the processor ignores explicit writes to the active
stack pointer bit of the CONTROL register when in Handler mode. The exception entry and
return mechanisms automatically update the CONTROL register based on the
EXC_RETURN value, see Table 19 on page 46.

In an OS environment, ARM recommends that threads running in Thread mode use the
process stack and the kernel and exception handlers use the main stack.

By default, Thread mode uses the MSP. To switch the stack pointer used in Thread mode to
the PSP, either:

. Use the MSR instruction to set the CONTROL.SPSELDbit, the current active stack
pointer bit, to 1, see MSR on page 179.

e Perform an exception return to Thread mode with the appropriate EXC_RETURN
value, see Table 19 on page 46.

When changing the stack pointer, software must use an ISB instruction immediately after
the MSR instruction. This ensures that instructions after the ISB instruction execute using
the new stack pointer. See ISB on page 178.

Exceptions and interrupts

The Cortex®-M7 processor supports interrupts and system exceptions. The processor and
the NVIC prioritize and handle all exceptions. An exception changes the normal flow of
software control. The processor uses Handler mode to handle all exceptions except for
reset. See Exception entry on page 44 and Exception return on page 46 for more
information.

The NVIC registers control interrupt handling. See Nested Vectored Interrupt Controller on
page 184 for more information.

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 processor

2.1.5

2.1.6

3

Data types

The processor:
— Supports the following data types:
— 32-bit words.
— 16-bit halfwords.
— 8-bit bytes.
— 32-bit single-precision floating point numbers.
— 64-bit double-precision floating point numbers.

e Manages all data memory accesses as little-endian. See Memory regions, types and
attributes on page 33 for more information.

The Cortex Microcontroller Software Interface Standard (CMSIS)
For a Cortex®-M7 microcontroller system, the Cortex Microcontroller Software Interface
Standard (CMSIS) defines:
e A common way to:
— Access peripheral registers.
— Define exception vectors.
e The names of:
— The registers of the core peripherals.
— The core exception vectors.
e Adevice-independent interface for RTOS kernels, including a debug channel.

The CMSIS includes address definitions and data structures for the core peripherals in the
Cortex®-M7 processor.

CMSIS simplifies software development by enabling the reuse of template code and the
combination of CMSIS-compliant software components from various middleware vendors.
Software vendors can expand the CMSIS to include their peripheral definitions and access
functions for those peripherals.

This document includes the register names defined by the CMSIS, and gives short
descriptions of the CMSIS functions that address the processor core and the core
peripherals.

This document uses the register short names defined by the CMSIS. In a few cases these
differ from the architectural short names that might be used in other documents.

The following sections give more information about the CMSIS:

e Power management programming hints on page 51.

e CMSIS functions on page 62.

e SysTick design hints and tips on page 216

e Accessing the Cortex®-M7 NVIC registers using CMSIS on page 185.
e NVIC programming hints on page 191.

e Cortex®-M7 cache maintenance operations using CMSIS on page 240

DoclD028474 Rev 3 29/252

The Cortex-M7 processor

PM0253

2.2

30/252

Cortex®-M7 configurations

Table 11, Table 12 and Table 13 show the configurations for STM32F7 Cortex-M7.

Table 11. STM32F746xx/STM32F756xx Cortex®-M7 configuration

Features

STM32F746xx/STM32F756xx

Floating Point Unit

Single precision floating point unit

MPU

8 regions

Instruction TCM size

Flash TCM: 1 Mbyte
RAM ITCM: 16 Kbytes

Data TCM size 64 Kbytes
Instruction cache size 4 Kbytes
Data cache size 4 Kbytes

Cache ECC

Not implemented

Interrupt priority levels

16 priority levels

Number of IRQ

98

WIC, CTI Not implemented
Debug JTAG & SgriaI-Wire Debug Pprts
8 breakpoints and 4 watchpoints.
ITM support Data Trace (DWT), and instrumentation trace (ITM)
ETM support Instruction Trace interface

Table 12. STM32F76xxx/STM32F77xxx Cortex®-M7 configuration

Features

STM32F76xxx/STM32F77xxx

Floating Point Unit

Double and single precision floating point unit

MPU

8 regions

Instruction TCM size

Flash TCM: 2 Mbytes
RAM ITCM: 16 Kbytes

Data TCM size 128 Kbytes
Instruction cache size 16 Kbytes
Data cache size 16 Kbytes

Cache ECC

Not implemented

Interrupt priority levels

16 priority levels

Number of IRQ

110

WIC, CTI Not implemented
Debug JTAG & SgriaI—Wire Debug P_orts
8 breakpoints and 4 watchpoints.
ITM support Data Trace (DWT), and instrumentation trace (ITM)
ETM support Instruction Trace interface

DoclD028474 Rev 3

3

PMO0253 The Cortex-M7 processor

Table 13. STM32F72xxx/STM32F73xxx Cortex®-M7 configuration
Features STM32F72xxx/STM32F73xxx

Floating Point Unit Single precision floating point unit
MPU 8 regions

Flash TCM: 512 Kbytes
RAM ITCM: 16 Kbytes

Instruction TCM size

Data TCM size 64 Kbytes

Instruction cache size 8 Kbytes

Data cache size 8 Kbytes

Cache ECC Not implemented

Interrupt priority levels 16 priority levels

Number of IRQ 104

WIC, CTI Not implemented

Debug JTAG & SgriaI—Wire Debug P_orts
8 breakpoints and 4 watchpoints.

ITM support Data Trace (DWT), and instrumentation trace (ITM)

ETM support Instruction Trace interface

3

DoclD028474 Rev 3 31/252

The Cortex-M7 processor

PM0253

2.3 Memory model

This section describes the processor memory map and the behavior of memory accesses.
The processor has a fixed default memory map that provides up to 4 Gbytes of addressable

memory. The memory map is:

Figure 8. Processor memory map

Vendor-specific

511MB

memory
Private peripheral 1.0MB

bus

External device 1.0GB|
External RAM 1.0GH
Peripheral 0.5GH
SRAM 0.5GH
Code 0.5GH

OXFFFFFFFF

0xE0100000
OXEOOFFFFF

0xE0000000
OXDFFFFFFF

0xA0000000
Ox9FFFFFFF

0x60000000
OX5FFFFFFF

0x40000000
O0x3FFFFFFF

0x20000000
0x1FFFFFFF

0x00000000

MSv39642V1

The processor reserves regions of the Private peripheral bus (PPB) address range for core

peripheral registers, see About the Cortex-M7 peripherals on page 183.

32/252

DoclD028474 Rev 3

3

PMO0253 The Cortex-M7 processor
2.31 Memory regions, types and attributes

The memory map and the programming of the MPU split the memory map into regions.

Each region has a defined memory type, and some regions have additional memory

attributes. The memory type and attributes determine the behavior of accesses to the

region.

The memory types are:

Normal The processor can re-order transactions for efficiency, or
perform speculative reads.

Device and Strongly- The processor preserves transaction order relative to other

ordered transactions to Device or Strongly-ordered memory.

The different ordering requirements for Device and Strongly-ordered memory mean that the

memory system can buffer a write to Device memory, but must not buffer a write to Strongly-

ordered memory.

The additional memory attributes include.

Shareable For a shareable memory region, the memory system provides
data synchronization between bus masters in a system with
multiple bus masters, for example, a processor with a DMA
controller.

Strongly-ordered memory is always shareable.

If multiple bus masters can access a non-shareable memory
region, software must ensure data coherency between the
bus masters.

Execute Never (XN) Means the processor prevents instruction accesses. A
HardFault exception is generated on executing an instruction
fetched from an XN region of memory.

2.3.2 Memory system ordering of memory accesses

3

For most of memory accesses caused by explicit memory access instructions, the memory
system does not guarantee that the order in which the accesses complete, matches the pro-
gram order of the instructions. Providing any re-ordering does not affect the behavior of the
instruction sequence. Normally, if a correct program execution depends on two memory
accesses completing in the program order, the software must insert a memory barrier
instruction between the memory access instructions, see 2.3.4: Software ordering of mem-
ory accesses on page 36.

However, the memory system does guarantee some ordering of accesses to Device and
Strongly-ordered memory. For two memory access instructions A1 and A2, if A1 occurs
before A2 in the program order, the ordering of the memory accesses caused by two
instructions is:

DoclD028474 Rev 3 33/252

The Cortex-M7 processor PMO0253
Table 14. Ordering of memory accesses(!
A2
A1 Device access Strongly
Normal access ordered
Non-shareable | Shareable access
Normal access - - - -
Device access, non-shareable - < - <
Device access, shareable - - < <
Strongly ordered access - < < <

2.3.3

34/252

1. - means that the memory system does not guarantee the ordering of the accesses.
< means that accesses are observed in program order, that is, A1 is always observed before A2.

Behavior of memory accesses

The behavior of accesses to each region in the memory map is:

Table 15. Memory access behavior(!)

Address range | Memory region M:;T:):W XN Description
Executable region for program code. The user
0x00000000- Code Normal) can also put data here.
Ox1FFFFFFF Instruction fetches and data accesses are
performed over the ITCM or AXIM interface.
Executable region for data. The user can also
0x20000000- put code here.
SRAM Normal -
Ox3FFFFFFF Instruction fetches and data accesses are
performed over the DTCM or AXIM interface.
External device memory.
0x40000000- Peripheral Device XN | Data accesses are performed over the AHBP
Ox5FFFFFFF .
or AXIM interface.
0x60000000- Executa.ble region for data.
External RAM | Normal - Instruction fetches and data accesses are
Ox9FFFFFFF .
performed over the AXIM interface.
External device memory.
gi’gg‘;"FOFOFOFol; External device |Device XN | Instruction fetches and data accesses are
performed over the AXIM interface.
This region includes the NVIC, System timer,
0xE0000000- | Private Strongly- XN and System Control Block.
OxEOOFFFFF | Peripheral Bus |ordered Only word accesses can be used in this
region.
0xE0100000- Vendor-specific Device XN Accesses to this region are to vendor-specific
OxFFFFFFFF device peripherals.

1. See Memory regions, types and attributes on page 33 for more information.

The Code, SRAM, and external RAM regions can hold programs.

DoclD028474 Rev 3

3

PM0253

The Cortex-M7 processor

3

The MPU can override the default memory access behavior described in this section. For
more information, see Memory Protection Unit on page 221.

Additional memory access constraints for caches and shared memory

When a system includes caches or shared memory, some memory regions have additional

access constraints, and some regions are subdivided, as Table 16 shows:

Table 16. Memory region shareability and cache policies

Address range

Memory region

Memory type“)

Shareability“)

Cache policy(z)

0x00000000-
Ox1FFFFFFF Code Normal Non-shareable WT
0x20000000-
OX3FFFFFFF SRAM Normal Non-shareable WBWA
0x40000000- . .
OX5FFFFFFF Peripheral Device Non-shareable -
0x60000000- _
Ox7FFFFFFF

External RAM Normal Non-shareable
0x80000000- WT
Ox9FFFFFFF
0xA0000000-
OxBFFFFFFF Shareable

External device Device -
0xG0000000- Non-shareable
OxDFFFFFFF
0xE0000000- Private Peripheral
OXEOOFFFFF Bus Strongly- ordered | Shareable -
0xE0100000- Vendor-specific .
OxFFFFFFFF device Device Non-shareable -

1. See Section 2.3.1: Memory regions, types and attributes on page 33 for more information.
2. WT = Write through, no write allocate. WBWA = Write back, write allocate.

Instruction prefetch and branch prediction

The Cortex®-M7 processor:
e Prefetches instructions ahead of execution.
e Speculatively prefetches from branch target addresses.

DoclD028474 Rev 3

35/252

The Cortex-M7 processor PMO0253

2.3.4

2.3.5

36/252

Software ordering of memory accesses

The order of instructions in the program flow does not always guarantee the order of the
corresponding memory transactions. This is because:

e The processor can reorder some memory accesses to improve efficiency, providing this
does not affect the behavior of the instruction sequence.

e The processor has multiple bus interfaces.
e Memory or devices in the memory map have different wait states.
e Some memory accesses are buffered or speculative.

Memory system ordering of memory accesses on page 33 describes the cases where the
memory system guarantees the order of memory accesses. Otherwise, if the order of mem-
ory accesses is critical, software must include memory barrier instructions to force that
ordering. The processor provides the following memory barrier instructions:

DMB The Data Memory Barrier (DMB) instruction ensures that outstanding
memory transactions complete before subsequent memory transactions.
See DMB on page 177.

DSB The Data Synchronization Barrier (DSB) instruction ensures that
outstanding memory transactions complete before subsequent
instructions execute. See DSB on page 177.

ISB The Instruction Synchronization Barrier (ISB) ensures that the effect of all
completed memory transactions is recognizable by subsequent
instructions. See ISB on page 178.

MPU programming

Use a DSB, followed by an ISB instruction or exception return to ensure that the new MPU
configuration is used by subsequent instructions.

Memory endianness

The processor views memory as a linear collection of bytes numbered in ascending order
from zero. For example, bytes 0-3 hold the first stored word, and bytes 4-7 hold the second
stored word. Little-endian format on page 36 describes how words of data are stored in
memory.

Little-endian format

In little-endian format, the processor stores the least significant byte of a word at the lowest-
numbered byte, and the most significant byte at the highest-numbered byte. For example:

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 processor

2.3.6

3

Figure 9. Little-endian format

Memory Register
7 0
31 2423 1615 87 0
Address A BO Isbyte B3 B2 B1 BO
A+1 B1
A+2| B2

A+3 B3 msbyte

MSv39644V1

Synchronization primitives

The instruction set support for the Cortex®-M7 processor includes pairs of synchronization
primitives. These provide a non-blocking mechanism that a thread or process can use to
obtain exclusive access to a memory location. Software can use them to perform a
guaranteed read-modify-write memory update sequence, or for a semaphore mechanism.

A pair of synchronization primitives comprises:

A Load-Exclusive instruction
Used to read the value of a memory location, requesting exclusive access to that
location.

A Store-Exclusive instruction

Used to attempt to write to the same memory location, returning a status bit to a
register. If this bit is:

0 it indicates that the thread or process gained exclusive access to the memory, and
the write succeeds,

1 it indicates that the thread or process did not gain exclusive access to the memory,
and no write was performed.

The pairs of Load-Exclusive and Store-Exclusive instructions are:

e The word instructions LDREX and STREX.

e The halfword instructions LDREXH and STREXH.

e The byte instructions LDREXB and STREXB.

Software must use a Load-Exclusive instruction with the corresponding Store-Exclusive

instruction.

To perform an exclusive read-modify-write of a memory location, software must:

1. Use a Load-Exclusive instruction to read the value of the location.

2. Modify the value, as required.

3. Use a Store-Exclusive instruction to attempt to write the new value back to the memory
location.

4. Test the returned status bit. If this bit is:
0: The read-modify-write completed successfully.

1: No write was performed. This indicates that the value returned at step 1 might be out
of date. The software must retry the entire read-modify-write sequence.

DoclD028474 Rev 3 37/252

The Cortex-M7 processor PMO0253

2.3.7

38/252

Software can use the synchronization primitives to implement a semaphore as follows:

1. Use a Load-Exclusive instruction to read from the semaphore address to check
whether the semaphore is free.

2. Ifthe semaphore is free, use a Store-Exclusive to write the claim value to the
semaphore address.

3. If the returned status bit from step 2 indicates that the Store-Exclusive succeeded then
the software has claimed the semaphore. However, if the Store-Exclusive failed,
another process might have claimed the semaphore after the software performed step
1.

The Cortex®-M7 processor includes an exclusive access monitor, that tags the fact that the

processor has executed a Load-Exclusive instruction. If the processor is part of a

multiprocessor system and the address is in a shared region of memory, the system also

globally tags the memory locations addressed by exclusive accesses by each processor.

The processor removes its exclusive access tag if:

e It executes a CLREX instruction.

e It executes a STREX instruction, regardless of whether the write succeeds.

¢ An exception occurs. This means the processor can resolve semaphore conflicts
between different threads.

In a multiprocessor implementation:

e Executing a CLREX instruction removes only the local exclusive access tag for the
processor.

e Executing a STREX instruction, or an exception, removes the local exclusive access
tags for the processor.

e Executing a STREX instruction to a shared memory region can also remove the global
exclusive access tags for the processor in the system.

For more information about the synchronization primitive instructions, see LDREX and
STREX on page 83 and CLREX on page 84.

Programming hints for the synchronization primitives

ISO/IEC C cannot directly generate the exclusive access instructions. CMSIS provides
intrinsic functions for generation of these instructions:

Table 17. CMSIS functions for exclusive access instructions

Instruction CMSIS function
LDREX uint32_t _ LDREXW (uint32_t *addr)
LDREXH uintl6é_t _ LDREXH (uintl6_t *addr)
LDREXB uint8_t _ LDREXB (uint8_t *addr)
STREX uint32_t _ STREXW (uint32_t wvalue, uint32_t *addr)
STREXH uint32_t _ STREXH (uintl6é_t value, uintlé6_t *addr)
STREXB uint32_t _ STREXB (uint8_t wvalue, uint8_t *addr)
CLREX void __CLREX (void)

3

DoclD028474 Rev 3

PMO0253 The Cortex-M7 processor
For example:
uintl6_t wvalue;
uintl6_t *address = 0x20001002;
value = _ LDREXH (address); // load 16-bit value from memory address
0x20001002
24 Exception model
This section describes the exception model. It describes:
e Exception states.
e Exception types.
e Exception handlers on page 41.
. Vector table on page 42.
e Exception priorities on page 43.
e Interrupt priority grouping on page 43.
e Exception entry and return on page 44.
241 Exception states
Each exception is in one of the following states:
Inactive The exception is not active and not pending.
Pending The exception is waiting to be serviced by the processor.
An interrupt request from a peripheral or from software can change
the state of the corresponding interrupt to pending.
Active An exception that is being serviced by the processor but has not com-
pleted.
Note: An exception handler can interrupt the execution of another exception
handler. In this case both exceptions are in the active state.
Active and pending The exception is being serviced by the processor and there is a pend-
ing exception from the same source.
24.2 Exception types

3

The exception types are:

Reset Reset is invoked on power up or a warm reset. The exception model
treats reset as a special form of exception. When reset is asserted,
the operation of the processor stops, potentially at any point in an
instruction. When reset is deasserted, execution restarts from the
address provided by the reset entry in the vector table. Execution
restarts as privileged execution in Thread mode.

DoclD028474 Rev 3 39/252

The Cortex-M7 processor

PM0253

NMI

HardFault

SVCall

PendSV

SysTick

A NonMaskable Interrupt (NMI) can be signalled by a peripheral or
triggered by software. This is the highest priority exception other than
reset. It is permanently enabled and has a fixed priority of -2. NMIs
cannot be:

e Masked or prevented from activation by any other exception.
e Preempted by any exception other than Reset.

A HardFault is an exception that occurs because of an error during
normal or exception processing. HardFaults have a fixed priority of -1,
meaning they have higher priority than any exception with
configurable priority.

A Supervisor Call (SVC) is an exception that is triggered by the SVC
instruction. In an OS environment, applications can use SVC
instructions to access OS kernel functions and device drivers.

PendSV is an interrupt-driven request for system-level service. In an
OS environment, use PendSV for context switching when no other
exception is active.

A SysTick exception is an exception the system timer generates when
it reaches zero. Software can also generate a SysTick exception. In
an OS environment, the processor can use this exception as system

Interrupt (IRQ)

tick.

An interrupt, or IRQ, is an exception signalled by a peripheral, or
generated by a software request. All interrupts are asynchronous to
instruction execution. In the system, peripherals use interrupts to
communicate with the processor.

Table 18. Properties of the different exception types

Exception IRQ Exception Priorit Vector Activation

number(") | number(") type y address(®

1 - Reset -3, the highest | 0x00000004 Asynchronous

2 -14 NMI -2 0x00000008 Asynchronous

3 -13 HardFault -1 0x0000000C Synchronous

4 12 MemManage | Configurable(®) | 000000010 | Synchronous
Synchronous when

5 -1 BusFault Configurable(3) 0x00000014 precise, asynchronous
when imprecise

6 -10 UsageFault Configurable(3) 0x00000018 Synchronous

7-10 - Reserved - - -

11 -5 Svcall Configurable(® | 0x0000002C | Synchronous

12-13 - Reserved - - -

14 -2 PendSV Configurable(3) 0x00000038 Asynchronous

DoclD028474 Rev 3

S74

PMO0253 The Cortex-M7 processor
Table 18. Properties of the different exception types (continued)

Exception IRQ Exception i Vector .

number(") | number(") type Priority address(® Activation

15 -1 SysTick Configurable(® | 0x0000003C | Asynchronous

15 - Reserved - - -

00000040
16 and 0 and Interrupt (IRQ) | Configurable(*) Ox ango Asynchronous
above above)
above
1. To simplify the software layer, the CMSIS only uses IRQ numbers. It uses negative values for exceptions
other than interrupts. The IPSR returns the Exception number, see Interrupt Program Status register on
page 23
2. See Figure 10: Vector table on page 42 for more information.
3. See System Handler Priority registers on page 202.
4. See Interrupt Priority registers on page 188
5. Increasing in step of 4.
For an asynchronous exception, other than reset, the processor can execute additional
instructions between when the exception is triggered and when the processor enters the
exception handler.
Privileged software can disable the exceptions that Table 18 on page 40 shows as having
configurable priority, see:
e System Handler Control and State register on page 204
e Interrupt clear-enable registers on page 186.
For more information about HardFaults, MemManage faults, BusFaults, and UsageFaults,
see Section 2.5: Fault handling on page 47
243 Exception handlers

3

The processor handles exceptions using:

Interrupt Service Routines (ISRs) Interrupts IRQO to IRQ239 are the exceptions handled
by ISRs

HardFault, MemManage fault, UsageFault, and
BusFault are fault exceptions handled by the fault
handler.s

NMI, PendSV, SVCall SysTick, and the fault exceptions
are all system exceptions handled by system handlers.

Fault handler

System handlers

DoclD028474 Rev 3 41/252

The Cortex-M7 processor PMO0253

244

42/252

Vector table

The vector table contains the reset value of the stack pointer, and the start addresses, also
called exception vectors, for all exception handlers. Figure 10 on page 42 shows the order
of the exception vectors in the vector table. The least-significant bit of each vector must be
1, indicating that the exception handler is Thumb code, see Thumb state on page 25.

Figure 10. Vector table

Exception number IRQ number Offset Vector
255 239 IRQ239
0x03FC
0x004C
18 2 IRQ2
0x0048
17 1 IRQ1
0x0044
16 0 IRQO
0x0040
15 -1 Systick
0x003C
14 -2 PendSV
0x0038
13 Reserved
12 Reserved for Debug
11 -5 SVCall
0x002C
10
9
Reserved
8
7
6 -10 Usage fault
0x0018
5 -1 Bus fault
0x0014
4 -12 Memory management fault
0x0010
3 -13 Hard fault
0x000C
2 -14 NMI
0x0008
1 Reset
0x0004
Initial SP value
0x0000
MSv39645V1

On system reset, the vector table is at address 0x00000000. Privileged software can write to
the VTOR to relocate the vector table start address to a different memory location, in the
range 0x00000000 to OxFFFFFF80.

The silicon vendor must configure the top range value, which is dependent on the number of
interrupts implemented. The minimum alignment is 32 words, enough for up to 16 interrupts.
For more interrupts, adjust the alignment by rounding up to the next power of two. For
example, if the user requires 21 interrupts, the alignment must be on a 64-word boundary
because the required table size is 37 words, and the next power of two is 64, see Vector
Table Offset register on page 197.

ARM recommends that the user locates the vector table in either the CODE, SRAM,
External RAM, or External Device areas of the system memory map, see Cortex®-M7
configurations on page 30. Using the Peripheral, Private peripheral bus, or Vendor-specific

DoclD028474 Rev 3 ‘Yl

PM0253

The Cortex-M7 processor

2.4.5

Note:

2.4.6

3

memory areas can lead to unpredictable behavior in some systems. This is because the
processor uses a different interfaces for load/store instructions and vector fetch in these
memory areas. If the vector table is located in a region of memory that is cacheable, core
must treat any load or store to the vector as self-modifying code and use cache
maintenance instructions to synchronize the update to the data and instruction caches, see
Cache maintenance design hints and tips on page 242.

Exception priorities

As Table 18 on page 40 shows, all the exceptions have an associated priority, with:

e Alower priority value indicating a higher priority.

e Configurable priorities for all the exceptions except Reset, HardFault, and NMI.

If the software does not configure any priorities, then all the exceptions with a configurable
priority have a priority of 0. For information about configuring the exception priorities see

e System Handler Priority registers on page 202.

e Interrupt Priority registers on page 188.

Configurable priority values are in the range 0-255. This means that the Reset, HardFault,

and NMI exceptions, with fixed negative priority values, always have higher priority than any
other exception.

For example, assigning a higher priority value to IRQ[0] and a lower priority value to IRQ[1]
means that IRQ[1] has higher priority than IRQ[O]. If both IRQ[1] and IRQ[0] are asserted,
IRQI[1] is processed before IRQ[O].

If multiple pending exceptions have the same priority, the pending exception with the lowest
exception number takes precedence. For example, if both IRQ[0] and IRQ[1] are pending
and have the same priority, then IRQ[0] is processed before IRQ[1].

When the processor is executing an exception handler, the exception handler is preempted
if a higher priority exception occurs. If an exception occurs with the same priority as the
exception being handled, the handler is not preempted, irrespective of the exception
number. However, the status of the new interrupt changes to pending.

Interrupt priority grouping

To increase priority control in systems with interrupts, the NVIC supports priority grouping.
This divides each interrupt priority register entry into two fields:

e An upper field that defines the group priority.

e Alower field that defines a subpriority within the group.

Only the group priority determines preemption of interrupt exceptions. When the processor

is executing an interrupt exception handler, another interrupt with the same group priority as
the interrupt being handled does not preempt the handler,

If multiple pending interrupts have the same group priority, the subpriority field determines
the order in which they are processed. If multiple pending interrupts have the same group
priority and subpriority, the interrupt with the lowest IRQ number is processed first.

For information about splitting the interrupt priority fields into group priority and subpriority,
see Application Interrupt and Reset Control register on page 197.

DoclD028474 Rev 3 43/252

The Cortex-M7 processor PMO0253

2.4.7

44/252

Exception entry and return

Descriptions of exception handling use the following terms:

Preemption When the processor is executing an exception handler, an exception
can preempt the exception handler if its priority is higher than the
priority of the exception being handled. See Interrupt priority grouping
on page 43 for more information about preemption by an interrupt.

When one exception preempts another, the exceptions are called
nested exceptions. See Exception entry on page 44 more information.

Return This occurs when the exception handler is completed, and:
e There is no pending exception with sufficient priority to be
serviced.
e The completed exception handler was not handling a late-arriving
exception.

The processor pops the stack and restores the processor state to the
state it had before the interrupt occurred. See Exception return on
page 46 for more information.

Tail-chaining This mechanism speeds up exception servicing. On completion of an
exception handler, if there is a pending exception that meets the
requirements for exception entry, the stack pop is skipped and control
transfers to the new exception handler.

Late-arriving This mechanism speeds up preemption. If a higher priority exception
occurs during state saving for a previous exception, the processor
switches to handle the higher priority exception and initiates the vector
fetch for that exception. State saving is not affected by late arrival
because the state saved is the same for both exceptions. Therefore the
state saving continues uninterrupted. The processor can accept a late
arriving exception until the first instruction of the exception handler of
the original exception enters the execute stage of the processor. On
return from the exception handler of the late-arriving exception, the
normal tail-chaining rules apply.

Exception entry

The exception entry occurs when there is a pending exception with sufficient priority and

either:

e The processor is in Thread mode.

e The new exception is of higher priority than the exception being handled, in which case
the new exception preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means the exception has more priority than any limits set by the mask
registers, see Exception mask registers on page 25. An exception with less priority than this
is pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-
arriving exception, the processor pushes information onto the current stack. This operation
is referred to as stacking and the structure of eight data words is referred as the stack frame.

DoclD028474 Rev 3 ‘Yl

PM0253

The Cortex-M7 processor

Note:

Note:

3

When using floating-point routines, the Cortex®-M7 processor automatically stacks the
architected floating-point state on exception entry. Figure 11 on page 45 shows the Cortex®-
M7 stack frame layout when floating-point state is preserved on the stack as the result of an
interrupt or an exception.

Where stack space for floating-point state is not allocated, the stack frame is the same as
that of ARMv7-M implementations without an FPU. Figure 11 on page 45 shows this stack
frame also.

Figure 11. Exception stack frame

—_———— e —— — — —

Res;rved ;:J—I Pre-IRQ top of stack

Reserved
FPSCR
S15
S14
S13
S12
S11
S10
S9
S8
S7
S6
S5
S4
S3
S2

< . ;:]7 Pre-IRQ top of stack
0 Reserved

xPSR Decreasing xPSR
PC memory PC
R address R
R12 R12
R3 R3
R2 \ R2
R1 R1

RO [«—— IRQ top of stack RO ¢—— IRQ top of stack

Exception frame with Exception frame without

floating-poi floating-point st
oatlng pomt storage oating-point storage MSV39646V1

Immediately after stacking, the stack pointer indicates the lowest address in the stack frame.
The alignment of the stack frame is controlled using the STKALIGN bit of the Configuration
Control register (CCR).

In the Cortex®-M7 processor CCR.STKALIGN is read-only and has a value of 1. This
means the stack address is always 8-byte aligned.

The stack frame includes the return address. This is the address of the next instruction in
the interrupted program. This value is restored to the PC at exception return so that the
interrupted program resumes.

In parallel to the stacking operation, the processor performs a vector fetch that reads the
exception handler start address from the vector table. When stacking is complete, the

DoclD028474 Rev 3 45/252

The Cortex-M7 processor PMO0253

processor starts executing the exception handler. At the same time, the processor writes an
EXC_RETURN value to the LR. This indicates which stack pointer corresponds to the stack
frame and what operation mode the processor was in before the entry occurred.

If no higher priority exception occurs during exception entry, the processor starts executing
the exception handler and automatically changes the status of the corresponding pending
interrupt to active.

If another higher priority exception occurs during exception entry, the processor starts
executing the exception handler for this exception and does not change the pending status
of the earlier exception. This is the late arrival case.

Exception return

The exception return occurs when the processor is in Handler mode and executes one of
the following instructions to load the EXC_RETURN value into the PC:

e An LDM or POP instruction that loads the PC.

e An LDR instruction with PC as the destination.

e A BXinstruction using any register.

EXC_RETURN is the value loaded into the LR on exception entry. The exception
mechanism relies on this value to detect when the processor has completed an exception
handler. The lowest five bits of this value provide information on the return stack and

processor mode. Table 19 shows the EXC_RETURN values with a description of the
exception return behavior.

All EXC_RETURN values have bits[31:5] set to one. When this value is loaded into the PC it
indicates to the processor that the exception is complete, and the processor initiates the
appropriate exception return sequence

Table 19. Exception return behavior

EXC_RETURN[31:0] Description

OXFEEEFFE1 Return to Handler mode, exception return uses non-floating-point state from
the MSP and execution uses MSP after return.
Return to Thread mode, exception return uses non-floating-point state from

OXFFFFFFFI MSP and execution uses MSP after return.
Return to Thread mode, exception return uses non-floating-point state from

OXFFFFFFFD the PSP and execution uses PSP after return.

OXFEEEFFE1 Return to H'andler mode, exception return uses floating-point-state from MSP
and execution uses MSP after return.

OXFFFEFFE9 Return to T'hread mode, exception return uses floating-point state from MSP
and execution uses MSP after return.

OxFFEFFFED Return to T_hread mode, exception return uses floating-point state from PSP
and execution uses PSP after return.

46/252 DoclD028474 Rev 3 Kys

PMO0253 The Cortex-M7 processor

2.5 Fault handling

Faults are a subset of the exceptions, see Exception model on page 39. Faults are
generated by:

e Abus erroron:
— Aninstruction fetch or vector table load.
— Adata access.

e Aninternally-detected error such as an undefined instruction.

e Attempting to execute an instruction from a memory region marked as Execute Never
(XN).

e A privilege violation or an attempt to access an unmanaged region causing an MPU
fault.

251 Fault types

Table 20 shows the types of fault, the handler used for the fault, the corresponding fault
status register, and the register bit that indicates that the fault has occurred. See
Configuration and Control register on page 200 for more information about the fault status

registers
Table 20. Faults
Fault Handler Bit name Fault status register

Bus error on a vector read VECTTBL HardFault Status register on
Fault escalated to a hard fault HardFat FORCED page 210
MPU or default memory map mismatch: - -

On instruction access IAccvioL()

On data access DACCVIOL

During exception stacking MemManage | MSTKERR MemManage Fault Status register on

During exception unstacking MUNSKERR page 206

Erlér;r;gr]\):ﬁgrjloating-point state MLSPERR
Bus error: - -

During exception stacking STKERR

During exception unstacking UNSTKERR

During instruction prefetch BusFault IBUSERR

Erlég;? J:t?)/ nfloatlng-pomt state LSPERR BusFault Status register on page 207
Precise data bus error PRECISERR
Imprecise data bus error IMPRECISERR
"_l DoclD028474 Rev 3 47/252

The Cortex-M7 processor PMO0253

Table 20. Faults (continued)

Fault Handler Bit name Fault status register
Attempt to access a coprocessor UsageFault NOCP UsageFault Status register on
Undefined instruction UNDEFINSTR | P29¢ 209
Attempt to enter an invalid instruction set INVSTATE
state(®)
Invalid EXC_RETURN value INVPC
lllegal unaligned load or store UNALIGNED
Divide By 0 DIVBYZERO

1. Occurs on an access to an XN region even if the processor does not include an MPU or the MPU is disabled.

2. Attempting to use an instruction set other than the Thumb instruction set or returns to a non load/store-multiple instruction
with ICI continuation.

2.5.2

Note:

48/252

Fault escalation and hard faults

All the fault exceptions except for HardFault have configurable exception priority, see
System Handler Priority registers on page 202. the software can disable the execution of the
handlers for these faults, see System Handler Control and State register on page 204.

Usually, the exception priority, together with the values of the exception mask registers,
determines whether the processor enters the fault handler, and whether a fault handler can
preempt another fault handler. as described in Exception model on page 39.

In some situations, a fault with configurable priority is treated as a HardFault. This is called
priority escalation, and the fault is described as escalated to HardFault. Escalation to
HardFault occurs when:

e A fault handler causes the same kind of fault as the one it is servicing. This escalation
to HardFault occurs because a fault handler cannot preempt itself because it must
have the same priority as the current priority level.

e A fault handler causes a fault with the same or lower priority as the fault it is servicing.
This is because the handler for the new fault cannot preempt the currently executing
fault handler.

e An exception handler causes a fault for which the priority is the same as or lower than
the currently executing exception.

e A fault occurs and the handler for that fault is not enabled.

If a BusFault occurs during a stack push when entering a BusFault handler, the BusFault
does not escalate to a HardFault. This means that if a corrupted stack causes a fault, the
fault handler executes even though the stack push for the handler failed. The fault handler
operates but the stack contents are corrupted.

Only Reset and NMI can preempt the fixed priority HardFault. A HardFault can preempt any
exception other than Reset, NMI, or another HardFauilt.

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 processor

2.5.3

2.54

2.5.5

Note:

3

Synchronous and Asynchronous bus faults

In the Cortex®-M7 processor all bus faults triggered by:
e Processor load operations are synchronous.

e Processor store operations are asynchronous, including stores to Device and Strongly-
ordered regions.

e Debugger load or store accesses are synchronous, and are visible to the debugger
interface only.

When an asynchronous bus fault is triggered, the BusFault exception is pended. If the
BusFault handler is not enabled, the HardFault exception is pended instead. The HardFault
caused by the asynchronous BusFault never escalates into lockup.

If an IRQ is triggered after the write, the write buffer might not drain before the ISR is
executed. Therefore an asynchronous BusFault can occur across context boundaries.

A synchronous BusFault can escalate into lockup if it occurs inside a NMI or HardFault
handler.

Cache maintenance operations can also trigger a bus fault. See Faults handling
considerations on page 242 for more information.

Fault status registers and fault address registers

The fault status registers indicate the cause of a fault. For synchronous BusFaults and
MemManage faults, the fault address register indicates the address accessed by the
operation that caused the fault, as shown in Table 21.

Table 21. Fault status and fault address registers

Status register | Address register
name name

Handler Register description

HardFault HFSR - HardFault Status register on page 210

MemManage Fault Status register on
page 206

MemManage Fault Address register on
page 211

MemManage | MMFSR MMFAR

BusFault Status register on page 207

BusFault BFSR BFAR
usrau BusFault Address register on page 212

UsageFault |UFSR - UsageFault Status register on page 209

Lockup

The processor enters a lockup state if a fault occurs when executing the NMI or HardFault
handlers. When the processor is in lockup state it does not execute any instructions. The
processor remains in lockup state until either:

e ltisreset.
e An NMI occurs.
e |tis halted by a debugger.

If a lockup state occurs from the NMI handler a subsequent NMI does not cause the
processor to leave lockup state.

DoclD028474 Rev 3 49/252

The Cortex-M7 processor PMO0253

2.6

2.6.1

50/252

Power management

The Cortex®-M7 processor sleep modes reduce power consumption:
e Sleep mode stops the processor clock.

e Deep sleep mode stops the system clock and switches off the PLL and the Flash
memory.

The SLEEPDEEP bit of the SCR selects which sleep mode is used, see System Control
register on page 199.

For more information about the behavior of the sleep modes see specific STM32 product
referene manual.

This section describes the mechanisms for entering sleep mode, and the conditions for
waking up from sleep mode.

Entering sleep mode

This section describes the mechanisms software can use to put the processor into sleep
mode.

The system can generate spurious wakeup events, for example a debug operation wakes
up the processor. Therefore software must be able to put the processor back into sleep
mode after such an event. A program might have an idle loop to put the processor back to
sleep mode.

Wait for interrupt

The wait for interrupt instruction, WFI, causes immediate entry to sleep mode unless the
wakeup condition is true, see Wakeup from WFI or sleep-on-exit on page 51. When the
processor executes a WFI instruction it stops executing instructions and enters sleep mode.
See WFI on page 182 for more information.

Wait for event

The wait for event instruction, WFE, causes entry to sleep mode depending on the value of
a one-bit event register. When the processor executes a WFE instruction, it checks the
value of the event register:

0: The processor stops executing instructions and enters sleep mode.

1: The processor clears the register to 0 and continues executing instructions without
entering sleep mode.

See WFE on page 181 for more information.

If the event register is 1, this indicates that the processor must not enter sleep mode on
execution of a WFE instruction. Typically, this is because an external event signal is
asserted, or a processor in the system has executed an SEV instruction, see SEV on
page 180. Software cannot access this register directly.

Sleep-on-exit

If the SLEEPONEXIT bit of the SCRis set to 1, when the processor completes the execution
of all exception handlers it returns to Thread mode and immediately enters sleep mode. Use
this mechanism in applications that only require the processor to run when an exception
occurs.

DoclD028474 Rev 3 ‘Yl

PM0253

The Cortex-M7 processor

2.6.2

2.6.3

2.6.4

3

Wakeup from sleep mode

The conditions for the processor to wakeup depend on the mechanism that cause it to enter
sleep mode.

Wakeup from WFI or sleep-on-exit

Normally, the processor wakes up only when it detects an exception with sufficient priority to
cause exception entry. Some embedded systems might have to execute system restore
tasks after the processor wakes up, and before it executes an interrupt handler. To achieve
this set the PRIMASK bit to 1 and the FAULTMASK bit to 0. If an interrupt arrives that is
enabled and has a higher priority than the current exception priority, the processor wakes up
but does not execute the interrupt handler until the processor sets PRIMASK to zero. For
more information about PRIMASK and FAULTMASK see Exception mask registers on
page 25.

Wakeup from WFE

The processor wakes up if:

e It detects an exception with sufficient priority to cause exception entry.

e |t detects an external event signal, see The external event input.

e In a multiprocessor system, another processor in the system executes an SEV
instruction.

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers
an event and wakes up the processor, even if the interrupt is disabled or has insufficient
priority to cause exception entry. For more information about the SCR see System Control
register on page 199.

The external event input

The processor provides an external event input signal. Peripherals can drive this signal,
either to wake the processor from WFE, or to set the internal WFE event register to one to
indicate that the processor must not enter sleep mode on a later WFE instruction. See Wait
for event on page 50 for more information.

Power management programming hints

ISO/IEC C cannot directly generate the WFI and WFE instructions. The CMSIS provides the
following functions for these instructions:

void _ WFE(void) // Wait for Event
void _ WFI(void) // Wait for Interrupt

DoclD028474 Rev 3 51/252

The Cortex-M7 instruction set PMO0253

3 The Cortex-M7 instruction set

3.1 Instruction set summary

The processor implements ARMv7-M instruction set and features provided by the
ARMV7E-M architecture profile. Table 22 lists the supported instructions.

In Table 22:

e Angle brackets, <>, enclose alternative forms of the operand.

e Braces, {}, enclose optional operands.

e The Operands column is not exhaustive.

e Op2 is a flexible second operand that can be either a register or a constant.
e Most instructions can use an optional condition code suffix.

For more information on the instructions and operands, see the instruction descriptions.

Table 22. Cortex®-M7 instructions

Mnemonic Operands Brief description Flags Page
ADC, ADCS {R4,} Rn, Op2 Add with Carry N,Z,C,V |3.5.1 on page 87
ADD, ADDS {Rd,} Rn, Op2 Add N,Z,C,V |3.5.1 on page 87
ADD, ADDW {R4,} Rn, #imml2 Add - 3.5.1 on page 87
ADR Rd, label Load PC-relative Address |- 3.4.1 on page 73
AND, ANDS {Rd,} Rn, Op2 Logical AND N,Z,C 3.5.2 on page 89
ASR, ASRS Rd, Rm, <Rs|#n> Arithmetic Shift Right N,Z,C 3.6.3 on page 90
B label Branch - 3.10.1 on page 145
BFC Rd, #lsb, #width Bit Field Clear - 3.9.1 on page 142
BFI Rd, Rn, #lsb, #width|BitField Insert - 3.9.1 on page 142
BIC, BICS {Rd,} Rn, Op2 Bit Clear N,Z,C 3.5.2 on page 89
BKPT #imm Breakpoint - 3.12.1 on page 175
BL label Branch with Link - 3.10.1 on page 145
BLX Rm Branch indirect with Link - 3.10.1 on page 145
BX Rm Branch indirect - 3.10.1 on page 145
CBNZ Rn, label Compare and Branch if Non 3.10.2 on page 147
Zero
CBZ Rn, label Compare and Branch if 3.10.2 on page 147
Zero
CLREX - Clear Exclusive - 3.4.10 on page 84
CLZ Rd, Rm Count Leading Zeros - 3.5.4 on page 91
CMN Rn, Op2 Compare Negative N,Z,C,V |3.5.5 0on page 92
CMP Rn, Op2 Compare N,Z,C,V |3.5.50n page 92
52/252 DoclD028474 Rev 3 "_l

PM0253 The Cortex-M7 instruction set
Table 22. Cortex®-M7 instructions (continued)
Mnemonic Operands Brief description Flags Page
i Change Processor State,
CPSID Disable Interrupts - 3.12.2 on page 176
i Change Processor State,
CPSIE Enable Interrupts - 3.12.2 on page 176
DMB - Data Memory Barrier - 3.12.3 on page 177
DSB - Data Synchronization . 3.12.4 on page 177
Barrier
EOR, EORS {R4,} Rn, Op2 Exclusive OR N,Z,C 3.56.2 on page 89
ISB - Instr.uctlon Synchronization | 3.12.5 on page 178
Barrier
IT - If-Then condition block - 3.10.3 on page 148
LDM Rn{!}, reglist !_oad Multiple registers,) 3.4.6 on page 79
increment after
LDMDB, LDMEA Rn{!}, reglist Load Multiple registers,) 3.4.6 on page 79
decrement before
LDMFD, LDMIA Rn{!}, reglist !_oad Multiple registers,) 3.4.6 on page 79
increment after
LDR Rt, [Rn, #offset] Load register with word - 3.4.2 on page 73
LDRB, LDRBT Rt, [Rn, #offset] Load register with byte - 3.4.2 on page 73
Rt, Rt2, [Rn, . .
LDRD toffset] Load register with two bytes | - 3.4.4 on page 77
LDREX Rt, [Rn, #offset] Load register Exclusive - 3.4.9 on page 83
LDREXB Rt, [Rn] Load register Exclusive with 3.4.9 on page 83
Byte
Rt, I[Rn] Load register Exclusive with
LDREXH Halfword 3.4.9 on page 83
LDRH, LDRHT Rt, [Rn, #offset] Load register with Halfword | - 3.4.2 on page 73
LDRSB, LDRSBT Rt, [Rn, #offset] Iéc;/?: register with Signed 3.4.2 on page 73
LDRSH, LDRSHT Rt, [Rn, #offset] Load register with Signed 3.4.2 on page 73
Halfword
LDRT Rt, [Rn, #offset] Load register with word - 3.4.2 on page 73
LSL, LSLS Rd, Rm, <Rs|#n> Logical Shift Left N,Z,C 3.5.3 on page 90
LSR, LSRS Rd, Rm, <Rs|#n> Logical Shift Right N,Z,C 3.5.3 on page 90
R4, Rn, Rm, Ra Multiply with Accumulate,
MLA 32-bit result 3.6.1 on page 112
MLS Rd, Rn, Rm, Ra Multiply and Subtract, 32-bit 3.6.1 on page 112
result
MOV, MOVS Rd, Op2 Move N,Z,C 3.5.6 on page 93
MOVT Rd, #immlé6 Move Top - 3.5.7 on page 94

S74

DoclD028474 Rev 3

53/252

The Cortex-M7 instruction set PM0253
Table 22. Cortex®-M7 instructions (continued)

Mnemonic Operands Brief description Flags Page
MOVW, MOV Rd, #immlé6 Move 16-bit constant N,Z,C 3.6.6 on page 93
MRS Rd, spec_reg tl\gzv:nfer(r);rigie;i;l register 3.12.6 on page 178
MSR spec_reg, Rm mos"seféi‘:rrgggfgf' register |\ z.c.v |3.12.7 on page 179
MUL, MULS {Rd,} Rn, Rm Multiply, 32-bit result N,Z 3.6.1 on page 112
MVN, MVNS Rd, Op2 Move NOT N,Z,C 3.56.6 on page 93
NOP - No Operation - 3.12.8 on page 180
ORN, ORNS {Rd,} Rn, Op2 Logical OR NOT N,Z,C 3.5.2 on page 89
ORR, ORRS {Rd,} Rn, Op2 Logical OR N,Z,C 3.5.2 on page 89
PKHTB, PKHBT {Rd,} Rn, Rm, Op2 Pack Halfword - 3.8.1 on page 138
PLD [Rn, #offset] Preload Data - 3.4.7 on page 81
POP reglist Pop registers from stack - 3.4.8 on page 82
PUSH reglist Push registers onto stack - 3.4.8 on page 82
QADD {Rd,} Rn, Rm Saturating double and Add | Q 3.7.3 on page 131
QADD16 {Rd,} Rn, Rm Saturating Add 16 - 3.7.3 on page 131
QADDS8 {Rd,} Rn, Rm Saturating Add 8 - 3.7.3 on page 131
QASX {Rd,} Rn, Rm fv?[’:}ulrza;icnhgaﬁgg and Subtract | 3.7.4 on page 132
QDADD {R4,} Rn, Rm Saturating Add Q 3.7.5 on page 133
QDSUB {Rd,} Rn, Rm giut:ztc;?g double and Q 3.7.3 on page 131
QSAX {R4,} Rn, Rm \?V?[Lugrhgaﬁgtl:tractand Add | 3.7.4 on page 132
QSUB {R4,} Rn, Rm Saturating Subtract Q 3.7.3 on page 131
QSUB16 {R4,} Rn, Rm Saturating Subtract 16 - 3.7.3 on page 131
QSuB8 {Rd,} Rn, Rm Saturating Subtract 8 - 3.7.3 on page 131
RBIT Rd, Rn Reverse Bits - 3.5.8 on page 95
REV Rd, Rn Reverse byte orderin a) 3.5.8 on page 95

word
REV16 Rd, Rn rl?;}/v\e/gsrz byte orderin each | _ 3.5.8 on page 95
Rd, Rn Reverse byte order in
REVSH bottom halfword and sign - 3.5.8 on page 95
extend
ROR, RORS Rd, Rm, <Rs|#n> Rotate Right N,Z,C 3.5.3 on page 90
RRX, RRXS Rd, Rm Rotate Right with Extend N,Z,C 3.5.3 on page 90
RSB, RSBS {R4,} Rn, Op2 Reverse Subtract N,Z,C,V |3.5.1 on page 87
54/252 DoclD028474 Rev 3 "_l

PM0253 The Cortex-M7 instruction set
Table 22. Cortex®-M7 instructions (continued)

Mnemonic Operands Brief description Flags Page
SADD16 {R4,} Rn, Rm Signed Add 16 GE 3.6.9 on page 96
SADDS8 {R4,} Rn, Rm Signed Add 8 GE 3.6.9 on page 96
SASX {Rd,} Rn, Rm Sl.gned Add and Subtract GE 3.5.14 on page 101

with Exchange
SBC, SBCS {Rd,} Rn, Op2 Subtract with Carry N,Z,C,V |3.5.1 on page 87
SBFX Rd, Rn, #1lsb, #width|Signed Bit Field Extract - 3.9.2 on page 143
SDIV {Rd,} Rn, Rm Signed Divide - 3.6.12 on page 127
SEL {R4,} Rn, Rm Select bytes - 3.56.21 on page 108
SEV - Send Event - 3.12.9 on page 180
SHADD16 {Rd,} Rn, Rm Signed Halving Add 16 - 3.5.10 on page 97
SHADDS {Rd,} Rn, Rm Signed Halving Add 8 - 3.5.10 on page 97
{Rd,} Rn, Rm Signed Halving Add and
SHASX Subtract with Exchange) 3.5.11 on page 98
{Rd,} Rn, Rm Signed Halving Subtract
SHSAX and Add with Exchange) 3.5.11 on page 98
SHSUB16 {Rd,} Rn, Rm Signed Halving Subtract 16 |- 3.5.12 on page 99
SHSUBS8 {Rd,} Rn, Rm Signed Halving Subtract 8 |- 3.5.12 on page 99
SMLABB, Rd, Rn, Rm, Ra Signed Multiply Accumulate
SMLABT, SMLATB, Long Q 3.6.3 on page 115
SMLATT (halfwords)
SMLAD, SMLADX Rd, Rn, Rm, Ra Sll?anled Multiply Accumulate Q 3.6.4 on page 116
RdLo, RAHi, Rn, Rm |Signed Multiply with
SMLAL Accumulate (32 x 32 + 64), |- 3.6.5 on page 117
64-bit result
SMLALBB, RdLo, RAHi, Rn, Rm Signed Multiply Accumulate
SMLALBT,
Long, - 3.6.5 on page 117
SMLALTB, halfwords
SMLALTT
SMLALD, SMLALDX RdLo, RdHi, Rn, Rm Signed Multiply Accumulate) 3.6.5 on page 117
Long Dual
R4, Rn, Rm, Ra Signed Multiply
SMLAWB, Accumulate, word by Q 3.6.3 on page 115
SMLAWT
halfword
SMLSD Rd, Rn, Rm, Ra Sﬁggled Multiply Subtract Q 3.6.6 on page 119
SMLSLD RdLo, RAHi, Rn, Rm Signed Multiply Subtract 3.6.6 on page 119
Long Dual
Rd, Rn, Rm, Ra Signed Most significant
SMMLA word Multiply Accumulate) 3.6.7 on page 121

S74

DoclD028474 Rev 3

55/252

The Cortex-M7 instruction set PM0253
Table 22. Cortex®-M7 instructions (continued)
Mnemonic Operands Brief description Flags Page
Rd, Rn, Rm, Ra Signed Most significant
SMMLS, SMMLR word Multiply Subtract - 3.6.7 on page 121
SMMUL, SMMULR | R4/ 3 Rn, Em Signed Most significant ; 3.6.8 on page 122
word Multiply
SMUAD {Rd,} Rn, Rm Signed dual Multiply Add Q 3.6.9 on page 123
SMULBB, {Rd,} Rn, Rm
SMULBT SMULTB, Signed Multiply (halfwords) |- 3.6.10 on page 124
SMULTT
RdLo, RdAHi, Rn, Rm Signed Multiply (32 x 32),

SMULL 64-bit result - 3.6.11 on page 126
SMULWB, sMuLwT | (R4} Rn, Rm Signed Multiply word by | _ 3.6.10 on page 124
halfword
SMUSD, SMUSDx | (R4} R, Rm Signed dual Multiply ; 3.6.9 on page 123
Subtract
SSAT i:} #n, Rm {,shift Signed Saturate Q 3.7.1 on page 129
SSAT16 Rd, #n, Rm Signed Saturate 16 Q 3.7.2 on page 130
SSAX {Rd,} Rn, Rm Sl'gned Subtract and Add GE 3.5.14 on page 101

with Exchange
SSUB16 {R4,} Rn, Rm Signed Subtract 16 - 3.6.13 on page 100
SSUB8 {R4d,} Rn, Rm Signed Subtract 8 - 3.5.13 on page 100
STM Rn{!}, reglist store Multiple registers,) 3.4.6 on page 79
increment after
STMDB, STMEA Rn{!}, reglist Store Multiple registers,) 3.4.6 on page 79
decrement before
STMED, STMIA Rn{!}, reglist _Store Multiple registers,) 3.4.6 on page 79
increment after
STR Rt, [Rn, #offset] Store register word - 3.4.2 on page 73
STRB, STRBT Rt, [Rn, #offset] Store register byte - 3.4.2 on page 73
Rt, Rt2, [Rn, ;
STRD offset] Store register two words - 3.4.2 on page 73
Rd, Rt, I[Rn, . .
STREX offset] Store register Exclusive - 3.4.9 on page 83
STREXB Rd, Rt, [Rn] Store register Exclusive) 3.4.9 on page 83
Byte
Rd, Rt, [Rn] Store register Exclusive
STREXH Halfword - 3.4.9 on page 83
STRH, STRHT Rt, [Rn, #offset] Store register Halfword - 3.4.2 on page 73
STRT Rt, [Rn, #offset] Store register word - 3.4.2 on page 73
SUB, SUBS {Rd,} Rn, Op2 Subtract N,Z,C,V |3.5.1 on page 87
56/252 DoclD028474 Rev 3 Kys

PM0253 The Cortex-M7 instruction set
Table 22. Cortex®-M7 instructions (continued)
Mnemonic Operands Brief description Flags Page
SUB, SUBW {Rd,} Rn, #imml2 Subtract - 3.5.1 on page 87
SvC #imm Supervisor Call - 3.56.1 on page 87
SXTAB Sd' b Rn, Rm, {ROR s iend 8 bits to 32 and add |- 3.8.3 on page 140
SXTAB16 {R4,} Rn, Rm, {,ROR Dual extend 8 bits to 16 and | 3.8.3 on page 140
#) add
SXTAH {Rd,} Rn, Rm, {,ROR Extend 16 bits to 32 and) 3.8.3 on page 140
#) add
SXTB16 {Rd,} Rm {,ROR #n} Signed Extend Byte 16 - 3.9.3 on page 144
SXTB {Rd,} Rm {,ROR #n} Sign extend a byte - 3.9.3 on page 144
SXTH {Rd,} Rm {,ROR #n} Sign extend a halfword - 3.9.3 on page 144
TBB [Rn, Rm] Table Branch Byte - 3.10.4 on page 150
TBH [Rn, Rm, LSL #1] Table Branch Halfword - 3.10.4 on page 150
TEQ Rn, Op2 Test Equivalence N,Z,C 3.6.15 on page 102
TST Rn, Op2 Test N,Z,C 3.5.15 on page 102
UADD16 {Rd,} Rn, Rm Unsigned Add 16 GE 3.5.16 on page 103
UADDS8 {R4,} Rn, Rm Unsigned Add 8 GE 3.5.16 on page 103
USAX {Rd,} Rn, Rm UpS|gned Subtract and Add GE 3.5.17 on page 104
with Exchange
UHADD16 {R4,} Rn, Rm Unsigned Halving Add 16 - 3.5.18 on page 105
UHADDS8 {Rd,} Rn, Rm Unsigned Halving Add 8 - 3.5.18 on page 105
{Rd,} Rn, Rm Unsigned Halving Add and |
UHASX Subtract with Exchange 3.5.19 on page 106
{R4,} Rn, Rm Unsigned Halving Subtract |
UHSAX and Add with Exchange 3.5.19 on page 106
UHSUB16 {R4,} Rn, Rm %Jg&gned Halving Subtract | 3.5.20 on page 107
UHSUBS {Rd,} Rn, Rm ;Jn3|gned Halving Subtract | 3.5.20 on page 107
UBFX Rd, Rn, #lsb, #width |Unsigned Bit Field Extract |- 3.9.2 on page 143
ubDIV {Rd,} Rn, Rm Unsigned Divide - 3.6.12 on page 127
RdLo, RdAHi, Rn, Rm Unsigned Multiply
Accumulate Accumulate
UMAAL Long (32 x 32 + 32 +32), 64- | 3.6.2 on page 113
bit result
RdLo, RdHi, Rn, Rm Unsigned Multiply with
UMLAL Accumulate - 3.6.2 on page 113
(32 x 32 + 64), 64-bit result
UMULL RdLo, RdAHi, Rn, Rm Unsigned Multiply (32 x 32), 3.6.2 on page 113

64-bit result

3

DoclD028474 Rev 3

57/252

The Cortex-M7 instruction set PM0253
Table 22. Cortex®-M7 instructions (continued)

Mnemonic Operands Brief description Flags Page
UQADD16 {Rd,} Rn, Rm Unsigned Saturating Add 16 | - 3.7.7 on page 136
UQADDS8 {Rd,} Rn, Rm Unsigned Saturating Add 8 |- 3.7.7 on page 136

{Rd,} Rn, Rm Unsigned Saturating Add
UQASX and Subtract with Exchange |~ 3.7.6 on page 134
{Rd,} Rn, Rm Unsigned Saturating
UQSAX Subtract and Add with - 3.7.6 on page 134
Exchange
{Rd,} Rn, Rm Unsigned Saturating
UQSUB16 Subtract 16 - 3.7.7 on page 136
{Rd,} Rn, Rm Unsigned Saturating
UQSUBS Subtract 8 - 3.7.7 on page 136
USADS {Rd,} Rn, Rm Up3|gned Sum of Absolute | 3.5.22 on page 108
Differences
{R4,} Rn, Rm, Ra Unsigned Sum of Absolute
USADA8 Differences and Accumulate | - 3.5.23 on page 109
USAT 1;:} #n, Rm {,shift Unsigned Saturate Q 3.7.1 on page 129
USAT16 Rd, #n, Rm Unsigned Saturate 16 Q 3.7.2 on page 130
UASX {Rd,} Rn, Rm Up3|gned Add and Subtract GE 3.5.17 on page 104
with Exchange
USuUB16 {Rd,} Rn, Rm Unsigned Subtract 16 GE 3.5.24 on page 110
uUsSuB8 {Rd,} Rn, Rm Unsigned Subtract 8 GE 3.5.24 on page 110
{R4,} Rn, Rm, {,ROR Rotate, extend 8 bits to 32
UXTAB 4 and Add - 3.8.3 on page 140
{R4,} Rn, Rm, {,ROR Rotate, dual extend 8 bits to
UXTAB16 #) 16 and Add - 3.8.3 on page 140
{Rd,} Rn, Rm, {,ROR Rotate, unsigned extend
UXTAH 4 and Add Halfword - 3.8.3 on page 140
UXTB {Rd,} Rm {,ROR #n} Zero extend a Byte - 3.9.3 on page 144
UXTB16 {R4,} Rm {,ROR #n} Unsigned Extend Byte 16 - 3.9.3 on page 144
UXTH {R4,} Rm {,ROR #n} Zero extend a Halfword - 3.9.3 on page 144
VABS.F<32|64> Sd|Dbd>, <Sm|D Floating-point Absol
S.F<32|6 <sd|Dd>, <Sm|Dm> oating-point Absolute) 3.11.1 on page 153
VADD.F<32|64> (<8d[Dd>,} <Sn[Dn>, | gy ting ooint Add - 3.11.2 on page 153
<Sm|Dm>
<Sd|Dd>, <<Sm|Dm> | |Compare two floating-point
VCMP.F<32|64> #0.0> registers, or one floating- FPSCR |[3.11.3 on page 154
point register and zero
58/252 DoclD028474 Rev 3 "_l

PM0253

The Cortex-M7 instruction set

Table 22. Cortex®-M7 instructions (continued)

Mnemonic

Operands

Brief description

Flags

Page

VCMPE.F<32|64>

<Sd|Dd>, <<Sm|Dm> |
#0.0>

Compare two floating-point
registers, or one floating-
point register and zero with
Invalid Operation check

FPSCR

3.11.3 on page 154

VCVT

F<32|64>.<S|U>,
<16]32>

Convert from floating-point
to fixed point

3.11.5 on page 156

VCVT

<s|u>,
<16]32>.F<32|64>

Convert from fixed point to
floating-point

3.11.5 on page 156

VCVT.S32.F<32|64>

<Sd|Dd>, <Sm|Dm>

Convert from floating-point
to integer

3.11.4 on page 155

VCVT<B|T>.F<32|64
>F16

<5d|Dd>, Sm

Convert half-precision value
to single-precision or
double-precision

3.11.6 on page 157

VCVTA.F<32|64>

<Sd|Dd>, <Sm|Dm>

Convert from floating-point
to integer with directed
rounding to nearest ties
away

3.11.33 on page 173

VCVTM.F<32|64>

<sd|Dd>, <Sm|Dm>

Convert from floating-point
to integer with directed
rounding towards minus
infinity

3.11.33 on page 173

VCVTN.F<32|64>

<Sd|Dd>, <Sm|Dm>

Convert from floating-point
to integer with directed
rounding to nearest even

3.11.33 on page 173

VCVTP.F<32|64>

<sd|Dd>, <Sm|Dm>

Convert from floating-point
to integer with directed
rounding towards plus
infinity

3.11.33 on page 173

VCVTR.S32.F<32|64
>

<sd|Dd>, <Sm|Dm>

Convert between floating-
point and integer with
rounding.

FPSCR

3.11.4 on page 155

VCVT<B|T>.F16.F<3
2|64>

Sd, <Sm|Dm>

Convert single-precision or
double precision register to
half-precision

3.11.5 on page 156

VDIV.F<32(64> (<8d[Dd>,} <Sn[Dn>, | by ting-point Divide - 3.11.7 on page 157
<Sm | Dm>

VEMA F<32/64> {<sd|Dd>,} <Sn|Dn>, Floajung-pomt Fused 3.11.8 on page 158
<Sm| Dm> Multiply Accumulate
{<sd|Dd>,} <Sn|Dn>, |Floating-point Fused)

VFMS.F<32|64> <Sm|Dm> Multiply Subtract 3.11.8 on page 158
{<sd|Dd>,} <Sn|Dn>, |Floating-point Fused)

VFNMA.F<32|64> <Sm|Dm> Negate Multiply Accumulate 3.11.9 on page 159
{<sd|Dd>,} <Sn|Dn>, |Floating-point Fused

VFNMS.F<32/64> <Sm|Dm> Negate Multiply Subtract 3.11.9 on page 159

S74

DoclD028474 Rev 3

59/252

The Cortex-M7 instruction set PM0253
Table 22. Cortex®-M7 instructions (continued)
Mnemonic Operands Brief description Flags Page
VLDM.F<32[64> Rn{!}, list Logd Multiple extension) 3.11.10 on page 159
registers
<sd|Dd>, [<Rn>{, Load an extension register

VLDR.F<32|64>

#+/-<imm>}]

from memory

3.11.11 on page 160

VLDR.F<32|64>

from memory

VLDR F<32|64> <sd|Dbd>, <label> Load an extension register 311.11 on page 160
' from memory o pag
<sd|bd>, [PC,#-0] Load an extension register

3.11.11 on page 160

VMLA.F<32|64>

{<sd|Dd>,} <Sn|Dn>,
<Sm| Dm>

Floating-point Multiply
Accumulate

3.11.12 on page 161

VMLS.F<32|64>

{<sd|Dd>,} <Sn|Dn>,
<Sm|Dm>

Floating-point Multiply
Subtract

3.11.12 on page 161

immediate

<Sd|Dbd>, <Sn|Dn>, Maximum of two floating-
<Sm|Dm> point numbers with
VMAXNM.F<32|64> |EEE754-2008 NaN - 3.11.32 on page 172
handling
<sd|Dd>, <Sn|Dn>, Minimum of two floating-
<Sm|Dm> point numbers with i
VMINNM.F<32|64> |EEE754-2008 NaN 3.11.32 on page 172
handling
VMOV <Sd|Dd>, <Sm|Dm> Floating-point Move register |- 3.11.19 on page 165
VMOV <Sn|Dn>, Rt Cppy ARM.c.ore register to 3.11.19 on page 165
single-precision
<Sm|Dm>, <Sm|Dm>1, Copy two ARM core
VMOV Rt, Rt2 registers to two single- - 3.11.19 on page 165
precision
VMOV Dd[x], Rt Copy ARM core register to 3.11.19 on page 165
scalar
VMOV Rt, Dn[x] Copy scalar to ARM core 3.11.19 on page 165
register
VMOV.F<32(64> <Sd|Dd>, #imm Floating-point Move) 3.11.19 on page 165

VMUL.F<32|64>

{<sd|Dd>,} <Sn|Dn>,
<Sm | Dm>

Floating-point Multiply

3.11.22 on page 166

VNEG.F<32|64>

<sd|Dd>, <Sm|Dm>

Floating-point Negate

3.11.23 on page 167

VNMLA .F<32|64>

<sd|Dd>, <Sn|Dn>,
<Sm|Dm>

Floating-point Multiply and
Add

3.11.24 on page 167

VNMLS.F<32|64>

<Sd|Dd>, <Sn|Dn>,
<Sm | Dm>

Floating-point Multiply and
Subtract

3.11.24 on page 167

VNMUL.F<32|64>

{<sd|Dd>,} <Sn|Dn>,
<Sm| Dm>

Floating-point Multiply

3.11.24 on page 167

60/252

DoclD028474 Rev 3

S74

PMO0253 The Cortex-M7 instruction set
Table 22. Cortex®-M7 instructions (continued)
Mnemonic Operands Brief description Flags Page

VRINTA.F<32|64>

<Sd|bd>, <Sm|Dm>

Float to integer in floating-
point format conversion with
directed rounding

3.11.35 on page 174

<Sd|Dd>, <Sm|Dm> Float to integer in floating-
VRINTM.F<32|64> point format conversion with | - 3.11.35 on page 174
directed rounding
<Sd|Dd>, <Sm|Dm> Float to integer in floating-
VRINTN.F<32|64> point format conversion with |- 3.11.35 on page 174
directed rounding
<sd|Dd>, <Sm|Dm> Float to integer in floating-
VRINTP.F<32|64> point format conversion with | - 3.11.35 on page 174
directed rounding
VRINTR F<32/64> <Sd|Dd>, <Sm|Dm> quat to integer in flogtmg-) 3.11.34 on page 173
point format conversion
VRINTX F<32[64> <Sd|Dd>, <Sm|Dm> quat to integer in flogtlng-) 3.11.34 on page 173
point format conversion
VRINTZ.F<32[64> <sd|Dd>, <Sm|Dm> quat to integer in flogtlng-) 3.11.35 on page 174
point format conversion
<sd|Dd>, <Sn|Dn>, Select register, alternative
VSEL F<32|64> <Sm| Dm> to a pair of conditional vMOV | 3.11.31 on page 172
VSQRTF<32/64> <Sd|Dd>, <Sm|Dm> Calculates floating-point 3.11.27 on page 169
Square Root
<sd|Dd>, [Rn] Stores an extension register

VSTR.F<32|64>

to memory

3.11.29 on page 170

VSUB.F<32|64>

{<sd|Dd>,} <Sn|Dn>,

Floating-point Subtract

3.11.30 on page 171

<Sm| Dm>
WFE - Wait For Event - 3.12.11 on page 181
WFI - Wait For Interrupt - 3.12.12 on page 182
3.1.1 Binary compatibility with other Cortex processors

The processor implements the ARMv7-M instruction set and features provided by the
ARMv7-M architecture profile, and is binary compatible with the instruction sets and
features implemented in other Cortex®-M profile processors. The user cannot move
software from the Cortex®-M7 processor to:

The Cortex®-M3 processor if it contains floating-point operations or DSP extensions.
The Cortex®-M4 processor if it contains double-precision floating-point operations.
The Cortex®-MO0 or Cortex®-M0+ processors because these are implementations of the
ARMv6-M Architecture.

The code designed for other Cortex®-M processors is compatible with Cortex®-M7 as long
as it does not rely on bit-banding.

3

DoclD028474 Rev 3

61/252

The Cortex-M7 instruction set PMO0253

3.2

62/252

To ensure a smooth transition, ARM recommends that the code designed to operate on
other Cortex®-M profile processor architectures obey the following rules and that the
Configuration and Control Register (CCR) be appropriately configured:

e Use word transfers only to access registers in the NVIC and System Control Space
(SCS).
e Treat all unused SCS registers and register fields on the processor as Do-Not-Modify.
e Configure the following fields in the CCR register:
— STKALIGN bit to 1.
— UNALIGN_TRP bit to 1.
— Leave all other bits in the CCR register at their original value.

CMSIS functions

ISO/IEC C code cannot directly access some Cortex®-M7 processor instructions. This
section describes intrinsic functions that can generate these instructions, provided by the
CMSIS and that might be provided by a C compiler. If a C compiler does not support an
appropriate intrinsic function, the user might have to use inline assembler to access some
instructions.

The CMSIS provides the following intrinsic functions to generate instructions that ISO/IEC C
code cannot directly access:

Table 23. CMSIS functions to generate some Cortex®-M7 processor instructions

Instruction CMSIS function
CPSIE | void __enable_irg(void)
CPSID | void __ disable_irg(void)
CPSIE F void __enable_fault_irg(void)
CPSID F void _ disable_fault_irg(void)
1SB void _ ISB(void)
DSB void _ DSB(void)
DMB void __ DMB(void)
REV uint32_t __REV(uint32_t int value)
REV16 uint32_t __REV16(uint32_t int value)
REVSH uint32_t _ REVSH (uint32_t int value)
RBIT uint32_t _ RBIT(uint32_t int wvalue)
SEV void __ SEV(void)
WFE void __ _WFE(void)
WEI void _ WFI(void)

The CMSIS also provides a number of functions for accessing the special registers using
MRS and MSR instructions:

3

DoclD028474 Rev 3

PM0253 The Cortex-M7 instruction set

Table 24. CMSIS functions to access the special registers

Special register Access CMSIS function
Read uint32_t _ get_PRIMASK (void)
PRIMASK
Write void __ _set PRIMASK (uint32_t value)
Read uint32_t _ _get_FAULTMASK (void)
FAULTMASK
Write void __ set FAULTMASK (uint32_t wvalue)
Read uint32_t _ get_BASEPRI (void)
BASEPRI
Write void __set_BASEPRI (uint32_t value)
Read uint32_t _ get_CONTROL (void)
CONTROL
Write void ___set CONTROL (uint32_t wvalue)
Read uint32_t _ get_ MSP (void)
MSP
Write void _ set_MSP (uint32_t TopOfMainStack)
Read uint32_t _ get_ PSP (void)
PSP
Write void __set_PSP (uint32_t TopOfProcStack)
3.3 About the instruction descriptions

The following sections give more information about using the instructions:
e Operands on page 63.

e Restrictions when using PC or SP on page 63.

e Flexible second operand on page 64.

e Shift operations on page 65.

e Address alignment on page 68.

e PC-relative expressions on page 68.

e Conditional execution on page 68.

e Instruction width selection on page 71.

3.31 Operands

An instruction operand can be an ARM register, a constant, or another instruction-specific
parameter. Instructions act on the operands and often store the result in a destination
register. When there is a destination register in the instruction, it is usually specified before
the operands.

Operands in some instructions are flexible in that they can either be a register or a constant.
See Flexible second operand on page 64.

3.3.2 Restrictions when using PC or SP

Many instructions have restrictions on whether the user can use the Program Counter (PC)
or Stack Pointer (SP) for the operands or destination register. See instruction descriptions
for more information.

3

DoclD028474 Rev 3 63/252

The Cortex-M7 instruction set PMO0253

Note:

3.3.3

Note:

64/252

Bit[0] of any address written to the PC with a BX, BLX, LDM, LDR, or POP instruction must
be 1 for correct execution, because this bit indicates the required instruction set, and the
Cortex®-M7 processor only supports Thumb instructions.

Flexible second operand

Many general data processing instructions have a flexible second operand. This is shown
as Operand? in the descriptions of the syntax of each instruction.

Operand?2 can be a:
e Constant.
e Register with optional shift on page 64.

Constant
Specify an Operand2 constant in the form:
#constant

where constant can be:

¢ Any constant that can be produced by shifting an 8-bit value left by any number of bits
within a 32-bit word.

e Any constant of the form 0x00XYOOXY.
¢ Any constant of the form 0xXY00XY00.
e Any constant of the form OxXYXYXYXY.

In these constants, X and Y are hexadecimal digits.
In addition, in a small number of instructions, constant can take a wider range of values.
These are described in the individual instruction descriptions.

When an Operand2 constant is used with the instructions MOVS, MVNS, ANDS, ORRS,
ORNS, EORS, BICS, TEQ or TST, the carry flag is updated to bit[31] of the constant, if the
constant is greater than 255 and can be produced by shifting an 8-bit value. These
instructions do not affect the carry flag if Operand2 is any other constant.

Instruction substitution

The assembler might be able to produce an equivalent instruction if an unpermitted constant
is specified. For example, the instruction CMP Rd, #0xFFFFFFFE might be assembled as the
equivalent of instruction CMN Rd, #0x2.

Register with optional shift

Specify an Operand2 register in the form:

Rm {, shift}

Where:
Rm Is the register holding the data for the second operand.
shift Is an optional shift to be applied to rm. It can be one of:

ASR #n Arithmetic shift right n bits, 1 <0 <32.
LSL #n Logical shift left n bits, 1 <n <31.
LSR #n Logical shift right n bits, 1 <n <32.

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 instruction set

3.34

3

ROR #n Rotate right n bits, 1 <n <31.
RRX Rotate right one bit, with extend.
- If omitted, no shift occurs, equivalent to LsL #0.

If the shift is omitted or st #0 specified, the instruction uses the value in rm.

If the shift is specified, it is applied to the value in rm, and the resulting 32-bit value is used
by the instruction. However, the contents in the register rm remain unchanged. Specifying a
register with shift also updates the carry flag when used with certain instructions. For
information on the shift operations and how they affect the carry flag, see Shift operations.

Shift operations

Register shift operations move the bits in a register left or right by a specified number of bits,
the shift length. Register shift can be performed:

e Directly by the instructions ASR, LSR, LSL, ROR, and RRX, and the result is written to
a destination register.

e During the calculation of Operand2 by the instructions that specify the second operand
as a register with shift, see Flexible second operand on page 64. The result is used by
the instruction.

The permitted shift lengths depend on the shift type and the instruction, see the individual
instruction description or Flexible second operand on page 64. If the shift length is 0, no shift
occurs. Register shift operations update the carry flag except when the specified shift length
is 0. The following sub-sections describe the various shift operations and how they affect the
carry flag. In these descriptions, Rm is the register containing the value to be shifted, and n
is the shift length.

ASR

Arithmetic shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by
n places, into the right-hand 32-n bits of the result. And it copies the original bit[31] of the
register into the left-hand n bits of the result. See Figure 12 on page 66.

The ASR #n operation can be used to divide the value in the register Rm by 2", with the
result being rounded towards negative-infinity.

When the instruction is ASRS or when ASR #n is used in Operand2 with the instructions
MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated
to the last bit shifted out, bit[n-1], of the register Rm.

e If nis 32 or more, then all the bits in the result are set to the value of bit[31] of Rm.

e Ifnis 32 or more and the carry flag is updated, it is updated to the value of bit[31] of
Rm.

DoclD028474 Rev 3 65/252

The Cortex-M7 instruction set PMO0253

66/252

Figure 12. ASR

[+ v iy i

31 514(3]2(1]0 |—:|

AEEE S

MSv39652V1

LSR

Logical shift right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it sets the left-hand n bits of the result
to 0. See Figure 13.

The LSR #n operation can be used to divide the value in the register Rm by 2", if the value
is regarded as an unsigned integer.

When the instruction is LSRS or when LSR #n is used in Operand2 with the instructions
MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated
to the last bit shifted out, bit[n-1], of the register Rm.

. If nis 32 or more, then all the bits in the result are cleared to 0.
e If nis 33 or more and the carry flag is updated, it is updated to 0.

Figure 13. LSR

o —
o —
o —

AEEE [T

MSv39679V1

LSL

Logical shift left by n bits moves the right-hand 32-n bits of the register Rm, to the left by n
places, into the left-hand 32-n bits of the result. And it sets the right-hand n bits of the result
to 0. See Figure 14 on page 67.

The user can use the LSL #n operation to multiply the value in the register Rm by 27, if the
value is regarded as an unsigned integer or a two’s complement signed integer. Overflow
can occur without warning.

When the instruction is LSLS or when LSL #n, with non-zero n, is used in Operand?2 with the
instructions MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag
is updated to the last bit shifted out, bit[32-n], of the register Rm. These instructions do not
affect the carry flag when used with LSL #0.

e If nis 32 or more, then all the bits in the result are cleared to 0.

e If nis 33 or more and the carry flag is updated, it is updated to 0.

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 instruction set

3

Figure 14. LSL

o —

be
y : vV Y
|j31 5413|2110
Gy 1L trt]

MSv39678V1

ROR

Rotate right by n bits moves the left-hand 32-n bits of the register Rm, to the right by n
places, into the right-hand 32-n bits of the result. And it moves the right-hand n bits of the
register into the left-hand n bits of the result. See Figure 15.

When the instruction is RORS or when ROR #n is used in Operand?2 with the instructions
MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated
to the last bit rotation, bit[n-1], of the register Rm.

e Ifnis 32, then the value of the result is same as the value in Rm, and if the carry flag is
updated, it is updated to bit[31] of Rm.

¢ ROR with shift length, n, more than 32 is the same as ROR with shift length n-32.

Figure 15. ROR

31 51413]2|1{0 |—:|

AEEE [T

MSv39685V1

RRX

Rotate right with extend moves the bits of the register Rm to the right by one bit. And it
copies the carry flag into bit[31] of the result. See Figure 16 on page 67.

When the instruction is RRXS or when RRX is used in Operand?2 with the instructions
MOVS, MVNS, ANDS, ORRS, ORNS, EORS, BICS, TEQ or TST, the carry flag is updated
to bit[0] of the register Rm.

Figure 16. RRX

Carry
Flag
31|30 110
T
FATFLS
MSv39686V1
DoclD028474 Rev 3 67/252

The Cortex-M7 instruction set PMO0253

3.3.5

3.3.6

3.3.7

68/252

Address alignment

An aligned access is an operation where a word-aligned address is used for a word, dual
word, or multiple word access, or where a halfword-aligned address is used for a halfword
access. Byte accesses are always aligned.

The Cortex®-M7 processor supports unaligned access only for the following instructions:
e LDR,LDRT.

e LDRH, LDRHT.

e LDRSH, LDRSHT.

e STR, STRT.

e STRH, STRHT.

All other load and store instructions generate a UsageFault exception if they perform an

unaligned access, and therefore their accesses must be address aligned. For more
information about UsageFaults see Fault handling on page 47.

Unaligned accesses are usually slower than aligned accesses. In addition, some memory
regions might not support unaligned accesses. Therefore, ARM recommends that
programmers ensure that accesses are aligned. To trap accidental generation of unaligned
accesses, use the UNALIGN_TRP bit in the Configuration and Control register, see
Configuration and Control register on page 200.

PC-relative expressions

A PC-relative expression or label is a symbol that represents the address of an instruction or
literal data. It is represented in the instruction as the PC value plus or minus a numeric
offset. The assembler calculates the required offset from the label and the address of the
current instruction. If the offset is too big, the assembler produces an error.

. For B, BL, CBNZ, and CBZ instructions, the value of the PC is the address of the
current instruction plus 4 bytes.

e For all other instructions that use labels, the value of the PC is the address of the
current instruction plus 4 bytes, with bit[1] of the result cleared to 0 to make it word-
aligned.

e The assembler might permit other syntaxes for PC-relative expressions, such as a
label plus or minus a number, or an expression of the form [PC, #number].

Conditional execution

Most data processing instructions can optionally update the condition flags in the
Application Program Status register (APSR) according to the result of the operation, see
Application Program Status register on page 23. Some instructions update all flags, and
some only update a subset. If a flag is not updated, the original value is preserved. See the
instruction descriptions for the flags they affect.

The user can execute an instruction conditionally, based on the condition flags set in
another instruction, either:

e Immediately after the instruction that updated the flags.

e After any number of intervening instructions that have not updated the flags.

Conditional execution is available by using conditional branches or by adding condition code
suffixes to instructions. See Table 25 on page 70 for a list of the suffixes to add to

DoclD028474 Rev 3 ‘Yl

PM0253

The Cortex-M7 instruction set

3

instructions to make them conditional instructions. The condition code suffix enables the
processor to test a condition based on the flags. If the condition test of a conditional
instruction fails, the instruction:

e Does not execute.

e Does not write any value to its destination register.

e Does not affect any of the flags.

e Does not generate any exception.

Conditional instructions, except for conditional branches, must be inside an If-Then
instruction block. See IT on page 148 for more information and restrictions when using the

IT instruction. Depending on the vendor, the assembler might automatically insert an IT
instruction if there are conditional instructions outside the IT block.

Use the CBZ and CBNZ instructions to compare the value of a register against zero and
branch on the result.

This section describes:
e The condition flags on page 69.
e Condition code suffixes on page 70.

The condition flags

The APSR contains the following condition flags:

N Set to 1 when the result of the operation was negative, cleared to 0 otherwise.
Y4 Set to 1 when the result of the operation was zero, cleared to 0 otherwise.

C Set to 1 when the operation resulted in a carry, cleared to 0 otherwise.

\' Set to 1 when the operation caused overflow, cleared to 0 otherwise.

For more information about the APSR see Program Status register on page 22.

The C condition flag is set in one of four ways:

e For an addition, including the comparison instruction CMN, C is set to 1 if the addition
produced a carry (that is, an unsigned overflow), and to 0 otherwise.

e For a subtraction, including the comparison instruction CMP, C is set to 0O if the
subtraction produced a borrow (that is, an unsigned underflow), and to 1 otherwise.

e For non-addition or subtractions that incorporate a shift operation, C is set to the last bit
shifted out of the value by the shifter.

e For other non-addition or subtractions, C is normally left unchanged. See the individual
instruction descriptions for any special cases.

Overflow occurs when the sign of the result, in bit[31], does not match the sign of the result

had the operation been performed at infinite precision, for example:

e If adding two negative values results in a positive value.

e If adding two positive values results in a negative value.

e If subtracting a positive value from a negative value generates a positive value.

e If subtracting a negative value from a positive value generates a negative value.

The Compare operations are identical to subtracting, for CMP, or adding, for CMN, except
that the result is discarded. See the instruction descriptions for more information.

Most instructions update the status flags only if the S suffix is specified. See the instruction
descriptions for more information.

DoclD028474 Rev 3 69/252

The Cortex-M7 instruction set PMO0253

Condition code suffixes

The instructions that can be conditional have an optional condition code, shown in syntax
descriptions as {cond}. Conditional execution requires a preceding IT instruction. An
instruction with a condition code is only executed if the condition code flags in the APSR
meet the specified condition. Table 25 shows the condition codes to use.

The conditional execution can be used with the IT instruction to reduce the number of
branch instructions in the code.

Table 25 also shows the relationship between condition code suffixes and the N, Z, C, and V

flags.
Table 25. Condition code suffixes
Suffix Flags Meaning
EQ Z=1 Equal
NE Z=0 Not equal
CSorHS |C=1 Higher or same, unsigned
CCorLO |C=0 Lower, unsigned
Mi N=1 Negative
PL N=0 Positive or zero
VS V=1 Overflow
VC V=0 No overflow
HI C=1andZ=0 Higher, unsigned
LS C=0o0r Z=1 Lower or same, unsigned
GE N=V Greater than or equal, signed
LT N!I=V Less than, signed
GT Z=0andN=V Greater than, signed
LE Z=1andN!=V Less than or equal, signed
AL Can have any value Always. This is the default when no suffix is specified.

Example 3-1: absolute value shows the use of a conditional instruction to find the absolute

value of a number. RO = abs(R1).

Example 3-1: absolute value

MOVS
IT

RSBMI

70/252

RO, R1
MI
RO, RO, #0

DoclD028474 Rev 3

; RO = R1,
; Skipping next instruction if value 0 or
; positive.

; If negative, RO = -RO.

setting flags.

3

PMO0253 The Cortex-M7 instruction set
Example 3-2: compare and update value shows the use of conditional instructions to update
the value of R4 if the signed values RO is greater than R1 and R2 is greater than R3.
Example 3-2: compare and update value

CMP RO, R1 ; Compare RO and R1, setting flags.
ITT GT ; Skip next two instructions unless GT condition
; holds.
CMPGT R2, R3 ; If 'greater than', compare R2 and R3, setting
; flags.
MOVGT R4, RS ; If still 'greater than', do R4 = R5.
3.3.8 Instruction width selection

3

There are many instructions that can generate either a 16-bit encoding or a 32-bit encoding
depending on the operands and destination register specified. For some of these
instructions, a specific instruction size can be forced by using an instruction width suffix.
The .W suffix forces a 32-bit instruction encoding. The .N suffix forces a 16-bit instruction
encoding.

If an instruction width suffix is specified and the assembler cannot generate an instruction
encoding of the requested width, it generates an error.

In some cases it might be necessary to specify the .W suffix, for example if the operand is
the label of an instruction or literal data, as in the case of branch instructions. This is
because the assembler might not automatically generate the right size encoding.

To use an instruction width suffix, place it immediately after the instruction mnemonic and
condition code, if any. Example 3-3: instruction width selection shows instructions with the
instruction width suffix.

Example 3-3: instruction width selection

BCS.W label ; Creates a 32-bit instruction even for a short
; branch.

ADDS.W RO, RO, Rl ; Creates a 32-bit instruction even though the same
; operation can be done by a 16-bit instruction.

DoclD028474 Rev 3 71/252

The Cortex-M7 instruction set

PM0253

3.4

72/252

Memory access instructions

Table 26 shows the memory access instructions:

Table 26. Memory access instructions

Mnemonic Brief description See
ADR Generate PC-relative address ADR on page 73
CLREX Clear Exclusive CLREX on page 84
LDM{mode} |Load Multiple registers LDM and STM on page 79
LDR{type} Load register using immediate offset LDR and STR, immediate offset on page 73
LDR({type} Load register using register offset LDR and STR, register offset on page 76
LDR{type}T |Load register with unprivileged access |LDR and STR, unprivileged on page 77
LDR Load register using PC-relative address | LDR, PC-relative on page 78
LDRD Load register Dual LDR and STR, immediate offset on page 73
LDREX({type} | Load register Exclusive LDREX and STREX on page 83
PLD Preload Data. PLD on page 81
POP Pop registers from stack PUSH and POP on page 82
PUSH Push registers onto stack PUSH and POP on page 82
STM{mode} | Store Multiple registers LDM and STM on page 79
STR({type} Store register using immediate offset LDR and STR, immediate offset on page 73
STR({type} Store register using register offset LDR and STR, register offset on page 76
STR{type}T | Store register with unprivileged access |LDR and STR, unprivileged on page 77
STREX({type} | Store register Exclusive LDREX and STREX on page 83

DoclD028474 Rev 3

3

PM0253

The Cortex-M7 instruction set

3.41

3.4.2

3

ADR

Generate PC-relative address.

Syntax

ADR{cond} Rd, label

Where:

cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.

label Is a PC-relative expression. See PC-relative expressions on page 68.
Operation

ADR generates an address by adding an immediate value to the PC, and writes the result to
the destination register.

ADR provides the means by which position-independent code can be generated, because
the address is PC-relative.

If ADR is used to generate a target address for a BX or BLX instruction, The user must
ensure that bit[0] of the address generated is set to1 for correct execution.

Values of label must be within the range of -4095 to +4095 from the address in the PC.
The user might have to use the .W suffix to get the maximum offset range or to generate
addresses that are not word-aligned. See Instruction width selection on page 71.
Restrictions

Rd must not be SP and must not be PC.

Condition flags
This instruction does not change the flags.
Examples
ADR R1l, TextMessage ; Write address value of a location labelled

; as TextMessage to RI1.

LDR and STR, immediate offset

Load and Store with immediate offset, pre-indexed immediate offset, or post-indexed
immediate offset.

Syntax

op{type}{cond} Rt, [Rn {, #offset}] ; immediate offset
op{type}{cond} Rt, [Rn, #offset]! ; pre-indexed

op{type} {cond} Rt, [Rn], #offset ; post-indexed

opD{cond} Rt, Rt2, [Rn {, #offset}] ; immediate offset, two words
opD{cond} Rt, Rt2, [Rn, #offset]! ; pre-indexed, two words
opD{cond} Rt, Rt2, [Rn], #offset ; post-indexed, two words

DoclD028474 Rev 3 73/252

The Cortex-M7 instruction set PMO0253

74/252

Where:
op Is one of:

LDR Load register.

STR Store register.
type Is one of:

B Unsigned byte, zero extend to 32 bits on loads.

SB Signed byte, sign extend to 32 bits (LDr only).

H Unsigned halfword, zero extend to 32 bits on loads.

SH Signed halfword, sign extend to 32 bits (L.DR only).

- Omit, for word.
cond Is an optional condition code. See Conditional execution on page 68.
Rt Is the register to load or store.
Rn Is the register on which the memory address is based.
offset Is an offset from rn. If offset is omitted, the address is the contents of rn.
RE2 Is the additional register to load or store for two-word operations.
Operation

LDR instructions load one or two registers with a value from memory.
STR instructions store one or two register values to memory.

Load and store instructions with immediate offset can use the following addressing modes:

Offset addressing

The offset value is added to or subtracted from the address obtained from the
register Rn. The result is used as the address for the memory access. The
register Rn is unaltered. The assembly language syntax for this mode is:

[Rn, #offset]

Pre-indexed addressing

The offset value is added to or subtracted from the address obtained from the
register Rn. The result is used as the address for the memory access and
written back into the register Rn. The assembly language syntax for this mode
is:

[Rn, #offset]!

Post-indexed addressing

The address obtained from the register Rn is used as the address for the
memory access. The offset value is added to or subtracted from the address,
and written back into the register Rn. The assembly language syntax for this
mode is:

[Rn], #offset

The value to load or store can be a byte, halfword, word, or two words. Bytes and halfwords
can either be signed or unsigned. See Address alignment on page 68.

Table 27 shows the ranges of offset for immediate, pre-indexed and post-indexed forms

DoclD028474 Rev 3 ‘Yl

PM0253

The Cortex-M7 instruction set

3

Table 27. Offset ranges

Instruction type

Immediate offset

Pre-indexed

Post-indexed

Word, halfword, signed

halfword, byte, or signed byte

-255 t0 4095

-255 to 255

-255 to 255

Two words

multiple of 4 in the
range -1020 to 1020

multiple of 4 in the
range -1020 to 1020

multiple of 4 in the
range -1020 to 1020

Restrictions

For load instructions:

e Rtcan be SP or PC for word loads only.

e Rt must be different from Rt2 for two-word loads.

e Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

When Rtis PC in a word load instruction:

e Bit[0] of the loaded value must be 1 for correct execution.

e A branch occurs to the address created by changing bit[0] of the loaded value to O.
e Ifthe instruction is conditional, it must be the last instruction in the IT block.

For store instructions:

e Rtcan be SP for word stores only.

e Rt must not be PC.

e Rn must not be PC.

e Rn must be different from Rt and Rt2 in the pre-indexed or post-indexed forms.

Condition flags

These instructions do not change the flags.

Examples

LDR R8, [R10] ; Loads R8 from the address in R10.

LDRNE R2, [R5, #960]! ; Loads (conditionally) R2 from a word
; 960 bytes above the address in R5,
; and increments R5 by 960.

STR R2, [R9,#const-struc] ; const-struc is an expression
; evaluating to a constant in the range
; 0-4095.

STRH R3, [R4], #4 ; Store R3 as halfword data into
; address in R4, then increment R4 by
; 4.

LDRD R8, R9, [R3, #0x20] ; Load R8 from a word 32 bytes above
; the address in R3, and load R9 from a
; word 36 bytes above the address in
; R3.

STRD RO, R1, [R8], #-16 ; Store RO to address in R8, and store

; Rl to a word 4 bytes above the
; address in R8, and then decrement RS8
; by 16.

DoclD028474 Rev 3 75/252

The Cortex-M7 instruction set PMO0253

3.4.3

76/252

LDR and STR, register offset

Load and Store with register offset.

Syntax
op{type}{cond} Rt, [Rn, Rm {, LSL #n}]
Where:
op Is one of:
LDR Load register.
STR Store register.
type Is one of:
B Unsigned byte, zero extend to 32 bits on loads.
SB Signed byte, sign extend to 32 bits (LDR only).
H Unsigned halfword, zero extend to 32 bits on loads.
SH Signed halfword, sign extend to 32 bits (LDr only).
- omit, for word.
cond Is an optional condition code. See Conditional execution on page 68.
Rt Is the register to load or store.
Rn Is the register on which the memory address is based.
Rm Is a register containing a value to be used as the offset.
LSL #n Is an optional shift, with n in the range 0 to 3.
Operation

LDR instructions load a register with a value from memory.
STR instructions store a register value into memory.

The memory address to load from or store to is at an offset from the register Rn. The offset
is specified by the register Rm and can be shifted left by up to 3 bits using LSL.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and
halfwords can either be signed or unsigned. See Address alignment on page 68.

Restrictions

In these instructions:

Rn must not be PC.

e Rm must not be SP and must not be PC.

Rt can be SP only for word loads and word stores.
Rt can be PC only for word loads.

When Rtis PC in a word load instruction:

e Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this
halfword-aligned address.

. If the instruction is conditional, it must be the last instruction in the IT block.

Condition flags

These instructions do not change the flags.

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 instruction set

3.4.4

3

Examples

STR RO, [R5, R1] ; Store value of RO into an address equal
; to sum of R5 and R1.

LDRSB RO, [R5, R1, LSL #1l] ; Read byte value from an address equal to
; sum of R5 and two times R1, sign
; extended it to a word value and put it
, in RO.

STR RO, [R1l, R2, LSL #2] ; Stores RO to an address equal to sum of

; Rl and four times R2.

LDR and STR, unprivileged

Load and Store with unprivileged access.

Syntax
op{type}T{cond} Rt, [Rn {, #offset}] ; ilmmediate offset
Where:
op Is one of:
LDR Load register.
STR Store register.
type Is one of:
B Unsigned byte, zero extend to 32 bits on loads.
SB Signed byte, sign extend to 32 bits (LDR only).
H Unsigned halfword, zero extend to 32 bits on loads.
SH Signed halfword, sign extend to 32 bits (LDR only).
- Omit, for word.
cond Is an optional condition code. See Conditional execution on page 68.
Rt Is the register to load or store.
Rn Is the register on which the memory address is based.
offset Is an offset from rn and can be 0 to 255. If offset is omitted, the address is
the value in rn.
Operation

These load and store instructions perform the same function as the memory access
instructions with immediate offset, see LDR and STR, immediate offset on page 73. The
difference is that these instructions have only unprivileged access even when used in
privileged software.

When used in unprivileged software, these instructions behave in exactly the same way as
normal memory access instructions with immediate offset.

Restrictions

In these instructions:
e Rn must not be PC.
. Rt must not be SP and must not be PC.

DoclD028474 Rev 3 771252

The Cortex-M7 instruction set

PM0253

3.4.5

78/252

Condition flags

These instructions do not change the flags.

Examples

STRBTEQ R4, [R7]

LDRHT R2, [R2, #8]

LDR, PC-relative

Load register from memory.

Syntax
LDR{ type}{cond} Rt, label
LDRD{cond} Rt, Rt2, label

Where:

; Conditionally store least significant byte
; in R4 to an address in R7, with unprivileged

; access.

; Load halfword value from an address equal to
; sum of R2 and 8 into R2, with unprivileged

; access.

; Load two words

type Is one of:

B Unsigned byte, zero extend to 32 bits.

SB Signed byte, sign extend to 32 bits.

H Unsigned halfword, zero extend to 32 bits.

SH Signed halfword, sign extend to 32 bits.

- Omit, for word.
cond Is an optional condition code. See Conditional execution on page 68.
Rt Is the register to load or store.
REt2 Is the second register to load or store.
label Is a PC-relative expression. See PC-relative expressions on page 68.
Operation

LDR loads a register with a value from a PC-relative memory address. The memory address
is specified by a label or by an offset from the PC.

The value to load or store can be a byte, halfword, or word. For load instructions, bytes and
halfwords can either be signed or unsigned. See Address alignment on page 68.

label must be within a limited range of the current instruction. Table 28 shows the possible
offsets between label and the PC

Table 28. Offset ranges

Instruction type

Offset range

Word, halfword, signed halfword, byte, signed byte

-4095 to 4095

Two words

1020 to 1020

DoclD028474 Rev 3

3

PMO0253 The Cortex-M7 instruction set
Note: The user might have to use the . w suffix to get the maximum offset range. See Instruction
width selection on page 71.
Restrictions
In these instructions:
e Rtcan be SP or PC only for word loads.
e Rt2 must not be SP and must not be PC.
e Rt must be different from Rt2.
When Rtis PC in a word load instruction:
e Bit[0] of the loaded value must be 1 for correct execution, and a branch occurs to this
halfword-aligned address.
e If the instruction is conditional, it must be the last instruction in the IT block.
Condition flags
These instructions do not change the flags.
Examples
LDR RO, LookUpTable ; Load RO with a word of data from an
; address labelled as LookUpTable.
LDRSB R7, localdata ; Load a byte value from an address labelled
; as localdata, sign extend it to a word
; value, and put it in R7.
3.4.6 LDM and STM
Load and Store Multiple registers.
Syntax
op{addr_mode}{cond} Rn{!'}, reglist
Where:
op Is one of:
LDM Load Multiple registers.
STM Store Multiple registers.
addr_mode Is any one of the following:
IA Increment address After each access. This is the default.
DB Decrement address Before each access.
cond Is an optional condition code. See Conditional execution on page 68.
Rn Is the register on which the memory addresses are based.

3

! Is an optional writeback suffix. If ! is present the final address, that is loaded
from or stored to, is written back into rn.

reglist Is a list of one or more registers to be loaded or stored, enclosed in braces. It
can contain register ranges. It must be comma separated if it contains more
than one register or register range, see Examples on page 80.

LDM and LDMFD are synonyms for LDMIA. LDMFD refers to its use for popping data from
Full Descending stacks.

DoclD028474 Rev 3 79/252

The Cortex-M7 instruction set PMO0253

80/252

LDMEA is a synonym for LDMDB, and refers to its use for popping data from Empty
Ascending stacks.

STM and STMEA are synonyms for STMIA. STMEA refers to its use for pushing data onto
Empty Ascending stacks.

STMFD is s synonym for STMDB, and refers to its use for pushing data onto Full
Descending stacks

Operation

LDM instructions load the registers in reglist with word values from memory addresses
based on Rn.

STM instructions store the word values in the registers in reglist to memory addresses
based on Rn.

For LDM, LDMIA, LDMFD, STM, STMIA, and STMEA the memory addresses used for the
accesses are at 4-byte intervals ranging from Rn to Rn + 4 * (n-1), where n is the number of
registers in reglist. The accesses happens in order of increasing register numbers, with the
lowest numbered register using the lowest memory address and the highest number
register using the highest memory address. If the writeback suffix is specified, the value of
Rn + 4 * (n-1) is written back to Rn.

For LDMDB, LDMEA, STMDB, and STMFD the memory addresses used for the accesses
are at 4-byte intervals ranging from Rnto Rn - 4 * (n-1), where n is the number of registers
in reglist. The accesses happen in order of decreasing register numbers, with the highest
numbered register using the highest memory address and the lowest number register using
the lowest memory address. If the writeback suffix is specified, the value of

Rn -4~ (n-1) is written back to Rn.

The PUSH and POP instructions can be expressed in this form. See PUSH and POP on
page 82 for details.

Restrictions

In these instructions:

e Rnmust not be PC.

e reglist must not contain SP.

e Inany STM instruction, reglist must not contain PC.

e Inany LDM instruction, reglist must not contain PC if it contains LR.
e reglist must not contain Rn if the writeback suffix is specified.

When PC is in reglist in an LDM instruction:

e Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch
occurs to this halfword-aligned address

. If the instruction is conditional, it must be the last instruction in the IT block.

Condition flags
These instructions do not change the flags.
Examples
LDM R8, {RO,R2,R9} ; LDMIA is a synonym for LDM.

STMDB R1!, {R3-R6,R11,R12}

3

DoclD028474 Rev 3

PM0253 The Cortex-M7 instruction set
Incorrect examples
STM R5!,{R5,R4,R9} ; Value stored for R5 is unpredictable.
LDM R2, {} ; There must be at least one register in the
; list.
3.4.7 PLD

3

Preload Data.

Syntax
PLD [<Rn>, #<imml2>]
PLD [<Rn>, <Rm> {, LSL #<shift>}]

PLD <label>

where:

<Rn> Is the base register.

<imm> Is the immediate offset used to form the address.
<Rm> Is the optionally shifted offset register.

<shift> Specifies the shift to apply to the value read from <rm>, in the range 0-3. If this
option is omitted, a shift by 0 is assumed.

<label> The label of the literal item that is likely to be accessed in the near future.
Operation

PLD signals the memory system that data memory accesses from a specified address are
likely in the near future. If the address is cacheable then the memory system responds by
pre-loading the cache line containing the specified address into the data cache. If the
address is not cacheable, or the data cache is disabled, this instruction behaves as no
operation.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

DoclD028474 Rev 3 81/252

The Cortex-M7 instruction set PMO0253

3.4.8

82/252

PUSH and POP

Push registers onto, and pop registers off a full-descending stack.

Syntax

PUSH{cond} reglist

POP{cond} reglist

Where:

cond Is an optional condition code. See Conditional execution on page 68.

reglist Is a non-empty list of registers, enclosed in braces. It can contain register
ranges. It must be comma separated if it contains more than one register or
register range.

PUSH and POP are synonyms for STMDB and LDM (or LDMIA) with the memory
addresses for the access based on SP, and with the final address for the access written
back to the SP. PUSH and POP are the preferred mnemonics in these cases.

Operation

PUSH stores registers on the stack, with the lowest numbered register using the lowest
memory address and the highest numbered register using the highest memory address.

POP loads registers from the stack, with the lowest numbered register using the lowest
memory address and the highest numbered register using the highest memory address.

PUSH uses the value in the SP register minus four as the highest memory address, POP
uses the value in the SP register as the lowest memory address, implementing a full-
descending stack. On completion, PUSH updates the SP register to point to the location of
the lowest store value, POP updates the SP register to point to the location above the
highest location loaded.

If a POP instruction includes PC in its reglist, a branch to this location is performed when the
POP instruction has completed. Bit[0] of the value read for the PC is used to update the
APSR T-bit. This bit must be 1 to ensure correct operation.

See LDM and STM on page 79 for more information.

Restrictions

In these instructions:

e reglist must not contain SP.

e For the PUSH instruction, reglist must not contain PC.

e For the POP instruction, reglist must not contain PC if it contains LR.

When PC is in reglist in a POP instruction:

e Bit[0] of the value loaded to the PC must be 1 for correct execution, and a branch
occurs to this halfword-aligned address.

. If the instruction is conditional, it must be the last instruction in the IT block.

Condition flags

These instructions do not change the flags.

3

DoclD028474 Rev 3

PM0253 The Cortex-M7 instruction set
Examples
PUSH {RO,R4-R7} ; Push RO,R4,R5,R6,R7 onto the stack
PUSH {R2,LR} ; Push R2 and the link-register onto the stack
POP {RO,R6,PC} ; Pop r0,r6 and PC from the stack, then branch to the
; new PC.
3.49 LDREX and STREX

3

Load and Store Register Exclusive.

Syntax

LDREX{cond} Rt, [Rn {, #offset}]
STREX{cond} Rd, Rt, [Rn {, #offset}]
LDREXB{cond} Rt, [Rn]

STREXB{cond} Rd, Rt, [Rn]
LDREXH{cond} Rt, [Rn]

STREXH{cond} Rd, Rt, [Rn]

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register for the returned status.

Rt Is the register to load or store.

Rn Is the register on which the memory address is based.

offset Is an optional offset applied to the value in rn. If offset is omitted, the address
is the value in rn.

Operation

LDREX, LDREXB, and LDREXH load a word, byte, and halfword respectively from a
memory address.

STREX, STREXB, and STREXH attempt to store a word, byte, and halfword respectively to
a memory address. The address used in any Store-Exclusive instruction must be the same
as the address in the most recently executed Load-exclusive instruction. The value stored
by the Store-Exclusive instruction must also have the same data size as the value loaded by
the preceding Load-exclusive instruction. This means software must always use a Load-
exclusive instruction and a matching Store-Exclusive instruction to perform a
synchronization operation, see Synchronization primitives on page 37.

If a Store-Exclusive instruction performs the store, it writes 0 to its destination register. If it
does not perform the store, it writes 1 to its destination register. If the Store-Exclusive
instruction writes 0 to the destination register, it is guaranteed that no other process in the
system has accessed the memory location between the Load-exclusive and Store-Exclusive
instructions.

For reasons of performance, keep the number of instructions between corresponding Load-
Exclusive and Store-Exclusive instruction to a minimum.

The result of executing a Store-Exclusive instruction to an address that is different from that
used in the preceding Load-Exclusive instruction is unpredictable.

DoclD028474 Rev 3 83/252

The Cortex-M7 instruction set PMO0253

3.4.10

84/252

Restrictions

In these instructions:

e Do notuse PC.

e Do notuse SP for Rd and Rt.

e For STREX, Rd must be different from both Rt and Rn.

e The value of offset must be a multiple of four in the range 0-1020.

Condition flags

These instructions do not change the flags.

Examples
MOV R1, #0x1 ; Initialize the ‘lock taken’ wvalue try
LDREX RO, [LockAddr] ; Load the lock wvalue
CMP RO, #0 ; Is the lock free?
ITT EQ ; IT instruction for STREXEQ and CMPEQ
STREXEQ RO, R1l, [LockAddr] ; Try and claim the lock
CMPEQ RO, #0 ; Did this succeed?
BNE try ; No - try again
; Yes - we have the lock.
CLREX
Clear Exclusive.
Syntax
CLREX({ cond}
Where:
cond Is an optional condition code. See Conditional execution on page 68.
Operation

Use CLREX to make the next STREX, STREXB, or STREXH instruction write 1 to its
destination register and fail to perform the store. It is useful in exception handler code to
force the failure of the store exclusive if the exception occurs between a load exclusive
instruction and the matching store exclusive instruction in a synchronization operation.

See Synchronization primitives on page 37 for more information.

Condition flags

This instruction does not change the flags.

Examples

CLREX

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 instruction set

3.5 General data processing instructions
Table 29 shows the data processing instructions:
Table 29. Data processing instructions
Mnemonic Brief description See
ADC Add with Carry ADD, ADC, SUB, SBC, and RSB on page 87
ADD Add ADD, ADC, SUB, SBC, and RSB on page 87
ADDW Add ADD, ADC, SUB, SBC, and RSB on page 87
AND Logical AND AND, ORR, EOR, BIC, and ORN on page 89
ASR Arithmetic Shift Right ASR, LSL, LSR, ROR, and RRX on page 90
BIC Bit Clear AND, ORR, EOR, BIC, and ORN on page 89
CLz Count leading zeros CLZ on page 91
CMN Compare Negative CMP and CMN on page 92
CMP Compare CMP and CMN on page 92
EOR Exclusive OR AND, ORR, EOR, BIC, and ORN on page 89
LSL Logical Shift Left ASR, LSL, LSR, ROR, and RRX on page 90
LSR Logical Shift Right ASR, LSL, LSR, ROR, and RRX on page 90
MOV Move MOV and MVN on page 93
MOVT Move Top MOVT on page 94
MOVW Move 16-bit constant MOV and MVN on page 93
MVN Move NOT MOV and MVN on page 93
ORN Logical OR NOT AND, ORR, EOR, BIC, and ORN on page 89
ORR Logical OR AND, ORR, EOR, BIC, and ORN on page 89
RBIT Reverse Bits REV, REV16, REVSH, and RBIT on page 95
REV Reverse byte order in a word REV, REV16, REVSH, and RBIT on page 95
REV16 Reverse byte order in each halfword REV, REV16, REVSH, and RBIT on page 95
REVSH S)Z‘éi:jse byte order in bottom halfword and sign REV, REV16, REVSH, and RBIT on page 95
ROR Rotate Right ASR, LSL, LSR, ROR, and RRX on page 90
RRX Rotate Right with Extend ASR, LSL, LSR, ROR, and RRX on page 90
RSB Reverse Subtract ADD, ADC, SUB, SBC, and RSB on page 87
SADD16 Signed Add 16 SADD16 and SADD8 on page 96
SADDS8 Signed Add 8 SADD16 and SADD8 on page 96
SASX Signed Add and Subtract with Exchange SASX and SSAX on page 101
SSAX Signed Subtract and Add with Exchange SASX and SSAX on page 101
SBC Subtract with Carry ADD, ADC, SUB, SBC, and RSB on page 87
SHADD16 | Signed Halving Add 16 SHADD16 and SHADDS8 on page 97
"_l DoclD028474 Rev 3 85/252

The Cortex-M7 instruction set

PM0253

Table 29. Data processing instructions (continued)

Mnemonic Brief description See
SHADDS8 Signed Halving Add 8 SHADD16 and SHADDS8 on page 97
SHASX Signed Halving Add and Subtract with Exchange SHASX and SHSAX on page 98
SHSAX Signed Halving Subtract and Add with Exchange SHASX and SHSAX on page 98
SHSUB16 | Signed Halving Subtract 16 SHSUB16 and SHSUBS on page 99
SHSUBS8 Signed Halving Subtract 8 SHSUB16 and SHSUBS on page 99
SSuUB16 Signed Subtract 16 SSUB16 and SSUB8 on page 100
SSUBS8 Signed Subtract 8 SSUB16 and SSUBS8 on page 100
SuB Subtract ADD, ADC, SUB, SBC, and RSB on page 87
SUBW Subtract ADD, ADC, SUB, SBC, and RSB on page 87
TEQ Test Equivalence TST and TEQ on page 102
TST Test TST and TEQ on page 102
UADD16 Unsigned Add 16 UADD16 and UADDS8 on page 103
UADDS8 Unsigned Add 8 UADD16 and UADDS8 on page 103
UASX Unsigned Add and Subtract with Exchange UASX and USAX on page 104
USAX Unsigned Subtract and Add with Exchange UASX and USAX on page 104
UHADD16 | Unsigned Halving Add 16 UHADD16 and UHADDS8 on page 105
UHADDS8 Unsigned Halving Add 8 UHADD16 and UHADDS8 on page 105
UHASX Unsigned Halving Add and Subtract with Exchange UHASX and UHSAX on page 106
UHSAX Unsigned Halving Subtract and Add with Exchange UHASX and UHSAX on page 106
UHSUB16 | Unsigned Halving Subtract 16 UHSUB16 and UHSUBS8 on page 107
UHSUBS8 Unsigned Halving Subtract 8 UHSUB16 and UHSUBS8 on page 107
USADS8 Unsigned Sum of Absolute Differences USADS8 on page 108
USADAS chsﬁrr:slc;tium of Absolute Differences and USADAS on page 109
USUB16 Unsigned Subtract 16 USUB16 and USUBS8 on page 110
USUBS8 Unsigned Subtract 8 USUB16 and USUBS8 on page 110
86/252 DoclD028474 Rev 3 "_l

PM0253 The Cortex-M7 instruction set

3.5.1 ADD, ADC, SUB, SBC, and RSB
Add, Add with carry, Subtract, Subtract with carry, and Reverse Subtract.

Syntax
op{S}{cond} {Rd,} Rn, Operand2
op{cond} {Rd,} Rn, #imml2 ; ADD and SUB only
Where:
op Is one of:
ADD Add.
ADC Add with Carry.
SUB Subtract.
SBC Subtract with Carry.
RSB Reverse Subtract.
S Is an optional suffix. If s is specified, the condition code flags are updated on
the result of the operation, see Conditional execution on page 68.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register. If rd is omitted, the destination register is rn.
Rn Is the register holding the first operand.

operand2 s a flexible second operand. See Flexible second operand on page 64 for
details of the options.

imml2 Is any value in the range 0-4095.

Operation

The ADD instruction adds the value of Operand2 or imm12 to the value in Rn.
The ADC instruction adds the values in Rn and Operand2, together with the carry flag.
The SUB instruction subtracts the value of Operand2 or imm12 from the value in Rn.

The SBC instruction subtracts the value of Operand2 from the value in Rn. If the carry flag is
clear, the result is reduced by one.

The RSB instruction subtracts the value in Rn from the value of Operand2. This is useful
because of the wide range of options for Operand?2.

Use ADC and SBC to synthesize multiword arithmetic, see Multiword arithmetic examples
on page 88.

See also ADR on page 73.

ADDW is equivalent to the ADD syntax that uses the imm12 operand. SUBW is equivalent
to the SUB syntax that uses the imm12 operand.

3

DoclD028474 Rev 3 87/252

The Cortex-M7 instruction set PMO0253

88/252

Restrictions

In these instructions:
e Operand2 must not be SP and must not be PC
e Rdcan be SP only in ADD and SUB, and only with the additional restrictions:
— Rn must also be SP.
— Any shift in Operand2 must be limited to a maximum of 3 bits using LSL.
e Rncan be SP only in ADD and SUB
e Rdcan be PC only in the ADD{cond} PC, PC, Rm instruction where:
— The S suffix must not be specified.
— Rm must not be PC and must not be SP.
— If the instruction is conditional, it must be the last instruction in the IT block.

e With the exception of the ADD{cond} PC, PC, Rm instruction, Rn can be PC only in
ADD and SUB, and only with the additional restrictions:

— The S suffix must not be specified.
— The second operand must be a constant in the range 0 to 4095.

— When using the PC for an addition or a subtraction, bits[1:0] of the PC are rounded
to 0b00 before performing the calculation, making the base address for the
calculation word-aligned.

— If the user wants to generate the address of an instruction, the constant has to be
adjusted based on the value of the PC. ARM recommends using the ADR
instruction instead of ADD or SUB with Rn equal to the PC, because the
assembler automatically calculates the correct constant for the ADR instruction.

When Rd is PC in the ADD{cond} PC, PC, Rm instruction:
e Bit[0] of the value written to the PC is ignored.
e A branch occurs to the address created by forcing bit[0] of that value to 0.

Condition flags

If s is specified, these instructions update the N, Z, C and V flags according to the result.

Examples
ADD R2, R1, R3
SUBS R8, R6, #240 ; Sets the flags on the result.
RSB R4, R4, #1280 Subtracts contents of R4 from 1280.

ADCHI R11, RO, R3 Only executed if C flag set and Z.

flag clear.

Multiword arithmetic examples

Example 3-4: 64-bit addition shows two instructions that add a 64-bit integer contained in R2
and R3 to another 64-bit integer contained in RO and R1, and place the result in R4 and R5.

Example 3-4: 64-bit addition

ADDS R4, RO, R2 ; Add the least significant words.
ADC R5, R1, R3 ; Add the most significant words with carry.

The multiword values do not have to use consecutive registers. Example 3-5: 96-bit

DoclD028474 Rev 3 ‘Yl

PM0253 The Cortex-M7 instruction set

subtraction shows instructions that subtract a 96-bit integer contained in R9, R1, and R11
from another contained in R6, R2, and R8. The example stores the result in R6, R9, and R2.

Example 3-5: 96-bit subtraction

SUBS R6, R6, R9 ; Subtract the least significant words.

SBCS R9, R2, R1 ; Subtract the middle words with carry.

SBC R2, R8, RI11 ; Subtract the most significant words with
; carry.

3.5.2 AND, ORR, EOR, BIC, and ORN
Logical AND, OR, Exclusive OR, Bit Clear, and OR NOT.

Syntax
op{S}{cond} {Rd,} Rn, Operand2
Where:
op Is one of:
AND Logical AND.
ORR Logical OR, or bit set.
EOR Logical Exclusive OR.
BIC Logical AND NOT, or bit clear.
ORN Logical OR NOT.
S Is an optional suffix. If s is specified, the condition code flags are updated on
the result of the operation, see Conditional execution on page 68.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn Is the register holding the first operand.

operand2 s a flexible second operand. See Flexible second operand on page 64 for
details of the options.

Operation

The AND, EOR, and ORR instructions perform bitwise AND, Exclusive OR, and OR
operations on the values in Rn and Operand?2.

The BIC instruction performs an AND operation on the bits in Rn with the complements of
the corresponding bits in the value of Operand?.

The ORN instruction performs an OR operation on the bits in Rn with the complements of
the corresponding bits in the value of Operand?.

Restrictions

Do not use SP and do not use PC.

3

DoclD028474 Rev 3 89/252

The Cortex-M7 instruction set

PM0253

Condition flags

If S is specified, these instructions:

[)
subtraction on

Update the N and Z flags according to the result.
Can update the C flag during the calculation of Operand2, see Example 3-5: 96-bit

page 89.

Do not affect the V flag.

R2, #0xFFO0O

RO, R5

R8, #0x19

R11, #0x18181818
R1, #0xab

R11, R14, ROR #4
R11, R14, ASR #32

ASR, LSL, LSR, ROR, and RRX

Arithmetic Shift Right, Logical Shift Left, Logical Shift Right, Rotate Right, and Rotate Right

Rm, Rs
Rm, #n

Rm

of:
Arithmetic Shift Right.
Logical Shift Left.
Logical Shift Right.
Rotate Right.

Is an optional suffix. If s is specified, the condition code flags are updated on

the result of the operation, see Conditional execution on page 68.

Is the destination register.
Is the register holding the value to be shifted.

Is the register holding the shift length to apply to the value in rm. Only the least

significant byte is used and can be in the range 0 to 255.

Is the shift length. The range of shift length depends on the instruction:

Shift length from 1 to 32
Shift length from 0 to 31
Shift length from 1 to 32
Shift length from 1 to 31

MOVS Rd, Rmis the preferred syntax for LsLs Rd, Rm, #O0.

Examples
AND RO,
ORREQ R2,
ANDS RO,
EORS R7,
BIC RO,
ORN R7,
ORNS R7,
3.5.3
with Extend.
Syntax
op{S}{cond} Rd,
op{S}{cond} Rd,
RRX{S}{cond} Rd,
Where:
op Is one
ASR
LSL
LSR
ROR
S
Rd
Rm
Rs
n
ASR
LSL
LSR
ROR
90/252

3

DoclD028474 Rev 3

PM0253 The Cortex-M7 instruction set

Operation

ASR, LSL, LSR, and ROR move the bits in the register Rm to the left or right by the number
of places specified by constant n or register Rs.

RRX moves the bits in register Rm to the right by 1.

In all these instructions, the result is written to Rd, but the value in register Rm remains
unchanged. For details on what result is generated by the different instructions, see Shift
operations on page 65.

Restrictions

Do not use SP and do not use PC.

Condition flags

If S is specified:
e These instructions update the N and Z flags according to the result.

e The C flag is updated to the last bit shifted out, except when the shift length is 0, see
Shift operations on page 65.

Examples

ASR R7, R8, #9 ; Arithmetic shift right by 9 bits.
LSLS R1, R2, #3 Logical shift left by 3 bits with flag update.
LSR R4, R5, #6 Logical shift right by 6 bits.

ROR R4, R5, R6 Rotate right by the value in the bottom byte of
R6.
RRX R4, R5 Rotate right with extend.
3.54 CLz
Count Leading Zeros.
Syntax
CLZ{cond} Rd, Rm
Where:
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rm Is the operand register.
Operation

The CLZ instruction counts the number of leading zeros in the value in Rm and returns the
result in Rd. The result value is 32 if no bits are set and zero if bit[31] is set.

Restrictions

Do not use SP and do not use PC.

Condition flags

This instruction does not change the flags.

3

DoclD028474 Rev 3 91/252

The Cortex-M7 instruction set PMO0253

3.5.5

92/252

Examples

CLZ R4,R9
CLZNE R2,R3

CMP and CMN
Compare and Compare Negative.

Syntax

CMP{cond} Rn, Operand2

CMN{cond} Rn, Operand2

Where:
cond Is an optional condition code. See Conditional execution on page 68.
Rn Is the register holding the first operand.

operand2 Is a flexible second operand. See Flexible second operand on page 64 for
details of the options.

Operation

These instructions compare the value in a register with Operand?2. They update the
condition flags on the result, but do not write the result to a register.

The CMP instruction subtracts the value of Operand?2 from the value in Rn. This is the same
as a SUBS instruction, except that the result is discarded.

The CMN instruction adds the value of Operand? to the value in Rn. This is the same as an
ADDS instruction, except that the result is discarded.

Restrictions

In these instructions:

e Do notuse PC.

e Operand2 must not be SP.
Condition flags

These instructions update the N, Z, C and V flags according to the result.

Examples
CMP R2, RO
CMN RO, #6400

CMPGT SP, R7, LSL #2

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 instruction set

3.5.6

3

MOV and MVN

Move and Move NOT.

Syntax

MOV{S}{cond} Rd, Operand2

MOV{cond} Rd, #immlé

MVN{S} {cond} Rd, OperandZ2

Where:

S Is an optional suffix. If s is specified, the condition code flags are updated on
the result of the operation, see Conditional execution on page 68.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

operand2 s a flexible second operand. See Flexible second operand on page 64 for
details of the options.

imml6 Is any value in the range 0-65535.

Operation

The MOV instruction copies the value of Operand? into Rd.

When Operand2 in a MOV instruction is a register with a shift other than LSL #0, the
preferred syntax is the corresponding shift instruction:

. ASR{S}{cond}
#n.

. LSL{S}{cond}
#n if n != 0.

. LSR{S} {cond}
#n.

° ROR{S} {cond}
#n.

e RRX{S}{cond} Rd, Rmis the preferred syntax for MOV{S}{cond} Rd, Rm, RRX.

Rm,

Rm,

Rm,

Rm,

#n is the preferred syntax for Mov{S} {cond}
#n is the preferred syntax for Mov{s} {cond}
#n is the preferred syntax for Mov{S} {cond}

#n is the preferred syntax for Mov{s} {cond}

Rm,

Rm,

Rm,

Rm,

Also, the MOV instruction permits additional forms of Operand2 as synonyms for shift

instructions:

° MOV{S}{cond}
o MOV{S} {cond}
° MOV{S}{cond}

MOV{S} {cond}

Rm,
Rm,
Rm,

Rm,

ASR Rs is @ synonym for ASR{S} {cond} R4,
LSL Rs is a synonym for LSL{S} {cond} Rd,
LSR Rs is a synonym for LsR{S} {cond} Rd,
ROR Rs is @ synonym for ROR{S} {cond} Rd,

See ASR, LSL, LSR, ROR, and RRX on page 90.

Rm,
Rm,
Rm,

Rm,

Rs.

Rs.

ASR

LSL

LSR

ROR

The MVN instruction takes the value of Operand2, performs a bitwise logical NOT operation
on the value, and places the result into Rd.

The MOVW instruction provides the same function as MOV, but is restricted to using the

imm16 operand.

DoclD028474 Rev 3

93/252

The Cortex-M7 instruction set PMO0253

Restrictions

The user can use SP and PC only in the MOV instruction, with the following restrictions:
e The second operand must be a register without shift.
e The S suffix must not be specified.

When Rd is PC in a MOV instruction:
e Bit[0] of the value written to the PC is ignored.
e A branch occurs to the address created by forcing bit[0] of that value to 0.

Though it is possible to use MOV as a branch instruction, ARM strongly recommends the
use of a BX or BLX instruction to branch for software portability to the ARM instruction set.

Condition flags

If S is specified, these instructions:
e Update the N and Z flags according to the result.

e Can update the C flag during the calculation of Operand2, see Flexible second operand
on page 64.

e Do not affect the V flag.

Example
MOVS R11, #0x000B ; Write value of 0x000B to R11, flags get
; updated.
MOV R1, #O0xFAO05 ; Write value of OxFAO05 to R1, flags are not
; updated.

MOV R3, #23 ; Write value of 23 to R3.
MOV R8, SP ; Write value of stack pointer to RS.
MVNS R2, #O0xF ; Write value of OXFFFFFFFO (bitwise inverse of

MOVS R10, R12 ; Write value in R12 to R10, flags get updated.
; OxF) to the R2 and update flags.

3.5.7 MOVT

Move Top.

Syntax

MOVT{cond} Rd, #immlé

Where:

cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.

immlé Is a 16-bit immediate constant.

Operation

MOVT writes a 16-bit immediate value, imm16, to the top halfword, Rd[31:16], of its
destination register. The write does not affect Rd[15:0].

The MOV, MOVT instruction pair enables to generate any 32-bit constant.

Restrictions
Rd must not be SP and must not be PC.

3

94/252 DoclD028474 Rev 3

PM0253 The Cortex-M7 instruction set

Condition flags

This instruction does not change the flags.

Examples

MOVT R3, #0xF123 ; Write 0xF123 to upper halfword of R3, lower
; halfword and APSR are unchanged.

3.5.8 REV, REV16, REVSH, and RBIT

Reverse bytes and Reverse bits.

Syntax
op{cond} Rd, Rn
Where:
op Is one of:
REV Reverse byte order in a word.
REV16 Reverse byte order in each halfword independently.
REVSH Reverse byte order in the bottom halfword, and sign extend to 32
bits.
RBIT Reverse the bit order in a 32-bit word.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn Is the register holding the operand.
Operation

Use these instructions to change endianness of data:
REV converts either:
. 32-bit big-endian data into little-endian data.
. 32-bit little-endian data into big-endian data.
REV16 converts either:
. 16-bit big-endian data into little-endian data.
. 16-bit little-endian data into big-endian data.
REVSH converts either:
. 16-bit signed big-endian data into 32-bit signed little-endian data.
. 16-bit signed little-endian data into 32-bit signed big-endian data.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

3

DoclD028474 Rev 3 95/252

The Cortex-M7 instruction set PMO0253

3.5.9

96/252

Examples
REV R3, R7 ; Reverse byte order of value in R7 and write it to R3.
REV16 RO, RO ; Reverse byte order of each 16-bit halfword in RO.
REVSH RO, R5 ; Reverse Signed Halfword.
REVHS R3, R7 ; Reverse with Higher or Same condition.
RBIT R7, R8 ; Reverse bit order of value in R8 and write the result

; to R7.

SADD16 and SADDS8
Signed Add 16 and Signed Add 8.

Syntax
op{cond}{Rd,} Rn, Rm
Where:
op Is one of:
sapp16 Performs two 16-bit signed integer additions.
sapp8 Performs four 8-bit signed integer additions.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn Is the first register holding the operand.
Rm Is the second register holding the operand.
Operation

Use these instructions to perform a halfword or byte add in parallel.

The SADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second
operand.

2. Writes the result in the corresponding halfwords of the destination register.

The SADDS instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Writes the result in the corresponding bytes of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples

SADD16 R1, RO ; Adds the halfwords in RO to the corresponding
; halfwords of R1 and writes to corresponding halfword
; of R1.

SADD8 R4, RO, R5 ; Adds bytes of RO to the corresponding byte in R5 and

; writes to the corresponding byte in R4.

DoclD028474 Rev 3 ‘Yl

PM0253 The Cortex-M7 instruction set

3.5.10 SHADD16 and SHADDS
Signed Halving Add 16 and Signed Halving Add 8.

Syntax
op{cond}{Rd,} Rn, Rm
Where:
op Is one of:
SsHADD16 Signed Halving Add 16
sHADD8 Signed Halving Add 8
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn Is the first operand register.
Rm Is the second operand register.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing
the result to the destination register.
The SHADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second
operand.

2. Shuffles the result by one bit to the right, halving the data.

3. Writes the halfword results in the destination register.

The SHADDBS instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the result by one bit to the right, halving the data.

3. Writes the byte results in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples

SHADD16 R1, RO ; Adds halfwords in RO to corresponding halfword of R1
; and writes halved result to corresponding halfword in
; R1.

SHADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and

; writes halved result to corresponding byte in R4.

3

DoclD028474 Rev 3 97/252

The Cortex-M7 instruction set PMO0253

3.5.11

98/252

SHASX and SHSAX

Signed Halving Add and Subtract with Exchange and Signed Halving Subtract and Add with
Exchange.

Syntax
op{cond} {Rd}, Rn, Rm
Where:
op Is one of:
sHASx Add and Subtract with Exchange and Halving.
SsHSAxX Subtract and Add with Exchange and Halving.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn, Rm Are registers holding the first and second operands.
Operation

The SHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second
operand.

2. Writes the halfword result of the addition to the top halfword of the destination register,
shifted by one bit to the right causing a divide by two, or halving.

3. Subtracts the top halfword of the second operand from the bottom highword of the first
operand.

4. Writes the halfword result of the division in the bottom halfword of the destination
register, shifted by one bit to the right causing a divide by two, or halving.
The SHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first
operand.

2. Writes the halfword result of the addition to the bottom halfword of the destination
register, shifted by one bit to the right causing a divide by two, or halving.

3. Adds the bottom halfword of the first operand with the top halfword of the second
operand.

4. Writes the halfword result of the division in the top halfword of the destination register,
shifted by one bit to the right causing a divide by two, or halving.

Restrictions
Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

Examples

SHASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of
; R2 and writes halved result to top halfword of
; R7. Subtracts top halfword of R2 from bottom

DoclD028474 Rev 3 ‘Yl

PM0253

The Cortex-M7 instruction set

3.5.12

3

halfword of R4 and writes halved result to
bottom halfword of R7.

Subtracts bottom halfword of R5 from top
halfword of R3 and writes halved result to top
halfword of RO.

Adds top halfword of R5 to bottom halfword of
R3 and writes halved result to bottom halfword
of RO.

SHSAX RO, R3, R5

SHSUB16 and SHSUBS8
Signed Halving Subtract 16 and Signed Halving Subtract 8.

Syntax
op{cond}{Rd,} Rn, Rm
Where:
op Is one of:
SHSUB16 Signed Halving Subtract 16.
sHsuBs Signed Halving Subtract 8.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn Is the first operand register.
Rm Is the second operand register
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing
the result to the destination register.

The SHSUB16 instruction:

1. Subtracts each halfword of the second operand from the corresponding halfwords of
the first operand.

2. Shuffles the result by one bit to the right, halving the data.
3. Writes the halved halfword results in the destination register.

The SHSUBBS instruction:

1. Subtracts each byte of the second operand from the corresponding byte of the first
operand.

2. Shuffles the result by one bit to the right, halving the data.
3. Writes the corresponding signed byte results in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

DoclD028474 Rev 3 99/252

The Cortex-M7 instruction set PMO0253

3.5.13

100/252

Examples

SHSUB16 R1, RO ; Subtracts halfwords in RO from corresponding
; halfword of R1 and writes to corresponding halfword
; of RI1.

SHSUB8 R4, RO, R5 ; Subtracts bytes of RO from corresponding byte in R5,

; and writes to corresponding byte in R4.

SSUB16 and SSUBS8
Signed Subtract 16 and Signed Subtract 8.

Syntax
op{cond}{Rd,} Rn, Rm
Where:
op Is one of:
ssuBl6 Performs two 16-bit signed integer subtractions.
ssuBs8 Performs four 8-bit signed integer subtractions.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn Is the first operand register.
Rm Is the second operand register.
Operation

Use these instructions to change endianness of data.

The SSUB16 instruction:

1. Subtracts each halfword from the second operand from the corresponding halfword of
the first operand.

2. Writes the difference result of two signed halfwords in the corresponding halfword of
the destination register.
The SSUBS instruction:

1. Subtracts each byte of the second operand from the corresponding byte of the first
operand.

2. Writes the difference result of four signed bytes in the corresponding byte of the
destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples

SSUB16 R1, RO ; Subtracts halfwords in RO from corresponding

halfword of R1

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 instruction set

3.5.14

3

halfword of R1 and writes to corresponding halfword
of RI1.

Subtracts bytes of R5 from corresponding byte in
RO, and writes to corresponding byte of R4.

SSUB8 R4, RO, RS

SASX and SSAX
Signed Add and Subtract with Exchange and Signed Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rm, Rn
Where:
op Is one of:
SASX Signed Add and Subtract with Exchange.
SSAX Signed Subtract and Add with Exchange.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn, Rm Are registers holding the first and second operands.
Operation

The SASX instruction:

1. Adds the signed top halfword of the first operand with the signed bottom halfword of the
second operand.

2. Writes the signed result of the addition to the top halfword of the destination register.

3. Subtracts the signed bottom halfword of the second operand from the top signed
highword of the first operand.

4. Writes the signed result of the subtraction to the bottom halfword of the destination
register.

The SSAX instruction:

1. Subtracts the signed bottom halfword of the second operand from the top signed
highword of the first operand.

2. Writes the signed result of the addition to the bottom halfword of the destination
register.

3. Adds the signed top halfword of the first operand with the signed bottom halfword of the
second operand.

4. Writes the signed result of the subtraction to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

Examples

SASX RO, R4, R5 ; Adds top halfword of R4 to bottom halfword of R5

DoclD028474 Rev 3 101/252

The Cortex-M7 instruction set PMO0253

3.5.15

102/252

and writes to top halfword of RO.
Subtracts bottom halfword of R5 from top halfword
of R4 and writes to bottom halfword of RO.

SSAX R7, R3, R2 Subtracts top halfword of R2 from bottom halfword
of R3 and writes to bottom halfword of R7.
Adds top halfword of R3 with bottom halfword of R
R2 and writes to top halfword of R7.

TST and TEQ

Test bits and Test Equivalence.

Syntax

TST{cond} Rn, Operand2

TEQ{cond} Rn, Operand2

Where:
cond Is an optional condition code. See Conditional execution on page 68.
Rn Is the register holding the first operand.

operand2 Is a flexible second operand. See Flexible second operand on page 64 for
details of the options.

Operation

These instructions test the value in a register against Operand2. They update the condition
flags based on the result, but do not write the result to a register.

The TST instruction performs a bitwise AND operation on the value in Rn and the value of
Operand?2. This is the same as the ANDS instruction, except that it discards the result.

To test whether a bit of Rnis 0 or 1, use the TST instruction with an Operand2 constant that
has that bit set to 1 and all other bits cleared to 0.

The TEQ instruction performs a bitwise Exclusive OR operation on the value in Rn and the
value of Operand?2. This is the same as the EORS instruction, except that it discards the
result.

Use the TEQ instruction to test if two values are equal without affecting the V or C flags.

TEQ is also useful for testing the sign of a value. After the comparison, the N flag is the
logical Exclusive OR of the sign bits of the two operands.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions:
e Update the N and Z flags according to the result.

e Can update the C flag during the calculation of Operand2, see Flexible second operand
on page 64.

e Do not affect the V flag.

3

DoclD028474 Rev 3

PMO0253 The Cortex-M7 instruction set
Examples
TST RO, #0x3F8 ; Perform bitwise AND of RO value to 0x3F8,
; APSR is updated but result is discarded
TEQEQ R10, R9 ; Conditionally test if value in R10 is equal to
; value in R9, APSR is updated but result is
; discarded.
3.5.16 UADD16 and UADDS8

3

Unsigned Add 16 and Unsigned Add 8.

Syntax
op{cond}{Rd,} Rn, Rm
Where:
op Is one of:
uappl6 Performs two 16-bit unsigned integer additions.
uapp8 Performs four 8-bit unsigned integer additions.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn Is the first register holding the operand.
Rm Is the second register holding the operand.
Operation

Use these instructions to add 16- and 8-bit unsigned data.

The UADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second
operand.

2. Writes the unsigned result in the corresponding halfwords of the destination register.

The UADD16 instruction:
1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Writes the unsigned result in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples

UADD16 R1, RO ; Adds halfwords in RO to corresponding halfword of R1,
; writes to corresponding halfword of RI1.

UADD8 R4, RO, R5 ; Adds bytes of RO to corresponding byte in R5 and

; writes to corresponding byte in R4.

DoclD028474 Rev 3 103/252

The Cortex-M7 instruction set PMO0253

3.5.17

104/252

UASX and USAX
Add and Subtract with Exchange and Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm
Where:
op Is one of:
UASX Add and Subtract with Exchange.
USAX Subtract and Add with Exchange.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn, Rm Are registers holding the first and second operands.
Operation

The UASX instruction:

1. Subtracts the top halfword of the second operand from the bottom halfword of the first
operand.

2. Writes the unsigned result from the subtraction to the bottom halfword of the
destination register.

3. Adds the top halfword of the first operand with the bottom halfword of the second
operand.

4. Writes the unsigned result of the addition to the top halfword of the destination register.

The USAX instruction:

1. Adds the bottom halfword of the first operand with the top halfword of the second
operand.

2. Writes the unsigned result of the addition to the bottom halfword of the destination
register.

3. Subtracts the bottom halfword of the second operand from the top halfword of the first
operand.

4. Writes the unsigned result from the subtraction to the top halfword of the destination
register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

; of R3 and writes to bottom halfword of R7.
; Adds top halfword of R3 to bottom halfword of R2

Examples

UASX RO, R4, R5 ; Adds top halfword of R4 to bottom halfword of R5
; and writes to top halfword of RO.
; Subtracts bottom halfword of R5 from top halfword
; of RO and writes to bottom halfword of RO.

USAX R7, R3, R2 ; Subtracts top halfword of R2 from bottom halfword

DoclD028474 Rev 3 ‘Yl

PM0253

The Cortex-M7 instruction set

3.5.18

3

; and writes to top halfword of R7.

UHADD16 and UHADDS
Unsigned Halving Add 16 and Unsigned Halving Add 8.

Syntax
op{cond}{Rd,} Rn, Rm
Where:
op Is one of:
uHADD16 Unsigned Halving Add 16.
uHADD8 Unsigned Halving Add 8.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn Is the register holding the first operand.
Rm Is the register holding the second operand.
Operation

Use these instructions to add 16- and 8-bit data and then to halve the result before writing
the result to the destination register.

The UHADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second
operand.

2. Shuffles the halfword result by one bit to the right, halving the data.
3. Writes the unsigned results to the corresponding halfword in the destination register.

The UHADDS instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.
2. Shuffles the byte result by one bit to the right, halving the data.

3. Writes the unsigned results in the corresponding byte in the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples

UHADD16 R7, R3 ; Adds halfwords in R7 to corresponding halfword of R3
and writes halved result to corresponding halfword
in R7.

UHADD8 R4, RO, R5 Adds bytes of RO to corresponding byte in R5 and

writes halved result to corresponding byte in R4.

DoclD028474 Rev 3 105/252

The Cortex-M7 instruction set PMO0253

3.5.19

106/252

UHASX and UHSAX

Unsigned Halving Add and Subtract with Exchange and Unsigned Halving Subtract and Add
with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm
Where:
op Is one of:
uHasx Add and Subtract with Exchange and Halving.
UHSax Subtract and Add with Exchange and Halving.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn, Rm Are registers holding the first and second operands.
Operation

The UHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second
operand.

2. Shifts the result by one bit to the right causing a divide by two, or halving.
3. Writes the halfword result of the addition to the top halfword of the destination register.

4. Subtracts the top halfword of the second operand from the bottom highword of the first
operand.

5. Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the division in the bottom halfword of the destination
register.

The UHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first
operand.

2. Shifts the result by one bit to the right causing a divide by two, or halving.

3. Writes the halfword result of the subtraction in the top halfword of the destination
register.

4. Adds the bottom halfword of the first operand with the top halfword of the second
operand.

5. Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the addition to the bottom halfword of the destination
register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

Examples

UHASX R7, R4, R2 ; Adds top halfword of R4 with bottom halfword of

DoclD028474 Rev 3 ‘Yl

PM0253

The Cortex-M7 instruction set

3.5.20

3

; R2 and writes halved result to top halfword of
; R7.
; Subtracts top halfword of R2 from bottom
; halfword of R7 and writes halved result to
; bottom halfword of R7.

UHSAX RO, R3, R5 ; Subtracts bottom halfword of R5 from top
; halfword of R3 and writes halved result to top
; halfword of RO.
; Adds top halfword of R5 to bottom halfword of R3
; and writes halved result to bottom halfword of
; RO.

UHSUB16 and UHSUBS8
Unsigned Halving Subtract 16 and Unsigned Halving Subtract 8.

Syntax
op{cond}{Rd,} Rn, Rm
Where:
op Is one of:
uHsUB16 Performs two unsigned 16-bit integer additions, halves the results,
and writes the results to the destination register.
uHsuB8 Performs four unsigned 8-bit integer additions, halves the results,
and writes the results to the destination register.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn Is the first register holding the operand.
Rm Is the second register holding the operand.
Operation

Use these instructions to add 16-bit and 8-bit data and then to halve the result before writing
the result to the destination register.
The UHSUB16 instruction:

1. Subtracts each halfword of the second operand from the corresponding halfword of the
first operand.

2. Shuffles each halfword result to the right by one bit, halving the data.

3. Writes each unsigned halfword result to the corresponding halfwords in the destination
register.

The UHSUBS instruction:

1. Subtracts each byte of second operand from the corresponding byte of the first
operand.

2. Shuffles each byte result by one bit to the right, halving the data.
3. Writes the unsigned byte results to the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

DoclD028474 Rev 3 107/252

The Cortex-M7 instruction set PMO0253

3.5.21

3.5.22

108/252

Condition flags

These instructions do not change the flags.

Examples
UHSUBl16 R1, RO ; Subtracts halfwords in RO from corresponding
; halfword of R1 and writes halved result to
; corresponding halfword in RI1.
UHSUB8 R4, RO, R5 ; Subtracts bytes of R5 from corresponding byte in RO
; and writes halved result to corresponding byte in
; R4.
SEL

Select Bytes. Selects each byte of its result from either its first operand or its second
operand, according to the values of the GE flags.

Syntax

SEL{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

Where:

<c>, <g> Is a standard assembler syntax field.
<Rd> Is the destination register.

<Rn> Is the first operand register.

<Rm> Is the second operand register.
Operation

The SEL instruction:
1. Reads the value of each bit of APSR.GE.

2. Depending on the value of APSR.GE, assigns the destination register the value of
either the first or second operand register.

Restrictions

None.

Condition flags

These instructions do not change the flags.

Examples

SADD16 RO, R1, R2 ; Set GE bits based on result.

SEL RO, RO, R3 ; Select bytes from RO or R3, based on GE.
USADS8

Unsigned Sum of Absolute Differences.

Syntax

USAD8{cond}{Rd,} Rn, Rm

3

DoclD028474 Rev 3

PM0253 The Cortex-M7 instruction set

Where:

cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.

Rn Is the first operand register.

Rm Is the second operand register.

Operation

The USADS instruction:

1. Subtracts each byte of the second operand register from the corresponding byte of the
first operand register.

2. Adds the absolute values of the differences together.
1. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples

USAD8 R1, R4, RO ; Subtracts each byte in R0 from corresponding byte
; of R4 adds the differences and writes to RI1.

USAD8 RO, R5 ; Subtracts bytes of R5 from corresponding byte in

; RO, adds the differences and writes to RO.

3.5.23 USADAS

Unsigned Sum of Absolute Differences and Accumulate.

Syntax

USADA8{cond}{Rd,} Rn, Rm, Ra

Where:

cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.

Rn Is the first operand register.

Rm Is the second operand register.

Ra Is the register that contains the accumulation value.

Operation

The USADAS instruction:

3

DoclD028474 Rev 3 109/252

The Cortex-M7 instruction set PMO0253

3.5.24

110/252

1. Subtracts each byte of the second operand register from the corresponding byte of the
first operand register.

2. Adds the unsigned absolute differences together.
3. Adds the accumulation value to the sum of the absolute differences.
4. Writes the result to the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples

USADA8 R1, RO, R6 ; Subtracts bytes in RO from corresponding halfword
of R1 adds differences, adds value of R6, writes
to R1.

USADA8 R4, RO, R5, R2 Subtracts bytes of R5 from corresponding byte in
RO adds differences, adds value of R2 writes to

R4.

USUB16 and USUBS
Unsigned Subtract 16 and Unsigned Subtract 8.

Syntax
op{cond}{Rd,} Rn, Rm
Where:
op Is one of:
usuBl6 Unsigned Subtract 16.
usuB8 Unsigned Subtract 8.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn Is the first operand register.
Rm Is the second operand register.
Operation

Use these instructions to subtract 16-bit and 8-bit data before writing the result to the
destination register.

The USUB16 instruction:

1. Subtracts each halfword from the second operand register from the corresponding
halfword of the first operand register.

2. Writes the unsigned result in the corresponding halfwords of the destination register.

The USUBS instruction:

DoclD028474 Rev 3 ‘Yl

PM0253 The Cortex-M7 instruction set
1. Subtracts each byte of the second operand register from the corresponding byte of the
first operand register.
2. Writes the unsigned byte result in the corresponding byte of the destination register.
Restrictions
Do not use SP and do not use PC.
Condition flags
These instructions do not change the flags.
Examples
USUB16 R1, RO ; Subtracts halfwords in RO from corresponding halfword
; of R1 and writes to corresponding halfword in RI1.
USUB8 R4, RO, R5 ; Subtracts bytes of R5 from corresponding byte in RO
; and writes to the corresponding byte in R4.
3.6 Multiply and divide instructions
Table 30 shows the multiply and divide instructions:
Table 30. Multiply and divide instructions
Mnemonic Brief description See
MLA Multiply with Accumulate, 32-bit result MUL, MLA, and MLS on page 112
MLS Multiply and Subtract, 32-bit result MUL, MLA, and MLS on page 112
MUL Multiply, 32-bit result MUL, MLA, and MLS on page 112
SDIV Signed Divide SDIV and UDIV on page 127
SMLA[B,T] Signed Multiply Accumulate (halfwords) SMMLA and SMMLS on page 121
SMLAD, . .
SMLADX Signed Multiply Accumulate Dual SMLAD on page 116
Signed Multiply with Accumulate (32x32+64), | UMULL, UMLAL, SMULL, and SMLAL on
SMLAL .
64-bit result page 126
SMLAL[B,T] Signed Multiply Accumulate Long (halfwords) | SMLAL and SMLALD on page 117
SMLALD, . .
SMLALDX Signed Multiply Accumulate Long Dual SMLAL and SMLALD on page 117
SMLAW(B|T] Signed Multiply Accumulate (word by SMLA and SMLAW on page 115
halfword)
SMLSD Signed Multiply Subtract Dual SMLSD and SMLSLD on page 119
SMLSLD Signed Multiply Subtract Long Dual SMLSD and SMLSLD on page 119
SMMLA Signed Most Significant Word Multiply SMMLA and SMMLS on page 121
Accumulate
SMMLS, Signed Most Significant Word Multiply
SMMLSR Subtract SMMLA and SMMLS on page 121

S74

DoclD028474 Rev 3

111/252

The Cortex-M7 instruction set

PM0253

Table 30. Multiply and divide instructions (continued)

Mnemonic Brief description See

SMUAD, . .

SMUADX Signed Dual Multiply Add SMUAD and SMUSD on page 123

SMUL[B,T] Signed Multiply (word by halfword) SMUL and SMULW on page 124

SMMUL, . I .

SMMULR Signed Most Significant Word Multiply SMMUL on page 122

SMULL Signed Multiply (32x32), 64-bit result UMULL, UMLAL, SMULL, and SMLAL on

page 126

SMULWB, . .

SMULWT Signed Multiply (word by halfword) SMUL and SMULW on page 124

SMUSD, Signed Dual Multiply Subtract SMUAD and SMUSD on page 123

SMUSDX 9 Py pag

ubIv Unsigned Divide SDIV and UDIV on page 127
Unsigned Multiply Accumulate Accumulate

UMAAL Long (32x32+32+32), 64-bit result UMULL, UMAAL, UMLAL on page 113
Unsigned Multiply with Accumulate

UMLAL (32x32+64), 64-bit result UMULL, UMAAL, UMLAL on page 113

UMULL Unsigned Multiply (32x32), 64-bit result UMULL, UMAAL, UMLAL on page 113

3.6.1 MUL, MLA, and MLS

112/252

Multiply, Multiply with Accumulate, and Multiply with Subtract, using 32-bit operands, and

producing a 32-bit result.

Syntax

MUL{S}{cond} {Rd,} Rn, Rm ;

Multiply

MLA{cond} Rd, Rn, Rm, Ra ; Multiply with accumulate

MLS{cond} Rd, Rn, Rm, Ra ; Multiply with subtract

Where:

cond Is an optional condition code. See Conditional execution on page 68.

S Is an optional suffix. If s is specified, the condition code flags are updated on
the result of the operation, see Conditional execution on page 68.

Rd Is the destination register. If rd is omitted, the destination register is rn.

Rn, Rm Are registers holding the values to be multiplied.

Ra Is a register holding the value to be added or subtracted from.

Operation

The MUL instruction multiplies the values from Rn and Rm, and places the least significant

32 bits of the result in Rd.

The MLA instruction multiplies the values from Rn and Rm, adds the value from Ra, and
places the least significant 32 bits of the result in Rd.

DoclD028474 Rev 3

S74

PMO0253 The Cortex-M7 instruction set
The MLS instruction multiplies the values from Rn and Rm, subtracts the product from the
value from Ra, and places the least significant 32 bits of the result in Rd.

The results of these instructions do not depend on whether the operands are signed or
unsigned.
Restrictions
In these instructions, do not use SP and do not use PC.
If the S suffix is used with the MUL instruction:
e Rd, Rn, and Rm must all be in the range RO to R7.
e Rd must be the same as Rm.
e The cond suffix must not be used.
Condition flags
If S is specified, the MUL instruction:
e Updates the N and Z flags according to the result.
e Does not affect the C and V flags.
Examples
MUL R10, R2, R5 ; Multiply, R10 = R2 x R5
MLA R10, R2, R1, R5 ; Multiply with accumulate, R10 = (R2 x R1l) +
; R5
MULS RO, R2, R2 ; Multiply with flag update, RO = R2 x R2
MULLT R2, R3, R2 ; Conditionally multiply, R2 = R3 x R2
MLS R4, R5, R6, R7 ; Multiply with subtract, R4 = R7 - (R5 x R6)
3.6.2 UMULL, UMAAL, UMLAL

3

Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a
64-bit result.

Syntax

op{cond} RdLo, RdHi, Rn, Rm

Where:

op Is one of:
uMuLL Unsigned Long Multiply.
uMAAL Unsigned Long Multiply with Accumulate Accumulate.
uMLAL Unsigned Long Multiply, with Accumulate.

cond Is an optional condition code. See Conditional execution on page 68.

RdHi, RdLo Are the destination registers. For umaar, umMLAL and uMLAL they also hold the
accumulating value.

Rn, Rm Are registers holding the first and second operands.

DoclD028474 Rev 3 113/252

The Cortex-M7 instruction set PMO0253

114/252

Operation

These instructions interpret the values from Rn and Rm as unsigned 32-bit integers.
The UMULL instruction:

e Multiplies the two unsigned integers in the first and second operands.

e Wirites the least significant 32 bits of the result in RdLo.

e Writes the most significant 32 bits of the result in RdHi.

The UMAAL instruction:

Multiplies the two unsigned 32-bit integers in the first and second operands.
Adds the unsigned 32-bit integer in RdHi to the 64-bit result of the multiplication.
Adds the unsigned 32-bit integer in RdLo to the 64-bit result of the addition.
Writes the top 32-bits of the result to RdHi.

e Writes the lower 32-bits of the result to RdLo.

The UMLAL instruction:

e Multiplies the two unsigned integers in the first and second operands.

e Adds the 64-bit result to the 64-bit unsigned integer contained in RdHi and RdLo.
e Writes the result back to RdHi and RdLo.

Restrictions

In these instructions:
. Do not use SP and do not use PC.
e RdHiand RdLo must be different registers.

Condition flags

These instructions do not affect the condition code flags.

Examples

UMULL RO, R4, R5, R6 ; Multiplies R5 and R6, writes the top 32 bits to
R4 and the bottom 32 bits to RO.

Multiplies R2 and R7, adds R6, adds R3, writes
the top 32 bits to R6, and the bottom 32 bits
to R3.

Multiplies R5 and R3, adds R1:R2, writes to
R1:R2.

UMAAL R3, R6, R2, R7

UMLAL R2, R1, R3, R5

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 instruction set

3.6.3

3

SMLA and SMLAW
Signed Multiply Accumulate (halfwords).

Syntax

op{XY}{cond} Rd, Rn, Rm
op{Y}{cond} Rd, Rn, Rm, Ra
Where:

op Is one of:

SMLA Signed Multiply Accumulate Long (halfwords)

x and v specifies which half of the source registers rn and rm are
used as the first and second multiply operand.

If xis B, then the bottom halfword, bits [15:0], of rn is used.
If xis 7, then the top halfword, bits [31:16], of rn is used.

If vis B, then the bottom halfword, bits [15:0], of rm is used.
If vis 7, then the top halfword, bits [31:16], of rmis used.

sMr.aw Signed Multiply Accumulate (word by halfword)

v specifies which half of the source register rmis used as the second
multiply operand.

If vis T, then the top halfword, bits [31:16] of rmis used.
If vis B, then the bottom halfword, bits [15:0] of rmis used.

cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register. If rd is omitted, the destination register is rn.
Rn, Rm Are registers holding the values to be multiplied.

Ra Is a register holding the value to be added or subtracted from.

Operation

The SMALBB, SMLABT, SMLATB, SMLATT instructions:

e Multiplies the specified signed halfword, top or bottom, values from Rn and Rm.
e Adds the value in Ra to the resulting 32-bit product.

e Writes the result of the multiplication and addition in Rd.

The non-specified halfwords of the source registers are ignored.

The SMLAWB and SMLAWT instructions:
e Multiply the 32-bit signed values in Rn with:
— The top signed halfword of Rm, T instruction suffix.
— The bottom signed halfword of Rm, B instruction suffix.
e Add the 32-bit signed value in Ra to the top 32 bits of the 48-bit product
e Writes the result of the multiplication and addition in Rd.
The bottom 16 bits of the 48-bit product are ignored.

If overflow occurs during the addition of the accumulate value, the instruction sets the Q flag
in the APSR. No overflow can occur during the multiplication.

DoclD028474 Rev 3 115/252

The Cortex-M7 instruction set PMO0253

Restrictions

In these instructions, do not use SP and do not use PC.

Condition flags

If an overflow is detected, the Q flag is set.

Examples
SMLABB R5, R6, R4, R1 ; Multiplies bottom halfwords of R6 and R4, adds
; Rl and writes to R5.
SMLATB R5, R6, R4, R1 ; Multiplies top halfword of R6 with bottom
; halfword of R4, adds R1 and writes to R5.
SMLATT R5, R6, R4, Rl ; Multiplies top halfwords of R6 and R4, adds
; Rl and writes the sum to R5.
SMLABT R5, R6, R4, R1 ; Multiplies bottom halfword of R6 with top
; halfword of R4, adds Rl and writes to R5.
SMLABT R4, R3, R2 ; Multiplies bottom halfword of R4 with top

; halfword of R3, adds R2 and writes to R4.
SMLAWB R10, R2, R5, R3 ; Multiplies R2 with bottom halfword of R5, adds
; R3 to the result and writes top 32-bits to R10.
SMLAWT R10, R2, R1, R5 ; Multiplies R2 with top halfword of R1l, adds R5
; and writes top 32-bits to R10.

3.64 SMLAD
Signed Multiply Accumulate Long Dual.

Syntax
op{X}{cond} Rd, Rn, Rm, Ra
Where:
op Is one of:
sMLAaD Signed Multiply Accumulate Dual.
sMLapx Signed Multiply Accumulate Dual Reverse.
x specifies which halfword of the source register rn is used as the
multiply operand.
If xis omitted, the multiplications are bottom x bottom and top x top.
If x is present, the multiplications are bottom x top and top x bottom.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn Is the first operand register holding the values to be multiplied.
Rm Is the second operand register.
Ra Is the accumulate value.
116/252 DoclD028474 Rev 3 Kys

PM0253

The Cortex-M7 instruction set

3.6.5

3

Operation
The SMLAD and SMLADX instructions regard the two operands as four halfword 16-bit
values. The SMLAD and SMLADX instructions:

e If Xis not present, multiply the top signed halfword value in Rn with the top signed
halfword of Rm and the bottom signed halfword values in Rn with the bottom signed
halfword of Rm.

e Orif Xis present, multiply the top signed halfword value in Rn with the bottom signed
halfword of Rm and the bottom signed halfword values in Rn with the top signed
halfword of Rm.

e Add both multiplication results to the signed 32-bit value in Ra.
e Writes the 32-bit signed result of the multiplication and addition to Rd.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples

SMLAD R10, R2, R1, R5 ; Multiplies two halfword wvalues in R2 with
; corresponding halfwords in R1, adds R5 and
; writes to R10.
SMLALDX RO, R2, R4, R6 ; Multiplies top halfword of R2 with bottom
; halfword of R4, multiplies bottom halfword of R2
; with top halfword of R4, adds R6 and writes to
; RO.

SMLAL and SMLALD

Signed Multiply Accumulate Long, Signed Multiply Accumulate Long (halfwords) and Signed
Multiply Accumulate Long Dual.

Syntax

op{cond} RdLo, RdHi, Rn, Rm
op{XY}{cond} RdLo, RdHi, Rn, Rm
op{X}{cond} RdLo, RdHi, Rn, Rm
Where:

op Is one of:
SMLAL Signed Multiply Accumulate Long.

sMLarxy Signed Multiply Accumulate Long (halfwords, X and Y).
X and Y specify which halfword of the source registers rn and rm are
used as the first and second multiply operand:
If xis B, then the bottom halfword, bits [15:0], of rn is used.
If xis T, then the top halfword, bits [31:16], of rn is used.
If vis B, then the bottom halfword, bits [15:0], of rmis used.
If vis T, then the top halfword, bits [31:16], of rmis used.

DoclD028474 Rev 3 117/252

The Cortex-M7 instruction set PMO0253

118/252

sMLarD Signed Multiply Accumulate Long Dual.

sMLALDX Signed Multiply Accumulate Long Dual Reversed.

If the x is omitted, the multiplications are bottom x bottom and top x
top.
If x is present, the multiplications are bottom x top and top x bottom.

cond Is an optional condition code. See Conditional execution on page 68.

RdHi, RdLo Are the destination registers.
RdLo is the lower 32 bits and rdHi is the upper 32 bits of the 64-bit integer.
For sMLAL, SMLALBB, SMLALBT, SMLALTB, SMLALTT, SMLALD and SMLALDX, they
also hold the accumulating value.

Rn, Rm Are registers holding the first and second operands.

Operation

The SMLAL instruction:

e Multiplies the two’s complement signed word values from Rn and Rm.

e Adds the 64-bit value in RdLo and RdHi to the resulting 64-bit product.

e Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The SMLALBB, SMLALBT, SMLALTB and SMLALTT instructions:

e Multiplies the specified signed halfword, Top or Bottom, values from Rn and Rm.

e Adds the resulting sign-extended 32-bit product to the 64-bit value in RdLo and RdHi.
e Writes the 64-bit result of the multiplication and addition in RdLo and RdHi.

The non-specified halfwords of the source registers are ignored.

The SMLALD and SMLALDX instructions interpret the values from Rn and Rm as four
halfword two’s complement signed 16-bit integers. These instructions:

e If Xis not present, multiply the top signed halfword value of Rn with the top signed
halfword of Rm and the bottom signed halfword values of Rn with the bottom signed
halfword of Rm.

e Orif Xis present, multiply the top signed halfword value of Rn with the bottom signed
halfword of Rm and the bottom signed halfword values of Rn with the top signed
halfword of Rm.

e Add the two multiplication results to the signed 64-bit value in RdLo and RdHi to create
the resulting 64-bit product.

e Write the 64-bit product in RdLo and RdHi.

Restrictions

In these instructions:
. Do not use SP and do not use PC.
e RdHiand RdLo must be different registers.

Condition flags

These instructions do not affect the condition code flags.

Examples

SMLAL R4, R5, R3, RS8 ; Multiplies R3 and R8, adds R5:R4 and writes

DoclD028474 Rev 3 ‘Yl

PM0253

The Cortex-M7 instruction set

3.6.6

3

; to R5:R4.
SMLALBT R2, R1, R6, R7 ; Multiplies bottom halfword of R6 with top
; halfword of R7, sign extends to 32-bit,
; adds R1:R2 and writes to R1:R2.
SMLALTB R2, R1, R6, R7 ; Multiplies top halfword of R6 with bottom
; halfword of R7,sign extends to 32-bit, adds
; R1:R2 and writes to R1:R2.
SMLALD R6, R8, R5, R1 ; Multiplies top halfwords in R5 and R1 and b
; bottom halfwords of R5 and R1, adds R8:R6
; and writes to R8:R6.
SMLALDX R6, R8, R5, R1 ; Multiplies top halfword in R5 with bottom
; halfword of R1, and bottom halfword of R5
; with top halfword of R1, adds R8:R6 and
; writes to R8:R6.

SMLSD and SMLSLD
Signed Multiply Subtract Dual and Signed Multiply Subtract Long Dual.

Syntax
op{X}{cond} Rd, Rn, Rm, Ra
Where:
op Is one of:
sMr.sp Signed Multiply Subtract Dual.
sMLspx Signed Multiply Subtract Dual Reversed.
sMLSLD Signed Multiply Subtract Long Dual.
sMr.sLDx Signed Multiply Subtract Long Dual Reversed.
If x is present, the multiplications are bottom x top and top x bottom.
If the x is omitted, the multiplications are bottom x bottom and top x top.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn, Rm Are registers holding the first and second operands.
Ra Is the register holding the accumulate value.
Operation

The SMLSD instruction interprets the values from the first and second operands as four
signed halfwords. This instruction:

e Optionally rotates the halfwords of the second operand.
e Performs two signed 16 x 16-bit halfword multiplications.

e Subtracts the result of the upper halfword multiplication from the result of the lower
halfword multiplication.

e Adds the signed accumulate value to the result of the subtraction.
e Writes the result of the addition to the destination register.

DoclD028474 Rev 3 119/252

The Cortex-M7 instruction set PMO0253

The SMLSLD instruction interprets the values from Rn and Rm as four signed halfwords.
This instruction:

e Optionally rotates the halfwords of the second operand.
e Performs two signed 16 x 16-bit halfword multiplications.

e Subtracts the result of the upper halfword multiplication from the result of the lower
halfword multiplication.

° Adds the 64-bit value in RdHi and RdLo to the result of the subtraction.
. Writes the 64-bit result of the addition to the RdHi and RdLo.

Restrictions

In these instructions:
. Do not use SP and do not use PC.

Condition flags

This instruction sets the Q flag if the accumulate operation overflows. Overflow cannot occur
during the multiplications or subtraction.

For the Thumb instruction set, these instructions do not affect the condition code flags.

Examples

SMLSD RO, R4, R5, R6 ; Multiplies bottom halfword of R4 with
; bottom halfword of R5, multiplies top
; halfword of R4 with top halfword of R5, sub
; substracts second from first, adds R6,
; writes to RO.
SMLSDX R1, R3, R2, RO ; Multiplies bottom halfword of R3 with top
; halfword of R2, multiplies top halfword of
; R3 with bottom halfword of R2, subtracts se
; second from first, adds RO, writes to RI1.
SMLSLD R3, R6, R2, R7 ; Multiplies bottom halfword of R6 with
; bottom halfword of R2, multiplies top
; halfword of R6 with top halfword of R2, sub
; substracts second first, adds R6:R3, writes
; to R6:R3.
SMLSLDX R3, R6, R2, R7 ; Multiplies bottom halfword of R6 with top
; halfword of R2, multiplies top halfword of
; R6 with bottom halfword of R2, subtracts
; second from first, adds R6:R3, writes to
; R6:R3.

3

120/252 DoclD028474 Rev 3

PM0253

The Cortex-M7 instruction set

3.6.7

3

SMMLA and SMMLS

Signed Most Significant Word Multiply Accumulate and Signed Most Significant Word
Multiply Subtract.

Syntax

op{R}{cond} Rd, Rn, Rm, Ra

Where:

op Is one of:
smmLa Signed Most Significant Word Multiply Accumulate.
svMLs Signed Most Significant Word Multiply Subtract.

R Is a rounding error flag. If r is specified, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to the product before
the high word is extracted.

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn, Rm Are registers holding the first and second multiply operands.

Ra Is the register holding the accumulate value.

Operation

The SMMLA instruction interprets the values from Rn and Rm as signed 32-bit words.

The SMMLA instruction:

Multiplies the values in Rn and Rm.

Optionally rounds the result by adding 0x80000000.
Extracts the most significant 32 bits of the result.
Adds the value of Ra to the signed extracted value.
Writes the result of the addition in Rd.

The SMMLS instruction interprets the values from Rn and Rm as signed 32-bit words.

The SMMLS instruction:

Multiplies the values in Rn and Rm.

Optionally rounds the result by adding 0x80000000.

e Extracts the most significant 32 bits of the result.

e Subtracts the extracted value of the result from the value in Ra.
e Writes the result of the subtraction in Rd.

Restrictions

In these instructions:
. Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

DoclD028474 Rev 3 121/252

The Cortex-M7 instruction set PMO0253

3.6.8

122/252

Examples
SMMLA RO, R4, R5, R6 ; Multiplies R4 and R5, extracts top 32 bits,
; adds R6, truncates and writes to RO.
SMMLAR R6, R2, R1, R4 ; Multiplies R2 and R1, extracts top 32 bits,
; adds R4, rounds and writes to R6.
SMMLSR R3, R6, R2, R7 ; Multiplies R6 and R2, extracts top 32 bits,
; subtracts R7, rounds and writes to R3.
SMMLS R4, R5, R3, RS8 ; Multiplies R5 and R3, extracts top 32 bits,
; subtracts R8, truncates and writes to R4.
SMMUL
Signed Most Significant Word Multiply.
Syntax
op{R}{cond} Rd, Rn, Rm
Where:
op Is one of:
smmMuL, Signed Most Significant Word Multiply
R Is a rounding error flag. If r is specified, the result is rounded instead of being
truncated. In this case the constant 0x80000000 is added to the product before
the high word is extracted.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn, Rm Are registers holding the first and second operands.
Operation

The SMMUL instruction interprets the values from Rn and Rm as two’s complement 32-bit
signed integers. The SMMUL instruction:

e Multiplies the values from Rn and Rm.
e Optionally rounds the result, otherwise truncates the result.
e Writes the most significant signed 32 bits of the result in Rd.

Restrictions

In this instruction:
. Do not use SP and do not use PC.

Condition flags

This instruction does not affect the condition code flags.

Examples

SMULL RO, R4, R5 ; Multiplies R4 and R5, truncates top 32 bits
; and writes to RO.

SMULLR R6, R2 ; Multiplies R6 and R2, rounds the top 32

; bits and writes to R6.

DoclD028474 Rev 3 ‘Yl

PM0253 The Cortex-M7 instruction set

3.6.9 SMUAD and SMUSD
Signed Dual Multiply Add and Signed Dual Multiply Subtract.

Syntax
op{X}{cond} Rd, Rn, Rm
Where:
op Is one of:
smMuaD Signed Dual Multiply Add.
smuapx Signed Dual Multiply Add Reversed.
smusp Signed Dual Multiply Subtract.
smuspx Signed Dual Multiply Subtract Reversed.
If x is present, the multiplications are bottom x top and top x bottom.
If the x is omitted, the multiplications are bottom x bottom and top x top.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn, Rm Are registers holding the first and the second operands.
Operation

The SMUAD instruction interprets the values from the first and second operands as two
signed halfwords in each operand. This instruction:

e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit multiplications.

e Adds the two multiplication results together.

e Writes the result of the addition to the destination register.

The SMUSD instruction interprets the values from the first and second operands as two’s
complement signed integers. This instruction:

e Optionally rotates the halfwords of the second operand.

e Performs two signed 16 x 16-bit multiplications.

e Subtracts the result of the top halfword multiplication from the result of the bottom
halfword multiplication.

e Writes the result of the subtraction to the destination register.

Restrictions

In these instructions:
. Do not use SP and do not use PC.

Condition flags

Sets the Q flag if the addition overflows. The multiplications cannot overflow.

Examples

SMUAD RO, R4, R5 ; Multiplies bottom halfword of R4 with the
; bottom halfword of R5, adds multiplication of

3

DoclD028474 Rev 3 123/252

The Cortex-M7 instruction set PMO0253

3.6.10

124/252

; top halfword of R4 with top halfword of R5,
; writes to RO.
SMUADX R3, R7, R4 ; Multiplies bottom halfword of R7 with top
; halfword of R4, adds multiplication of top
; halfword of R7 with bottom halfword of R4,
; writes to R3.
SMUSD R3, R6, R2 ; Multiplies bottom halfword of R4 with bottom
; halfword of R6, subtracts multiplication of top
; halfword of R6 with top halfword of R3, writes
; to R3.
SMUSDX R4, R5, R3 ; Multiplies bottom halfword of R5 with top
; halfword of R3, subtracts multiplication of top
; halfword of R5 with bottom halfword of R3,
; writes to R4.

SMUL and SMULW
Signed Multiply (halfwords) and Signed Multiply (word by halfword).

Syntax
op{XY}{cond} Rd,Rn, Rm
op{Y}{cond} RdA. Rn, Rm
For smurxy only:
op Is one of:
sMUL{xY} Signed Multiply (halfwords)

x and v specify which halfword of the source registers rn and rmis used as the
first and second multiply operand.

If xis B, then the bottom halfword, bits [15:0] of rn is used.

If xis T, then the top halfword, bits [31:16] of rn is used.If vis B, then the
bottom halfword, bits [15:0], of rmis used.

If vis T, then the top halfword, bits [31:16], of rmis used.

smuLw{ v} Signed Multiply (word by halfword)

v specifies which halfword of the source register rmis used as the second
multiply operand.

If vis B, then the bottom halfword (bits [15:0]) of rmis used.

If vis T, then the top halfword (bits [31:16]) of rmis used.

cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.

Rn, Rm Are registers holding the first and second operands.

Operation

The SMULBB, SMULTB, SMULBT and SMULTT instructions interprets the values from Rn
and Rm as four signed 16-bit integers.
These instructions:

e Multiply the specified signed halfword, Top or Bottom, values from Rn and Rm.
e Write the 32-bit result of the multiplication in Rd.

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 instruction set

3

The SMULWT and SMULWSB instructions interprets the values from Rn as a 32-bit signed
integer and Rm as two halfword 16-bit signed integers. These instructions:

e Multiply the first operand and the top, T suffix, or the bottom, B suffix, halfword of the
second operand.

e Write the signed most significant 32 bits of the 48-bit result in the destination register.

Restrictions

In these instructions:
. Do not use SP and do not use PC.
e RdHiand RdLo must be different registers.

Examples

SMULBT RO, R4, R5 ; Multiplies the bottom halfword of R4 with
; the top halfword of R5, multiplies results
; and writes to RO.

SMULBB RO, R4, R5 ; Multiplies the bottom halfword of R4 with
; the bottom halfword of R5, multiplies
; results and writes to RO.

SMULTT RO, R4, R5 ; Multiplies the top halfword of R4 with the
; top halfword of R5, multiplies results and
; writes to RO.

SMULTB RO, R4, R5 ; Multiplies the top halfword of R4 with the
; bottom halfword of R5, multiplies results
; and writes to RO.

SMULWT R4, R5, R3 ; Multiplies R5 with the top halfword of R3,
; extracts top 32 bits and writes to R4.
SMULWB R4, R5, R3 ; Multiplies R5 with the bottom halfword of

; R3, extracts top 32 bits and writes to R4.

DoclD028474 Rev 3 125/252

The Cortex-M7 instruction set PMO0253

3.6.11

126/252

UMULL, UMLAL, SMULL, and SMLAL

Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and
producing a 64-bit result.

Syntax
op{cond} RdLo, RdHi, Rn, Rm
Where:
op Is one of:
uMuLL Unsigned Long Multiply.
uMLaL Unsigned Long Multiply, with Accumulate.
smuLL, Signed Long Multiply.
sMLAL Signed Long Multiply, with Accumulate.
cond Is an optional condition code. See Conditional execution on page 68.

RdHi, RdLo Are the destination registers. For umpaL and smLaL they also hold the
accumulating value.

Rn, Rm Are registers holding the operands.

Operation

The UMULL instruction interprets the values from Rn and Rm as unsigned integers. It
multiplies these integers and places the least significant 32 bits of the result in RdLo, and
the most significant 32 bits of the result in RdHi.

The UMLAL instruction interprets the values from Rn and Rm as unsigned integers. It
multiplies these integers, adds the 64-bit result to the 64-bit unsigned integer contained in
RdHi and RdLo, and writes the result back to RdHi and RdLo.

The SMULL instruction interprets the values from Rn and Rm as two’s complement signed
integers. It multiplies these integers and places the least significant 32 bits of the result in
RdLo, and the most significant 32 bits of the result in RdHi.

The SMLAL instruction interprets the values from Rn and Rm as two’s complement signed
integers. It multiplies these integers, adds the 64-bit result to the 64-bit signed integer
contained in RdHi and RdLo, and writes the result back to RdHi and RdLo.

Restrictions

In these instructions:
. Do not use SP and do not use PC.
e RdHiand RdLo must be different registers.

Condition flags

These instructions do not affect the condition code flags.

Examples
UMULL RO, R4, R5, R6 ; Unsigned (R4,R0) = R5 x R6
SMLAL R4, R5, R3, R8 ; Signed (R5,R4) = (R5,R4) + R3 x RS

DoclD028474 Rev 3 ‘Yl

PM0253

The Cortex-M7 instruction set

3.6.12

3

SDIV and UDIV
Signed Divide and Unsigned Divide.

Syntax

SDIV{cond} {Rd,} Rn, Rm

UDIV{cond} {Rd,} Rn, Rm

Where:

cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register. If rd is omitted, the destination register is rn.
Rn Is the register holding the value to be divided.

Rm Is a register holding the divisor.

Operation

The SDIV instruction performs a signed integer division of the value in Rn by the value in
Rm.

The UDIV instruction performs an unsigned integer division of the value in Rn by the value
in Rm.

For both instructions, if the value in Rn is not divisible by the value in Rm, the result is
rounded towards zero.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not change the flags.

Examples
SDIV RO, R2, R4 ; Signed divide, RO = R2/R4
UDIV R8, R8, Rl ; Unsigned divide, R8 = R8/R1

DoclD028474 Rev 3 127/252

The Cortex-M7 instruction set

PM0253

3.7

Saturating instructions

Table 31 shows the saturating instructions:

Table 31. Saturating instructions

128/252

Mnemonic Brief description See

SSAT Signed Saturate SSAT and USAT on page 129
SSAT16 Signed Saturate Halfword SSAT16 and USAT16 on page 130
USAT Unsigned Saturate SSAT and USAT on page 129
USAT16 Unsigned Saturate Halfword SSAT16 and USAT16 on page 130
QADD Saturating Add QADD and QSUB on page 131
QSuB Saturating Subtract QADD and QSUB on page 131
QSUB16 Saturating Subtract 16 QADD and QSUB on page 131
QASX Saturating Add and Subtract with Exchange | QASX and QSAX on page 132
QSAX Saturating Subtract and Add with Exchange | QASX and QSAX on page 132
QDADD Saturating Double and Add QDADD and QDSUB on page 133
QDSUB Saturating Double and Subtract QDADD and QDSUB on page 133
UQADD16 |Unsigned Saturating Add 16 UQADD and UQSUB on page 136
UQADDS8 Unsigned Saturating Add 8 UQADD and UQSUB on page 136
UQASX g;cs:ri%r;%deSaturating Add and Subtract with UQASX and UQSAX on page 134
UQSAX E;\S;‘gar;zc:faturating Subtract and Add with UQASX and UQSAX on page 134
UQSUB16 |Unsigned Saturating Subtract 16 UQADD and UQSUB on page 136
UQSuUB8 Unsigned Saturating Subtract 8 UQADD and UQSUB on page 136

For signed n-bit saturation, this means that:
e If the value to be saturated is less than -2, the result returned is -2
e If the value to be saturated is greater than 211, the result returned is 2"7-1
e Otherwise, the result returned is the same as the value to be saturated.

For unsigned n-bit saturation, this means that:
e If the value to be saturated is less than 0, the result returned is 0

e If the value to be saturated is greater than 2"-1, the result returned is 2"-1
e Otherwise, the result returned is the same as the value to be saturated.

If the returned result is different from the value to be saturated, it is called saturation. If the
saturation occurs, the instruction sets the Q flag to 1 in the APSR. Otherwise, it leaves the Q
flag unchanged. To clear the Q flag to 0, the MSR instruction must be used, see MSR on

page 179.

To read the state of the Q flag, use the MRS instruction, see MRS on page 178.

DoclD028474 Rev 3

3

PM0253 The Cortex-M7 instruction set

3.71 SSAT and USAT

Signed Saturate and Unsigned Saturate to any bit position, with optional shift before

saturating.
Syntax
op{cond} Rd, #n, Rm {, shift #s}
Where:
op Is one of:
SSAT Saturates a signed value to a signed range.
USAT Saturates a signed value to an unsigned range.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
n Specifies the bit position to saturate to:
. nranges from 1 to 32 for ssat.
. n ranges from 0 to 31 for UsaT.
Rm Is the register containing the value to saturate.

shift #s Is an optional shift applied to rm before saturating. It must be one of the
following:

ASR #s Wwhere sisin the range 1 to 31.
LSL #s Where sisin the range 0 to 31.

Operation
These instructions saturate to a signed or unsigned n-bit value.

The SSAT instruction applies the specified shift, then saturates to the signed range
21 < 214,

The USAT instruction applies the specified shift, then saturates to the unsigned range
0 <x <21,

Restrictions

Do not use SP and do not use PC.

Condition flags
These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

SSAT R7, #16, R7, LSL #4 ; Logical shift left value in R7 by 4,
; then saturate it as a signed 16-bit
; value and write it back to R7.

USATNE RO, #7, R5 ; Conditionally saturate value in R5 as a
; an unsigned 7 bit value and write it to
; RO.

Kyy DoclD028474 Rev 3 129/252

The Cortex-M7 instruction set PMO0253

3.7.2

130/252

SSAT16 and USAT16

Signed Saturate and Unsigned Saturate to any bit position for two halfwords.

Syntax
op{cond} Rd, #n, Rm
Where:
op Is one of:
ssAaT16 Saturates a signed halfword value to a signed range.
usaTl6 Saturates a signed halfword value to an unsigned range.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
n Specifies the bit position to saturate to:
. nranges from 1 to 16 for ssat.
. n ranges from 0 to 15 for UsaT.
Rm Is the register containing the value to saturate.
Operation

The SSAT16 instruction:

1. Saturates two signed 16-bit halfword values of the register with the value to saturate
from selected by the bit position in n.

2. Writes the results as two signed 16-bit halfwords to the destination register.

The USAT16 instruction:

1. Saturates two unsigned 16-bit halfword values of the register with the value to saturate
from selected by the bit position in n.

2. Writes the results as two unsigned halfwords in the destination register.
Restrictions

Do not use SP and do not use PC.

Condition flags
These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

SSAT16 R7, #9, R2 ; Saturates the top and bottom highwords of R2
; as 9-bit values, writes to corresponding
; halfword of R7.

USAT16NE RO, #13, R5 ; Conditionally saturates the top and bottom
; halfwords of R5 as 13-bit values, writes to
; corresponding halfword of RO.

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 instruction set

3.7.3

3

QADD and QSUB
Saturating Add and Saturating Subtract, signed.

Syntax
op{cond} {Rd}, Rn, Rm

op{cond} {Rd}, Rn, Rm

Where:
op Is one of:
QADD Saturating 32-bit add.
0aDpD8 Saturating four 8-bit integer additions.
oapD16 Saturating two 16-bit integer additions.
QSUB Saturating 32-bit subtraction.
osuB8 Saturating four 8-bit integer subtraction.
QsuBl16 Saturating two 16-bit integer subtraction.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn, Rm Are registers holding the first and second operands.
Operation

These instructions add or subtract two, four or eight values from the first and second
operands and then writes a signed saturated value in the destination register.

The QADD and QSUB instructions apply the specified add or subtract, and then saturate the
result to the signed range 21 <x 214 where xis given by the number of bits applied in
the instruction, 32, 16 or 8.

If the returned result is different from the value to be saturated, it is called saturation. If
saturation occurs, the QADD and QSUB instructions set the Q flag to 1 in the APSR.
Otherwise, it leaves the Q flag unchanged. The 8-bit and 16-bit QADD and QSUB
instructions always leave the Q flag unchanged.

To clear the Q flag to 0, the MSR instruction must be used, see MSR on page 179.
To read the state of the Q flag, use the MRS instruction, see MRS on page 178.

Restrictions

Do not use SP and do not use PC.

Condition flags
These instructions do not affect the condition code flags.

If saturation occurs, these instructions set the Q flag to 1.

Examples

QADD16 R7, R4, R2 ; Adds halfwords of R4 with corresponding halfword of
; R2, saturates to 16 bits and writes to
; corresponding halfword of R7.

DoclD028474 Rev 3 131/252

The Cortex-M7 instruction set PMO0253

3.74

132/252

QADDS8 R3, R1, R6 ; Adds bytes of Rl to the corresponding bytes of R6,
; saturates to 8 bits and writes to corresponding
; byte of R3.

QSUBL6 R4, R2, R3 ; Subtracts halfwords of R3 from corresponding

; halfword of R2, saturates to 16 bits, writes to

; corresponding halfword of R4.

; Subtracts bytes of R5 from the corresponding byte

; in R2, saturates to 8 bits, writes to corresponding

; byte of R4.

QSUBS R4, R2, R5

QASX and QSAX

Saturating Add and Subtract with Exchange and Saturating Subtract and Add with
Exchange, signed.

Syntax
op{cond} {Rd}, Rm, Rn
Where:
op Is one of:
QASX Add and Subtract with Exchange and Saturate.
QSAX Subtract and Add with Exchange and Saturate.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn, Rm Are registers holding the first and second operands.
Operation

The QASX instruction:

1. Adds the top halfword of the source operand with the bottom halfword of the second
operand.

2. Subtracts the top halfword of the second operand from the bottom highword of the first
operand.

3. Saturates the result of the subtraction and writes a 16-bit signed integer in the range —
219 <« <215 _ 1, where x equals 16, to the bottom halfword of the destination register.

4. Saturates the results of the sum and writes a 16-bit signed integer in the range
25 <« <215 _ 1, where x equals 16, to the top halfword of the destination register.
The QSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first
operand.

2. Adds the bottom halfword of the source operand with the top halfword of the second
operand.

3. Saturates the results of the sum and writes a 16-bit signed integer in the range
2% <« <215 _ 1, where x equals 16, to the bottom halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit signed integer in the range —
215 <« <215 _ 1, where x equals 16, to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

DoclD028474 Rev 3 ‘Yl

PM0253

The Cortex-M7 instruction set

3.7.5

3

Condition flags

These instructions do not affect the condition code flags.

Examples

QASX R7, R4, R2 ; Adds top halfword of R4 to bottom halfword of R2,
; saturates to 16 bits, writes to top halfword of
; R7, Subtracts top highword of R2 from bottom
; halfword of R4, saturates to 16 bits and writes
; to bottom halfword of R7

QSAX RO, R3, R5 ; Subtracts bottom halfword of R5 from top halfword
; of R3, saturates to 16 bits, writes to top
; halfword of RO
; Adds bottom halfword of R3 to top halfword of R5,
; saturates to 16 bits, writes to bottom halfword
; of RO.

QDADD and QDSUB
Saturating Double and Add and Saturating Double and Subtract, signed.

Syntax
op{cond} {Rd}, Rm, Rn
Where:
op Is one of:
opapp Saturating Double and Add.
opsuB Saturating Double and Subtract.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rm, Rn Are registers holding the first and second operands.
Operation

The QDADD instruction:

e Doubles the second operand value.

e Adds the result of the doubling to the signed saturated value in the first operand.
e Writes the result to the destination register.

The QDSUB instruction:

e Doubles the second operand value.

e Subtracts the doubled value from the signed saturated value in the first operand.
e Writes the result to the destination register.

Both the doubling and the addition or subtraction have their results saturated to the 32-bit
signed integer range —231 <« <237_ 1. If saturation occurs in either operation, it sets the Q
flag in the APSR.

Restrictions

Do not use SP and do not use PC.

DoclD028474 Rev 3 133/252

The Cortex-M7 instruction set PMO0253

Condition flags

If saturation occurs, these instructions set the Q flag to 1.

Examples

QDADD R7, R4, R2 ; Doubles and saturates R4 to 32 bits, adds R2,
; Saturates to 32 bits, writes to R7

QDSUB RO, R3, RS ; Subtracts R3 doubled and saturated to 32 bits

; from R5, saturates to 32 bits, writes to RO.

3.7.6 UQASX and UQSAX

Saturating Add and Subtract with Exchange and Saturating Subtract and Add with
Exchange, unsigned.

Syntax
op{cond} {Rd}, Rm, Rn
Where:
type Is one of:
uoasx Add and Subtract with Exchange and Saturate.
uQsax Subtract and Add with Exchange and Saturate.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn, Rm Are registers holding the first and second operands.
Operation

The UQASX instruction:

1. Adds the bottom halfword of the source operand with the top halfword of the second
operand.

2. Subtracts the bottom halfword of the second operand from the top highword of the first
operand.

3. Saturates the results of the sum and writes a 16-bit unsigned integer in the range
0<x <21, where x equals 16, to the top halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range
0<x 2" _ 1, where x equals 16, to the bottom halfword of the destination register.
The UQSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first
operand.

2. Adds the bottom halfword of the first operand with the top halfword of the second
operand.

3. Saturates the result of the subtraction and writes a 16-bit unsigned integer in the range
0<xx <21, where x equals 16, to the top halfword of the destination register.

4. Saturates the results of the addition and writes a 16-bit unsigned integer in the range 0
x <216 _ 1, where x equals 16, to the bottom halfword of the destination register.

134/252 DoclD028474 Rev 3 ‘Yl

PM0253 The Cortex-M7 instruction set

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the condition code flags.

Examples

UQASX R7, R4, R2 ; Adds top halfword of R4 with bottom halfword of R2,
; saturates to 16 bits, writes to top halfword of R7
Subtracts top halfword of R2 from bottom halfword of
; R4, saturates to 16 bits, writes to bottom halfword
; of R7
UQSAX RO, R3, R5 ; Subtracts bottom halfword of R5 from top halfword of
; R3, saturates to 16 bits, writes to top halfword of
; RO
; Adds bottom halfword of R4 to top halfword of R5
; saturates to 16 bits, writes to bottom halfword of
; RO.

3

DoclD028474 Rev 3 135/252

The Cortex-M7 instruction set PMO0253

3.7.7

136/252

UQADD and UQSUB
Saturating Add and Saturating Subtract Unsigned.

Syntax
op{cond} {Rd}, Rn, Rm

op{cond} {Rd}, Rn, Rm

Where:
op Is one of:
upapD8 Saturating four unsigned 8-bit integer additions.
UQADD16 Saturating two unsigned 16-bit integer additions.
UDSUB8 Saturating four unsigned 8-bit integer subtractions.
UQSUB16 Saturating two unsigned 16-bit integer subtractions.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn, Rm Are registers holding the first and second operands.
Operation

These instructions add or subtract two or four values and then writes an unsigned saturated

value in the destination register.

The UQADD16 instruction:

e Adds the respective top and bottom halfwords of the first and second operands.

e Saturates the result of the additions for each halfword in the destination register to the
unsigned range 0 <x <2161, where x is 16.

The UQADDS instruction:

e Adds each respective byte of the first and second operands.

e Saturates the result of the addition for each byte in the destination register to the
unsigned range 0 <x <281, where x is 8.

The UQSUB16 instruction:

e Subtracts both halfwords of the second operand from the respective halfwords of the
first operand.

e Saturates the result of the differences in the destination register to the unsigned range
0 <x<2"%4, where x is 16.
The UQSUBS instructions:

e Subtracts the respective bytes of the second operand from the respective bytes of the
first operand.

e Saturates the results of the differences for each byte in the destination register to the
unsigned range 0 <x <281, where x is 8.

Restrictions

Do not use SP and do not use PC.

3

DoclD028474 Rev 3

PM0253 The Cortex-M7 instruction set

Condition flags

These instructions do not affect the condition code flags.

Examples

UQADD16 R7, R4, R2 ; Adds halfwords in R4 to corresponding halfword in
; R2, saturates to 16 bits, writes to corresponding
; halfword of R7

UQADDS R4, R2, R5 ; Adds bytes of R2 to corresponding byte of R5,
; saturates to 8 bits, writes to corresponding bytes
; of R4

UQSUB16 R6, R3, RO ; Subtracts halfwords in RO from corresponding

; halfword in R3, saturates to 16 bits, writes to
; corresponding halfword in R6

UQSUBS R1, R5, R6 ; Subtracts bytes in R6 from corresponding byte of
; R5, saturates to 8 bits, writes to corresponding
; byte of RI1.

3.8 Packing and unpacking instructions

Table 32 shows the instructions that operate on packing and unpacking data:

Table 32. Packing and unpacking instructions

Mnemonic Brief description See

PKH Pack Halfword PKHBT and PKHTB on page 138
SXTAB Extend 8 bits to 32 and add SXTA and UXTA on page 140
SXTAB16 Dual extend 8 bits to 16 and add SXTA and UXTA on page 140
SXTAH Extend 16 bits to 32 and add SXTA and UXTA on page 140
SXTB Sign extend a byte SXT and UXT on page 144
SXTB16 Dual extend 8 bits to 16 and add SXT and UXT on page 144
SXTH Sign extend a halfword SXT and UXT on page 144
UXTAB Extend 8 bits to 32 and add SXTA and UXTA on page 140
UXTAB16 Dual extend 8 bits to 16 and add SXTA and UXTA on page 140
UXTAH Extend 16 bits to 32 and add SXTA and UXTA on page 140
UXTB Zero extend a byte SXT and UXT on page 144
UXTB16 Dual zero extend 8 bits to 16 and add SXT and UXT on page 144
UXTH Zero extend a halfword SXT and UXT on page 144

3

DoclD028474 Rev 3 137/252

The Cortex-M7 instruction set PMO0253

3.8.1

138/252

PKHBT and PKHTB
Pack Halfword.
Syntax

op{cond} {Rd}, Rn, Rm {, LSL #imm}

op{cond} {Rd}, Rn, Rm {, ASR #imm}

Where:
op Is one of:
prkHBT Pack Halfword, bottom and top with shift.
PkHTB Pack Halfword, top and bottom with shift.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rn Is the first operand register.
Rm Is the second operand register holding the value to be optionally shifted.
imm Is the shift length. The type of shift length depends on the instruction:
For PKHBT
LSL A left shift with a shift length from 1 to 31, 0 means no shift.
For PKHTB:
ASR An arithmetic shift right with a shift length from 1 to 32,
a shift of 32-bits is encoded as 0L00000.
Operation

The PKHBT instruction:

1. Writes the value of the bottom halfword of the first operand to the bottom halfword of
the destination register.

2. If shifted, the shifted value of the second operand is written to the top halfword of the
destination register.

The PKHTB instruction:

1. Writes the value of the top halfword of the first operand to the top halfword of the
destination register.

2. If shifted, the shifted value of the second operand is written to the bottom halfword of
the destination register.

Restrictions
Rd must not be SP and must not be PC.

Condition flags

This instruction does not change the flags.

3

DoclD028474 Rev 3

PM0253 The Cortex-M7 instruction set

Examples

PKHBT R3, R4, R5 LSL #0 ; Writes bottom halfword of R4 to bottom
halfworfd of R3, writes top halfword of R5,
unshifted, to top halfword of R3

Writes R2 shifted right by 1 bit to bottom
halfword of R4, and writes top halfword of RO
to top halfword of R4.

PKHTB R4, RO, R2 ASR #1

3.8.2 SXT and UXT
Sign extend and Zero extend.
Syntax

op{cond} {Rd,} Rm {, ROR #n}

op{cond} {Rd}, Rm {, ROR #n}

Where:
op Is one of:
SXTB Sign extends an 8-bit value to a 32-bit value.
SXTH Sign extends a 16-bit value to a 32-bit value.
sxTB16 Sign extends two 8-bit values to two 16-bit values.
UXTB Zero extends an 8-bit value to a 32-bit value.
UXTH Zero extends a 16-bit value to a 32-bit value.
UxTB16 Zero extends two 8-bit values to two 16-bit values.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rm Is the register holding the value to extend.
ROR #n Is one of:
ROR #8 Value from rmis rotated right 8 bits.
ROR #16 Value from rm is rotated right 16 bits.
ROR #24 Value from rm is rotated right 24 bits.
If ROR #n is omitted, no rotation is performed.
Operation

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits from the resulting value:
. SXTB extracts bits[7:0] and sign extends to 32 bits.
. UXTB extracts bits[7:0] and zero extends to 32 bits.
. SXTH extracts bits[15:0] and sign extends to 32 bits.
. UXTH extracts bits[15:0] and zero extends to 32 bits.

. SXTB16 extracts bits[7:0] and sign extends to 16 bits,
and extracts bits [23:16] and sign extends to 16 bits.

. UXTB16 extracts bits[7:0] and zero extends to 16 bits,
and extracts bits [23:16] and zero extends to 16 bits.

3

DoclD028474 Rev 3 139/252

The Cortex-M7 instruction set PMO0253

3.8.3

140/252

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the flags.

Examples

SXTH R4,

UXTB R3,

R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom
; halfword of result, sign extends to 32 bits and
; writes to R4

R10 ; Extracts lowest byte of value in R10, zero

; extends, and writes to R3.

SXTA and UXTA
Signed and Unsigned Extend and Add.

Syntax

op{cond} {Rd,} Rn, Rm {, ROR #n}

op{cond} {Rd,} Rn, Rm {, ROR #n}

Where:

op

cond
Rd

Rn

ROR #n

Operation

Is one of:

SxTAB Sign extends an 8-bit value to a 32-bit value and add.
sxTaH Sign extends a 16-bit value to a 32-bit value and add.
sxTaAB16 Sign extends two 8-bit values to two 16-bit values and add.
uxTAB Zero extends an 8-bit value to a 32-bit value and add.
uxTaH Zero extends a 16-bit value to a 32-bit value and add.
UxTAB16 Zero extends two 8-bit values to two 16-bit values and add.

Is an optional condition code. See Conditional execution on page 68.
Is the destination register.

Is the first operand register.

Is the register holding the value to rotate and extend.

Is one of:

ROR #8 Value from rm is rotated right 8 bits.
ROR #16 Value from rm is rotated right 16 bits.
ROR #24 Value from rmis rotated right 24 bits.

If ROR #n is omitted, no rotation is performed.

These instructions do the following:

1. Rotate the value from Rm right by 0, 8, 16 or 24 bits.

2. Extract bits from the resulting value:
. SXTAB extracts bits[7:0] from Rm and sign extends to 32 bits.
. UXTAB extracts bits[7:0] from Rm and zero extends to 32 bits.

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 instruction set

. SXTAH extracts bits[15:0] from Rm and sign extends to 32 bits.

. UXTAH extracts bits[15:0] from Rm and zero extends to 32 bits.

. SXTAB16 extracts bits[7:0] from Rm and sign extends to 16 bits,
and extracts bits [23:16] from Rm and sign extends to 16 bits.

. UXTAB16 extracts bits[7:0] from Rm and zero extends to 16 bits,
and extracts bits [23:16] from Rm and zero extends to 16 bits.

3. Adds the signed or zero extended value to the word or corresponding halfword of Rn
and writes the result in Rd.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the flags.

Examples

SXTAH R4, RS,

UXTAB R3, R4,

R6, ROR #16 ; Rotates R6 right by 16 bits, obtains bottom
; halfword, sign extends to 32 bits, adds
; R8, and writes to R4

R10 ; Extracts bottom byte of R10 and zero extends
; to 32 bits, adds R4, and writes to R3.

3.9 Bit field instructions

Table 33 shows the instructions that operate on adjacent sets of bits in registers or bit fields:

Table 33. Packing and unpacking instructions

Mnemonic Brief description See
BFC Bit Field Clear BFC and BFI on page 142
BFI Bit Field Insert BFC and BFI on page 142
SBFX Signed Bit Field Extract SBFX and UBFX on page 143
SXTB Sign extend a byte SXT and UXT on page 144
SXTH Sign extend a halfword SXT and UXT on page 144
UBFX Unsigned Bit Field Extract SBFX and UBFX on page 143
UXTB Zero extend a byte SXT and UXT on page 144
UXTH Zero extend a halfword SXT and UXT on page 144

3

DoclD028474 Rev 3 141/252

The Cortex-M7 instruction set PMO0253

3.9.1

142/252

BFC and BFI
Bit Field Clear and Bit Field Insert.

Syntax

BFC{cond} Rd, #1lsb, #width

BFI{cond} Rd, Rn, #lsb, #width

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the source register.

1sb Is the position of the least significant bit of the bit field. 1sb must be in the range
0 to 31.

width Is the width of the bit field and must be in the range 1 to 32 sb.

Operation

BFC clears a bit field in a register. It clears width bits in Rd, starting at the low bit position
Isb. Other bits in Rd are unchanged.

BFI copies a bit field into one register from another register. It replaces width bits in Rd
starting at the low bit position /sb, with width bits from Rn starting at bit[0]. Other bits in Rd
are unchanged.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the flags.

Examples
BFC R4, #8, #12 ; Clear bit 8 to bit 19 (12 bits) of R4 to 0
BFI R9, R2, #8, #12 ; Replace bit 8 to bit 19 (12 bits) of R9 with

; bit 0 to bit 11 from R2.

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 instruction set

3.9.2

3

SBFX and UBFX
Signed Bit Field Extract and Unsigned Bit Field Extract.

Syntax

SBFX{cond} Rd, Rn, #1lsb, #width

UBFX{cond} Rd, Rn, #lsb, #width

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Rd Is the destination register.

Rn Is the source register.

1sb Is the position of the least significant bit of the bit field. 1sb must be in the range
0 to 31.

width Is the width of the bit field and must be in the range 1 to 32 sb.

Operation

SBFX extracts a bit field from one register, sign extends it to 32 bits, and writes the result to
the destination register.

UBFX extracts a bit field from one register, zero extends it to 32 bits, and writes the result to
the destination register.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the flags.

Examples

SBFX RO, R1, #20, #4 ; Extract bit 20 to bit 23 (4 bits) from R1 and
; sign extend to 32 bits and then write the
; result to RO.

UBFX R8, R11, #9, #10 ; Extract bit 9 to bit 18 (10 bits) from R11 and
; zero extend to 32 bits and then write the
; result to RS8.

DoclD028474 Rev 3 143/252

The Cortex-M7 instruction set PMO0253

3.9.3

144/252

SXT and UXT
Sign extend and Zero extend.

Syntax

SXTextend{cond} {Rd,} Rm {, ROR #n}

UXTextend{cond} {Rd}, Rm {, ROR #n}

Where:
extend Is one of:
B Extends an 8-bit value to a 32-bit value.
H Extends a 16-bit value to a 32-bit value.
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.
Rm Is the register holding the value to extend.
ROR #n Is one of:
ROR #8 Value from rmis rotated right 8 bits.
ROR #16 Value from rm is rotated right 16 bits.
ROR #24 Value from rm is rotated right 24 bits.
If ROR #n is omitted, no rotation is performed.
Operation

These instructions do the following:

1. Rotate the value from Rmright by 0, 8, 16 or 24 bits.

2. Extract bits from the resulting value:
. SXTB extracts bits[7:0] and sign extends to 32 bits.
. UXTB extracts bits[7:0] and zero extends to 32 bits.
. SXTH extracts bits[15:0] and sign extends to 32 bits.
. UXTH extracts bits[15:0] and zero extends to 32 bits.

Restrictions

Do not use SP and do not use PC.

Condition flags

These instructions do not affect the flags.

Examples

SXTH R4, R6, ROR #16 ; Rotate R6 right by 16 bits, then obtain the

; lower halfword of the result and then sign

; extend to 32 bits and write the result to R4.
UXTB R3, R10 ; Extract lowest byte of the value in R10 and

; zero extend it, and write the result to R3.

3

DoclD028474 Rev 3

PM0253 The Cortex-M7 instruction set

3.10 Branch and control instructions

Table 34 shows the branch and control instructions:

Table 34. Branch and control instructions

Mnemonic Brief description See
B Branch B, BL, BX, and BLX on page 145
BL Branch with Link B, BL, BX, and BLX on page 145
BLX Branch indirect with Link B, BL, BX, and BLX on page 145
BX Branch indirect B, BL, BX, and BLX on page 145
CBNz Compare and Branch if Non Zero CBZ and CBNZ on page 147
CBz Compare and Branch if Zero CBZ and CBNZ on page 147
IT If-Then IT on page 148
TBB Table Branch Byte TBB and TBH on page 150
TBH Table Branch Halfword TBB and TBH on page 150

3.10.1 B, BL, BX, and BLX

Branch instructions.

Syntax

B{cond} label
BL{cond} label
BX{cond} Rm

BLX{cond} Rm

Where:

B Is branch (immediate).

BL Is branch with link (immediate).

BX Is branch indirect (register).

BLX Is branch indirect with link (register).

cond Is an optional condition code. See Conditional execution on page 68.

label Is a PC-relative expression. See PC-relative expressions on page 68.

Rm Is a register that indicates an address to branch to. Bit[0] of the value in rm
must be 1, but the address to branch to is created by changing bit[0] to 0.

Operation

All these instructions cause a branch to /abel, or to the address indicated in Rm. In addition:

e The BL and BLX instructions write the address of the next instruction to LR (the link
register, R14).

e The BX and BLX instructions result in a UsageFault exception if bit[0] of Rm is 0.

3

DoclD028474 Rev 3 145/252

The Cortex-M7 instruction set

PM0253

Bcond label is the only conditional instruction that can be either inside or outside an IT
block. All other branch instructions must be conditional inside an IT block, and must be
unconditional outside the IT block, see IT on page 148.

Table 35 shows the ranges for the various branch instructions

Table 35. Branch ranges

Instruction

Branch range

B label

16 MB to +16 MB

Bcond label (outside IT block)

-4 MB to +1 MB

Bcond label (inside IT block)

16 MB to +16 MB

BL{cond} label

16 MB to +16 MB

BX{cond} Rm

Any value in register

BLX{cond} Rm

Any value in register

The user might have to use the .W suffix to get the maximum branch range. See Instruction
width selection on page 71.

Restrictions

The restrictions are:

. Do not use PC in the BLX instruction.

e ForBXand BLX, bit[0] of Rm must be 1 for correct execution but a branch occurs to the
target address created by changing bit[0] to O.

e When any of these instructions is inside an IT block, it must be the last instruction of the

IT block.

Bcond is the only conditional instruction that is not required to be inside an IT block.
However, it has a longer branch range when it is inside an IT block.

Condition flags

These instructions do not change the flags.

Examples
B loopA ;
BLE ng ;
B.W target ;
BEQ target ;
BEQ.W target ;
BL funcC ;
BX LR ;
BXNE RO ;
BLX RO ;

146/252

Branch to loopA
Conditionally branch to
Branch to target within
Conditionally branch to
Conditionally branch to
Branch with link (Call)
address stored in LR

label ng

16MB range

target

target within 1MB

to function funC, return

Return from function call

Conditionally branch to

Branch with link and exchange

stored in RO.

DoclD028474 Rev 3

address stored in RO
(Call) to a address

3

PM0253

The Cortex-M7 instruction set

3.10.2

3

CBZ and CBNZ

Compare and Branch on Zero, Compare and Branch on Non-Zero.

Syntax
CBZ Rn, label

CBNZ Rn, label

Where:

Rn Is the register holding the operand.
label Is the branch destination.
Operation

Use the CBZ or CBNZ instructions to avoid changing the condition code flags and to reduce
the number of instructions.

CBZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0
BEQ label

CBNZ Rn, label does not change condition flags but is otherwise equivalent to:

CMP Rn, #0
BNE label

Restrictions

The restrictions are:

e Rn must be in the range of RO to R7.

e The branch destination must be within 4 to 130 bytes after the instruction.
e These instructions must not be used inside an IT block.

Condition flags

These instructions do not change the flags.

Examples

CBZ R5, target ; Forward branch if R5 is zero
CBNZ RO, target ; Forward branch if RO is not zero

DoclD028474 Rev 3 147/252

The Cortex-M7 instruction set PMO0253

3.10.3

148/252

IT

If-Then condition instruction.

Syntax

IT{x{y{2z}}} cond

Where:

x specifies the condition switch for the second instruction in the IT block.
v Specifies the condition switch for the third instruction in the IT block.

z Specifies the condition switch for the fourth instruction in the IT block.
cond Specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:
T Then. Applies the condition cond to the instruction.

E Else. Applies the inverse condition of cond to the instruction.

It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all

of the instructions in the IT block must be unconditional, and each of x, y, and z must be T or
omitted but not E.

Operation

The IT instruction makes up to four following instructions conditional. The conditions can be
all the same, or some of them can be the logical inverse of the others. The conditional
instructions following the IT instruction form the IT block.

The instructions in the IT block, including any branches, must specify the condition in the
{cond} part of their syntax.

The assembler might be able to generate the required IT instructions for conditional
instructions automatically, so it is not needed to write them yourself. See the assembler
documentation for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within
an IT block. Such an exception results in entry to the appropriate exception handler, with
suitable return information in LR and stacked PSR.

Instructions designed for use for exception returns can be used as normal to return from the
exception, and execution of the IT block resumes correctly. This is the only way that a
PC-modifying instruction is permitted to branch to an instruction in an IT block.

Restrictions

The following instructions are not permitted in an IT block:
e |IT.

e (CBZand CBNZ.

e CPSID and CPSIE.

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 instruction set

Other restrictions when using an IT block are:

e A branch or any instruction that modifies the PC must either be outside an IT block or
must be the last instruction inside the IT block. These are:

— ADDPC, PC, Rm.

- MOV PC,Rm.
- B, BL, BX, BLX.
— AnyLDM, LDR, or POP instruction that writes to the PC.
— TBBand TBH.
e Do not branch to any instruction inside an IT block, except when returning from an

exception handler

e All conditional instructions except Bcond must be inside an IT block. Bcond can be
either outside or inside an IT block but has a larger branch range if it is inside one

e Each instruction inside the IT block must specify a condition code suffix that is either
the same or logical inverse as for the other instructions in the block.

The assembler might place extra restrictions on the use of IT blocks, such as prohibiting the
use of assembler directives within them.

Condition flags

This instruction does not change the flags.

Example

ITTE
ANDNE
ADDSNE
MOVEQ

CMP

ITE
ADDGT
ADDLE

IT
ADDGT

ITTEE
MOVEQ
ADDEQ
ANDNE
BNE.W

IT
ADD

3

NE

RO, RO,
R2, R2,
R2, R3
RO, #9
GT

R1, RO,
R1, RO,
GT

R1, R1,
EQ

RO, R1
R2, R2,
R3, R3,
dloop
NE

RO, RO,

R1
#1

#55
#48

#1

#10
#1

R1

Next 3 instructions are conditional
ANDNE does not update condition flags
ADDSNE updates condition flags
Conditional move

Convert RO hex value (0 to 15) into ASCII
('0'='9', 'A'-'F")

Next 2 instructions are conditional
Convert 0xA -> 'A'

Convert 0x0 -> '0'

IT block with only one conditional instruction
Increment R1 conditionally

Next 4 instructions are conditional

Conditional move

Conditional add

Conditional AND

Branch instruction can only be used in the last
instruction of an IT block

Next instruction is conditional
Syntax error: no condition code used in IT block

DoclD028474 Rev 3 149/252

The Cortex-M7 instruction set PMO0253

3.104

150/252

TBB and TBH
Table Branch Byte and Table Branch Halfword.
Syntax

TBB [Rn, Rm]

TBH [Rn, Rm, LSL #1]

Where:

Rn Is the register containing the address of the table of branch lengths.
If rnis PC, then the address of the table is the address of the byte immediately
following the TBB or TBH instruction.

Rm Is the index register. This contains an index into the table. For halfword tables,
LSL #1 doubles the value in rm to form the right offset into the table.

Operation

These instructions cause a PC-relative forward branch using a table of single byte offsets for
TBB, or halfword offsets for TBH. Rn provides a pointer to the table, and Rm supplies an
index into the table. For TBB the branch offset is twice the unsigned value of the byte
returned from the table, and for TBH the branch offset is twice the unsigned value of the
halfword returned from the table. The branch occurs to the address at that offset from the
address of the byte immediately after the TBB or TBH instruction.

Restrictions

The restrictions are:
. Rn must not be SP.
. Rm must not be SP and must not be PC.

e When any of these instructions is used inside an IT block, it must be the last instruction
of the IT block.

Condition flags

These instructions do not change the flags.

Examples

ADR.W RO, BranchTable_Byte
TBB [RO, R1] ; Rl is the index, RO is the base address of
; the branch table
Casel
; an instruction sequence follows
Case?2
; an instruction sequence follows
Case3
; an instruction sequence follows
BranchTable_Byte

DCB 0 ; Casel offset calculation
DCB ((Case2-Casel) /2) ; Case2 offset calculation
DCB ((Case3-Casel) /2) ; Case3 offset calculation
TBH [PC, R1, LSL #1] ; Rl is the index, PC is used as base of the

DoclD028474 Rev 3 ‘Yl

PM0253

The Cortex-M7 instruction set

; branch table

BranchTable_H

DCW ((CaseA - BranchTable H)/2)
DCW ((CaseB - BranchTable H)/2)
DCW ((CaseC - BranchTable_H)/2)

CaseA
; an instruction sequence follows
CaseB
; an instruction sequence follows
CaseC
; an instruction sequence follows

; CaseA offset calculation
; CaseB offset calculation
; CaseC offset calculation

3.1 Floating-point instructions
This section provides the instruction set that the single-precision and double-precision FPU
uses.
Table 36 shows the floating-point instructions.
These instructions are only available if the FPU is included, and enabled, in the system. See
Enabling the FPU on page 238 for information about enabling the floating-point unit.
Table 36. Floating-point instructions
Mnemonic Brief description See
VABS Floating-point Absolute VABS on page 153
VADD Floating-point Add VADD on page 153
VCMP Com'pares.two flgatlng-pomt registers, or one VCMP, VCMPE on page 154
floating-point register and zero
Compares two floating-point registers, or one
VCMPE floating-point register and zero with Invalid VCMP, VCMPE on page 154
Operation check
VCVT Converts between floating-point and integer VCVT between floating-point and fixed-point on
page 156
VCVT Converts between floating-point and fixed point VCVT between floating-point and fixed-point on
page 156
Converts between floating-point and integer with | VCVT, VCVTR between floating-point and
VCVTR ; .
rounding integer on page 155
VCVTB Converts half-precision value to single-precision VCVTB, VCVTT on page 157
VCVTT Converts single-precision register to half-precision | VCVTB, VCVTT on page 157
VDIV Floating-point Divide VDIV on page 157
VFEMA Floating-point Fused Multiply Accumulate VFMA, VFMS on page 158
VENMA Floating-point Fused Negate Multiply Accumulate | VFNMA, VFNMS on page 159
VFMS Floating-point Fused Multiply Subtract VFMA, VFMS on page 158
VFNMS Floating-point Fused Negate Multiply Subtract VFNMA, VFNMS on page 159
VLDM Loads Multiple extension registers VLDM on page 159

S74

DoclD028474 Rev 3

151/252

The Cortex-M7 instruction set

PM0253

Table 36. Floating-point instructions (continued)

Mnemonic Brief description See
VLDR Loads an extension register from memory VLDR on page 160
VMLA Floating-point Multiply Accumulate VMLA, VMLS on page 161
VMLS Floating-point Multiply Subtract VMLA, VMLS on page 161
VMOV Floating-point Move Immediate VMOV Immediate on page 162
VMOV Floating-point Move register VMOV Register on page 162
VMOV Copies ARM core register to single-precision I\J/QZIS\; :BRM core register to single-precision on
VMOV Copies 2 ARM core registers to 2 single-precision ngxotr‘:/fegggrzogﬁ Z;Sg :t%s4to two single-
VMOV Copies between ARM core register to scalar VMOV ARM core register to scalar on page 165
VMOV Copies between Scalar to ARM core register VMOV Scalar to ARM core register on page 163
VMRS I\SA;S\,/tZ; tcrnegli-'\;lt\grcore register from floating-point VMRS on page 165
VMSR (I\;/(I)ci\éerse ;?siffting-pomt System register from ARM VMSR on page 166
VMUL Multiplies floating-point VMUL on page 166
VNEG Floating-point negate VNEG on page 167
VNMLA Floating-point multiply and add VNMLA, VNMLS, VNMUL on page 167
VNMLS Floating-point multiply and subtract VNMLA, VNMLS, VNMUL on page 167
VNMUL Floating-point multiply VNMLA, VNMLS, VNMUL on page 167
VPOP Pop extension registers VPOP on page 168
VPUSH Pushes extension registers VPUSH on page 169
VSQRT Floating-point square root VSQRT on page 169
VSTM Stores Multiple extension registers VSTM on page 170
VSTR Stores an extension register to memory VSTR on page 170
VSUB Floating-point Subtract VSUB on page 171
VSEL \S/:/Ilgc\t/s register, alternative to a pair of conditional VSEL on page 172
xl\l\%’-’\\lXNNNI\I/I, r|\1/Iaari((ijr|:1nugm, Minimum with IEEE754-2008 NaN VMAXNM, VMINNM on page 172
VCVTA,
xgx.-rrg Float to integer conversion with directed rounding | VCVTA, VCVTN, VCVTP, VCVTM on page 173
VCVTM
152/252 DoclD028474 Rev 3 "_l

PM0253 The Cortex-M7 instruction set

Table 36. Floating-point instructions (continued)

Mnemonic Brief description See

VRINTR, Float to integer (in floating-point format)

VRINTX conversion VRINTR, VRINTX on page 173

VRINTA,
VRINTN, Float to integer (in floating-point format) VRINTA, VRINTN, VRINTP, VRINTM, VRINTZ
VRINTP, conversion with directed rounding on page 174
VRINTM
3.111 VABS
Floating-point Absolute.
Syntax
VABS{cond}.F<32|64> <Sd/Dd>, <Sm/Dm>
Where:
cond Is an optional condition code. See Conditional execution on page 68.

<Sd|/Dpd>, <Sm|Dm>
Are the destination floating-point value and the operand floating-point value.
Operation

This instruction:
1. Takes the absolute value of the operand floating-point register.
2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.

Examples

VABS.F32 S4, S6

3.11.2 VADD
Floating-point Add.

Syntax
VADD{ cond} .F<32|64> {<Sd|/Dd>,} <Sn|/Dn>, <Sm|Dm>
VADD{cond} .F64 {Dd,} Dn, Dm

Where:
cond Is an optional condition code. See Conditional execution on page 68.
<sd|Dd> Is the destination floating-point value.

3

DoclD028474 Rev 3 153/252

The Cortex-M7 instruction set PMO0253

3.11.3

154/252

<Sn/Dn>, <Sm/Dm>
Are the operand floating-point values.

Operation

This instruction:
1. Adds the values in the two floating-point operand registers.
2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition flags

This instruction does not change the flags.
Examples

VADD.F32 5S4, S6, S7

VCMP, VCMPE
Compares two floating-point registers, or one floating-point register and zero.
Syntax

VCMP{E} {cond} .F<32|64> <Sd/Dd>, <Sm|Dm>

VCMP{E} {cond} .F<32|64> <Sd/Dd>, #0.0

Where:

cond Is an optional condition code. See Conditional execution on page 68.

E If present, any NaN operand causes an Invalid Operation exception.
Otherwise, only a signaling Nan causes the exception.

<sd[Dpd> Is the floating-point operand to compare.

<Sm | Dm> Is the floating-point operand that is compared with.

Operation

This instruction:
1. Compares either:

. Two floating-point registers.

. Or one floating-point register and zero.
2. Writes the result to the FPSCR flags.

Restrictions

This instruction can optionally raise an Invalid Operation exception if either operand is any
type of NaN. It always raises an Invalid Operation exception if either operand is a signaling
NaN.

Condition flags

When this instruction writes the result to the FPSCR flags, the values are normally
transferred to the ARM flags by a subsequent VMRS instruction, see VMRS on page 165.

DoclD028474 Rev 3 ‘Yl

PM0253

The Cortex-M7 instruction set

3.11.4

3

Examples

VCMP.F32 S4, #0.0VCMP.F32 S4, S2

VCVT, VCVTR between floating-point and integer
Converts a value in a register from floating-point to and from a 32-bit integer.

Syntax

VCVT{R}{cond}.Tm.F<32|64> <Sd/Dd>, <Sm|Dm>

VCVT{cond} .F<32|64>.Tm <Sd/Dd>, <Sm|Dm>

Where:

R If ris specified, the operation uses the rounding mode specified by the Fpscr.
If r is omitted. the operation uses the Round towards Zero rounding mode.

cond Is an optional condition code. See Conditional execution on page 68.

Tm Is the data type for the operand. It must be one of:

. s32 signed 32-bit value.
. U32 unsigned 32-bit value.

<Sd|pd>, <Sm|Dm>
Are the destination register and the operand register.
Operation

These instructions:

1. Either:
. Convert a value in a register from floating-point value to a 32-bit integer.
. Convert from a 32-bit integer to floating-point value.

2. Place the result in a second register.

The floating-point to integer operation normally uses the Round towards Zero rounding
mode, but can optionally use the rounding mode specified by the FPSCR.

The integer to floating-point operation uses the rounding mode specified by the FPSCR.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

DoclD028474 Rev 3 155/252

The Cortex-M7 instruction set PMO0253

3.11.5

156/252

VCVT between floating-point and fixed-point
Converts a value in a register from floating-point to and from fixed-point.
Syntax

VCVT{cond}.Td.F<32|64> <Sd[Dd>, <Sd|Dd>, #fbits

VCVT{cond}.F<32|64>.Td <Sd|Dd>, <Sd|Dd>, #fbits

Where:
cond Is an optional condition code. See Conditional execution on page 68.
Td Is the data type for the fixed-point number. It must be one of:
. s16 signed 16-bit value.
. u16 unsigned 16-bit value.
. s32 signed 32-bit value.
. U32 unsigned 32-bit value.
<sd|Dpd> Is the destination register and the operand register.
fbits Is the number of fraction bits in the fixed-point number:
. If Tdis s16 or ule, fbits must be in the range 0-16.
. If 7d is s32 or u32, fbits must be in the range 1-32.
Operation

This instruction:
1. Either
. Converts a value in a register from floating-point to fixed-point.
. Converts a value in a register from fixed-point to floating-point.
2. Places the result in a second register.

The floating-point values are single-precision or double-precision.

The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their
operand from the low-order bits of the source register and ignore any remaining bits.

Signed conversions to fixed-point values sign-extend the result value to the destination
register width.

Unsigned conversions to fixed-point values zero-extend the result value to the destination
register width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode.
The fixed-point to floating-point operation uses the Round to Nearest rounding mode.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 instruction set

3.11.6

3.11.7

3

VCVTB, VCVTT

Converts between half-precision and single-precision or double-precision without
intermediate rounding.

Syntax

VCVT{y}{cond} .F<32|64>.F16 <Sd/Dd>, Sm

VCVT{y}{cond}.F16.F<32|64> Sd, <Sm|/Dm>

Where:

vy Specifies which half of the operand register sm or destination register sdis
used for the operand or destination:
. If y is B, then the bottom half, bits [15:0], of sm or sd is used.
. If yis T, then the top half, bits [31:16], of sm or sd is used.

cond Is an optional condition code. See Conditional execution on page 68.

<Sd[Dd> Is the destination register.
<Sm|Dm> Is the operand register.

Operation

This instruction with the .F16.F<32| 64> suffix:

1. Converts the half-precision value in the top or bottom half of a single-precision register
to single-precision or double-precision value.

2. Writes the result to a single-precision or double-precision register.

This instruction with the .F<32|64>.F16 suffix:

1. Converts the value in a double-precision or single-precision register to half-precision
value.

2. Writes the result into the top or bottom half of a single-precision register, preserving the
other half of the target register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

VDIV

Divides floating-point values.

Syntax

VDIV{cond}.F<32|64> {<Sd|/Dd>,} <Sn|Dn>, <Sm/|Dm>

Where:

cond Is an optional condition code. See Conditional execution on page 68.

<Sd[Dd> Is the destination register.
<Sn[Dn>, <Sm|Dm>

Are the operand registers.

DoclD028474 Rev 3 157/252

The Cortex-M7 instruction set PMO0253

3.11.8

158/252

Operation

This instruction:
1. Divides one floating-point value by another floating-point value.
2. Writes the result to the floating-point destination register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

VFMA, VFMS
Floating-point Fused Multiply Accumulate and Subtract.

Syntax
VFMA{cond} .F<32|64> {<Sd|/Dd>,} <Sn|Dn>, <Sm/|Dm>
VFMS{cond} .F<32|64> {<Sd/Dd>,} <Sn|[Dn>, <Sm|Dm>

Where:
cond Is an optional condition code. See Conditional execution on page 68.
<Sd|Dd> Is the destination register.
<Sn[Dn>, <Sm|Dm>
Are the operand registers.

Operation

The VFMA instruction:
1. Multiplies the floating-point values in the operand registers.
2. Accumulates the results into the destination register.

The result of the multiply is not rounded before the accumulation.

The VFMS instruction:

1. Negates the first operand register.

2. Multiplies the floating-point values of the first and second operand registers.
3. Adds the products to the destination register.

4. Places the results in the destination register.

The result of the multiply is not rounded before the addition.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3

DoclD028474 Rev 3

PM0253 The Cortex-M7 instruction set

3.11.9 VFNMA, VFNMS
Floating-point Fused Negate Multiply Accumulate and Subtract.

Syntax
VFNMA{cond} .F<32| 64> {<Sd/Dd>,} <Sn|/Dn>, <Sm|Dm>
VFNMS{cond}.F<32|64> {<Sd/Dd>,} <Sn|Dn>, <Sm|Dm>

Where:
cond Is an optional condition code. See Conditional execution on page 68.
<Sd[Dd> Is the destination register.
<Sn/Dn>, <Sm/Dm>
Are the operand registers.

Operation

The VFNMA instruction:

1. Negates the first floating-point operand register.

2. Multiplies the first floating-point operand with second floating-point operand.
3. Adds the negation of the floating -point destination register to the product

4. Places the result into the destination register.

The result of the multiply is not rounded before the addition.

The VFNMS instruction:

1. Multiplies the first floating-point operand with second floating-point operand.

2. Adds the negation of the floating-point value in the destination register to the product.
3. Places the result in the destination register.

The result of the multiply is not rounded before the addition.

Restrictions

There are no restrictions.
Condition flags

These instructions do not change the flags.

3.11.10 VLDM
Floating-point Load Multiple.

Syntax
VLDM{mode} {cond}{.size} Rn{!}, 1list
Where:
mode Is the addressing mode:
IA Increment after. The consecutive addresses start at the address
specified in Rn.
DB Decrement before. The consecutive addresses end just before
the address specified in Rn.
cond Is an optional condition code. See Conditional execution on page 68.
Kys DoclD028474 Rev 3 159/252

The Cortex-M7 instruction set PMO0253

3.11.11

160/252

size Is an optional data size specifier.

Rn Is the base register. The sp can be used.

! Is the command to the instruction to write a modified value back to rn. This is
required if mode == DB, and is optional if mode == IA.

list Is the list of extension registers to be loaded, as a list of consecutively

numbered doubleword or singleword registers, separated by commas and
surrounded by brackets.

Operation

This instruction loads multiple extension registers from consecutive memory locations using
an address from an ARM core register as the base address.

Restrictions

The restrictions are:
e If size is present, it must be equal to the size in bits, 32 or 64, of the registers in list.

. For the base address, the SP can be used. In the ARM instruction set, if / is not
specified the PC can be used.

e Jist must contain at least one register. If it contains doubleword registers, it must not
contain more than 16 registers.

e If using the Decrement Before addressing mode, the write back flag, /, must be
appended to the base register specification.

Condition flags
These instructions do not change the flags.

Example

VLDMIA.F64 rl, {d3,d4,d5}

VLDR

Loads a single extension register from memory.

Syntax
VLDR{ cond}{.F<32|64>} <sd|Dd>, [Rn{#imm}]
VLDR{cond}{.F<32|64>} <sd/Dd>, label

VLDR{cond}{.F<32|64>} <sd/Dd>, [PC, #imm}]

Where:

cond Is an optional condition code. See Conditional execution on page 68.

32, 64 Are the optional data size specifiers.

Dd Is the destination register for a doubleword load.

sd Is the destination register for a singleword load.

Rn Is the base register. The SP can be used.

imm Is the + or - immediate offset used to form the address. Permitted address
values are multiples of 4 in the range 0 to 1020.

label Is the label of the literal data item to be loaded.

3

DoclD028474 Rev 3

PM0253 The Cortex-M7 instruction set

Operation

This instruction loads a single extension register from memory, using a base address from
an ARM core register, with an optional offset.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3.11.12 VMLA, VMLS

Multiplies two floating-point values, and accumulates or subtracts the result.

Syntax
VMLA{cond} .F<32|64> <Sd/Dd>, <Sn|Dn>, <Sm|Dm>
VMLS{cond} .F<32|64> <Sd/Dd>, <Sn|Dn>, <Sm|Dm>

Where:
cond Is an optional condition code. See Conditional execution on page 68.
<5d|Dpd> Is the destination floating-point value.
<Sn[Dn>, <Sm|Dm>
Are the operand floating-point values.

Operation

The floating-point Multiply Accumulate instruction:
1. Multiplies two floating-point values.
2. Adds the results to the destination floating-point value.

The floating-point Multiply Subtract instruction:

1. Multiplies two floating-point values.

2. Subtracts the products from the destination floating-point value.
3. Places the results in the destination register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3

DoclD028474 Rev 3 161/252

The Cortex-M7 instruction set PMO0253

3.11.13

3.11.14

162/252

VMOV Immediate

Moves floating-point Immediate.

Syntax

VMOV { cond} .F<32|64> <Sd/Dd>, #imm

Where:

cond Is an optional condition code. See Conditional execution on page 68.
<Sd[Dd> Is the destination register.

imm Is a floating-point constant.

Operation

This instruction copies a constant value to a floating-point register.

Restrictions

There are no restrictions.
Condition flags

These instructions do not change the flags.

VMOV Register

Copies the contents of one register to another.

Syntax

VMOV { cond} .F<32|64> <Sd[Dd>, <Sm|Dm>

Where:

cond Is an optional condition code. See Conditional execution on page 68.
pd Is the destination register, for a doubleword operation.

Dm Is the source register, for a doubleword operation.

sd Is the destination register, for a singleword operation.

Sm Is the source register, for a singleword operation.

Operation

This instruction copies the contents of one floating-point register to another.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 instruction set

3.11.15

3.11.16

3

VMOV Scalar to ARM core register

Transfers one word of a doubleword floating-point register to an ARM core register.

Syntax

VMOV {cond} Rt, Dnl[x]

Where:

cond Is an optional condition code. See Conditional execution on page 68.
Rt Is the destination ARM core register.

Dn Is the 64-bit doubleword register.

x Specifies which half of the doubleword register to use:

. If x is 0, use lower half of doubleword register
. If x is 1, use upper half of doubleword register.

Operation

This instruction transfers one word from the upper or lower half of a doubleword floating-
point register to an ARM core register.

Restrictions

Rt cannot be PC or SP.

Condition flags

These instructions do not change the flags.

VMOV ARM core register to single-precision
Transfers a single-precision register to and from an ARM core register.

Syntax

VMOV {cond} Sn, Rt

VMOV{cond} Rt, Sn

Where:

cond Is an optional condition code. See Conditional execution on page 68.
<Sn> Is the single-precision floating-point register.

Rt Is the ARM core register.

Operation

This instruction transfers:
e The contents of a single-precision register to an ARM core register.
e The contents of an ARM core register to a single-precision register.

Restrictions
Rt cannot be PC or SP.

Condition flags

These instructions do not change the flags.

DoclD028474 Rev 3 163/252

The Cortex-M7 instruction set PMO0253

3.11.17

3.11.18

164/252

VMOV two ARM core registers to two single-precision registers

Transfers two consecutively numbered single-precision registers to and from two ARM core
registers.

Syntax
VMOV{cond} Sm, Sml, Rt, Rt2

VMOV{cond} Rt, Rt2, Sm, Sml

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Sm Is the first single-precision register.

Sm1 Is the second single-precision register. This is the next single-precision register
after <sm>.

Rt Is the ARM core register that <sm> is transferred to or from.

Rt2 Is the The ARM core register that <sm1> is transferred to or from.

Operation

This instruction transfers:

e The contents of two consecutively numbered single-precision registers to two ARM
core registers.

e The contents of two ARM core registers to a pair of single-precision registers.

Restrictions

The restrictions are:

e The floating-point registers must be contiguous, one after the other.
e The ARM core registers do not have to be contiguous.

e Rtcannot be PC or SP.

Condition flags

These instructions do not change the flags.

VMOV two ARM core registers and a double-precision register

Transfers two words from two ARM core registers to a doubleword register, or from a
doubleword register to two ARM core registers.

Syntax
VMOV{cond} Dm, Rt, Rt2

VMOV{cond} Rt, Rt2, Dm

Where:
cond Is an optional condition code. See Conditional execution on page 68.
Dm Is the double-precision register.

Rt, REt2 Are the two ARM core registers.

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 instruction set

3.11.19

3.11.20

3

Operation

This instruction:
e Transfers two words from two ARM core registers to a doubleword register.
e Transfers a doubleword register to two ARM core registers.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

VMOV ARM core register to scalar

Transfers one word to a floating-point register from an ARM core register.

Syntax

VMOV{cond}{.32} Dd[x], Rt

Where:

cond Is an optional condition code. See Conditional execution on page 68.

32 Is an optional data size specifier.

Dd[x] Is the destination, where [x] defines which half of the doubleword is transferred,
as follows:

. If x is 0, the lower half is extracted.

. If x is 1, the upper half is extracted.
Rt Is the source ARM core register.

Operation

This instruction transfers one word to the upper or lower half of a doubleword floating-point
register from an ARM core register.

Restrictions
Rt cannot be PC or SP.

Condition flags

These instructions do not change the flags.

VMRS
Moves to ARM core register from floating-point System register.
Syntax

VMRS{cond} Rt, FPSCR

VMRS{cond} APSR nzcv, FPSCR

Where:
cond Is an optional condition code. See Conditional execution on page 68.
Rt Is the destination ARM core register. This register can be R0-R14.

DoclD028474 Rev 3 165/252

The Cortex-M7 instruction set PMO0253

3.11.21

3.11.22

166/252

APSR_nzcv Transfer floating-point flags to the APSR flags.

Operation

This instruction performs one of the following actions:
e Copies the value of the FPSCR to a general-purpose register.
e Copies the value of the FPSCR flag bits to the APSR N, Z, C, and V flags.

Restrictions
Rt cannot be PC or SP.

Condition flags

These instructions optionally change the N, Z, C, and V flags.

VMSR

Moves to floating-point System register from ARM core register.

Syntax

VMSR{cond} FPSCR, Rt

Where:

cond Is an optional condition code. See Conditional execution on page 68.
Rt Is the general-purpose register to be transferred to the FPSCR.
Operation

This instruction moves the value of a general-purpose register to the FPSCR. See Floating-
point Status Control register on page 236 for more information.

Restrictions
Rt cannot be PC or SP.

Condition flags
This instruction updates the FPSCR.

VMUL

Floating-point Multiply.

Syntax

VMUL{ cond} .F<32|64> {<Sd|/Dd>,} <Sn|/Dn>, <Sm|Dm>

Where:

cond Is an optional condition code. See Conditional execution on page 68.

<Sd|Dd> Is the destination floating-point value.
<Sn|/Dn>, <Sm|Dm>
Are the operand floating-point values.

3

DoclD028474 Rev 3

PM0253 The Cortex-M7 instruction set
Operation
This instruction:
1. Multiplies two floating-point values.
2. Places the results in the destination register.
Restrictions
There are no restrictions.
Condition flags
These instructions do not change the flags.
3.11.23 VNEG
Floating-point Negate.
Syntax
VNEG{ cond} .F<32|64> <Sd[Dd>, <Sm|Dm>
Where:
cond Is an optional condition code. See Conditional execution on page 68.
<5d[Dpd> Is the destination floating-point value.
<Sm|Dm> Is the operand floating-point value.
Operation
This instruction:
1. Negates a floating-point value.
2. Places the results in a second floating-point register.
The floating-point instruction inverts the sign bit.
Restrictions
There are no restrictions.
Condition flags
These instructions do not change the flags.
3.11.24 VNMLA, VNMLS, VNMUL

3

Floating-point multiply with negation followed by add or subtract.

Syntax

VNMLA{ cond} .F<32| 64> <Sd|/Dd>, <Sn|Dn>, <Sm|Dm>
VNMLS { cond} .F<32| 64> <Sd/Dd>, <Sn|[Dn>, <Sm|Dm>
VNMUL{ cond} .F<32| 64> {<Sd/Dd>,} <Sn|Dn>, <Sm|Dm>
Where:

cond Is an optional condition code. See Conditional execution on page 68.

<Sd[Dd> Is the destination floating-point register.

DoclD028474 Rev 3

167/252

The Cortex-M7 instruction set PMO0253

3.11.25

168/252

<Sn[Dn>, <Sm|[Dm> Are the operand floating-point registers.

Operation
The VNMLA instruction:

1. Multiplies two floating-point register values.

2. Adds the negation of the floating-point value in the destination register to the negation
of the product.

3. Writes the result back to the destination register.

The VNMLS instruction:

1. Multiplies two floating-point register values.

2. Adds the negation of the floating-point value in the destination register to the product.
3. Writes the result back to the destination register.

The VNMUL instruction:
1. Multiplies together two floating-point register values.
2. Writes the negation of the result to the destination register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

VPOP

Floating-point extension register Pop.

Syntax

VPOP{cond}{.size} list

Where:

cond Is an optional condition code. See Conditional execution on page 68.

size Is an optional data size specifier. If present, it must be equal to the size in bits,
32 or 64, of the registers in 1ist.

list Is a list of extension registers to be loaded, as a list of consecutively numbered
doubleword or singleword registers, separated by commas and
surrounded by brackets.

Operation

This instruction loads multiple consecutive extension registers from the stack.

Restrictions

The list must contain at least one register, and not more than sixteen registers.

Condition flags

These instructions do not change the flags.

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 instruction set

3.11.26

3.11.27

3

VPUSH

Floating-point extension register Push.

Syntax

VPUSH{cond}{.size} list

Where:

cond Is an optional condition code. See Conditional execution on page 68.

size Is an optional data size specifier. If present, it must be equal to the size in bits,
32 or 64, of the registers in 1ist.

list Is a list of the extension registers to be stored, as a list of consecutively
numbered doubleword or singleword registers, separated by commas and
surrounded by brackets.

Operation

This instruction stores multiple consecutive extension registers to the stack.

Restrictions

list must contain at least one register, and not more than sixteen.

Condition flags

These instructions do not change the flags.

VSQRT

Floating-point Square Root.

Syntax

VSQRT{cond}.F<32|64> <Sd|/Dd>, <Sm|Dm>

Where:

cond Is an optional condition code. See Conditional execution on page 68.

<Sd|Dd> Is the destination floating-point value.
<Sm|Dm> Is the operand floating-point value.

Operation

This instruction:
e Calculates the square root of the value in a floating-point register.
e Writes the result to another floating-point register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

DoclD028474 Rev 3

169/252

The Cortex-M7 instruction set PMO0253

3.11.28

3.11.29

170/252

VSTM
Floating-point Store Multiple.
Syntax
VSTM{mode} {cond}{.size} Rn{!}, list
Where:
mode Is the addressing mode:
. IA Increment After. The consecutive addresses start at the address
specified in rn. This is the default and can be omitted.
. DB Decrement Before. The consecutive addresses end just before the
address specified in rn.
cond Is an optional condition code. See Conditional execution on page 68.
size Is an optional data size specifier. If present, it must be equal to the size in bits,
32 or 64, of the registers in 1ist.
Rn Is the base register. The SP can be used.

! Is the function that causes the instruction to write a modified value back to rn.
Required if mode == DB.

list Is a list of the extension registers to be stored, as a list of consecutively
numbered doubleword or singleword registers, separated by commas and
surrounded by brackets.

Operation

This instruction stores multiple extension registers to consecutive memory locations using a
base address from an ARM core register.

Restrictions

The restrictions are:

e list must contain at least one register. If it contains doubleword registers it must not
contain more than 16 registers.

e Use of the PC as Rn is deprecated.

Condition flags

These instructions do not change the flags.

VSTR
Floating-point Store.

Syntax

VSTR{cond}{.32} Sd, [Rn{, #imm}]

VSTR{cond}{.64} DA, [Rn{, #imm}]

Where:

cond Is an optional condition code. See Conditional execution on page 68.
32, 64 Are the optional data size specifiers.

sd Is the source register for a singleword store.

pd Is the source register for a doubleword store.

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 instruction set

3.11.30

3

Rn Is the base register. The SP can be used.
imm Is the + or - immediate offset used to form the address. Values are multiples of
4 in the range 0-1020. imm can be omitted, meaning an offset of +0.

Operation

This instruction stores a single extension register to memory, using an address from an
ARM core register, with an optional offset, defined in imm:

Restrictions

The use of PC for Rn is deprecated.

Condition flags

These instructions do not change the flags.

VSuUB

Floating-point Subtract.

Syntax

VSUB{cond} .F<32|64> {<Sd|/Dd>,} <Sn|/Dn>, <Sm|Dm>

Where:

cond Is an optional condition code. See Conditional execution on page 68.

<sd|Dd> Is the destination floating-point value.
<Sn/Dn>, <Sm|Dm>
Are the operand floating-point values.

Operation

This instruction:
1. Subtracts one floating-point value from another floating-point value.
2. Places the results in the destination floating-point register.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

DoclD028474 Rev 3 171/252

The Cortex-M7 instruction set PMO0253

3.11.31

3.11.32

172/252

VSEL

Provides an alternative to a pair of conditional vmov instructions.

Encoding

VSEL{cond} .F<32|64> <Sd/Dd>, <Sn|Dn>, <Sm|Dm>

Where:

cond Is an optional condition code. See Conditional execution on page 68. VSEL has

a subset of the condition codes. The condition codes for vsEL are limited to GE,
eT, EQ and vs, with the effect that LT, .E, NE and vc is achievable by exchanging
the source operands.
<Sd|Dd> Is the destination single-precision or double-precision floating-point value.
<Sn|/Dn>, <Sm|Dm>
Are the operand single-precision or double-precision floating-point values.

Operation

Depending on the result of the condition code, this instruction moves either:
e <Sn|Dn> source register to the destination register.
e <Sm|Dm> source register to the destination register.

Restrictions

The VSEL instruction must not occur inside an IT block.

Condition flags

These instructions do not change the flags.

VMAXNM, VMINNM

Return the minimum or the maximum of two floating-point numbers with NaN handling as
specified by IEEE754-2008.

Encoding
VMAXNM.F<32|64> <Sd/Dd>, <Sn[Dn>, <Sm|[Dm>

VMINNM.F<32|64> <Sd/Dd>, <Sn[Dn>, <Sm|[Dm>

Where:
<Sd|Dd> Is the destination single-precision or double-precision floating-point value.
<Sn|Dn>, <Sm|Dm>

Are the operand single-precision or double-precision floating-point values.

Operation

The VMAXNM instruction compares two source registers, and moves the largest to the
destination register.

The VMINNM instruction compares two source registers, and moves the lowest to the
destination register.

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 instruction set

3.11.33

3.11.34

3

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

VCVTA, VCVTN, VCVTP, VCVTM

Floating-point to integer conversion with directed rounding.

Syntax
VCVT<rmode>.S32.F<32|64> <Sd>, <Sm|[Dm>
VCVT<rmode>.U32.F<32| 64> <Sd>, <Sm|[Dm>

Where:
<Sd|Dd> Is the destination single-precision or double-precision floating-point value.
<Sn|/Dn>, <Sm|Dm>

Are the operand single-precision or double-precision floating-point values.

<rmode> Is one of:
A Round to nearest ties away.
M Round to nearest even.
N Round towards plus infinity.
P Round towards minus infinity.

Operation

These instructions:

1. Read the source register.

2. Convert to integer with directed rounding.
3. Write to the destination register.

Restrictions

There are no restrictions.
Condition flags

These instructions do not change the flags.

VRINTR, VRINTX

Round a floating-point value to an integer in floating-point format.

Encoding

VRINT{R,X}{cond}.F<32|64> <Sd/Dd>, <Sm|Dm>

Where:

cond Is an optional condition code. See Conditional execution on page 68.

<sd|Dd> Is the destination floating-point value.
<Sm [Dm> Are the operand floating-point values.

DoclD028474 Rev 3 173/252

The Cortex-M7 instruction set PMO0253

3.11.35

174/252

Operation

These instructions:
1. Read the source register.

2. Round to the nearest integer value in floating-point format using the rounding mode
specified by the FPSCR.

3. Write the result to the destination register.

4. Forthe VRINTZX instruction only. Generate a floating-point exception if the result is not
exact.

Restrictions

There are no restrictions.

Condition flags

These instructions do not change the flags.

VRINTA, VRINTN, VRINTP, VRINTM, VRINTZ

Round a floating-point value to an integer in floating-point format using directed rounding.

Encoding

VRINT<rmode>.F<32|64> <Sd/Dd>, <Sm/|Dm>

Where:
<5d|Dpd> Is the destination single-precision or double-precision floating-point value.
<Sn|Dn>, <Sm|Dm>

Are the operand single-precision or double-precision floating-point values.

<rmode> Is one of:
A Round to nearest ties away.
M Round to Nearest Even.
N Round towards Plus Infinity.
P Round towards Minus Infinity.
z Round towards Zero.

Operation

These instructions:
1. Read the source register.

2. Round to the nearest integer value with a directed rounding mode specified by the
instruction.

3. Write the result to the destination register.

Restrictions

These instructions cannot be conditional. These instructions cannot generate an inexact
exception even if the result is not exact.

3

DoclD028474 Rev 3

PM0253 The Cortex-M7 instruction set
Condition flags
These instructions do not change the flags.
3.12 Miscellaneous instructions
Table 37 shows the remaining Cortex®-M7 instructions:
Table 37. Miscellaneous instructions
Mnemonic Brief description See
BKPT Breakpoint BKPT on page 175
CPSID Change Processor State, Disable Interrupts CPS on page 176
CPSIE Change Processor State, Enable Interrupts CPS on page 176
DMB Data Memory Barrier DMB on page 177
DSB Data Synchronization Barrier DSB on page 177
ISB Instruction Synchronization Barrier ISB on page 178
MRS Move from special register to register MRS on page 178
MSR Move from register to special register MSR on page 179
NOP No Operation NOP on page 180
SEV Send Event SEV on page 180
SVC Supervisor Call SVC on page 181
WFE Wait For Event WFE on page 181
WFI Wait For Interrupt WFI on page 182
3.12.1 BKPT
Breakpoint.
Syntax
BKPT #imm
Where:
imm Is an expression evaluating to an integer in the range 0-255 (8-bit value).
Operation

3

The BKPT instruction causes the processor to enter Debug state. Debug tools can use this
to investigate system state when the instruction at a particular address is reached.

imm is ignored by the processor. If required, a debugger can use it to store additional
information about the breakpoint.

The BKPT instruction can be placed inside an IT block, but it executes unconditionally,
unaffected by the condition specified by the IT instruction.

DoclD028474 Rev 3 175/252

The Cortex-M7 instruction set PMO0253

3.12.2

176/252

Condition flags
This instruction does not change the flags.

Examples

BKPT #0x3 ; Breakpoint with immediate value set to 0x3 (debugger can
; extract the immediate value by locating it using the PC)

ARM does not recommend the use of the BKPT instruction with an immediate value set to
0xAB for any purpose other than Semi-hosting.

CPS
Change Processor State.
Syntax
CPSeffect iflags
Where:
effect Is one of:
IE Clears the special purpose register.
ID Sets the special purpose register.
iflags Is a sequence of one or more flags:
i Set or clear PRIMASK.
£ Set or clear FAULTMASK.
Operation

CPS changes the PRIMASK and FAULTMASK special register values. See Exception mask
registers on page 25 for more information about these registers.

Restrictions

The restrictions are:
e Use CPS only from privileged software. It has no effect if used in unprivileged software.
e CPS cannot be conditional and so must not be used inside an IT block.

Condition flags

This instruction does not change the condition flags.

Examples
CPSID i ; Disable interrupts and configurable fault handlers (set
; PRIMASK)
CPSID f ; Disable interrupts and all fault handlers (set FAULTMASK)
CPSIE i ; Enable interrupts and configurable fault handlers (clear
; PRIMAGSK)
CPSIE £ ; Enable interrupts and fault handlers (clear FAULTMASK)

3

DoclD028474 Rev 3

PMO0253 The Cortex-M7 instruction set
3.12.3 DMB
Data Memory Barrier.
Syntax
DMB{ cond}
Where:
cond Is an optional condition code. See Conditional execution on page 68.
Operation
DMB acts as a data memory barrier. It ensures that all explicit memory accesses that
appear, in program order, before the DMB instruction are completed before any explicit
memory accesses that appear, in program order, after the DMB instruction. DMB does not
affect the ordering or execution of instructions that do not access memory.
Condition flags
This instruction does not change the flags.
Examples
DMB ; Data Memory Barrier
3.12.4 DSB
Data Synchronization Barrier.
Syntax
DSB{ cond}
Where:
cond Is an optional condition code. See Conditional execution on page 68.
Operation

3

DSB acts as a special data synchronization memory barrier. Instructions that come after the
DSB, in program order, do not execute until the DSB instruction completes. The DSB
instruction completes when all explicit memory accesses before it complete.

Condition flags

This instruction does not change the flags.

Examples

DSB ; Data Synchronisation Barrier

DoclD028474 Rev 3 1771252

The Cortex-M7 instruction set PMO0253

3.12.5

3.12.6

178/252

ISB

Instruction Synchronization Barrier.

Syntax

ISB{ cond}
Where:
cond Is an optional condition code. See Conditional execution on page 68.

Operation

ISB acts as an instruction synchronization barrier. It flushes the pipeline of the processor, so
that all instructions following the ISB are fetched from cache or memory again, after the ISB
instruction has been completed.

Condition flags
This instruction does not change the flags.
Examples
ISB ; Instruction Synchronisation Barrier
MRS
Move the contents of a special register to a general-purpose register.
Syntax
MRS{cond} Rd, spec_reg
Where:
cond Is an optional condition code. See Conditional execution on page 68.
Rd Is the destination register.

spec_reg Can be any of: APSR, IPSR, EPSR, TEPSR, TAPSR, EAPSR, PSR, MSP, PSP, PRIMASK,
BASEPRI, BASEPRI_MAX, FAULTMASK, OFf CONTROL.

All the Epsr and 1psr fields are zero when read by the MRs instruction.

Operation

Use MRS in combination with MSR as part of a read-modify-write sequence for updating a
PSR, for example to clear the Q flag.

In process swap code, the programmers model state of the process being swapped out
must be saved, including relevant PSR contents. Similarly, the state of the process being
swapped in must also be restored. These operations use MRS in the state-saving
instruction sequence and MSR in the state-restoring instruction sequence.

BASEPRI_MAX is an alias of BASEPRI when used with the MRS instruction.
See MSR on page 179.

3

DoclD028474 Rev 3

PM0253 The Cortex-M7 instruction set
Restrictions
Rd must not be SP and must not be PC.
Condition flags
This instruction does not change the flags.
Examples
MRS RO, PRIMASK ; Read PRIMASK value and write it to RO
3.12.7 MSR
Move the contents of a general-purpose register into the specified special register.
Syntax
MSR{cond} spec_reg, Rn
Where:
cond Is an optional condition code. See Conditional execution on page 68.
Rn Is the source register.

3

spec_reg Can be any of: APSR_nzcvqg, APSR_g, APSR_nzcvqg, MSP, PSP, PRIMASK,
BASEPRI, BASEPRI_MAX, FAULTMASK, O CONTROL.

APSR can be used to refer to APSR_nzcvq.

Operation

The register access operation in MSR depends on the privilege level. Unprivileged software
can only access the APSR, see Table 4 on page 23. Privileged software can access all
special registers.

In unprivileged software writes to unallocated or execution state bits in the PSR are ignored.

When writing to BASEPRI_MAX, the instruction writes to BASEPRI only if either:
. Rn is non-zero and the current BASEPRI value is 0.
. Rn is non-zero and less than the current BASEPRI value.

See MRS on page 178.

Restrictions

Rn must not be SP and must not be PC.

Condition flags

This instruction updates the flags explicitly based on the value in Rn.

Examples

MSR CONTROL, Rl ; Read Rl value and write it to the CONTROL register

DoclD028474 Rev 3 179/252

The Cortex-M7 instruction set PMO0253

3.12.8

3.12.9

180/252

NOP

No Operation.

Syntax

NOP{ cond}

Where:

cond Is an optional condition code. See Conditional execution on page 68.
Operation

NOP does nothing. NOP is not necessarily a time-consuming NOP. The processor might
remove it from the pipeline before it reaches the execution stage.

Use NOP for padding, for example to place the following instruction on a 64-bit boundary.
Condition flags
This instruction does not change the flags.

Examples

NOP ; No operation

SEV
Send Event.

Syntax

SEV{cond}

Where:

cond Is an optional condition code. See Conditional execution on page 68.
Operation

SEV is a hint instruction that causes an event to be signaled to all processors within a
multiprocessor system. It also sets the local event register to 1, see Power management on
page 50.

Condition flags

This instruction does not change the flags.

Examples

SEV ; Send Event

3

DoclD028474 Rev 3

PM0253

The Cortex-M7 instruction set

3.12.10

3.12.11

3

SVC

Supervisor Call.

Syntax

SVC{cond} #imm

Where:

cond Is an optional condition code. See Conditional execution on page 68.
imm Is an expression evaluating to an integer in the range 0-255 (8-bit value).
Operation

The SVC instruction causes the SVC exception.

imm is ignored by the processor. If required, it can be retrieved by the exception handler to
determine what service is being requested.

Condition flags

This instruction does not change the flags.

Examples

SVC #0x32 ; Supervisor Call (SVCall handler can extract the immediate
; value by locating it through the stacked PC)

WFE
Wait For Event.

Syntax
WFE{cond}
Where:

cond Is an optional condition code. See Conditional execution on page 68.

Operation

WEFE is a hint instruction.

If the event register is 0, WFE suspends execution until one of the following events occurs:

e An exception, unless masked by the exception mask registers or the current priority
level.

e An exception enters the Pending state, if SEVONPEND in the System Control register
is set.

e A Debug Entry request, if Debug is enabled.

e An event signaled by a peripheral or another processor in a multiprocessor system
using the SEV instruction.

If the event register is 1, WFE clears it to 0 and returns immediately.

For more information see Power management on page 50.

DoclD028474 Rev 3 181/252

The Cortex-M7 instruction set

PM0253

3.12.12

182/252

Condition flags

This instruction does not change the flags.
Examples

WFE ; Wait for event

WFI
Wait for Interrupt.

Syntax

WFI{cond}

Where:

cond Is an optional condition code. See Conditional execution on page 68.

Operation

WFl is a hint instruction that suspends execution until one of the following events occurs:

e A non-masked interrupt occurs and is taken.
e Aninterrupt masked by PRIMASK becomes pending.

e A Debug Entry request.

Condition flags

This instruction does not change the flags.

Examples

WFI ; Wait for interrupt

DoclD028474 Rev 3

3

PM0253 Cortex-M7 Peripherals

4 Cortex-M7 Peripherals

41 About the Cortex-M7 peripherals
The address map of the Private peripheral bus (PPB) is:

3

Table 38. Core peripheral register regions

Address

Core peripheral

Description

0xEOOOE008-0xEOOOEOOF

System control block

Table 49 on page 192

0xEOOOE010-0xEOOOEO1F

System timer

Table 70 on page 213

0xEOOOE100-0xEOOOE4EF

Nested Vectored Interrupt Controller

Table 39 on page 184

OxEOOOEDOO0-OXEOOOED3F

System control block

Table 49 on page 192

OxEOOOED78- OXEOOOED84

Processor features

Table 76 on page 217

0xEOOOED90-0xEOOOEDBS

Memory Protection Unit

Table 83 on page 222

0xEOOOEFO00-0xEOOOEFO03

Nested Vectored Interrupt Controller

Table 39 on page 184

OxEOOOEF30-0xEOOOEF44

Floating-Point Unit

Table 93 on page 233

OxEOOOEF50-0xEOOOEF78

Cache maintenance operations

Table 99 on page 238

OxEOOOEF90-0xEOOOEFAS8

Access control

Table 103 on page 243

In the register descriptions:

e the register type is described as follows:
RW Read and write.

RO Read-only.
wo Write-only.

e the required privilege gives the privilege level required to access the register, as

follows:
Privileged

Only privileged software can access the register.

Unprivileged

Both unprivileged and privileged software can access the register.

Attempting to access a privileged register from unprivileged software results in a BusFault.

DoclD028474 Rev 3

183/252

Cortex-M7 Peripherals

PM0253

4.2 Nested Vectored Interrupt Controller

This section describes the NVIC and the registers it uses. The NVIC supports:

e 1to 240 interrupts.

e A programmable priority level of 0-255 for each interrupt. A higher level corresponds to

a lower priority, so level 0 is the highest interrupt priority.

e Level and pulse detection of interrupt signals.

e Dynamic reprioritization of interrupts.

e Grouping of priority values into group priority and subpriority fields.

e Interrupt tail-chaining.

e An external Non Maskable Interrupt (NMI)

The processor automatically stacks its state on exception entry and unstacks this state on

exception exit, with no instruction overhead. This provides low latency exception handling.

The hardware implementation of the NVIC registers is:

Table 39. NVIC register summary
Required Reset L
Address Name Type . Description
privilege value

OXEOOOE100- | NVIC_ISERO- - Interrupt Set-enable registers on
OXEO0OE11C | NvIC_ISER7 | "W | Privileged | 0x00000000 page 185
0XEOOOE180- | NVIC_ICERO- - Interrupt clear-enable registers on
OXEO00E19C | NviC_IcEr7 | RW | Privileged | 0x00000000 page 186
0XEOOOE200- | NVIC_ISPRO- L Interrupt set-pending registers on
OXE000E21C | NvIC_Ispr7 | RW | Privileged 1 0x00000000 page 186
OXEOOOE280- | NVIC_ICPRO- - Interrupt clear-pending registers on
OXEO00E29C | NviC_Icpr7 | RW | Privileged | 0x00000000 page 187
OxEOOOE300- | NVIC_IABRO- . Interrupt Active Bit registers on
OXEO00E31C | NvIC_|ABR7 | RW | Privileged | 0x00000000 page 188
OxEOOOE400- | NVIC_IPRO- - . .
OXEOOOE4EF | NVIC_IPR59 RW Privileged 0x00000000 | Interrupt Priority registers on page 188
O0XE000EF00 STIR WO | Configurable | 0x00000000 | Scftware Tr ’9%‘;; ’g%’;’pt register on

1. See the register description for more information.

184/252

DoclD028474 Rev 3

3

PM0253 Cortex-M7 Peripherals
4.2.1 Accessing the Cortex®-M7 NVIC registers using CMSIS

CMSIS functions enable the software portability between different Cortex®-M profile

processors. To access the NVIC registers when using CMSIS, use the following functions:

Table 40. CMSIS access NVIC functions
CMSIS function Description

void NVIC_EnableIRQ(IRQn_Type IRQn)(!) |Enables an interrupt or exception.

void NVIC_DisableIRQ(IRQn_Type IROn)(") |Disables an interrupt or exception.

void NVIC_SetPendingIRQ (IRQn_Type Sets the pending status of interrupt or

IROnN) M exception to 1.

void NVIC_ClearPendingIRQ (IRQn_Type Clears the pending status of interrupt or

TRQn) (1) exception to 0.

uint32_t NVIC_GetPendingIRQ (IRQn_Type |Reads the pending status of interrupt or

IROnN) M exception. This function returns non-zero value

if the pending status is set to 1.

void NVIC_SetPriority (IRQn_Type IRQn, |Sets the priority of an interrupt or exception

uint32_t priority)® with configurable priority level to 1.

uint32_t NVIC_GetPriority (IRQn_Type Reads the priority of an interrupt or exception

Tron) () with configurable priority level. This function

return the current priority level.

1. The input parameter IRQn is the IRQ number, see Table 18 on page 40 for more information.

4.2.2 Interrupt Set-enable registers

3

The NVIC_ISERO-NVIC_ISERY registers enable interrupts, and show which interrupts are
enabled. See the register summary in Table 39 on page 184 for the register attributes.

The bit assignments are:

Figure 17. ISER bit assignments

31

SETENA bits

MSv39675V1

Table 41. ISER bit assignments

Bits Name

Function

Write:

[31:0] SETENA

Read:

Interrupt set-enable bits.

0: No effect.
1: Enable interrupt.

0: Interrupt disabled.
1: Interrupt enabled.

DoclD028474 Rev 3

185/252

Cortex-M7 Peripherals PM0253

4.2.3

4.2.4

186/252

If a pending interrupt is enabled, the NVIC activates the interrupt based on its priority. If an
interrupt is not enabled, asserting its interrupt signal changes the interrupt state to pending,
but the NVIC never activates the interrupt, regardless of its priority.

Interrupt clear-enable registers

The NVIC_ICERO-NVIC_ICERTY registers disable interrupts, and show which interrupts are
enabled. See the register summary in Table 39 on page 184 for the register attributes.

The bit assignments are:

Figure 18. ICER bit assignment

31 0

CLRENA bits

MSv39671V1

Table 42. ICER bit assignments

Bits Name Function

Interrupt clear-enable bits.
Write:

0: No effect.
[31:0] CLRENA 1: Disable interrupt.
Read:

0: Interrupt disabled.

1: Interrupt enabled.

Interrupt set-pending registers

The NVIC_ISPRO-NVIC_ISPRY registers force interrupts into the pending state, and show
which interrupts are pending. See the register summary in Table 39 on page 184 for the
register attributes.

The bit assignments are:

Figure 19. ISPR bit assignments

31 0

SETPEND bits

MSv39676V1

3

DoclD028474 Rev 3

PM0253 Cortex-M7 Peripherals
Table 43. ISPR bit assignments
Bits Name Function
Interrupt set-pending bits.
Write:
0: No effect.
[31:0] SETPEND 1: Changes interrupt state to pending.
Read:
0: Interrupt is not pending.
1: Interrupt is pending.
Writing 1 to the ISPR bit corresponding to:
e Aninterrupt that is pending has no effect.
e Adisabled interrupt sets the state of that interrupt to pending.
4.2.5 Interrupt clear-pending registers

3

The NVIC_ICPRO-NCVIC_ICPRY registers remove the pending state from interrupts, and
show which interrupts are pending. See the register summary in Table 39 on page 184 for
the register attributes.

The bit assignments are:

Figure 20. ICPR bit assignments

31

CLRPEND bits

MSv39672V1

Table 44. ICPR bit assignments

Bits

Name

Function

[31:0]

CLRPEND

Interrupt clear-pending bits.
Write:

0: No effect.

1: Removes pending state an interrupt.
Read:

0: Interrupt is not pending.

1: Interrupt is pending.

Writing 1 to an ICPR bit does not affect the active state of the corresponding interrupt.

DoclD028474 Rev 3 187/252

Cortex-M7 Peripherals PM0253

4.2.6

4.2.7

188/252

Interrupt Active Bit registers

The NVIC_IABRO-NVIC_IABRY registers indicate which interrupts are active. See the
register summary in Table 39 on page 184 for the register attributes.

The bit assignments are:

Figure 21. IABR bit assignments

ACTIVE bits

MSv39670V1

Table 45. IABR bit assignments

Bits Name Function

Interrupt active flags:
[31:0] ACTIVE 0: Interrupt not active.
1: Interrupt active.

A bit is read as one if the status of the corresponding interrupt is active or active and
pending.
Interrupt Priority registers

The NVIC_IPRO-NVIC_IPR59 registers provide an 8-bit priority field for each interrupt.
These registers are byte-accessible. See the register summary in Table 39 on page 184 for
their attributes. Each register holds four priority fields as shown:

Figure 22. IPR bit assignments

31 24 23 16 15 8 7 0
IPR59 PRI_N239 PRI_N238 PRI_N237 PRI_N236
IPRn PRI_N4n+3 PRI_N4n+2 PRI_N4n+1 PRI_N4n
IPRO PRI_N3 PRI_N2 PRI_N1 PRI_NO
MSv39674V1

3

DoclD028474 Rev 3

PM0253 Cortex-M7 Peripherals
Table 46. IPR bit assignments
Bits Name Function
[31:24] | Priority, byte offset 3
. . Each priority field holds a priority value, 0-255. The lower the
[23:16] | Priority, byte offset 2 value, the greater the priority of the corresponding interrupt. The
[15:8] Priority, byte offset 1 processor implementg only bits[7:n] of each field, bits[n-1:0] read
as zero and ignore writes.

[7:0] Priority, byte offset 0
See Accessing the Cortex®-M7 NVIC registers using CMSIS on page 185 for more
information about the access to the interrupt priority array, which provides the software view
of the interrupt priorities.
Find the IPR number and byte offset for interrupt m as follows:
e the corresponding IPR number, see Table 45 on page 188 n is given by n = m DIV 4
e the byte offset of the required Priority field in this register is m MOD 4, where:

— Byte offset 0 refers to register bits[7:0].

— Byte offset 1 refers to register bits[15:8].

— Byte offset 2 refers to register bits[23:16].

— Byte offset 3 refers to register bits[31:24].

428 Software Trigger Interrupt register

3

Write to the STIR to generate an interrupt from software. See the register summary in
Table 39 on page 184 for the STIR attributes.

When the USERSETMPEND bit in the SCR is set to 1, unprivileged software can access
the STIR, see System Control register on page 199.

Only privileged software can enable unprivileged access to the STIR.

The bit assignments are:

Figure 23. STIR bit assignments

31 9 8 0

Reserved INTID

MSv39692V1

Table 47. STIR bit assignments

Bits Field Function

[31:9] - Reserved.

[8:0] INTID Interrupt ID of the interrupt to trigger, in the range 0-239. For

example, a value of 0x03 specifies interrupt IRQ3.

DoclD028474 Rev 3 189/252

Cortex-M7 Peripherals PM0253

4.2.9 Level-sensitive and pulse interrupts

The processor supports both level-sensitive and pulse interrupts. The pulse interrupts are
also described as edge-triggered interrupts.

A level-sensitive interrupt is held asserted until the peripheral deasserts the interrupt signal.
Typically this happens because the ISR accesses the peripheral, causing it to clear the
interrupt request. A pulse interrupt is an interrupt signal sampled synchronously on the
rising edge of the processor clock. To ensure the NVIC detects the interrupt, the peripheral
must assert the interrupt signal for at least one clock cycle, during which the NVIC detects
the pulse and latches the interrupt.

When the processor enters the ISR, it automatically removes the pending state from the
interrupt, see Hardware and software control of interrupts on page 190. For a level-sensitive
interrupt, if the signal is not deasserted before the processor returns from the ISR, the
interrupt becomes pending again, and the processor must execute its ISR again. This
means that the peripheral can hold the interrupt signal asserted until it no longer requires
servicing.

Hardware and software control of interrupts

e The Cortex®-M7 latches all interrupts. A peripheral interrupt becomes pending for one
of the following reasons:

e The NVIC detects that the interrupt signal is HIGH and the interrupt is not active.
e The NVIC detects a rising edge on the interrupt signal.

e Software writes to the corresponding interrupt set-pending register bit, see Interrupt
set-pending registers on page 186, or to the STIR to make an interrupt pending, see
Software Trigger Interrupt register on page 189.

A pending interrupt remains pending until one of the following:

e The processor enters the ISR for the interrupt. This changes the state of the interrupt
from pending to active. Then:

— For a level-sensitive interrupt, when the processor returns from the ISR, the NVIC
samples the interrupt signal. If the signal is asserted, the state of the interrupt
changes to pending, which might cause the processor to immediately re-enter the
ISR. Otherwise, the state of the interrupt changes to inactive.

— For a pulse interrupt, the NVIC continues to monitor the interrupt signal, and if this
is pulsed the state of the interrupt changes to pending and active. In this case,
when the processor returns from the ISR the state of the interrupt changes to
pending, which might cause the processor to immediately re-enter the ISR.

— If the interrupt signal is not pulsed while the processor is in the ISR, when the
processor returns from the ISR the state of the interrupt changes to inactive.

e The software writes to the corresponding interrupt clear-pending register bit.

For a level-sensitive interrupt, if the interrupt signal is still asserted, the state of the
interrupt does not change. Otherwise, the state of the interrupt changes to inactive.

For a pulse interrupt, the state of the interrupt changes to:
— Inactive, if the state was pending.
— Active, if the state was active and pending.

3

190/252 DoclD028474 Rev 3

PM0253

Cortex-M7 Peripherals

4.2.10

3

NVIC design hints and tips

Ensure that the software uses correctly aligned register accesses. The processor does not
support unaligned accesses to NVIC registers. See the individual register descriptions for
the supported access sizes.

An interrupt can enter pending state even if it is disabled. Disabling an interrupt only
prevents the processor from taking that interrupt.

Before programming VTOR to relocate the vector table, ensure the vector table entries of
the new vector table are set up for fault handlers, NMI, and all enabled exception-like
interrupts. For more information see Vector Table Offset register on page 197.

NVIC programming hints

The software uses the CPSIE | and CPSID I instructions to enable and disable interrupts.
The CMSIS provides the following intrinsic functions for these instructions:

void _ disable_irg(void) // Disable Interrupts
void __enable_irqg(void) // Enable Interrupts

In addition, the CMSIS provides a number of functions for NVIC control, including:

Table 48. CMSIS functions for NVIC control

CMSIS interrupt control function Description

void NVIC_SetPriorityGrouping (uint32_t

priority grouping) Set the priority grouping

void NVIC_EnableIRQ(IRQn_t IRQn) Enable IRQnN

void NVIC_DisableIRQ(IRQn_t IRQn) Disable IRQnN

uint32_t NVIC_GetPendingIRQ (IRQn_t IROn) |Return true (IRQ-Number) if IRQn is
pending

void NVIC_SetPendingIRQ (IRQn_t IRQn) Set IRQn pending

void NVIC_ClearPendingIRQ (IRQn_t IRQn) Clear IRQn pending status

uint32_t NVIC_GetActive (IRQn_t IRQn) Return the IRQ number of the active
interrupt

void NVIC_SetPriority (IRQn_t IRQn,

uint32 t priority) Set priority for IRQn

uint32_t NVIC_GetPriority (IRQn_t IRQn) Read priority of IRQn

The input parameter IRQn is the IRQ number, see Table 18 on page 40. For more
information about these functions see the CMSIS documentation.

DoclD028474 Rev 3 191/252

Cortex-M7 Peripherals

PM0253

4.3 System control block

The System Control Block (SCB) provides system implementation information, and system

control. This includes configuration, control, and reporting of the system exceptions. The

system control block registers are:

Table 49. Summary of the system control block registers
Address Name Type Re_qflired Reset Description
privilege value

OxEOOOEO08 |ACTLR [|RW Privileged | 0x00000000 |Auxiliary Control register on page 193
OxEOOOEDOO |CPUID RO Privileged |0x410FC270 | CPUID Base register on page 194
OxEOOOEDO4 |ICSR Rw(") Privileged | 0x00000000 | /Interrupt Control and State register on page 194
OxEOOOEDO8 |VTOR RW Privileged | Unknown Vector Table Offset register on page 197
0XE000EDOC |AIRCR |RW(M |Privileged | 0xFA050000 ﬁgggcf;’;’” Interrupt and Reset Control register on
OxEOOOED10 |SCR RW Privileged | 0x00000000 | System Control register on page 199
OxEOOOED14 |CCR RW Privileged | 0x00000200 | Configuration and Control register on page 200
OxEOOOED18 |SHPR1 RW Privileged | 0x00000000 | System Handler Priority register 1 on page 202
OXEOOOED1C |SHPR2 |RW Privileged | 0x00000000 | System Handler Priority register 2 on page 203
OxEOOOED20 |SHPR3 |RW Privileged | 0x00000000 | System Handler Priority register 3 on page 203
O0XEO00ED24 |SHCRS |RW Privileged |0x00000000 ig;;egoja”d’er Control and State register on
O0xEOOOED28 |CFSR RW Privileged | 0x00000000 | Configurable Fault Status register on page 205
OXxEOO0OED28 |MMSR(® |RW Privileged | 0x00 MemManage Fault Address register on page 211
OxEOOOED29 |BFSR@ [RW Privileged | 0x00 BusFault Status register on page 207
OXEOOOED2A |UFSR® |RW Privileged | 0x0000 Auxiliary Control register on page 193
OxEOOOED2C |HFSR RW Privileged | 0x00000000 | HardFault Status register on page 210
OxEOOOED34 | MMAR RwW Privileged |Unknown MemManage Fault Address register on page 211
OxEOOOED38 |BFAR RW Privileged | Unknown BusFault Address register on page 212
OxEOOOED3C |AFSR RAZ/WI | Privileged |- Auxiliary Fault Status register not implemented

1. See the register description for more information.

2. A subregister of the CFSR.

192/252

DoclD028474 Rev 3

3

PM0253

Cortex-M7 Peripherals

4.3.1

3

Auxiliary Control register

The ACTLR provides disable bits for the following processor functions:
. FPU exception outputs.

e Dual-issue functionality.

e Flushing of the trace output from the ITM and DWT.

e Dynamic read allocate mode.

By default this register is set to provide optimum performance from the Cortex®-M7
processor, and does not normally require modification.

See the register summary in Table 49 on page 192 for the ACTLR attributes. The bit
assignments are:

Figure 24. ACTLR bit assignments

31

13121110 9 3210

Reserved Reserved

DISITMATBFLUSH DISFOLDJ
DISRAMODE Reserved

FPEXCODIS
MSv39648V1

Table 50. ACTLR bit assignments

Bits

Name

Function

[31:13]

Reserved

[12]

DISITMATBFLUSH

Disables ITM and DWT ATB flush:

0: Normal operation.
1: ITM and DWT ATB flush disabled.

(1]

DISRAMODE

Disables dynamic read allocate mode for Write-Back Write-Allocate
memory regions:

0: Normal operation.

1: Dynamic read allocate mode disabled.

[10]

FPEXCODIS

Disables FPU exception outputs:

0: Normal operation.
1: FPU exception outputs are disabled.

[9:3]

Reserved.

(2]

DISFOLD

Disables dual-issue functionality:

0: Normal operation.
1: Dual-issue functionality is disabled. Setting this bit decreases
performance.

[1:0]

Reserved.

DoclD028474 Rev 3 193/252

Cortex-M7 Peripherals

PM0253

4.3.2 CPUID Base register

The CPUID register contains the processor part number, version, and implementation
information. See the register summary in Table 49 on page 192 for its attributes. The bit
assignments are:

Figure 25. CPUID bit assignments

31 2423 2019 16 15 4.3 0
Implementer Variant Constant PartNo Revision
MSv39661V1
Table 51. CPUID bit assignments
Bits Name Function
] Implementer code:
[31:24] Implementer 0xd1 ARM
[23:20] | Variant Variant nur.nF)er, the r value in the rnpn product revision identifier:
0x0 Revision 0
[19:16] |Constant Reads as OxF
] Part number of the processor:
[15:4] PartNo 0xC27: Cortex®-M7
[3:0] Revision Revision number, the p value in the rnpn product revision identifier:
0x0: Patch O
4.3.3 Interrupt Control and State register
The ICSR:

e provides:
A set-pending bit for the Non Maskable Interrupt (NMI) exception.
Set-pending and clear-pending bits for the PendSV and SysTick exceptions.
e indicates:
The exception number of the exception being processed.
Whether there are preempted active exceptions.

The exception number of the highest priority pending exception
Whether any interrupts are pending.

See the register summary in Table 49 on page 192, and the type descriptions in Table 52 on
page 195, for the ICSR attributes. The bit assignments are:

194/252

3

DoclD028474 Rev 3

PM0253

Cortex-M7 Peripherals

Figure 26. ICSR bit assignments

NMIPENDSET
Reserved
PENDSVSET
PENDSVCLR
PENDSTSET

31302928

27 26 2524 23 22 21 20 121110 9 8 0

VECTPENDING VECTACTIVE

— |

Reserved for Debug use
Reserved

L Reserved LReserved
ISRPENDING RETTOBASE

PENDSTCLR

MSv39673V1

Table 52. ICSR bit assignments

Bits

Name

Type

Function

(31]

NMIPENDSET

RwW

NMI set-pending bit.
Write:

0: No effect.

1: Changes NMI exception state to pending.
Read:

0: NMI exception is not pending.

1: NMI exception is pending.
Because NMl is the highest-priority exception, normally the processor
enters the NMI exception handler as soon as it registers a write of 1 to this
bit, and entering the handler clears this bit to 0. A read of this bit by the
NMI exception handler returns 1 only if the NMI signal is reasserted while
the processor is executing that handler.

[30:29]

Reserved.

(28]

PENDSVSET

RW

PendSV set-pending bit.
Write:

0: No effect.

1: Changes PendSV exception state to pending.
Read:

0: PendSV exception is not pending.

1: PendSV exception is pending.

Writing 1 to this bit is the only way to set the PendSV exception state to
pending.

[27]

PENDSVCLR

wo

PendSV clear-pending bit.
Write:
0: No effect.
1: Removes the pending state from the PendSV exception.

(26]

PENDSTSET

RW

SysTick exception set-pending bit.
Write:

0: No effect.
1: Changes SysTick exception state to pending.

Read:
0: SysTick exception is not pending.
1: SysTick exception is pending.

3

DoclD028474 Rev 3 195/252

Cortex-M7 Peripherals

PM0253

Table 52. ICSR bit assignments (continued)

Bits

Name

Type

Function

(2]

PENDSTCLR

wo

SysTick exception clear-pending bit.
Write:

0: No effect.

1: Removes the pending state from the SysTick exception.
This bit is WO. On a register read its value is Unknown.

(24]

Reserved.

(23]

Reserved for Debug
use

RO

This bit is reserved for Debug use and reads-as-zero when the processor
is not in Debug.

(22]

ISRPENDING

RO

Interrupt pending flag, excluding NMI and Faults:
0: Interrupt not pending.
1: Interrupt pending.

(21]

Reserved.

[20:12]

VECTPENDING

RO

Indicates the exception number of the highest priority pending enabled
exception:
0: No pending exceptions.
Nonzero: The exception number of the highest priority pending enabled
exception.
The value indicated by this field includes the effect of the BASEPRI and
FAULTMASK registers, but not any effect of the PRIMASK register.

(1]

RETTOBASE

RO

Indicates whether there are preempted active exceptions:
0: There are preempted active exceptions to execute.

1: There are no active exceptions, or the currently-executing exception
is the only active exception.

[10:9]

Reserved.

8:0]

VECTACTIVE(

RO

Contains the active exception number:

0: Thread mode

1: The exception number(!) of the currently active exception.
Subtract 16 from this value to obtain the CMSIS IRQ number required to
index into the Interrupt Clear-Enable, Set-Enable, Clear-Pending, Set-
Pending, or Priority Registers, see Table 5 on page 24.

1. This is the same value as IPSR bits[8:0], see Interrupt Program Status register on page 23.

196/252

When writing to the ICSR, the effect is unpredictable if the user:

Writes 1 to the PENDSVSET bit and writes 1 to the PENDSVCLR bit.
Writes 1 to the PENDSTSET bit and writes 1 to the PENDSTCLR bit.

DoclD028474 Rev 3

3

PM0253

Cortex-M7 Peripherals

4.3.4

4.3.5

3

Vector Table Offset register

The VTOR indicates the offset of the vector table base address from memory address
0x00000000. See the register summary in Table 49 on page 192 for its attributes. The bit
assignments are:

Figure 27. VTOR bit assignments

31 9 8 0

TBLOFF Reserved

MSv39699V1

Table 53. VTOR bit assignments

Bits Name Function
[31:9] | TBLOFF Vector table base offset field. It contains bits [29:7] of the offset of the table base
from the bottom of the memory map.
[8:0] - Reserved.

When setting TBLOFF, the user must align the offset to the number of exception entries in
the vector table.

The table alignment requirements mean that bits [8:0] of the table offset are always zero.

Application Interrupt and Reset Control register

The AIRCR provides priority grouping control for the exception model, endian status for data
accesses, and reset control of the system. See the register summary in Table 49 on
page 192 and Table 54 on page 198 for its attributes.

To write to this register, the user must write Ox5FA to the VECTKEY field, otherwise the
processor ignores the write.

The bit assignments are:

Figure 28. AIRCR bit assignments

31 16 15 14 11 10 8 7 3210

On read: VECTKEYSTAT
On write: VECTKEY

Reserved Reserved

ENDIANNESS -/ PRIGROUP SYSRESETREQ:_I
VECTCLRACTIVE

Reserved for Debug use
VECTRESET

MSv39651V1

DoclD028474 Rev 3 197/252

Cortex-M7 Peripherals

PM0253

198/252

Table 54. AIRCR bit assignments

Bits Name Type Function
[31:16] |VECTKEYSTAT |Rw | cadsastx
Write: VECTKEY Qn writes, write Ox5FA to VECTKEY, otherwise the write is
ignored.
Dat di bit:
[15] ENDIANNESS RO |-2@endianness bi
0: Little-endian.

[14:11] |- - Reserved

[10:8] PRIGROUP RW Interrupt pr.lorllty grouping flc.eld.. This flelfj determlnes the split
of group priority from subpriority, see Binary point.

[7:3] - - Reserved.

System reset request:
0: No system reset request.

2] SYSRESETREQ WO 1 Asgzrts a signal to the outer system that requests ? reset.
This is intended to force a large system reset of all major
components except for debug.

This bit reads as 0.
Reserved for Debug use. This bit reads as 0. When writing to

[1] VECTCLRACTIVE |WO |the register the user must write 0 to this bit, otherwise
behavior is Unpredictable.

Reserved for Debug use. This bit reads as 0. When writing to

[0] VECTRESET WO |the register the user must write 0 to this bit, otherwise
behavior is Unpredictable.

Binary point

The PRIGROUP field indicates the position of the binary point that splits the PRI_n fields in
the Interrupt Priority Registers into separate group priority and subpriority fields. Table 55
shows how the PRIGROUP value controls this split.

If the user implements fewer than 8 priority bits he might require more explanation here, and
want to remove invalid rows from the table, and modify the entries in the number of

columns.
Table 55. Priority grouping
Interrupt priority level value, PRI_N[7:0] Number of
. . (1) | Group priority Subpriority Group .

PRIGROUP | Binary point bits bits priorities Subpriorities
0b000 bXXXXxxX.y [7:1] [0] 128 2

0b001 bxxxxxx.yy [7:2] [1:0] 64 4

0b010 bxxxxx.yyy [7:3] [2:0] 32 8

0b011 bxxxx.yyyy [7:4] [3:0] 16 16

0b100 bxxx.yyyyy [7:5] [4:0] 8 32

DoclD028474 Rev 3

3

PM0253 Cortex-M7 Peripherals
Table 55. Priority grouping (continued)
Interrupt priority level value, PRI_N[7:0] Number of
. . (1) | Group priority Subpriority Group .

PRIGROUP | Binary point bits bits priorities Subpriorities

0b101 bxx.yyyyyy [7:6] [5:0] 4 64

0b110 bx.yyyyyyy [7] [6:0] 2 128

Ob111 b.yyyyyyyy None [7:0] 1 256

1. fRI_n[?:O] field showing the binary point. x denotes a group priority field bit, and y denotes a subpriority

ield bit.

Note: Determining preemption of an exception uses only the group priority field, see Interrupt

priority grouping on page 43.
4.3.6 System Control register

The SCR controls features of entry to and exit from Low-power state. See the register
summary in Table 49 on page 192 for its attributes. The bit assignments are

Figure 29. SCR bit assignments:

31 54 3 210

SEVONPEND J
Reserved

SLEEPDEEP
SLEEPONEXIT
Reserved

Reserved

MSv39687V1

Table 56. SCR bit assignments

Function

Bits Name

[31:5] Reserved.

Send Event on Pending bit:

0: Only enabled interrupts or events can wakeup the processor,
disabled interrupts are excluded.
1: Enabled events and all interrupts, including disabled interrupts, can
wakeup the processor.
When an event or interrupt enters pending state, the event signal wakes
up the processor from WFE. If the processor is not waiting for an event,
the event is registered and affects the next WFE.

The processor also wakes up on execution of an SEV instruction or an
external event.

[4] | SEVONPEND

[3] - Reserved.

3

DoclD028474 Rev 3 199/252

Cortex-M7 Peripherals PM0253

43.7

200/252

Table 56. SCR bit assignments (continued)

Bits Name Function

Controls whether the processor uses sleep or deep sleep as its Low-

2 SLEEPDEEP power mode:
[2] 0: Sleep.

1: Deep sleep.

Indicates sleep-on-exit when returning from Handler mode to Thread
mode:
0: Do not sleep when returning to Thread mode.

] SLEEPONEXIT 1: Enter sleep, or deep sleep, on return from an ISR.

Setting this bit to 1 enables an interrupt driven application to avoid
returning to an empty main application.

(0] - Reserved.

Configuration and Control register

The CCR controls entry to Thread mode and enables:

e The handlers for NMI, hard fault and faults escalated by FAULTMASK to ignore
BusFaults.

e Trapping of divide by zero and unaligned accesses.

e Access to the STIR by unprivileged software, see Software Trigger Interrupt register on
page 189.

e Instruction and data cache enable control.
See the register summary in Table 49 on page 192 for the CCR attributes.

The bit assignments are:

Figure 30. CCR bit assignments

31 19 18 17 16 15 10 9 8 7 543210

Reserved Reserved

BP J STKALIGN J

IC BFHFNMIGN
DC Reserved
DIV_0_TRP

UNALIGN_TRP

Reserved

USERSETMPEND
NONBASETHRDENA

MSv39656V1

3

DoclD028474 Rev 3

PM0253

Cortex-M7 Peripherals

3

Table 57. CCR bit assignments

Bits Name Type Function
[31:19] |- - Reserved.
[18] BP RO | Always reads-as-one. It indicates branch prediction is enabled.
Enables L1 instruction cache:
[17] IC RwW 0: L1 instruction cache disabled.
1: L1 instruction cache enabled.
Enables L1data cache:
[16] DC RW 0: L1 data cache disabled.
1: L1 data cache enabled.
[15:10] |- - Reserved.
Always reads-as-one. It indicates stack alignment on
exception entry is 8-byte aligned.
On exception entry, the processor uses bit[9] of the stacked
9 STKALIGN RO
[9] PSR to indicate the stack alignment. On return from the
exception it uses this stacked bit to restore the correct stack
alignment.
Enables handlers with priority -1 or -2 to ignore data BusFaults
caused by load and store instructions. This applies to the hard
fault, NMI, and FAULTMASK escalated handlers:
0:Data bus faults caused by load and store instructions
cause a lock-up.
[8] BFHFNMIGN RW 1: Handlers running at priority -1 and -2 ignore data bus
faults caused by load and store instructions.
Set this bit to 1 only when the handler and its data are in
absolutely safe memory. The normal use of this bit is to probe
system devices and bridges to detect control path problems
and fix them.
[7:5] - - Reserved.
Enables faulting or halting when the processor executes an
SDIV or UDIV instruction with a divisor of 0:
0: Do not trap divide by 0.
(4l DIV_0_TRP RW 1: Trap divide by 0.
When this bit is set to 0, a divide by zero returns a quotient of
0.
Enables unaligned access traps:
0: Do not trap unaligned halfword and word accesses.
1: Trap unaligned halfword and word accesses.
[3] UNALIGN_TRP RW | If this bit is set to 1, an unaligned access generates a

UsageFault.

Unaligned LDM, STM, LDRD, and STRD instructions always
fault irrespective of whether UNALIGN_TRP is set to 1.

(2]

Reserved.

DoclD028474 Rev 3

201/252

Cortex-M7 Peripherals

PM0253

4.3.8

202/252

Table 57. CCR bit assignments (continued)

Bits Name

Type

Function

] USERSETMPEND

RwW

Enables unprivileged software access to the STIR, see
Software Trigger Interrupt register on page 189:
0: Disable.
1: Enable.

0] NA

NONBASETHRDE

RW

Indicates how the processor enters Thread mode:
0: Processor can enter Thread mode only when no
exception is active.
1: Processor can enter Thread mode from any level under
the control of an EXC_RETURN value, see Exception
return on page 46.

System Handler Priority registers

The SHPR1-SHPR3 registers set the priority level, 0 to 255 of the exception handlers that
have configurable priority.

SHPR1-SHPR3 are byte accessible. See the register summary in Table 49 on page 192 for

their attributes.

The system fault handlers and the priority field and register for each handler are:

Table 58. System fault handler priority fields

Handler Field Register description

MemManage PRI_4
BusFault PRI_5 System Handler Priority register 1
UsageFault PRI_6
SVCall PRI_11 System Handler Priority register 2
PendSV PRI_14

System Handler Priority register 3
SysTick PRI_15

Each PRI_n field is 8 bits wide, but the processor implements only bits[7:M] of each field,
and bits[M-1:0] read as zero and ignore writes.

System Handler Priority register 1

The bit assignments are:

Figure 31. SHPR1 bit assignements

31

24 23

16 15 8 7 0

Reserved

PRI_6 PRI_5 PRI_4

MSv39689V1

DoclD028474 Rev 3

S74

PM0253 Cortex-M7 Peripherals

Table 59. SHPR1 register bit assignments

Bits Name Function

[31:24] PRI _7 Reserved

[23:16] PRI_6 Priority of system handler 6, UsageFault
[15:8] PRI_5 Priority of system handler 5, BusFault
[7:0] PRI_4 Priority of system handler 4, MemManage

System Handler Priority register 2

The bit assignments are:

Figure 32. SHPR2 bit assignments

31 24 23 0

PRI_11 Reserved

MSv39690V1

Table 60. SHPR2 register bit assignments

Bits Name Function

[31:24] PRI_11 Priority of system handler 11, SVCall
[23:0] - Reserved

System Handler Priority register 3

The bit assignments are:

Figure 33. SHPR3 bit assignments

31 24 23 16 15 0

PRI_15 PRI_14 Reserved

MSv39691V1

Table 61. SHPRS register bit assignments

Bits Name Function
[31:24] PRI_15 Priority of system handler 15, SysTick exception
[23:16] PRI_14 Priority of system handler 14, PendSV
[15:0] - Reserved
Kys DoclD028474 Rev 3 203/252

Cortex-M7 Peripherals

PM0253

4.3.9

204/252

System Handler Control and State register

The SHCSR enables the system handlers, and indicates:
e The pending status of the BusFault, MemManage fault, and SVC exceptions.
e The active status of the system handlers.

See the register summary in Table 49 on page 192 for the SHCSR attributes. The bit
assignments are:

Figure 34. SHCSR bit assignments

31 191817161514131211109 8 76 4 3 2 1 0
Reserved
USGFAULTENA _ L MEMFAULTACT
BUSFAULTENA BUSFAULTACT
MEMFAULTENA Reserved
SVCALLPENDED USGFAULTACT
BUSFAULTPENDED Reserved
MEMFAULTPENDED
USGFAULTPENDED
SYSTICKACT
PENDSVACT
Reserved
MONITORACT
SVCALLACT MSv39688V1
Table 62. SHCSR bit assignments
Bits Name Function
[31:19] |- Reserved
[18] USGFAULTENA UsageFault enable bit, set to 1 to enable(!)
[17] BUSFAULTENA BusFault enable bit, set to 1 to enable(")
[16] MEMFAULTENA MemManage enable bit, set to 1 to enable(")
[15] SVCALLPENDED SVCall pending bit, reads as 1 if exception is pending(®
[14] BUSFAULTPENDED BusF.auI(tzt)exceptlon pending bit, reads as 1 if exception is
pending
[13] MEMFAULTPENDED Mem_l\/la(nzr;\ge exception pending bit, reads as 1 if exception is
pending
[12] USGFAULTPENDED Usag.eF?2L;It exception pending bit, reads as 1 if exception is
pending
[11] SYSTICKACT SysTick exception active bit, reads as 1 if exception is active(®
[10] PENDSVACT PendSV exception active bit, reads as 1 if exception is active
[l - Reserved
[8] MONITORACT Debug monitor active bit, reads as 1 if Debug monitor is active
[7] SVCALLACT SVCall active bit, reads as 1 if SVC call is active
[6:4] - Reserved
[3] USGFAULTACT UsageFault exception active bit, reads as 1 if exception is active

S74

DoclD028474 Rev 3

PM0253

Cortex-M7 Peripherals

4.3.10

3

Table 62. SHCSR bit assignments (continued)

Bits Name Function
[2] - Reserved
1] BUSFAULTACT BusFault exception active bit, reads as 1 if exception is active
[0] MEMFAULTACT MemManage exception active bit, reads as 1 if exception is active

1. Enable bits, set to 1 to enable the exception, or set to 0 to disable the exception.

2. Pending bits, read as 1 if the exception is pending, or as 0 if it is not pending. The user can write to these
bits to change the pending status of the exceptions.

3. Active bits, read as 1 if the exception is active, or as 0 if it is not active. The user can write to these bits to
change the active status of the exceptions, but see the Caution in this section.

If the user disables a system handler and the corresponding fault occurs, the processor
treats the fault as a hard fault.

The user can write to this register to change the pending or active status of system
exceptions. An OS kernel can write to the active bits to perform a context switch that
changes the current exception type.

e A software that changes the value of an active bit in this register without correct
adjustment to the stacked content can cause the processor to generate a fault
exception. Ensure a software that writes to this register retains and subsequently
restores the current active status.

e After having enabled the system handlers, if the user has to change the value of a bit in
this register he must use a read-modify-write procedure to ensure that only the required
bit is changed.

Configurable Fault Status register

The CFSR indicates the cause of a MemManage fault, BusFault, or UsageFault. See the
register summary in Table 49 on page 192 for its attributes. The bit assignments are:

Figure 35. CFSR bit assignments

31 16 15 8 7 0
.) Memory Management
Usage Fault Status Register Bus Fault Status Register Fault Status Register
L A A J
UFSR BFSR MMFSR

MSv39658V1

The following subsections describe the subregisters that make up the CFSR:
e MemManage Fault Status register on page 206.

e BusfFault Status register on page 207.

e UsageFault Status register on page 209.

DoclD028474 Rev 3 205/252

Cortex-M7 Peripherals

PM0253

The CFSR is byte accessible. The CFSR or its subregisters can be accessed as follows:
e Access the complete CFSR with a word access to 0OXEOOOED28.

e Access the MMFSR with a byte access to 0OXEOOOED28.

e Access the MMFSR and BFSR with a halfword access to 0OXEOOOED28.

e Access the BFSR with a byte access to OXEOOOED29.

e Access the UFSR with a halfword access to 0OXEOOOED2A.

MemManage Fault Status register

The flags in the MMFSR indicate the cause of memory access faults. The bit assignments

are:

Figure 36. MMFSR bit assignments

76543210

MMARVALID - LjaccvioL
Reserved DACCVIOL
MLSPERR Reserved

MSTKERR MUNSTKERR

MSv39680V1

Table 63. MMFSR bit assignments

Bits Name

Function

[71 |MMARVALID

MemManage Fault Address register (MMFAR) valid flag:

0: Value in MMAR is not a valid fault address.

1: MMAR holds a valid fault address.
If a MemManage fault occurs and is escalated to a HardFault because of
priority, the HardFault handler must set this bit to 0. This prevents problems
on return to a stacked active MemManage fault handler whose MMAR value
has been overwritten.

6] |-

Reserved.

5] |MLSPERR

0: No MemManage fault occurred during floating-point lazy state
preservation.

1: A MemManage fault occurred during floating-point lazy state
preservation.

[4] |MSTKERR

MemManage fault on stacking for exception entry:
0: No stacking fault.
1: Stacking for an exception entry has caused one or more access
violations.
When this bit is 1, the SP is still adjusted but the values in the context area
on the stack might be incorrect. The processor has not written a fault address
to the MMAR.

206/252

3

DoclD028474 Rev 3

PM0253

Cortex-M7 Peripherals

3

Table 63. MMFSR bit assignments (continued)

Bits Name Function

MemManage fault on unstacking for a return from exception:

0: No unstacking fault.

1: Unstack for an exception return has caused one or more access
3] MUNSTKERR violations.
This fault is chained to the handler. This means that when this bit is 1, the
original return stack is still present. The processor has not adjusted the SP
from the failing return, and has not performed a new save. The processor
has not written a fault address to the MMAR.

[2] - Reserved

Data access violation flag:

0: No data access violation fault.

1: The processor attempted a load or store at a location that does not
[1] DACCVIOL permit the operation.
When this bit is 1, the PC value stacked for the exception return points to the
faulting instruction. The processor has loaded the MMAR with the address of
the attempted access.

Instruction access violation flag:
0: No instruction access violation fault.
1: The processor attempted an instruction fetch from a location that does
not permit execution.
[0] |IACCVIOL This fault occurs on any access to an XN region, even when the MPU is
disabled or not present.

When this bit is 1, the PC value stacked for the exception return points to the
faulting instruction. The processor has not written a fault address to the

MMAR.

The MMFSR bits are sticky. This means as one or more fault occurs, the associated bits are
set to 1. A bit that is set to 1 is cleared to 0 only by writing 1 to that bit, or by a reset.

BusFault Status register

The flags in the BFSR indicate the cause of a bus access fault. The bit assignments are:

Figure 37. BFSR bit assignments

76 543210

BFARVALID - L IBUSERR
Reserved PRECISERR
LSPERR IMPRECISERR

STKERR UNSTKERR

MSv39653V1

DoclD028474 Rev 3 207/252

Cortex-M7 Peripherals

PM0253

Table 64. BFSR bit assignments

Bits

Name

Function

[7]

BFARVALID

BusFault Address register (BFAR) valid flag:

0: Value in BFAR is not a valid fault address.

1: BFAR holds a valid fault address.
The processor sets this bit to 1 after a BusFault where the address is known. Other
faults can set this bit to 0, such as a MemManage fault occurring later.
If a BusFault occurs and is escalated to a hard fault because of priority, the hard fault
handler must set this bit to 0. This prevents problems if returning to a stacked active
BusFault handler whose BFAR value has been overwritten.

6]

Reserved.

(5]

LSPERR

0: No bus fault occurred during floating-point lazy state preservation.
1: A bus fault occurred during floating-point lazy state preservation.

(4]

STKERR

BusFault on stacking for exception entry:
0: No stacking fault.
1: Stacking for an exception entry has caused one or more BusFaults.

When the processor sets this bit to 1, the SP is still adjusted but the values in the
context area on the stack might be incorrect. The processor does not write a fault
address to the BFAR.

(3]

UNSTKERR

BusFault on unstacking for a return from exception:

0: No unstacking fault.

1: Unstack for an exception return has caused one or more BusFaults.
This fault is chained to the handler. This means that when the processor sets this bit
to 1, the original return stack is still present. The processor does not adjust the SP
from the failing return, does not performed a new save, and does not write a fault
address to the BFAR.

(2]

IMPRECISERR

Imprecise data bus error:

0: No imprecise data bus error.

1: A data bus error has occurred, but the return address in the stack frame is not

related to the instruction that caused the error.
When the processor sets this bit to 1, it does not write a fault address to the BFAR.
This is an asynchronous fault. Therefore, if it is detected when the priority of the
current process is higher than the BusFault priority, the BusFault becomes pending
and becomes active only when the processor returns from all higher priority
processes. If a precise fault occurs before the processor enters the handler for the
imprecise BusFault, the handler detects both IMPRECISERR set to 1 and one of the
precise fault status bits set to 1.

(]

PRECISERR

Precise data bus error:
0: No precise data bus error.

1: A data bus error has occurred, and the PC value stacked for the exception return
points to the instruction that caused the fault.

When the processor sets this bit to 1, it writes the faulting address to the BFAR.

0]

IBUSERR

Instruction bus error:
0: No instruction bus error.
1: Instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it
sets the IBUSERR flag to 1 only if it attempts to issue the faulting instruction.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

208/252

DoclD028474 Rev 3 ‘Yl

PM0253

Cortex-M7 Peripherals

3

The BFSR bits are sticky. This means as one or more fault occurs, the associated bits are
set to 1. A bit that is set to 1 is cleared to 0 only by writing 1 to that bit, or by a reset.

UsageFault Status register

The UFSR indicates the cause of a UsageFault. The bit assignments are:

Figure 38. UFSR bit assignments

15 109 8 7 4.3 210

Reserved Reserved

DIVBYZEROJ NOCPJ
UNALIGNED INVPC

INVSTATE
UNDEFINSTR MSv39698V1

Table 65. UFSR bit assignments

Bits

Name

Function

[15:10]

Reserved.

(9]

DIVBYZERO

Divide by zero UsageFault:
0: No divide by zero fault, or divide by zero trapping not enabled.
1: The processor has executed an SDIV or UDIV instruction with a
divisor of 0.
When the processor sets this bit to 1, the PC value stacked for the
exception return points to the instruction that performed the divide by zero.
Enable trapping of divide by zero by setting the DIV_0_TRP bit in the CCR
to 1, see Configuration and Control register on page 200.

(8]

UNALIGNED

Unaligned access UsageFault:
0: No unaligned access fault, or unaligned access trapping not enabled.
1: The processor has made an unaligned memory access.
Enable trapping of unaligned accesses by setting the UNALIGN_TRP bit
in the CCR to 1, see Configuration and Control register on page 200.

Unaligned LDM, STM, LDRD, and STRD instructions always fault
irrespective of the setting of UNALIGN_TRP.

[7:4]

Reserved.

[3]

NOCP

No coprocessor UsageFault:
0: No UsageFault caused by attempting to access a coprocessor.
1: The processor has attempted to access a coprocessor.

The processor does not support coprocessor instructions:

(2]

INVPC

Invalid PC load UsageFault, caused by an invalid PC load by
EXC_RETURN:
0: No invalid PC load UsageFault.
1: The processor has attempted an illegal load of EXC_RETURN to the
PC, as a result of an invalid context, or an invalid EXC_RETURN value.

When this bit is set to 1, the PC value stacked for the exception return
points to the instruction that tried to perform the illegal load of the PC.

DoclD028474 Rev 3 209/252

Cortex-M7 Peripherals

PM0253

43.11

210/252

Table 65. UFSR bit assignments (continued)

Bits

Name

Function

(1]

INVSTATE

Invalid state UsageFault:
0: No invalid state UsageFault.
1: The processor has attempted to execute an instruction that makes
illegal use of the EPSR.
When this bit is set to 1, the PC value stacked for the exception return
points to the instruction that attempted the illegal use of the EPSR.
This bit is not set to 1 if an undefined instruction uses the EPSR.

[0]

UNDEFINSTR

Undefined instruction UsageFault:

0: No undefined instruction UsageFault.

1: The processor has attempted to execute an undefined instruction.
When this bit is set to 1, the PC value stacked for the exception return
points to the undefined instruction.

An undefined instruction is an instruction that the processor cannot
decode.

The UFSR bits are sticky. This means as one or more fault occurs, the associated bits are
set to 1. A bit that is set to 1 is cleared to 0 only by writing 1 to that bit, or by a reset.

HardFault Status register

The HFSR gives information about events that activate the HardFault handler. See the
register summary in Table 49 on page 192 for its attributes.

This register is read, write to clear. This means that bits in the register read normally, but
writing 1 to any bit clears that bit to 0. The bit assignments are:

Figure 39. HFSR bit assignments

3130 29

N
-
o

Reserved

|— FORCED
DEBUGEVT

VECTTBL J
Reserved

MSv39669V1

3

DoclD028474 Rev 3

PM0253 Cortex-M7 Peripherals
Table 66. HFSR bit assignments
Bits Name Function
[31] DEBUGEVT Rgserved for erug use. When writing to the register the user must write 1 to
this bit, otherwise behavior is UNPREDICTABLE.
Indicates a forced hard fault, generated by escalation of a fault with
configurable priority that cannot be handled, either because of priority or
because it is disabled:
[30] FORCED 0: No forced HardFault.
1: Forced HardFault.
When this bit is set to 1, the HardFault handler must read the other fault status
registers to find the cause of the fault.
[29:2] | - Reserved.
Indicates a BusFault on a vector table read during exception processing:
0: No BusFault on vector table read.
(1] VECTTBL 1 BusF?uIt on vector table read.
This error is always handled by the hard fault handler.
When this bit is set to 1, the PC value stacked for the exception return points
to the instruction that was preempted by the exception.
[0] - Reserved.
The HFSR bits are sticky. This means as one or more fault occurs, the associated bits are
set to 1. A bit that is set to 1 is cleared to 0 only by writing 1 to that bit, or by a reset.
4.3.12 MemManage Fault Address register

3

The MMFAR contains the address of the location that generated a MemManage fault. See
the register summary in Table 49 on page 192 for its attributes. The bit assignments are:

Table 67. MMFAR bit assignments

Bits Name Function

When the MMARVALID bit of the MMFSR is set to 1, this field holds the

[31:0] |ADDRESS address of the location that generated the MemManage fault

When an unaligned access faults, the address is the actual address that faulted. Because a
single read or write instruction can be split into multiple aligned accesses, the fault address
can be any address in the range of the requested access size.

Flags in the MMFSR indicate the cause of the fault, and whether the value in the MMFAR is
valid. See Configuration and Control register on page 200.

DoclD028474 Rev 3 211/252

Cortex-M7 Peripherals PM0253

4.3.13

4.3.14

44

212/252

BusFault Address register

The BFAR contains the address of the location that generated a BusFault. See the register
summary in Table 49 on page 192 for its attributes. The bit assignments are:

Table 68. BFAR bit assignments

Bits Name Function

When the BFARVALID bit of the BFSR is set to 1, this field holds the address of

[31:0] | ADDRESS the location that generated the BusFault

When an unaligned access faults the address in the BFAR is the one requested by the
instruction, even if it is not the address of the fault.

Flags in the BFSR indicate the cause of the fault, and whether the value in the BFAR is
valid. See Table 49 on page 192.

System control block design hints and tips

Ensure software uses aligned accesses of the correct size to access the system control
block registers:

e Except for the CFSR and SHPR1-SHPR3, it must use aligned word accesses.

e Forthe CFSR and SHPR1-SHPR3 it can use byte or aligned halfword or word
accesses.

The processor does not support unaligned accesses to system control block registers.

In a fault handler, to determine the true faulting address:

1. Read and save the MMFAR or BFAR value.

2. Read the MMARVALID bit in the MMFSR, or the BFARVALID bit in the BFSR. The
MMFAR or BFAR address is valid only if this bit is 1.

The software must follow this sequence because another higher priority exception might
change the MMFAR or BFAR value. For example, if a higher priority handler preempts the
current fault handler, the other fault might change the MMFAR or BFAR value.

In addition, the CMSIS provides a number of functions for system control, including:

Table 69. CMSIS function for system control

CMSIS system control function Description

void NVIC_SystemReset (void) Reset the system

System timer, SysTick

The processor has a 24-bit system timer, SysTick, that counts down from the reload value to
zero, reloads, that is wraps to, the value in the SYST_RVR register on the next clock edge,
then counts down on subsequent clocks.

When the processor is halted for debugging the counter does not decrement.

The system timer registers are:

3

DoclD028474 Rev 3

PM0253 Cortex-M7 Peripherals
Table 70. System timer registers summary
Required |Reset L
Address Name Type . Description
privilege |value
OXE00OE010 | SYST CSR |RW | Privileged | 0x00000004 | 5YST/ck Control and Status
register
OXEOOOEO14 |SYST_RVR |RW |Privileged |UNKNOWN | SysTick Reload Value register
OXEOOOE018 |SYST_CVR |RW |Privileged |UNKNOWN | SysTick Current Value register
OXEO00EQ1C | SYST CALIB |RO | Privileged | 0xcooooooo | SYSTick Calibration Value
register
4.4.1 SysTick Control and Status register

3

The SysTick SYST_CSR register enables the SysTick features. See the register summary

in Table 70 for its attributes. The bit assignments are:

Figure 40. SysTick SYST_CSR bit assignments

31 17 16 15

Reserved

Reserved ofofo

COUNTFLAG —I

CLKSOURCE —
TICKINT
ENABLE

MSv39696V1

Table 71. SysTick SYST_CSR bit assignments

Bits Name

Function

[31:17] Reserved.

[16] COUNTFLAG Returns 1 if timer counted to 0 since

last time this was read.

[15:3] Reserved.

Indicates the clock source:
— 0: External clock.
— 1: Processor clock.

2] CLKSOURCE

Enables SysTick exception request:

[1] TICKINT request.

to zero.

0: Counting down to zero does not assert the SysTick exception

1: Counting down to zero asserts the SysTick exception request.
Software can use COUNTFLAG to determine if SysTick has ever counted

Enables the counter:
0: Counter disabled.
1: Counter enabled.

[0] ENABLE

DoclD028474 Rev 3

213/252

Cortex-M7 Peripherals PM0253

4.4.2

443

214/252

When ENABLE is set to 1, the counter loads the RELOAD value from the SYST_RVR
register and then counts down. On reaching 0, it sets the COUNTFLAG to 1 and optionally
asserts the SysTick depending on the value of TICKINT. It then loads the RELOAD value
again, and begins counting.

SysTick Reload Value register

The SYST_RVR register specifies the start value to load into the SYST_CVR register. See
the register summary in Table 70 on page 213 for its attributes. The bit assignments are:

Figure 41. SYST_RVR bit assignments

31 24 23 0

Reserved RELOAD

MSv39695V1

Table 72. SYST_RVR bit assignments

Bits Name Function

[31:24] Reserved.

Value to load into the SYST_CVR register when the counter is enabled and

[23:0] | RELOAD when it reaches 0, see Calculating the RELOAD value.

Calculating the RELOAD value

The RELOAD value can be any value in the range 0x00000001-0x00FFFFFF. A start value
of 0 is possible, but has no effect because the SysTick exception request and COUNTFLAG
are activated when counting from 1 to 0.

The RELOAD value is calculated according to its use. For example, to generate a multi-shot
timer with a period of N processor clock cycles, use a RELOAD value of N-1. If the SysTick
interrupt is required every 100 clock pulses, set RELOAD to 99.

SysTick Current Value register

The SYST_CVR register contains the current value of the SysTick counter. See the register
summary in Table 70 on page 213 for its attributes. The bit assignments are

Figure 42. SYST_CVR bit assignments:

31 24 23 0

Reserved CURRENT

MSv39694V1

3

DoclD028474 Rev 3

PM0253 Cortex-M7 Peripherals

Table 73. SYST_CVR bit assignments

Bits Name Function

[31:24] Reserved.

Reads return the current value of the SysTick counter.

[23:0] |CURRENT |A write of any value clears the field to 0, and also clears the SYST_CSR
COUNTFLAG bit to 0.

444 SysTick Calibration Value register

The SYST_CALIB register indicates the SysTick calibration properties. See the register
summary in Table 70 on page 213 for its attributes. The bit assignments are:

Figure 43. SYST_CALIB bit assignments

3130 29 24 23 0

Reserved TENMS

I— SKEW

NOREF

MSv39693V1

Table 74. SYST_CALIB bit assignments

Bits Name Function

Indicates whether the device provides a reference clock to the processor:
0: Reference clock provided.
[31] NOREF 1: No reference clock provided.

If the device does not provide a reference clock, the SYST _CSR.CLKSOURCE bit
reads-as-one and ignores writes.

Indicates whether the TENMS value is exact:
0: TENMS value is exact.
[30] SKEW 1: TENMS value is inexact, or not given.
An inexact TENMS value can affect the suitability of SysTick as a software real

time clock.
[29:24] |- Reserved.
[23:0] | TENMS Reload value for 10ms (100Hz) timing, subject to system clock skew errors. If the

value reads as zero, the calibration value is not known.

If the calibration information is not known, calculate the calibration value required from the
frequency of the processor clock or external clock.

3

DoclD028474 Rev 3 215/252

Cortex-M7 Peripherals PM0253

4.4.5

216/252

SysTick design hints and tips

The SysTick counter runs on the processor clock. If this clock signal is stopped for Low-
power mode, the SysTick counter stops.

Ensure the software uses aligned word accesses to access the SysTick registers.

The SysTick counter reload and current value are undefined at reset, the correct
initialization sequence for the SysTick counter is:

1. Program reload value.

2. Clear current value.

3. Program Control and Status register.

In addition, the CMSIS provides a number of functions for SysTick control, including:

Table 75. CMSIS functions for SysTick control

CMSIS SysTick control function Description

uint32_t Creates a periodic SysTick interrupt using the SysTick

SysTick_Config(uint32_t ticks) |timer, with a interval defined by the ticks parameter.

3

DoclD028474 Rev 3

PM0253 Cortex-M7 Peripherals
4.5 Processor features
The processor features registers provide a software with cache configuration information.
The identification space registers are:
Table 76. Identification space summary
Required Reset L.
Address Name |Type . Description
privilege value
OxEOOOED78 |CLIDR RO |Privileged |0x09000003 |Cache Level ID register
O0xEOOOED7C |CTR RO |Privileged |0x8303C003 |Cache Type register on page 218
- Cache Size ID register on
OxEOOOED80 |CCSIDR |RO |Privileged |Unknown page 219
OXEOOOEDS4 |CSSELR |RW |Privileged |Unknown | Cach€ Size Selection register on
page 220
All the registers are only accessible by privileged loads and stores. Unprivileged accesses
to these registers result in a BusFault.
4.5.1 Cache Level ID register

The CLIDR identifies the type of cache, or caches, implemented at each level, and the level
of coherency and unification. See the register summary in Table 76 on page 217 for its
attributes. The bit assignments are:

Figure 44. CLIDR bit assignments

31 30 29 27 26 24 23 21 20 18 17 15 14 1211 10 8 6 5 3 2 0
LoU LoC LoUIS CL7 CL6 CL5 CL4 CL3 CL2 CL1
I— Reserved
MSv39659V1
Table 77. CLIDR bit assignments
Bits Name Function
[31:30] - SBZ.
Level of Unification.
[29:27] LoU 0b001: Level 2, if either cache is implemented.
0b000:Level 1, if neither instruction nor data cache is implemented.
Level of Coherency.
[26:24] LoC 0b001: Level 2, if either cache is implemented.
0b000: Level 1, if neither instruction nor data cache is implemented.
[23:21] LoUIS RAZ.
[20:18] |CL7 0b000: No cache at CL 7.
[17:15] |CL6 0b000: No cache at CL 6.

3

DoclD028474 Rev 3 217/252

Cortex-M7 Peripherals

PM0253

4.5.2

218/252

Table 77. CLIDR bit assignments (continued)

Bits Name Function

[14:12] |CL5 0b000: No cache at CL 5.

[11:9] CL4 0b000: No cache at CL 4.

[8:6] CL3 0b000: No cache at CL 3.

[5:3] CL2 0b000: No cache at CL 2.

[2] CL1 RAZ: Indicates no unified cache at CL1.

[1] CL 1 1: Data cache is implemented.
0: No data cache is implemented.

(0] CL 1 1: An i.nstructi-on cache ils i.mplemented.
0: No instruction cache is implemented.

Cache Type register

The CTR provides information about the cache architecture. See the register summary in
Table 76 on page 217 for its attributes. The bit assignments are:

Figure 45. CTR bit assignments

31 29 28 27 24 23 20 19 16 15 14 13 4 3 0
10 0]0 CWG ERG DMinLine |1 1 0 0 0 0 0 0 0 O O O] IminLine
Format MSV39663V1
Table 78. CTR bit assignments
Bits Name Description
Register format.
31:29] |F t
[I'| Forma 0b100: ARMvV7 register format.
[28] - Reserved, RAZ.
Cache Writeback Granule.
27:24] |CWG
[] 0b0011: 8 word granularity for the Cortex®-M7 processor.
Exclusives Reservation Granule.
0b0000: The local monitor within the processor does not hold any physical
[23:20] | ERG address. It treats any STREX instruction access as matching the address of
the previous LDREX instruction. This means that the implemented exclusive
reservation granule is the entire memory address range.
[19:16] | DMinLine Smallest cache line of all the data and unified caches under the core control.
' 0b0011: 8 words for the Cortex®-M7 processor.
[15:14] |- All bits RAO.

3

DoclD028474 Rev 3

PM0253 Cortex-M7 Peripherals

Table 78. CTR bit assignments (continued)

Bits Name Description

Reserved, RAZ.

Smallest cache line of all the instruction caches under the control of the
[3:0] IminLine |processor.
0b0011: 8 words for the Cortex®-M7 processor.

[13:4]

4.5.3 Cache Size ID register

The CCSIDR identifies the configuration of the cache currently selected by the CSSELR. If
no instruction or data cache is configured, the corresponding CCSIDR is RAZ. See the
register summary in Table 76 on page 217 for its attributes. The bit assignments are:

Figure 46. CCSIDR bit assignments

31 30 29 28 27 13 12 3 2 0
NumSet Assoc LineSize

L wa

RA

WB

WT

MSv39657V1

Table 79. CCSIDR bit assignments

Bits Name Function(!)
31] WT Indicates support available for Write-Through:
1: Write-Through support available.
Indicat rt ilable for Write-Back:
[30] WB ndica e.s support available 9r rite-Bac
1: Write-Back support available.
29] RA Indicates support available for read allocation:
1: Read allocation support available.
28] WA Indicate's support' available for write allocation:
1: Write allocation support available.
Indicates the number of sets as:
[27:13] NumSets ! !
(number of sets) - 1.
Indicates the number of ways as:
[12:3] Associativity ! y way
(number of ways) - 1.
[2:0] LineSize Indicates the number of words in each cache line.

1. See Table 80 on page 220 for valid bit field encodings.

The LineSize field is encoded as 2 less than log(2) of the number of words in the cache line.
For example, a value of 0x0 indicates there are four words in a cache line, that is the
minimum size for the cache. A value of Ox1 indicates there are eight words in a cache line.

3

DoclD028474 Rev 3 219/252

Cortex-M7 Peripherals

PM0253

454

220/252

Table 80 shows the individual bit field and complete register encodings for the CCSIDR. Use
this to determine the cache size for the L1 data or instruction cache selected by the Cache
Size Selection Register (CSSELR). See Cache Size Selection register.

Table 80. CCSIDR encodings

Register bit field encoding
Complete
CSSELR | Cache Size register Assoc
encoding |WT | WB | RA | WA | NumSets | iativit | LineSize
y
4 Kbytes |OxFO03EO019 0x001F
8 Kbytes | 0xFOO7E019 0x003F
0x0 E:;ﬁe 16 Kbytes | OXFOOFE019|1 |1 [1 |1 |ox007F |0x3 |ox1
32 Kbytes | OxFO1FEQ019 Ox00FF
64 Kbytes | OxFO3FE019 Ox01FF
4 Kbytes | 0xFOO7E009 0x003F
8 Kbytes | OxFOOFE009 0x007F
ox1 L’:g:éc“on 16 Kbytes | OXFOTFE009|1 |1 |1 |1 [ox00FF |ox1 |ox1
32 Kbytes | 0OxFO3FE009 0x01FF
64 Kbytes | OxFO7FE009 Ox03FF

Cache Size Selection register

The CSSELR selects the cache whose configuration is currently visible in the CCSIDR. See
the register summary in Table 76 on page 217 for its attributes The bit assignments are:

Figure 47. CSSELR bit assignments

31

4 3 10

Reserved Level

inD

MSv39662V1

Table 81. CSSELR bit assignments

Bit Name Description
[31:4] |- RESERVED
Identifies the cache level selected.
[3:1] Level 0b000: Level 1 cache.
This field is read only, writes are ignored.
Enables selection of instruction or data cache:
[0] InD 0: Data cache.

1: Instruction cache.

3

DoclD028474 Rev 3

PM0253

Cortex-M7 Peripherals

4.6

3

Memory Protection Unit

The Memory Protection Unit (MPU) divides the memory map into a number of regions, and
defines the location, size, access permissions, and memory attributes of each region. It
supports:

¢ Independent attribute settings for each region.

e Overlapping regions.

e Export of memory attributes to the system.

The memory attributes affect the behavior of memory accesses to the region. The Cortex®-
M7 MPU defines:

e 8 or 16 separate memory regions, 0-7 or 0-15.
e A background region.

When memory regions overlap, a memory access is affected by the attributes of the region
with the highest number. For example, the attributes for region 7 take precedence over the
attributes of any region that overlaps region 7.

The background region has the same memory access attributes as the default memory
map, but is accessible from privileged software only.

The Cortex®-M7 MPU memory map is unified. This means instruction accesses and data
accesses have same region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor
generates a MemManage fault. This causes a fault exception, and might cause termination
of the process in an OS environment. In an OS environment, the kernel can update the MPU
region setting dynamically based on the process to be executed. Typically, an embedded
OS uses the MPU for memory protection.

The configuration of MPU regions is based on memory types, see Memory regions, types
and attributes on page 33.

Table 82 shows the possible MPU region attributes. These include Shareability and cache
behavior attributes that are generally only relevant when the processor is configured with
caches.

Table 82. Memory attributes summary

Memory

Shareability Other attributes Description
type
All accesses to Strongly-ordered memory occur
Strongly- . .
ordered |~ - in program order. All Strongly-ordered regions

are assumed to be shared.

Memory-mapped peripherals that several

Device Shared -
processors share.

) Non-shared Memory-mapped peripherals that only a single

processor uses.

DoclD028474 Rev 3 221/252

Cortex-M7 Peripherals

PM0253

Table 82. Memory attributes summary (continued)

M(te;:,zry Shareability Other attributes Description
Non-cacheable Write- .
Normal | Shared through Cacheable Nrc;rcngzlsgwrzmory that is shared between several
Write-back Cacheable |P '
Non-cacheable Write- |\ - memory that only a single processor
Non-shared |through Cacheable uses Y Y gep
Write-back Cacheable '

Use the MPU registers to define the MPU regions and their attributes. The MPU registers

are:
Table 83. MPU registers summary
Required Reset L
Address Name Type . Description
privilege value
O0xEOOOED90 |MPU_TYPE RO Privileged |0x00000800 | MPU Type register on page 223
O0xEOOOED94 |MPU_CTRL RW | Privileged |0x00000000 | MPU Control register on page 223
OxEOOOED98 | MPU_RNR RW | Privileged |Unknown MPU Region Number register on page 225
0XEOOOED9C |MPU_RBAR RW |Privileged |unknown |MPURegion Base Address register on
page 225
O0XEOOOEDAO |MPU_RASR RW Privileged () MPU Region Attribute and Size register on
page 226
OXEOOOEDA4 |MPU_RBAR A1 |RW |Privileged |Unknown | ANias of RBAR, see MPU Region Base
- — Address register on page 225
OXEOOOEDA8 |MPU_RASR_A1 |RW |Privileged |-(" Alias of RASR, see MPU Region Attribute
and Size register on page 226
OXEOOOEDAC |MPU_RBAR A2 |RW |Privileged |Unknown | ANias of RBAR, see MPU Region Base
- — Address register on page 225
OXEOOOEDBO |MPU_RASR_A2 |RW |Privileged |-(" Alias of RASR, see MPU Region Aftribute
and Size register on page 226
OXEOOOEDB4 |MPU_RBAR A3 |RW |Privileged |Unknown | AWias of RBAR, see MPU Region Base
Address register on page 225
0XEO0OEDBS |MPU_RASR_A3 |RW | Privileged | -(") Alias of RASR, see MPU Region Attribute
and Size register on page 226

1. Unknown apart from the ENABLE field, which is reset to 0.

222/252

DoclD028474 Rev 3

3

PM0253 Cortex-M7 Peripherals
4.6.1 MPU Type register
The MPU_TYPE register indicates whether the MPU is present, and if so, how many
regions it supports. If the MPU is not present the MPU_TYPE register is RAZ. See the
register summary in Table 83 for its attributes. The bit assignments are:
Figure 48. TYPE bit assignments
31 2423 1615 8 7 10
Reserved IREGION DREGION Reserved
SEPARATE J
MSv39697V1
Table 84. TYPE bit assignments
Bits Name Function
[31:24] | - Reserved.
Indicates the number of supported MPU instruction regions.
[23:16] | IREGION Always contains 0x00. The MPU memory map is unified and is described
by the DREGION field.
Indicates the number of supported MPU data regions:
[15:8] |DREGION 0x08: 8 MPU regions.
O0xOF: 16 MPU regions.
[7:1] - Reserved.
(0] SEPARATE Indicate.s. support for unified or separate instruction and date memory maps:
0: Unified.
4.6.2 MPU Control register

3

The MPU_CTRL register:

. Enables the MPU.
. Enables the defau

It memory map background region.

e Enables use of the MPU when in the hard fault, Non Maskable Interrupt (NMI), and
FAULTMASK escalated handlers.

See the register summary in Table 83 on page 222 for the MPU_CTRL attributes. The bit

assignments are:

Figure 49. MPU_CTRL bit assignments

31

3210

Reserved

PRIVDEFENA J
HFNMIENA
ENABLE

MSv39681V1

DoclD028474 Rev 3 223/252

Cortex-M7 Peripherals PM0253

224/252

Table 85. MPU_CTRL bit assignments

Bits Name Function

[31:3] Reserved.

Enables privileged software access to the default memory map:

0: If the MPU is enabled, disables use of the default memory map. Any

memory access to a location not covered by any enabled region causes a

fault.

[2] PRIVDEFENA | 1:If the MPU is enabled, enables use of the default memory map as a
background region for privileged software accesses.

When enabled, the background region acts as if it is region number -1. Any

region that is defined and enabled has priority over this default map.

If the MPU is disabled, the processor ignores this bit.

Enables the operation of MPU during hard fault, NMI, and FAULTMASK
handlers.
When the MPU is enabled:

0: MPU is disabled during hard fault, NMI, and FAULTMASK handlers,
y HFNMIENA regardless of the value o?the ENABLE bit.
1: The MPU is enabled during hard fault, NMI, and FAULTMASK handlers.
When the MPU is disabled, if this bit is set to 1 the behavior is
Unpredictable.

Enables the MPU:
[0] ENABLE 0: MPU disabled.
1: MPU enabled.

When ENABLE and PRIVDEFENA are both set to 1:

e For privileged accesses, the default memory map is as described in Cortex®-M7
configurations on page 30. Any access by privileged software that does not address an
enabled memory region behaves as defined by the default memory map.

e Any access by unprivileged software that does not address an enabled memory region
causes a MemManage fault.

XN and Strongly-ordered rules always apply to the System Control Space regardless of the
value of the ENABLE bit.

When the ENABLE bit is set to 1, at least one region of the memory map must be enabled
for the system to function unless the PRIVDEFENA bit is set to 1. If the PRIVDEFENA bit is
set to 1 and no regions are enabled, then only privileged software can operate.

When the ENABLE bit is set to 0, the system uses the default memory map. This has the
same memory attributes as if the MPU is not implemented, see Table 76 on page 217. The
default memory map applies to accesses from both privileged and unprivileged software.

When the MPU is enabled, accesses to the System Control Space and vector table are
always permitted. Other areas are accessible based on regions and whether PRIVDEFENA
is set to 1.

Unless HFNMIENA is set to 1, the MPU is not enabled when the processor is executing the
handler for an exception with priority —1 or —2. These priorities are only possible when
handling a hard fault or NMI exception, or when FAULTMASK is enabled. Setting the
HFNMIENA bit to 1 enables the MPU when operating with these two priorities.

DoclD028474 Rev 3 ‘Yl

PM0253

Cortex-M7 Peripherals

4.6.3

4.6.4

3

MPU Region Number register

The MPU_RNR selects which memory region is referenced by the MPU_RBAR and
MPU_RASR registers. See the register summary in Table 76 on page 217 for its attributes.
The bit assignments are:

Figure 50. MPU_RNR bit assignments

31 8 7 0

Reserved REGION

MSv39684V1

Table 86. MPU_RNR bit assignments

Bits Name Function

Reserved.

Indicates the MPU region referenced by the MPU_RBAR and MPU_RASR
registers.

The MPU supports 8 or 16 memory regions, so the permitted values of this field
are 0-7 or 0-15.

[31:8]

[7:0] |REGION

Normally, the user writes the required region number to this register before accessing the
MPU_RBAR or MPU_RASR. However the region number can be changed by writing to the
MPU RBAR with the VALID bit set to 1, see MPU Region Base Address register. This write
updates the value of the REGION field.

MPU Region Base Address register

The MPU_RBAR defines the base address of the MPU region selected by the MPU_RNR,
and can update the value of the MPU_RNR. See the register summary in Table 83 on
page 222 for its attributes.

Write MPU_RBAR with the VALID bit set to 1 to change the current region number and
update the MPU_RNR. See the register summary in Table 83 on page 222 for its attributes.
The bit assignments are

Figure 51. MPU_RBAR bit assignments:

31 N N-1 5 4 3 0

ADDR Reserved REGION

I— VALID

MSv39683V1

If the region size is 32B, the ADDR field is bits [31:5] and there is no Reserved field

DoclD028474 Rev 3 225/252

Cortex-M7 Peripherals PM0253

4.6.5

226/252

Table 87. MPU_RBAR bit assignments

Bits Name Function
[31:N] ADDR Region base address field. The value of N depends on the region size. For
’ more information see The ADDR field.
[(N-1):5] |- Reserved.
MPU Region Number valid bit:
Write:

0: MPU_RNR not changed, and the processor:

Updates the base address for the region specified in the MPU_RNR
[4] VALID Ignores the value of the REGION field

1: The processor:

Updates the value of the MPU_RNR to the value of the REGION field
Updates the base address for the region specified in the REGION field.
Always reads as zero.

MPU region field:
[3:0] REGION | For the behavior on writes, see the description of the VALID field.
On reads, returns the current region number, as specified by the RNR.

The ADDR field

The ADDR field is bits[31:N] of the MPU_RBAR. The region size, as specified by the SIZE
field in the MPU_RASR, defines the value of N:
N = Log,(Region size in bytes),

If the region size is configured to 4 Gbytes, in the MPU_RASR, there is no valid ADDR field.
In this case, the region occupies the complete memory map, and the base address is
0x00000000.

The base address is aligned to the size of the region. For example, a 64KB region must be
aligned on a multiple of 64KB, for example, at 0x00010000 or 0x00020000.

MPU Region Attribute and Size register

The MPU_RASR defines the region size and memory attributes of the MPU region specified

by the MPU_RNR, and enables that region and any subregions. See the register summary

in Table 83 on page 222 for its attributes.

MPU_RASR is accessible using word accesses:

e The most significant halfword holds the region attributes.

e The least significant halfword holds the region size and the region and subregion
enable bits.

The bit assignments are:

3

DoclD028474 Rev 3

PM0253

Cortex-M7 Peripherals

3

Figure 52. MPU_RASR bit assignments

31 29 28 27 26 24 23 22 21 19 18 17 16 15 8 7 6 5 10
AP TEX |S|C|B SRD SIZE
|— Reserved I— Reserved Reserved J
XN ENABLE
Reserved

MSv39682V1

Table 88. MPU_RASR bit assignments

Bits

Name

Function

[31:29]

Reserved.

(28]

XN

Instruction access disable bit:
0: Instruction fetches enabled.
1: Instruction fetches disabled.

[27]

Reserved.

[26:24]

AP

Access permission field, see Table 92 on page 229.

[23:22]

Reserved.

[21:19, 17, 16]

TEX,C,B

Memory access attributes, see Table 90 on page 228.

(18]

Shareable bit, see Table 90 on page 228.

[15:8]

SRD

Subregion disable bits. For each bit in this field:
0: Corresponding sub-region is enabled.
1: Corresponding sub-region is disabled.
See Subregions on page 231 for more information.

Region sizes of 128 bytes and less do not support subregions. When
writing the attributes for such a region, write the SRD field as 0x00.

[7:6]

Reserved.

[6:1]

SIZE

Specifies the size of the MPU protection region. The minimum
permitted value is 4 (Ob00100), see SIZE field values for more
information.

[0]

ENABLE

Region enable bit.

For information about access permission, see MPU access permission attributes on page 228.

SIZE field values
The SIZE field defines the size of the MPU memory region specified by the RNR. as follows:

(Region size in bytes) =

(SIZE+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. Table 89
gives example SIZE values, with the corresponding region size and value of N in the

MPU_RBAR.

DoclD028474 Rev 3 227/252

Cortex-M7 Peripherals

PM0253

4.6.6

228/252

Table 89. Example SIZE field values

SIZE value Region size Value of N(*) Note
0b00100 (4) 32 Bytes 5 Minimum permitted size
0b01001 (9) 1 Kbyte 10 -
0b10011 (19) 1 Mbyte 20 -
0b11101 (29) 1 Gbyte 30 -
0b11111 (31) 4 Gbytes 32 Maximum possible size

1. Inthe MPU_RBAR, see MPU Region Base Address register on page 225.

MPU access permission attributes

This section describes the MPU access permission attributes. The access permission bits,
TEX, C, B, S, AP, and XN, of the RASR, control access to the corresponding memory
region. If an access is made to an area of memory without the required permissions, then
the MPU generates a permission fault. Table 90 shows encodings for the TEX, C, B, and S
access permission bits.

Table 90. TEX, C, B, and S encoding

TEX (o S | Memory type | Shareability Other attributes
0 |x(n [Strongly- Shareable |-
0 ordered
1 x(" | Device Shareable |-
Not
0b000 0 0 Normal shareable Outer and inner write-through. No write
allocate.
1 1 Shareable
Not
1 0 Normal shareable Outer and inner write-back. No write
allocate.
1 Shareable
0 Not
0 Normal shareable | oyter and inner noncacheable.
0 1 Shareable
1 x(" | Reserved encoding -
0b001 0 < Implementation defined)
attributes.
1 Not
1 0 Normal shareable Outer and inner write-back. Write and
read allocate.
1 Shareable
1) . Not .
0 X Device Nonshared Device.
0 shareable
0b010 1 x(" | Reserved encoding -
1 x| x| Reserved encoding -

DoclD028474 Rev 3

3

PM0253

Cortex-M7 Peripherals

Table 90. TEX, C, B, and S encoding (continued)

TEX C | B | S | Memory type | Shareability Other attributes
0 Not Cached memory, BB = outer policy,
shareable | AA = inner policy. See Table 91 on
0b1BB A A Normal page 229 for the encoding of the AA and
1 Shareable |BB pits.

1.

The MPU ignores the value of this bit.

Table 91 shows the cache policy for memory attribute encodings with a TEX value is in the
range 4-7.

Table 91. Cache policy for memory attribute encoding

Encoding, AA or BB

Corresponding cache policy

00 Non-cacheable

01 Write back, write and read allocate
10 Write through, no write allocate

1" Write back, no write allocate

Table 92 shows the AP encodings that define the access permissions for privileged and
unprivileged software.

Table 92. AP encoding

Privileged Unprivileged L
AP[2:0] L L. Description
permissions | permissions
000 No access No access All accesses generate a permission fault
001 RW No access Access from privileged software only
010 RW RO Writes by unprivileged software generate a permission
fault
oM RW RW Full access
100 Unpredictable | Unpredictable |Reserved
101 RO No access Reads by privileged software only
110 RO RO Read only, by privileged or unprivileged software
111 RO RO Read only, by privileged or unprivileged software

3

DoclD028474 Rev 3

229/252

Cortex-M7 Peripherals PM0253

4.6.7

4.6.8

230/252

MPU mismatch

When an access violates the MPU permissions, the processor generates a MemManage
fault, see Exceptions and interrupts on page 28. The MMFSR indicates the cause of the
fault. See MemManage Fault Status register on page 206 for more information.

Updating an MPU region

To update the attributes for an MPU region, update the MPU_RNR, MPU_RBAR and
MPU_RASR registers. It is possible to program each register separately, or use a multiple-
word write to program all of these registers. The MPU_RBAR and MPU_RASR aliases can
be used to program up to four regions simultaneously using an STM instruction.

Updating an MPU region using separate words

Simple code to configure one region:

; Rl = region number
; R2 = size/enable

; R3 = attributes

; R4 = address

LDR RO, =MPU_RNR ; OXEOOOED98, MPU region number register
STR R1, [RO, #0x0] ; Region Number

STR R4, [RO, #0x4] ; Region Base Address

STRH R2, [RO, #0x8] ; Region Size and Enable

STRH R3, [RO, #0xA] ; Region Attribute

Disable a region before writing new region settings to the MPU if the region being changed,
has been previously enabled. For example:

; Rl = region number
; R2 = size/enable

; R3 = attributes

; R4 = address

LDR RO, =MPU_RNR ; OXEOOOQOED98, MPU region number register
STR R1, [RO, #0x0] ; Region Number

BIC R2, R2, #1 ; Disable

STRH R2, [RO, #0x8] ; Region Size and Enable

STR R4, [RO, #0x4] ; Region Base Address

STRH R3, [RO, #0xA] ; Region Attribute

ORR R2, #1 ; Enable

STRH R2, [RO, #0x8] ; Region Size and Enable

The software must use memory barrier instructions:

e Before MPU setup if there might be outstanding memory transfers, such as buffered
writes, that might be affected by the change in MPU settings.

e After MPU setup if it includes memory transfers that must use the new MPU settings.

The software does not require any memory barrier instructions during MPU setup, because
it accesses the MPU through the PPB, which is a Strongly-ordered memory region.

For example, if it is required that all of the memory access behavior to take effect
immediately after the programming sequence, use a DSB instruction and an ISB instruction.
A DSB is required after changing MPU settings, such as at the end of context switch. An ISB
is required if the code that programs the MPU region or regions is entered using a branch or
call. If the programming sequence is entered by taking an exception and the programming
sequence is exited by using a return from exception then an ISB instruction is not required.

DoclD028474 Rev 3 ‘Yl

PM0253

Cortex-M7 Peripherals

3

Updating an MPU region using multi-word writes

The user can program directly using multi-word writes, depending on how the information is
divided. Consider the following reprogramming:

; Rl = region number

; R2 = address

; R3 = size, attributes in one

LDR RO, =MPU_RNR ; O0xEOOOED98, MPU region number register
STR R1, [RO, #0x0] ; Region Number

STR R2, [RO, #0x4] ; Region Base Address

STR R3, [RO, #0x8] ; Region Attribute, Size and Enable

Use an STM instruction to optimize this:

; Rl = region number

; R2 = address

; R3 = size, attributes in one

LDR RO, =MPU_RNR ; 0xEOOOED98, MPU region number register

STM RO, {R1-R3} ; Region Number, address, attribute, size and enable

The user can do this in two words for pre-packed information. This means that the
MPU_RBAR contains the required region number and had the VALID bit set to 1, see MPU
Region Base Address register on page 225. Use this when the data is statically packed, for
example in a boot loader:

; Rl = address and region number in one

; R2 = size and attributes in one

LDR RO, =MPU_RBAR ; OxXEOOOED9C, MPU Region Base register.

STR R1, [RO, #0x0] ; Region base address and region number combined
; with VALID (bit 4) set to 1.

STR R2, [RO, #0x4] ; Region Attribute, Size and Enable.

Subregions

Regions of 256 bytes or more are divided into eight equal-sized subregions. Set the
corresponding bit in the SRD field of the MPU_RASR to disable a subregion, see MPU
Region Attribute and Size register on page 226. The least significant bit of SRD controls the
first subregion, and the most significant bit controls the last subregion. Disabling a
subregion means another region overlapping the disabled range matches instead. If no
other enabled region overlaps the disabled subregion, and the access is unprivileged or the
background region is disabled, the MPU issues a fault.

Regions of 32, 64, and 128 bytes do not support subregions, With regions of these sizes,
The user must set the SRD field to 0x00, otherwise the MPU behavior is Unpredictable.
Example of SRD use

Two regions with the same base address overlap. Region one is 128 KB, and region two is
512 KB. To ensure the attributes from region one apply to the first 128 KB region, set the
SRD field for region two to 0b00000011 to disable the first two subregions, as the figure
shows.

DoclD028474 Rev 3 231/252

Cortex-M7 Peripherals

PM0253

4.6.9

232/252

Figure 53. Example of disabling subregion

Base address of both regions

Region 1

Region 2, with
subregions

Disabled subregion

Disabled subregion

Offset from
base address

512KB
448KB
384KB
320KB
256KB
192KB
128KB
64KB
0

MSv39664V1

MPU design hints and tips

To avoid an unexpected behavior, disable the interrupts before updating the attributes of a
region that the interrupt handlers might access.

The processor does not support unaligned accesses to MPU registers.

The MPU registers support aligned word accesses only. The byte and halfword accesses

are unpredictable.

When setting up the MPU, and if the MPU has previously been programmed, disable the
unused regions to prevent any previous region settings from affecting the new MPU setup.

DoclD028474 Rev 3

3

PM0253

Cortex-M7 Peripherals

4.7

4.7.1

3

Floating-point unit
The Cortex®-M7 Floating-Point Unit (FPU) implements the FPV5 floating-point extensions.

The FPU fully supports single-precision and double-precision add, subtract, multiply, divide,
multiply and accumulate, and square root operations. It also provides conversions between
fixed-point and floating-point data formats, and floating-point constant instructions.

The FPU provides floating-point computation functionality that is compliant with the
ANSI/IEEE Std 754-2008, IEEE Standard for Binary Floating-Point Arithmetic, referred to as
the IEEE 754 standard.

The silicon vendor should also include the following text when implementations support
single-precision FPU only. The FPU contains 32 single-precision extension registers, which
can be also accessed as 16 doubleword registers for load, store, and move operations.

Table 93 shows the floating-point system registers in the Cortex®-M7 processor with FPU.

Table 93. Cortex®-M7 floating-point system registers

Required L.
Address Name | Type . Reset Description
privilege
- Coprocessor Access Control register
OxEOOOED88 | CPACR |RW | Privileged 0x00000000
on page 233
OXEOOOEF34 |FPCCR |RW |Privileged | 0xC0000000 |/081ing-point Context Control register
on page 234
OXEO00EF38 |FPCAR |RW |Privileged |- Floating-point Context Address
register on page 236
FPSCR - Floating-point Status Control register
- 1) RW | Unprivileged | - on page 236
OXEO00EF3C FPDSC RW | Privileged 0x00000000 F/ogtmg-pomt Default Status Control
R register on page 237

1. The FPSCR register is not memory-mapped, it can bee accessed using the VMSR and VMRS instructions,
see VMRS on page 165 and VMSR on page 166. the software can only access the FPSCR when the FPU
is enabled, see Enabling the FPU on page 238.

The following sections describe the floating-point system registers whose implementation is
specific to this processor.

Coprocessor Access Control register

The CPACR register specifies the access privileges for coprocessors. See the register
summary in Table 93 on page 233 for its attributes. The bit assignments are:

Figure 54. CPACR bit assignments

31

24 23 22 21 20 19

Reserved

CP11

CP10

Reserved

MSv39660V1

DoclD028474 Rev 3

233/252

Cortex-M7 Peripherals PM0253

Table 94. CPACR bit assignments

Bits Name Function
[31:24] - Reserved. Read as Zero, Write Ignore.
Access privileges for coprocessor n. The possible values of each field
are:
[2n+1:2n] for n 0b00: Access denied. Any attempted access generates a NOCP
values10and |CPn UsageFault,
0b01: Privileged access only. An unprivileged access generates a
11
NOCP fault.

0b10: Reserved. The result of any access is Unpredictable.
Ob11: Full access.

[19:0] - Reserved. Read as Zero, Write Ignore.

4.7.2 Floating-point Context Control register

The FPCCR register sets or returns FPU control data. See the register summary in Table 93
on page 233 for its attributes. The bit assignments are:

Figure 55. FPCCR bit assignments

3130 29 9 87 6 543210

Reserved

|——LSPEN MONRDY——|
ASPEN Reserved
BFRDY
MMRDY
HFRDY
THREAD
Reserved

USER
LSPACT

MSv39666V1

Table 95. FPCCR bit assignments

Bits Name Function

Enables CONTROL.FPCA setting on execution of a floating-point instruction.
This results in automatic hardware state preservation and restoration, for
floating-point context, on exception entry and exit.

[31] ASPEN 0: Disable CONTROL.FPCA setting on execution of a floating-point
instruction.

1: Enable CONTROL.FPCA setting on execution of a floating-point
instruction.

0: Disable automatic lazy state preservation for floating-point context.

(301 LSPEN 1: Enable automatic lazy state preservation for floating-point context.

Reserved.

[29:9]

3

234/252 DoclD028474 Rev 3

PM0253 Cortex-M7 Peripherals

Table 95. FPCCR bit assignments (continued)

Bits Name Function

0: DebugMonitor is disabled or priority did not permit setting MON_PEND
when the floating-point stack frame was allocated.

1: DebugMonitor is enabled and priority permits setting MON_PEND when
the floating-point stack frame was allocated.

[7] - Reserved.

8] MONRDY

0: BusFault is disabled or priority did not permit setting the BusFault handler
to the pending state when the floating-point stack frame was allocated.

1: BusFault is enabled and priority permitted setting the BusFault handler to
the pending state when the floating-point stack frame was allocated.

6] BFRDY

0: MemManage is disabled or priority did not permit setting the MemManage
handler to the pending state when the floating-point stack frame was
allocated.

1: MemManage is enabled and priority permitted setting the MemManage
handler to the pending state when the floating-point stack frame was
allocated.

5] MMRDY

0: Priority did not permit setting the HardFault handler to the pending state
when the floating-point stack frame was allocated.

1: Priority permitted setting the HardFault handler to the pending state when
the floating-point stack frame was allocated.

[4] HFRDY

0: Mode was not Thread Mode when the floating-point stack frame was

allocated.

B3l THREAD 1: Mode was Thread Mode when the floating-point stack frame was
allocated.

[2] - Reserved.

0: Privilege level was not user when the floating-point stack frame was
[1] USER allocated.
1: Privilege level was user when the floating-point stack frame was allocated.

0: Lazy state preservation is not active.
[0] LSPACT 1: Lazy state preservation is active. Floating-point stack frame has been
allocated but saving state to it has been deferred.

3

DoclD028474 Rev 3 235/252

Cortex-M7 Peripherals

PM0253

4.7.3

4.7.4

236/252

Floating-point Context Address register

The FPCAR register holds the location of the unpopulated floating-point register space
allocated on an exception stack frame. See the register summary in Table 93 on page 233
for its attributes. The bit assignments are:

Figure 56. FPCAR bit assignments

31

ADDRESS

Reserved J
MSv39665V1

Table 96. FPCAR bit assignments

Bits Name Function
[31:3] ADDRESS The location of the unpppulated floating-point register space
allocated on an exception stack frame.
[2:0] - Reserved. Read as Zero, Writes Ignored.

Floating-point Status Control register

The FPSCR register provides all necessary User level control of the floating-point system.
The bit assignments are:

Figure 57. FPSCR bit assignments

31 30 29 28 27 26 25 24 23 22 21 8 76543210
Nfz|[C|V Reserved
Reserved - L RMode Inc — L-1oc
AHP Fz Reserved DzC
DN IXC OFC
UFC
MSv39668V1
Table 97. FPSCR bit assignments
Bits Name Function
[31] N Condition code flags. Floating-point comparison operations update these flags.
[30] 7 N: Negative condition code flag.
Z: Zero condition code flag.
[29] c C: Carry condition code flag.
[28] \Y V: Overflow condition code flag.
[27] - Reserved.
Alternative half-precision control bit:
[26] AHP 0: IEEE half-precision format selected.
1: Alternative half-precision format selected.

3

DoclD028474 Rev 3

PM0253

Cortex-M7 Peripherals

Table 97. FPSCR bit assignments (continued)

Bits

Name

Function

(2]

DN

Default NaN mode control bit:

0: NaN operands propagate through to the output of a floating-point operation.
1: Any operation involving one or more NaNs returns the Default NaN.

[24]

FZ

Flush-to-zero mode control bit:

0: Flush-to-zero mode disabled. Behavior of the floating-point system is fully
compliant with the IEEE 754 standard.
1: Flush-to-zero mode enabled.

[23:22]

RMode

Rounding Mode control field. The encoding of this field is:
0b00: Round to Nearest (RN) mode
0b01: Round towards Plus Infinity (RP) mode
0b10: Round towards Minus Infinity (RM) mode
0b11: Round towards Zero (RZ) mode.
The specified rounding mode is used by almost all floating-point instructions.

[21:8]

Reserved.

[7]

IDC

Input Denormal cumulative exception bit, see bits [4:0].

[6:5]

Reserved.

[4]

IXC

Cumulative exception bits for floating-point exceptions, see also bit [7]. Each of

[3]

UFC

these bits is set to 1 to indicate that the corresponding exception has occurred
since 0 was last written to it.

[2]

OFC

IDC, bit[7]: Input Denormal cumulative exception bit.

(1]

DzC

IXC: Inexact cumulative exception bit.

[0]

I0C

UFC: Underflow cumulative exception bit.

OFC: Overflow cumulative exception bit.

DZC: Division by Zero cumulative exception bit.
I0C: Invalid Operation cumulative exception bit.

4.7.5 Floating-point Default Status Control register

The FPDSCR register holds the default values for the floating-point status control data. See
the register summary in Table 93 on page 233 for its attributes. The bit assignments are:

Figure 58. FPDSCR bit assignments

31 27 26 25 24 23 22 21 0
Reserved ofo0f0|0O O Reserved
AHP- LRMode
DN Fz MSv39667V1
Table 98. FPDSCR bit assignments
Bits Name Function
[31:27] - Reserved
[26] AHP Default value for FPSCR.AHP
‘Yl DoclD028474 Rev 3 237/252

Cortex-M7 Peripherals

PM0253

Table 98. FPDSCR bit assignments (continued)

Bits Name Function
[25] DN Default value for FPSCR.DN
[24] Fz Default value for FPSCR.FZ
[23:22] RMode Default value for FPSCR.RMode
[21:0] - Reserved
4.7.6 Enabling the FPU
The FPU is disabled from reset. The user must enable it before using any floating-point
instructions. Example 4-1: Enabling the FPU shows an example code sequence for enabling
the FPU in privileged mode. The processor must be in privileged mode to read from and
write to the CPACR.
Example 4-1: Enabling the FPU
CPACR EQU O0xEO00ED88
LDR RO, =CPACR ; Read CPACR
LDR rl, [RO] ; Set bits 20-23 to enable CP10 and CP1l1
; COprocessors
ORR R1, R1, #(0xF << 20)
STR R1, [RO] ; Write back the modified value to the CPACR
DSB
ISB ; Reset pipeline now the FPU is enabled.
4.8 Cache maintenance operations
The cache maintenance operations are only accessible by privileged loads and stores.
Unprivileged accesses to these registers always generate a BusFault.
Table 99. Cache maintenance space register summary
Required | Reset L
Address Name Type L. Description
privilege | value
OXEOOOEF50 | ICIALLU [WO |Privileged | Unknown | I"Struction cache invalidate all to the Point of
Unification (PoU)
OxEOOOEF54 | - - - - Reserved
OxEOOOEF58 | ICIMVAU WO Privileged | Unknown | Instruction cache invalidate by address to the Pou(™
O0xEO0OEF5C | DCIMVAC | WO Privileged | Unknown Data cache |nva||<(12a)te by address to the Point of
Coherency (PoC)
OxEOOOEF60 | DCISW WO Privileged | Unknown | Data cache invalidate by set/way
OxEOOOEF64 | DCCMVAU |WO Privileged | Unknown | Data cache by address to the PoU(")
OxEOOOEF68 | DCCMVAC |WO Privileged | Unknown | Data cache clean by address to the PoC(?)
OxEOOOEF6C | DCCSW WO Privileged | Unknown | Data cache clean by set/way
0XEOOOEF70 | DCCIMVAC | WO Privileged | Unknown gggzc)a"he clean and invalidate by address to the
238/252 DoclD028474 Rev 3 Kys

PM0253 Cortex-M7 Peripherals

Table 99. Cache maintenance space register summary (continued)

Required | Reset L.
Address Name Type . Description
privilege | value

OxEOOOEF74 | DCCISW WO Privileged | Unknown | Data cache clean and invalidate by set/way
OxEOOOEF78 | BPIALL RAZ/WI | Privileged | - The BPIALL register is not implemented

1. Cache maintenance operations by PoU can be used to synchronize data between the Cortex®-M7 data and instruction
Caches, for example when the software uses self-modifying code.

2. Cache maintenance operations by PoC can be used to synchronize data between the Cortex®-M7 data cache and an
external agent such as a system DMA.

4.8.1 Full instruction cache operation

The ICIALLU is WO and write data is ignored and reads return 0. Writes to this register
perform the requested cache maintenance operation. The BPIALL register is not
implemented in the Cortex-M7 processor as branch predictor maintenance is not required.
The register is RAZ/WI.

4.8.2 Instruction and data cache operations by address

The cache maintenance operations registers are ICIMVAU, DCIMVAC, DCCMVAU,
DCCMVAC, and DCCIMVAC. These registers are WO, reads return 0. See the register
summary in Table 99 for their attributes. The bit assignments are:

Table 100. Cache operation registers bit assignments

Bit Name Type Function
[31:0] MVA WO MVA of requested operation
4.8.3 Data cache operations by set-way

The DCISW, DCCSW and DCCISW registers are WO. Reads return 0. See the register
summary in Table 99 on page 238 for their attributes. The bit assignments are:

Figure 59. Cache operation bit assignments

3130 29 14 13 5 4 10

Way Reserved Set Reserved | 0

MSv39654V1

Table 101. Cache operations by set-way bit assignments

Bit | Name | Type Function

Way that operation applies to.

31:30] |Wa WO
[] y For the data cache, values 0, 1, 2 and 3 are supported.

Reserved

[29:14]

3

DoclD028474 Rev 3 239/252

Cortex-M7 Peripherals PM0253

Table 101. Cache operations by set-way bit assignments (continued)

Bit | Name | Type Function

Set/index that operation applies to. The number of indices in a cache
depends on the configured cache size. When this is less than the
maximum, use the LSB of this field. The number of sets in the cache can be
determined by reading the Cache Size ID register on page 219.

[13:5] |[Set |wWO

[4:1] - - Reserved
[0] - - Always reads as zero.
4.8.4 Cortex®-M7 cache maintenance operations using CMSIS

CMSIS functions enable the software portability between different Cortex®-M profile
processors. To access cache maintenance operations when using CMSIS, use the following

functions:
Table 102. CMSIS access cache maintenance operations
CMSIS function Descriptions
void SCB_EnableICache (void) Invalidate and then enable instruction cache
void SCB_DisableICache (void) Disable instruction cache and invalidate its
contents
void SCB_InvalidateICache (void) Invalidate instruction cache
void SCB_EnableDCache (void) Invalidate and then enable data cache
void SCB_DisableDCache (void) Disable data cache and then clean and
invalidate its contents
void SCB_InvalidateDCache (void) Invalidate data cache
void SCB_CleanDCache (void) Clean data cache
void SCB_CleanInvlaidateDCache(void) |Clean and invalidate data cache

48.5 Initializing and enabling the L1-cache

The user can use cache maintenance operations for:

e Cache startup type operations.

e Manipulating the caches so that shared data is visible to other bus masters.

e Enabling data changed by an external DMA agent to be made visible to the Cortex®-
M7 processor.

After enabling or disabling the instruction cache, the user must issue an ISB instruction to
flush the pipeline. This ensures that all subsequent instruction fetches see the effect of
enabling or disabling the instruction cache.

After reset, the user must invalidate each cache before enabling it.

When disabling the data cache, the user must clean the entire cache to ensure that any dirty
data is flushed to external memory.

Before enabling the data cache, the user must invalidate the entire data cache if external
memory might have changed since the cache was disabled.

240/252 DoclD028474 Rev 3 ‘Yl

PM0253 Cortex-M7 Peripherals

Before enabling the instruction cache, the user must invalidate the entire instruction cache if
external memory might have changed since the cache was disabled.

L1 data and instruction cache must be invalidated before they are enabled in the software,
otherwise unpredictable behavior can occur.

Invalidate the entire data cache

The software can use the following code example to invalidate the entire data cache, if it has
been included in the processor. The operation is carried out by iterating over each line of the
cache and using the DCISW register in the Private Peripheral Bus (PPB) memory region to
invalidate the line. The number of cache ways and sets is determined by reading the
CCSIDR register.

CCSIDR EQU 0xEO0O00ED80O
CSSELR EQU 0xEO0OO0OED84
DCISW EQU OxEOOOEF60
MOV r0, #0x0
LDR rll, =CSSELR
STR r0, [rll] ; Select Data Cache size
DSB
LDR rll, =CCSIDR
LDR r2, [rll] ; Cache size identification
AND rl, r2, #0x7 ; Number of words in a cache line
ADD r7, rl, #0x4
MOV rl, #O0x3ff
ANDS r4, rl, r2, LSR #3
MOV rl, #Ox7fff
ANDS r2, rl, r2, LSR #13
CLZ r6, r4
LDR rll, =DCISW
inv_loopl
MOV rl, r4
inv_loop?2
LSL r3, rl, r6
LSL r8, r2, r7
ORRr 3, r3, r8
STR r3, [rll] ; Invalidate D-cache line
SUBS rl, rl, #0x1
BGE inv_loop2
SUBS r2, r2, #0x1
BGE inv_loopl
DSB
ISB

Invalidate instruction cache

The user can use the following code example to invalidate the entire instruction cache, if it
has been included in the processor. The operation is carried out by writing to the ICIALLU
register in the PPB memory region.

3

DoclD028474 Rev 3 241/252

Cortex-M7 Peripherals PM0253

4.8.6

4.8.7

242/252

ICIALLU EQU OxXEOO00EF50
MOV r0, #0x0
LDR rll, =ICIALLU
STR r0, [rll]
DSB
ISB

Enabling data and instruction caches

The user can use the following code example to enable the data and instruction cache after
they have been initialized. The operation is carried out by modifying the CCR.IC and
CCR.DC fields in the PPB memory region.

CCR EQU OxEOOOED14
LDR rll, =CCR
LDR r0, [rll]

ORR r0, r0, #0x1:SHL:16 ; Set CCR.DC field
ORR r0O, r0O, #0x1:SHL:17 ; Set CCR.IC field
STR r0, [rll]

DSB

ISB

Faults handling considerations

Cache maintenance operations can result in a BusFault. Such fault events are
asynchronous.

This type of BusFault:
. Does not cause escalation to HardFault where a BusFault handler is enabled.
e Never causes lockup.

Because the fault event is asynchronous, the software code for cache maintenance
operations should use memory barrier instructions, such as DSB, on completion so that the
fault event can be observed immediately.

Cache maintenance design hints and tips

The user must always place a DSB and ISB instruction sequence after a cache
maintenance operation to ensure that the effect is observed by any following instructions in
the software.

When using a cache maintenance operation by address or set/way a DSB instruction must
be executed after any previous load or store, and before the maintenance operation, to
guarantee that the effect of the load or store is observed by the operation. For example, if a
store writes to the address accessed by a DCCMVAC the DSB instruction guarantees that
the dirty data is correctly cleaned from the data cache.

When one or more maintenance operations have been executed, use of a DSB instruction
guarantees that they have completed and that any following load or store operations
executes in order after the maintenance operations.

Cache maintenance operations always complete in-order with respect to each other. This
means only one DSB instruction is required to guarantee the completion of a set of
maintenance operations.

DoclD028474 Rev 3 ‘Yl

PM0253 Cortex-M7 Peripherals
The following code sequence shows how to use cache maintenance operations to
synchronize the data and instruction caches for self-modifying code. The sequence is
entered with <Rx> containing the new 32-bit instruction. Use STRH in the first line instead of
STR for a 16-bit instruction:

STR <Rx>, <inst_addressl>

DSB ; Ensure the data has been written to the
; cache.

STR <inst_addressl>, DCCMVAU ; Clean data cache by MVA to point of
; unification (PoU).

STR <inst_addressl>, ICIMVAU ; Invalidate instruction cache by MVA to
; PoU.

DSB ; Ensure completion of the invalidations.

ISB ; Synchronize fetched instruction stream.

4.9 Access control
Control of the L1-cache ECC and attribute override, the priority of AHB slave traffic, and
whether an access is mapped to TCM interfaces or AXI master interface, is defined by the
access control registers. The access control registers are:

Table 103. Access control register summary
Required Reset L
Address Name | Type . Description

privilege value
OXEOOOEF90 |ITCMCR |RW |Privileged |0x00000000 | jnstruction and Data Tightly-Coupled Memory
OXEOOOEF94 |DTCMCR [RW | Privileged |0x00000000 | Control Registers on page 244
OxEOOOEF98 |AHBPCR |RW |Privileged | 0x00000000 | AHBP Control register on page 246
0xEOOOEF9C |CACR RW | Privileged -M Auxiliary Cache Control register on page 247
OxEOOOEFAO [AHBSCR |RW | Privileged |0x00000800 | AHB Slave Control register on page 248
OxEOOOEFA8 |ABFSR RW | Privileged |0x00000000 |Auxiliary Bus Fault Status register on page 249

1. The reset value is implementation and configuration dependent and the silicon vendor changes this. If cache ECC is
configured the reset value is 0x00000000, if cache ECC is not configured the reset value is 0x00000002.

3

DoclD028474 Rev 3

243/252

Cortex-M7 Peripherals

PM0253

4.9.1 Instruction and Data Tightly-Coupled Memory Control Registers

The ITCMCR and DTCMCR control whether access is mapped to the TCM interfaces or the
AXI master interface. The bit assignments are:

Figure 60. ITCMR and DTCMR bit assignments

31

7 6 3210

Reserved Sz

RETEN J
RMW
EN

MSv39677V1

Table 104. ITCMCR and DTCMCR bit assignments

Bits

Name

Type

Function

[31:7]

Reserved, RAZ/WI.

[6:3]

SZ

RO

TCM size. Indicates the size of the relevant TCM:
0b0000: No TCM implemented.
0b0011: 4KB.
0b0100: 8KB.
0b0101: 16KB.
0b0110: 32KB.
0b0111: 64KB.
0b1000: 128KB.
0b1001: 256KB.
0b1010: 512KB.
0b1011: 1MB.
0b1100: 2MB.
0b1101: 4MB.
0b1110: 8MB.
0b1111: 16MB.

All other encodings are reserved.

(2]

RETEN(")

RW

Retry phase enable. When enabled the processor guarantees to honor
the retry output on the corresponding TCM interface:

0: Retry phase disabled.

1: Retry phase enabled.

(1]

RMwW(2)

RW

Read-Modify-Write (RMW) enable. Indicates that all sub-chunk writes to
a given TCM use a RMW sequence:

0: RMW disabled.

1: RMW enabled.

[0]

EN

RW

TCM enable. When a TCM is disabled all accesses are made to the AXI
master.

0: TCM disabled.

1: TCM enabled.

1. The RETEN field in the ITCMCR and DTCMCR is used to support error detection and correction in the

TCM

2. The RMW field in the ITCMCR and DTCMCR is used to support error detection and correction in the TCM.

244/252

DoclD028474 Rev 3 ‘Yl

PM0253

Cortex-M7 Peripherals

3

Enabling the TCM

The TCM interfaces can be enabled at reset in the system by an external signal on the
processor. If they are disabled at reset then the following code example can be used to

enable both the instruction and data TCM interfaces in software:

ITCMCR
DTCMCR

Enabling the TCM retry and read-modify-write

EQU
EQU

LDR
LDR
ORR
STR

LDR
LDR
ORR
STR

DSB
ISB

0xEOOOQEF90
0xEOOOEF94

rll, =ITCMCR

r0, [rll]
r0, r0, #0x1
r0, [rll]
rll, =DTCMCR

r0, [rll]
r0, r0, #0x1
r0, [rll]

; Set ITCMCR.EN field

; Set DTCMCR.EN field

If the TCM connected to the processor supports error detection and correction, the TCM
interface should be configured to support the retry and read-modify-write features. These
can be enabled at reset in the system by external signals on the processor. If they are
disabled at reset then the following code example can be used to enable them in software:

ITCMCR
DTCMCR

EQU
EQU

LDR
LDR
ORR
ORR
STR

LDR
LDR
ORR
ORR
STR

DSB
ISB

0xEOOOEF90
0xEOOOEF94

rll, =ITCMCR

r0, [rll]

r0, r0, #0x1:
r0, r0, #0x1:

r0, [rll]

rll, =DTCMCR

r0, [rll]

r0, r0, #0x1:
r0, r0, #0x1:

r0, [rll]

SHL:1 ; Set ITCMCR.RMW field
SHL: 2 ; Set ITCMCR.RETEN field

SHL:1 ; Set DTCMCR.RMW field
SHL: 2 ; Set DTCMCR.RETEN field

DoclD028474 Rev 3

245/252

Cortex-M7 Peripherals PM0253

4.9.2 AHBP Control register

The AHBPCR controls accesses to the device on the AHBP or AXI master interface. The bit
assignments are:

Figure 61. AHBPCR bit assignments
31 43210

Reserved Sz

EN -

MSv39649V1

Table 105. AHBPCR bit assignments

Bits | Name | Type Function
[31:4] |- - Reserved, RAZ/WI.
AHBP size:
0b001: 64 MBytes.
[3:1] |SZ RO 0b010: 128 MBytes.

0b011: 256 MBytes.
0b100: 512 MBytes.

AHBP enable:

0: AHBP disabled. When disabled all accesses are made to the AXI
master.
1: AHBP enabled.

0 |EN |RW

Enabling the AHBP interface

The AHBP interface can be enabled at reset in the system by an external signal on the
processor. If it is disabled at reset then the following code example can be used to enable
the AHPB interface from software:

AHBPCR EQU OxEOOOEF98

LDR rll, =AHBPCR

LDR r0, [rll]

ORR r0, r0, #0x1 ; Set AHBPCR.EN field
STR r0, [rll]

DSB
ISB

3

246/252 DoclD028474 Rev 3

PM0253 Cortex-M7 Peripherals
4.9.3 Auxiliary Cache Control register
The CACR controls the L1-cache ECC and attribute override. The bit assignments are:
Figure 62. CACR bit assignments
31 3210
Reserved
FORCEWT J
ECCEN
SIWT
MSv39655V1
Table 106. CACR bit assignments
Bits Name Type Function
[31:3] |- - Reserved, RAZ/WI.
Enables Force Write-through in the data cache:
0: Disables Force Write-Through.
[2] FORCEWT |RW 1: Enables Force Write-Through. Cacheable Write-Back memory regions are
treated as Write-Through.
This bit is RAZ if the data cache is excluded.
Enables ECC in the instruction and data cache:
0: Enables ECC in the instruction and data cache.
1] ECCEN RW 1: Disables ECC in the instruction and data cache.
This bit is WI if both data cache and instruction cache are excluded or if ECC is not
configured. If ECC is included in the processor the reset value of ECCEN is 0. IFECC
is excluded the reset value of ECCEN is 1
Enables cache coherency usage:
0: Normal Cacheable Shared locations are treated as being Non-cacheable.
Programmed inner cacheability attributes are ignored. This is the default mode of
operation for Shared memory. Caches are transparent to software for these
locations and therefore no software maintenance is required to maintain
coherency.
1: For the data cache, Normal Cacheable shared locations are treated as Write-
[0] SIWT RW through. For the instruction cache, shared locations are treated as being Non-
cacheable. Programmed inner cacheability attributes are ignored. All writes are
globally visible. Other memory agent updates are not visible to Cortex®-M7
software without suitable cache maintenance.
Useful for heterogeneous MP-systems where, for example, Cortex®-M7 processor
is integrated on the Accelerator Coherency Port (ACP) interface on an MP-capable
processor.
This bit is RAZ if the data cache is excluded.

3

DoclD028474 Rev 3 247/252

Cortex-M7 Peripherals PM0253

Disabling cache error checking and correction

If the cache error checking and correction is included in the processor it is enabled by
default from reset. The following code example can be used to disable the feature. The
operation is carried out by modifying the CACR.ECCEN field in the PPB memory region.

CACR EQU 0xEOQ0EF9C
LDR rll, =CACR
LDR r0, [rll]
BFC r0, #0x1, #0x1 ; Clear CACR.ECCEN
STR r0, [rll]

DSB
ISB

Care must be taken when the software changes CACR.ECCEN. If CACR.ECCEN changes
when the caches contain data, ECC information in the caches might not be correct for the
new setting, resulting in unexpected errors and data loss. Therefore the software must only
change CACR.ECCEN when both caches are turned off and both caches must be
invalidated after the change.

4.9.4 AHB Slave Control register
The AHBSCR is used by software to control the priority of AHB slave traffic. The bit
assignments are:
Figure 63. AHBSCR bit assignments
31 15 11 10 210
Reserved INITCOUNT TPRI CTL
MSv39650V1
Table 107. AHBSCR bit assignments
Bits Name Type Function
[31:16] |- - Reserved.
Fairness counter initialization value. Use to demote access priority of the
requestor selected by the AHBSCR.CTL field. The reset value is 0b01.
For round-robin mode set INITCOUNT to 0b01 and AHBSCR.CTL to 0b0O or
[15:11] |INITCOUNT |RW 0b01.
INITCOUNT must not be set to 0b00 because the demoted requestor always
takes priority when contention occurs, which can lead to livelock.
INITCOUNT is not used when AHBSCR.CTL is Ob11.

248/252

3

DoclD028474 Rev 3

PM0253

Cortex-M7 Peripherals

Table 107. AHBSCR bit assignments (continued)

Bits

Name

Type

Function

[10:2]

TPRI

RwW

Threshold execution priority for AHBS traffic demotion.
0b0xxxxxxx: Priority is TPRI[7:0]. This is the same as the NVIC register
encodings.
0b11111111: Priority of -1. This is the priority of the HardFault exception.
0b11111110: Priority of -2. This is the priority of the NMI exception.

[1:0]

CTL

RwW

AHBS prioritization control:
0b00: AHBS access priority demoted. This is the reset value.
0b01: Software access priority demoted.
0b10: AHBS access priority demoted by initializing the fairness counter to the
AHBSCR.INITCOUNT value when the software execution priority is higher
than or equal to the threshold level programmed in AHBSCR.TPRI. When the
software execution priority is below this value, the fairness counter is initialized
with 1 (round-robin).
The threshold level encoding matches the NVIC encoding and uses
arithmetically larger numbers to represent lower priority.
0b11: AHBSPRI signal has control of access priority.

49.5

3

Auxiliary Bus Fault Status register

The ABFSR stores information on the source of asynchronous bus faults. The ASBFSR bit
assignments are:

Figure 64. ABFSR bit assignments

31 109 8 7 43210
Reserved Reserved
AXIMTYPE J EPPB J
AXIM
AHBP
DTCM
ITCM
MSv39647V1
Table 108. ABFSR bit assignments
Bits Name Function
[31:10] - Reserved
Indicates the type of fault on the AXIM interface:
b00: OKAY
b01: EXOKAY
[9:8] AXIMTYPE b10: SLVERR
b11: DECERR
Only valid when AXIM is 1.
[7:5] - Reserved
[4] EPPB Asynchronous fault on EPPB interface.

DoclD028474 Rev 3 249/252

Cortex-M7 Peripherals

PM0253

250/252

Table 108. ABFSR bit assignments (continued)

Bits Name Function
[3] AXIM Asynchronous fault on AXIM interface.
[2] AHBP Asynchronous fault on AHBP interface.
11 DTCM Asynchronous fault on DTCM interface.
[0] ITCM Asynchronous fault on ITCM interface

In the bus-fault handler, the software reads the BFSR, and if an asynchronous fault occurs,
the ABFSR is read to determine which interfaces are affected. The ABFSR[4:0] fields
remains valid until cleared by writing to the ABFSR with any value.

For more information about the BFSR, see BusFault Status register on page 207.

3

DoclD028474 Rev 3

PM0253

Revision history

5

3

Revision history

Table 109. Document revision history

Date

Revision

Changes

18-Dec-2015

1

Initial release.

22-Apr-2016

Updated Table 11: STM32F746xx/STM32F756xx Cortex®-M7
configuration title.

Added Table 12: STM32F76xxx/STM32F77xxx Cortex®-M7
configuration.

In Section 2.3.2: Memory system ordering of memory accesses
updated link to section 2.3.4: software ordering of memory
accesses.

02-Feb-2017

Added Table 13: STM32F72xxx/STM32F73xxx Cortex®-M7
configuration.

DoclD028474 Rev 3 251/252

PM0253

IMPORTANT NOTICE — PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics — All rights reserved

3

252/252 DoclD028474 Rev 3

	1 About this document
	1.1 Typographical conventions
	1.2 List of abbreviations for registers
	1.3 About the Cortex®-M7 processor and core peripherals
	Figure 1. STM32 Cortex®-M7 implementation processor
	1.3.1 System level interface
	1.3.2 Integrated configurable debug
	1.3.3 Cortex®-M7 processor features and benefits summary
	1.3.4 Cortex®-M7 processor core peripherals

	2 The Cortex-M7 processor
	2.1 Programmers model
	2.1.1 Processor mode and privilege levels for software execution
	2.1.2 Stacks
	Table 1. Summary of processor mode, execution privilege level, and stack use options

	2.1.3 Core registers
	Figure 2. Processor core registers
	Table 2. Core register set summary
	Figure 3. APSR, IPSR and EPSR bit assignments
	Table 3. PSR register combinations
	Table 4. APSR bit assignments
	Table 5. IPSR bit assignments
	Table 6. EPSR bit assignments
	Figure 4. PRIMASK bit assignments:
	Table 7. PRIMASK register bit assignments
	Figure 5. FAULTMASK bit assignments
	Table 8. FAULTMASK register bit assignments
	Figure 6. BASEPRI bit assignments
	Table 9. BASEPRI register bit assignments
	Figure 7. Control bit assignments
	Table 10. Control register bit assignments (continued)

	2.1.4 Exceptions and interrupts
	2.1.5 Data types
	2.1.6 The Cortex Microcontroller Software Interface Standard (CMSIS)

	2.2 Cortex®-M7 configurations
	Table 11. STM32F746xx/STM32F756xx Cortex®-M7 configuration
	Table 12. STM32F76xxx/STM32F77xxx Cortex®-M7 configuration
	Table 13. STM32F72xxx/STM32F73xxx Cortex®-M7 configuration

	2.3 Memory model
	Figure 8. Processor memory map
	2.3.1 Memory regions, types and attributes
	2.3.2 Memory system ordering of memory accesses
	Table 14. Ordering of memory accesses

	2.3.3 Behavior of memory accesses
	Table 15. Memory access behavior
	Table 16. Memory region shareability and cache policies

	2.3.4 Software ordering of memory accesses
	2.3.5 Memory endianness
	Figure 9. Little-endian format

	2.3.6 Synchronization primitives
	2.3.7 Programming hints for the synchronization primitives
	Table 17. CMSIS functions for exclusive access instructions

	2.4 Exception model
	2.4.1 Exception states
	2.4.2 Exception types
	Table 18. Properties of the different exception types

	2.4.3 Exception handlers
	2.4.4 Vector table
	Figure 10. Vector table

	2.4.5 Exception priorities
	2.4.6 Interrupt priority grouping
	2.4.7 Exception entry and return
	Figure 11. Exception stack frame
	Table 19. Exception return behavior

	2.5 Fault handling
	2.5.1 Fault types
	Table 20. Faults

	2.5.2 Fault escalation and hard faults
	2.5.3 Synchronous and Asynchronous bus faults
	2.5.4 Fault status registers and fault address registers
	Table 21. Fault status and fault address registers

	2.5.5 Lockup

	2.6 Power management
	2.6.1 Entering sleep mode
	2.6.2 Wakeup from sleep mode
	2.6.3 The external event input
	2.6.4 Power management programming hints

	3 The Cortex-M7 instruction set
	3.1 Instruction set summary
	Table 22. Cortex®-M7 instructions
	3.1.1 Binary compatibility with other Cortex processors

	3.2 CMSIS functions
	Table 23. CMSIS functions to generate some Cortex®-M7 processor instructions
	Table 24. CMSIS functions to access the special registers

	3.3 About the instruction descriptions
	3.3.1 Operands
	3.3.2 Restrictions when using PC or SP
	3.3.3 Flexible second operand
	3.3.4 Shift operations
	Figure 12. ASR
	Figure 13. LSR
	Figure 14. LSL
	Figure 15. ROR
	Figure 16. RRX

	3.3.5 Address alignment
	3.3.6 PC-relative expressions
	3.3.7 Conditional execution
	Table 25. Condition code suffixes

	3.3.8 Instruction width selection

	3.4 Memory access instructions
	Table 26. Memory access instructions
	3.4.1 ADR
	3.4.2 LDR and STR, immediate offset
	Table 27. Offset ranges

	3.4.3 LDR and STR, register offset
	3.4.4 LDR and STR, unprivileged
	3.4.5 LDR, PC-relative
	Table 28. Offset ranges

	3.4.6 LDM and STM
	3.4.7 PLD
	3.4.8 PUSH and POP
	3.4.9 LDREX and STREX
	3.4.10 CLREX

	3.5 General data processing instructions
	Table 29. Data processing instructions
	3.5.1 ADD, ADC, SUB, SBC, and RSB
	3.5.2 AND, ORR, EOR, BIC, and ORN
	3.5.3 ASR, LSL, LSR, ROR, and RRX
	3.5.4 CLZ
	3.5.5 CMP and CMN
	3.5.6 MOV and MVN
	3.5.7 MOVT
	3.5.8 REV, REV16, REVSH, and RBIT
	3.5.9 SADD16 and SADD8
	3.5.10 SHADD16 and SHADD8
	3.5.11 SHASX and SHSAX
	3.5.12 SHSUB16 and SHSUB8
	3.5.13 SSUB16 and SSUB8
	3.5.14 SASX and SSAX
	3.5.15 TST and TEQ
	3.5.16 UADD16 and UADD8
	3.5.17 UASX and USAX
	3.5.18 UHADD16 and UHADD8
	3.5.19 UHASX and UHSAX
	3.5.20 UHSUB16 and UHSUB8
	3.5.21 SEL
	3.5.22 USAD8
	3.5.23 USADA8
	3.5.24 USUB16 and USUB8

	3.6 Multiply and divide instructions
	Table 30. Multiply and divide instructions
	3.6.1 MUL, MLA, and MLS
	3.6.2 UMULL, UMAAL, UMLAL
	3.6.3 SMLA and SMLAW
	3.6.4 SMLAD
	3.6.5 SMLAL and SMLALD
	3.6.6 SMLSD and SMLSLD
	3.6.7 SMMLA and SMMLS
	3.6.8 SMMUL
	3.6.9 SMUAD and SMUSD
	3.6.10 SMUL and SMULW
	3.6.11 UMULL, UMLAL, SMULL, and SMLAL
	3.6.12 SDIV and UDIV

	3.7 Saturating instructions
	Table 31. Saturating instructions
	3.7.1 SSAT and USAT
	3.7.2 SSAT16 and USAT16
	3.7.3 QADD and QSUB
	3.7.4 QASX and QSAX
	3.7.5 QDADD and QDSUB
	3.7.6 UQASX and UQSAX
	3.7.7 UQADD and UQSUB

	3.8 Packing and unpacking instructions
	Table 32. Packing and unpacking instructions
	3.8.1 PKHBT and PKHTB
	3.8.2 SXT and UXT
	3.8.3 SXTA and UXTA

	3.9 Bit field instructions
	Table 33. Packing and unpacking instructions
	3.9.1 BFC and BFI
	3.9.2 SBFX and UBFX
	3.9.3 SXT and UXT

	3.10 Branch and control instructions
	Table 34. Branch and control instructions
	3.10.1 B, BL, BX, and BLX
	Table 35. Branch ranges

	3.10.2 CBZ and CBNZ
	3.10.3 IT
	3.10.4 TBB and TBH

	3.11 Floating-point instructions
	Table 36. Floating-point instructions
	3.11.1 VABS
	3.11.2 VADD
	3.11.3 VCMP, VCMPE
	3.11.4 VCVT, VCVTR between floating-point and integer
	3.11.5 VCVT between floating-point and fixed-point
	3.11.6 VCVTB, VCVTT
	3.11.7 VDIV
	3.11.8 VFMA, VFMS
	3.11.9 VFNMA, VFNMS
	3.11.10 VLDM
	3.11.11 VLDR
	3.11.12 VMLA, VMLS
	3.11.13 VMOV Immediate
	3.11.14 VMOV Register
	3.11.15 VMOV Scalar to ARM core register
	3.11.16 VMOV ARM core register to single-precision
	3.11.17 VMOV two ARM core registers to two single-precision registers
	3.11.18 VMOV two ARM core registers and a double-precision register
	3.11.19 VMOV ARM core register to scalar
	3.11.20 VMRS
	3.11.21 VMSR
	3.11.22 VMUL
	3.11.23 VNEG
	3.11.24 VNMLA, VNMLS, VNMUL
	3.11.25 VPOP
	3.11.26 VPUSH
	3.11.27 VSQRT
	3.11.28 VSTM
	3.11.29 VSTR
	3.11.30 VSUB
	3.11.31 VSEL
	3.11.32 VMAXNM, VMINNM
	3.11.33 VCVTA, VCVTN, VCVTP, VCVTM
	3.11.34 VRINTR, VRINTX
	3.11.35 VRINTA, VRINTN, VRINTP, VRINTM, VRINTZ

	3.12 Miscellaneous instructions
	Table 37. Miscellaneous instructions
	3.12.1 BKPT
	3.12.2 CPS
	3.12.3 DMB
	3.12.4 DSB
	3.12.5 ISB
	3.12.6 MRS
	3.12.7 MSR
	3.12.8 NOP
	3.12.9 SEV
	3.12.10 SVC
	3.12.11 WFE
	3.12.12 WFI

	4 Cortex-M7 Peripherals
	4.1 About the Cortex-M7 peripherals
	Table 38. Core peripheral register regions

	4.2 Nested Vectored Interrupt Controller
	Table 39. NVIC register summary
	4.2.1 Accessing the Cortex®-M7 NVIC registers using CMSIS
	Table 40. CMSIS access NVIC functions

	4.2.2 Interrupt Set-enable registers
	Figure 17. ISER bit assignments
	Table 41. ISER bit assignments

	4.2.3 Interrupt clear-enable registers
	Figure 18. ICER bit assignment
	Table 42. ICER bit assignments

	4.2.4 Interrupt set-pending registers
	Figure 19. ISPR bit assignments
	Table 43. ISPR bit assignments

	4.2.5 Interrupt clear-pending registers
	Figure 20. ICPR bit assignments
	Table 44. ICPR bit assignments

	4.2.6 Interrupt Active Bit registers
	Figure 21. IABR bit assignments
	Table 45. IABR bit assignments

	4.2.7 Interrupt Priority registers
	Figure 22. IPR bit assignments
	Table 46. IPR bit assignments

	4.2.8 Software Trigger Interrupt register
	Figure 23. STIR bit assignments
	Table 47. STIR bit assignments

	4.2.9 Level-sensitive and pulse interrupts
	4.2.10 NVIC design hints and tips
	Table 48. CMSIS functions for NVIC control

	4.3 System control block
	Table 49. Summary of the system control block registers
	4.3.1 Auxiliary Control register
	Figure 24. ACTLR bit assignments
	Table 50. ACTLR bit assignments

	4.3.2 CPUID Base register
	Figure 25. CPUID bit assignments
	Table 51. CPUID bit assignments

	4.3.3 Interrupt Control and State register
	Figure 26. ICSR bit assignments
	Table 52. ICSR bit assignments

	4.3.4 Vector Table Offset register
	Figure 27. VTOR bit assignments
	Table 53. VTOR bit assignments

	4.3.5 Application Interrupt and Reset Control register
	Figure 28. AIRCR bit assignments
	Table 54. AIRCR bit assignments
	Table 55. Priority grouping

	4.3.6 System Control register
	Figure 29. SCR bit assignments:
	Table 56. SCR bit assignments

	4.3.7 Configuration and Control register
	Figure 30. CCR bit assignments
	Table 57. CCR bit assignments

	4.3.8 System Handler Priority registers
	Table 58. System fault handler priority fields
	Figure 31. SHPR1 bit assignements
	Table 59. SHPR1 register bit assignments
	Figure 32. SHPR2 bit assignments
	Table 60. SHPR2 register bit assignments
	Figure 33. SHPR3 bit assignments
	Table 61. SHPR3 register bit assignments

	4.3.9 System Handler Control and State register
	Figure 34. SHCSR bit assignments
	Table 62. SHCSR bit assignments

	4.3.10 Configurable Fault Status register
	Figure 35. CFSR bit assignments
	Figure 36. MMFSR bit assignments
	Table 63. MMFSR bit assignments
	Figure 37. BFSR bit assignments
	Table 64. BFSR bit assignments
	Figure 38. UFSR bit assignments
	Table 65. UFSR bit assignments

	4.3.11 HardFault Status register
	Figure 39. HFSR bit assignments
	Table 66. HFSR bit assignments

	4.3.12 MemManage Fault Address register
	Table 67. MMFAR bit assignments

	4.3.13 BusFault Address register
	Table 68. BFAR bit assignments

	4.3.14 System control block design hints and tips
	Table 69. CMSIS function for system control

	4.4 System timer, SysTick
	Table 70. System timer registers summary
	4.4.1 SysTick Control and Status register
	Figure 40. SysTick SYST_CSR bit assignments
	Table 71. SysTick SYST_CSR bit assignments

	4.4.2 SysTick Reload Value register
	Figure 41. SYST_RVR bit assignments
	Table 72. SYST_RVR bit assignments

	4.4.3 SysTick Current Value register
	Figure 42. SYST_CVR bit assignments:
	Table 73. SYST_CVR bit assignments

	4.4.4 SysTick Calibration Value register
	Figure 43. SYST_CALIB bit assignments
	Table 74. SYST_CALIB bit assignments

	4.4.5 SysTick design hints and tips
	Table 75. CMSIS functions for SysTick control

	4.5 Processor features
	Table 76. Identification space summary
	4.5.1 Cache Level ID register
	Figure 44. CLIDR bit assignments
	Table 77. CLIDR bit assignments

	4.5.2 Cache Type register
	Figure 45. CTR bit assignments
	Table 78. CTR bit assignments

	4.5.3 Cache Size ID register
	Figure 46. CCSIDR bit assignments
	Table 79. CCSIDR bit assignments
	Table 80. CCSIDR encodings

	4.5.4 Cache Size Selection register
	Figure 47. CSSELR bit assignments
	Table 81. CSSELR bit assignments

	4.6 Memory Protection Unit
	Table 82. Memory attributes summary
	Table 83. MPU registers summary
	4.6.1 MPU Type register
	Figure 48. TYPE bit assignments
	Table 84. TYPE bit assignments

	4.6.2 MPU Control register
	Figure 49. MPU_CTRL bit assignments
	Table 85. MPU_CTRL bit assignments

	4.6.3 MPU Region Number register
	Figure 50. MPU_RNR bit assignments
	Table 86. MPU_RNR bit assignments

	4.6.4 MPU Region Base Address register
	Figure 51. MPU_RBAR bit assignments:
	Table 87. MPU_RBAR bit assignments

	4.6.5 MPU Region Attribute and Size register
	Figure 52. MPU_RASR bit assignments
	Table 88. MPU_RASR bit assignments
	Table 89. Example SIZE field values

	4.6.6 MPU access permission attributes
	Table 90. TEX, C, B, and S encoding
	Table 91. Cache policy for memory attribute encoding
	Table 92. AP encoding

	4.6.7 MPU mismatch
	4.6.8 Updating an MPU region
	Figure 53. Example of disabling subregion

	4.6.9 MPU design hints and tips

	4.7 Floating-point unit
	Table 93. Cortex®-M7 floating-point system registers
	4.7.1 Coprocessor Access Control register
	Figure 54. CPACR bit assignments
	Table 94. CPACR bit assignments

	4.7.2 Floating-point Context Control register
	Figure 55. FPCCR bit assignments
	Table 95. FPCCR bit assignments

	4.7.3 Floating-point Context Address register
	Figure 56. FPCAR bit assignments
	Table 96. FPCAR bit assignments

	4.7.4 Floating-point Status Control register
	Figure 57. FPSCR bit assignments
	Table 97. FPSCR bit assignments

	4.7.5 Floating-point Default Status Control register
	Figure 58. FPDSCR bit assignments
	Table 98. FPDSCR bit assignments

	4.7.6 Enabling the FPU

	4.8 Cache maintenance operations
	Table 99. Cache maintenance space register summary
	4.8.1 Full instruction cache operation
	4.8.2 Instruction and data cache operations by address
	Table 100. Cache operation registers bit assignments

	4.8.3 Data cache operations by set-way
	Figure 59. Cache operation bit assignments
	Table 101. Cache operations by set-way bit assignments

	4.8.4 Cortex®-M7 cache maintenance operations using CMSIS
	Table 102. CMSIS access cache maintenance operations

	4.8.5 Initializing and enabling the L1-cache
	4.8.6 Faults handling considerations
	4.8.7 Cache maintenance design hints and tips

	4.9 Access control
	Table 103. Access control register summary
	4.9.1 Instruction and Data Tightly-Coupled Memory Control Registers
	Figure 60. ITCMR and DTCMR bit assignments
	Table 104. ITCMCR and DTCMCR bit assignments

	4.9.2 AHBP Control register
	Figure 61. AHBPCR bit assignments
	Table 105. AHBPCR bit assignments

	4.9.3 Auxiliary Cache Control register
	Figure 62. CACR bit assignments
	Table 106. CACR bit assignments

	4.9.4 AHB Slave Control register
	Figure 63. AHBSCR bit assignments
	Table 107. AHBSCR bit assignments

	4.9.5 Auxiliary Bus Fault Status register
	Figure 64. ABFSR bit assignments
	Table 108. ABFSR bit assignments

	5 Revision history
	Table 109. Document revision history

